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Abstract. Several variants of the Halpern-Läuchli Theorem for trees of un-

countable height are investigated. For κ weakly compact, we prove that the
various statements are all equivalent, and hence, the strong tree version holds

for one tree on any weakly compact cardinal. For any finite d ≥ 2, we prove

the consistency of the Halpern-Läuchli Theorem on d many normal κ-trees at
a measurable cardinal κ, given the consistency of a κ+d-strong cardinal. This

follows from a more general consistency result at measurable κ, which includes

the possibility of infinitely many trees, assuming partition relations which hold
in models of AD.

1. Introduction

Halpern and Läuchli proved their celebrated theorem regarding Ramsey theory
on products of trees in [11] as a necessary step for the construction in [12] a model
of ZF in which the Boolean Prime Ideal Theorem holds but the Axiom of Choice
fails. Over the years, many variations have been investigated and applied. One of
the earliest of these is due to Milliken, who in [15], extended theorem of Halpern
and Läuchli to colorings of finite products of strong trees. As the two are equiv-
alent in ZFC, this version is often used synonymously with Halpern and Läuchli’s
orginal version. Milliken further proved in [16] that the collection of strong trees
forms, in modern terminology, a topological Ramsey space. Further variations and
applications include ω many perfect trees in [14]; partitions of products in [2]; the
density version in [4]; the dual version in [20]; canonical equivalence relations on
finite strong trees in [21]; and applications to colorings of subsets of the rationals
in [1] and [22], finite Ramsey degrees of the Rado graph in [17] which in turn was
applied to show the Rado graph has the rainbow Ramsey property in [3], to name
just a few.

The first result generalizing the Halpern-Läuchli Theorem to an uncountable
height tree was given by Shelah in [18]. There, in Lemma 4.1, Shelah proved that
it is consistent with ZFC that given any finite m and any coloring of the m-sized
subsets of the levels of the tree <κ2, (that is, a coloring of

⋃
ζ<κ[ζ2]m), into less than

κ many colors for κ measurable, then there is a strong subtree (see Definition 2.1)
T ⊆ <κ2 on which the coloring takes only finitely many colors. Shelah’s proof builds
on and extends Harrington’s forcing argument for the Halpern-Läuchli Theorem on
<ω2, and assumes that κ is a cardinal which is measurable after adding λ many
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Cohen subsets of κ, where λ is large enough that the partition relation λ→ (κ+)2m
2κ

holds. Thus, his result also holds for any κ which is supercompact after a Laver
treatment.

In [5], Dzamonja, Larson and Mitchell extended Shelah’s proof to include col-
orings of all antichains in the tree <κ2 of a fixed finite size m, rather than just
colorings of subsets of the same levels. They proved that given a coloring of m-
sized antichains of the tree <κ2 with less than κ many colors, there is a strong
subtree T isomorphic to <κ2 on which the set of m-sized antichains takes on only
finitely many colors. These finitely many colors are classified by the embedding
types of the trees induced by the antichains. They then applied this result to find
the Ramsey degrees of < κ colorings of [Qκ]m, m any finite integer, and of < κ
colorings of the copies of a fixed finite graph inside the Rado graph on κ many
vertices in [5] and [6], respectively.

This work has left open the following questions.

Question 1.1. For which uncountable cardinals κ can the Halpern-Läuchli Theo-
rem hold for trees of height κ, either in ZFC or consistently?

Question 1.2. What is the consistency strength of the Halpern-Läuchli Theorem
for κ uncountable; in particular for κ a measurable cardinal?

Question 1.3. Given a fixed number of trees, are the weaker (somewhere dense)
and stronger (strong tree) forms of the Halpern-Läuchli Theorem equivalent, for κ
uncountable?

In Section 3, we answer Question 1.3 for the case of weakly compact cardinals:
Theorem 3.7 shows that when κ is weakly compact, all the various weaker and
stronger forms of the Halpern-Läuchli Theorem on δ many regular κ trees are
equivalent, where δ can be any cardinal less than κ. In Fact 2.4, we show that
the somewhere dense version for finitary colorings on one tree on any cardinal is
a ZFC result. Hence, if κ is weakly compact, then the strong tree version of the
Halpern-Läuchli Theorem holds for finitary colorings of one regular subtree tree of
<κκ, thus answering Question 1.1 for the case of one tree and finitely many colors.

In Section 4, for any fixed positive integer d, Theorem 4.6 shows that it is con-
sistent for the Halpern-Läuchli Theorem to hold on d many regular trees on a
measurable cardinal κ. Further, this theorem yields that a κ+ d-strong cardinal is
an upper bound for the consistency strength of the Halpern-Läuchli Theorem for
d many regular trees on a measurable cardinal κ, thus partially answering Ques-
tions 1.1 and 1.2. This is weaker than the upper bound of a cardinal κ which is
κ + 2d-strong, that would be needed if one simply lifted the standard version of
Harrington’s forcing proof to a measurable cardinal. This result also presents an
interesting contrast to the (κ+2d+2)-strong cardinal mentioned as an upper bound
for the consistency strength of Lemma 4.1 in [18] and its strengthening Theorem 2.5
in [5], which colors antichains of size d in one tree on κ. We conjecture in Section
5 that the consistency strength of the Halpern-Lauchli Theorem on d many regular
trees for κ measurable is in fact a κ+d-strong cardinal. Theorem 4.6 follows from a
more general result, Theorem 4.3, which includes the possibility of infinitely many
trees assuming certain partition relations which hold assuming AD. We provide
this generalization with the aim of future applications.
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Finally, we consider when forcing will preserve the Halpern-Läuchli Theorem.
In Section 5, Theorem 5.5 shows that whenever κ is measurable and the Halpern-
Läuchli Theorem holds at κ, then this is preserved by every < κ-closed forcing.
Along the way, we prove that for κ measurable, the Halpern-Läuchli Theorem holds
at κ if and only if it holds on a stationary set of ordinals below κ (see Propositions
5.3 and 5.4). Section 6 concludes with open problems and their relationships with
previous work.

The authors wish to thank James Cummings, Mirna Dzamonja, Jean Larson,
Paul Larson, and Bill Mitchell for very helpful conversations. The first author
gratefully acknowledges and is indebted to Richard Laver for outlining Harrington’s
forcing proof to her in 2011.

2. Variants of the Halpern-Läuchli Theorem and simple implications

This section contains the relevant definitions, various versions of the Halpern-
Läuchli Theorem, and the immediate implications between them. A tree T ⊆ <κκ
is a κ-tree if T has cardinality κ and every level of T has cardinality less than κ.
T is perfect if for each node t in T there is an extension of t which splits in T . We
shall call a tree T ⊆ <κκ regular if it is a perfect κ-tree in which every maximal
branch has cofinality κ. Given any subset T ⊆ <κκ and ζ < κ, we write

T (ζ) := T ∩ ζκ

for the set of nodes on the ζ-th level of T . Given t ∈ T ,

T [t] := {s ∈ T : s v t or t v s}.

Next, we define the notion of strong subtree, originally defined by Milliken in
[15].

Definition 2.1. Let T ⊆ <κκ be regular. A tree T ′ ⊆ T is a strong subtree of T
as witnessed by some set A ⊆ κ cofinal in κ if and only if T ′ is regular and for each
t ∈ T ′(ζ) for ζ < κ, ζ 6∈ A implies that t has a unique successor in T ′ on level ζ+ 1,
and ζ ∈ A implies every successor of t in T is also in T ′.

Given an ordinal δ > 0 and a sequence 〈Xi ⊆ <κκ : i < δ〉, define⊗
i<δ

Xi := {〈xi : i < δ〉 : (∃ζ < κ)(∀i < δ)xi ∈ Xi(ζ)},

the level-product of the Xi’s. We will call a set of nodes all on the same level a level
set. Similarly, we will call a sequence of nodes or a sequence of sets of nodes a level
sequence if all nodes are on the same level.

The following is the strong tree version of the Halpern-Läuchli Theorem, which
we shall denote by HL(δ, σ, κ).

Definition 2.2. For δ, σ > 0 ordinals and κ an infinite cardinal, HL(δ, σ, κ) is the
following statement: Given any sequence 〈Ti ⊆ <κκ : i < δ〉 of regular trees and a
coloring c :

⊗
i<δ Ti → σ, there exists a sequence of trees 〈T ′i : i < δ〉 such that

(1) each T ′i is a strong subtree of Ti as witnessed by the same set A ⊆ κ
independent of i, and

(2) there is some σ′ < σ such that for each ζ ∈ A, c“
⊗

i<δ T
′
i (ζ) = {σ′}.
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Given t ∈ <κκ, we define

Cone(t) := {s ∈ <κκ : s w t}.
We say that X ⊆ <κκ dominates Y ⊆ <κκ if and only if

(∀y ∈ Y )(∃x ∈ X) y v x.
We say X ⊆ <κκ dominates y ∈ <κκ just when X dominates {y}. We now give the
definition of the Somewhere-Dense Halpern-Läuchli Theorem.

Definition 2.3. For nonzero ordinals δ and σ, and an infinite cardinal κ, SDHL(δ, σ, κ)
is the statement that given any sequence 〈Ti ⊆ <κκ : i < δ〉 of regular trees and
any coloring

c :
⊗
i<δ

Ti → σ,

there exist ζ < ζ ′ < κ, 〈ti ∈ Ti(ζ) : i < δ〉, and 〈Xi ⊆ Ti(ζ ′) : i < δ〉 such that each
Xi dominates Ti(ζ + 1) ∩ Cone(ti) and

|c“
⊗
i<δ

Xi| = 1.

We point out the following simple fact.

Fact 2.4. For every infinite cardinal κ and each positive integer k, SDHL(1, k, κ)
holds.

Proof. If k = 1, the result is immediate, so assume k ≥ 2. To prove SDHL(1, k, κ),
let T be a regular subtree of <κκ and c be a coloring from the nodes in T into
k. If there exist a node t ∈ T and a level set X ⊆ T dominating the immediate
successors of t such that every node in X has color 0, then we are done. Otherwise,
for each node t ∈ T and each level set X ⊆ T dominating the immediate successors
of t, c“X ∩ {1, . . . , k − 1} 6= ∅. If there exist a node t ∈ T and a level set X ⊆ T
dominating the immediate successors of t such that every node in X has color 1,
then we are done. Otherwise, for each node t ∈ T and each level set X ⊆ T
dominating the immediate successors of t, c“X ∩ {2, . . . , k − 1} 6= ∅. Continuing
in this manner, either there is a j < k − 1 and some node t with a level set X
dominating the immediate successors of t each with c-color j, or else, for each
node t ∈ T and each level set X ⊆ T dominating the immediate successors of t,
c“X ∩ {k − 1} 6= ∅. In this case, choose any node t ∈ T and list the immediate
successors of t in T as 〈si : i < η〉, where η < κ. For each i < η, let Yi denote the
set of all the immediate successors of si. Then Yi forms a level set dominating the
immediate successors of si, so c“Yi ∩ {k − 1} 6= ∅. For each i < η, take one ti ∈ Yi
such that c(ti) = k − 1. Then the set {ti : i < η} is a level set dominating every
immediate successor of t and is monochromatic in color k − 1. �

Definition 2.5. Given a regular tree T and a level ζ less than the height of T , a
set X ⊆ T is ζ-dense if and only if X dominates T (ζ). Given a sequence of regular
trees 〈Ti : i < δ〉 and ~x = 〈xi : i < δ〉 ∈

⊗
i<δ Ti, a sequence of sets Xi ⊆ Ti for

i < δ is ζ-~x-dense if and only if for each i < δ, Xi dominates Ti(ζ) ∩ Cone(xi).

The definition of SDHL(δ, σ, κ) can be weakened by not requiring the sets Xi

for i < δ to be level sets; in this case the colorings must color the full product∏
i<δ Ti. Call this weakening SDHL′(δ, σ, κ). Following the terminology in [19], a

somewhere dense matrix for a sequence of regular trees 〈Ti : i < δ〉 is a sequence
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of sets 〈Xi ⊆ Ti : i < δ〉 such that there are nodes ti ∈ Ti for i < δ all of the same
length such that each Xi dominates all successors of ti in Ti. Thus, SDHL′(δ, σ, κ)
is the statement that any coloring c :

∏
i<δ Ti → σ is constant on

∏
i<δXi for

some somewhere dense matrix 〈Xi ⊆ Ti : i < δ〉. Certainly SDHL(δ, σ, κ) implies
SDHL′(δ, σ, κ).

Remark 2.6. The SDHL′(δ, σ, κ) is in fact equivalent to the statement obtained
by making the following two modifications. The first modification is to allow the
nodes ti to come from different levels of Ti, while requiring that the supremum of
the length of the members of {ti : i < δ} to be strictly less than the length of any
member of

⋃
{Xi : i < δ}. It is routine to check that the statement under this

modification is equivalent to SDHL′(δ, σ, κ). The second modification is to allow
for each Xi to instead dominate all members of Ti(ζ)∩Cone(ti) for some ζ > lh(ti)
(but this implies that Xi dominates Ti(lh(ti) + 1) ∩ Cone(ti) so the statement is
not affected).

By the definitions and previous discussions, the following implications are im-
mediate.

Fact 2.7. The following statements are arranged from strongest to weakest, where
δ and σ are assumed to be strictly less than κ.

(1) HL(δ, σ, κ);
(2) SDHL(δ, σ, κ);
(3) SDHL′(δ, σ, κ);
(4) SDHL′(δ, σ, κ) where the ti need not be from the same level.

The remark above shows that in fact (4) implies (3). In the next section will
show that (3) implies (1). Thus, all four statements are equivalent.

3. The various forms of Halpern-Läuchli are equivalent, for κ
weakly compact

This section provides proofs that all the versions of the Halpern-Läuchli Theorem
stated in the previous section are equivalent, provided that κ is weakly compact.

First, we prove that if κ is weakly compact and δ, σ < κ, then SDHL′(δ, σ, κ)
implies SDHL(δ, σ, κ). The proof proceeds via the next three lemmas. Recall that
a cardinal κ is weakly compact if κ is strongly inaccessible and satisfies the Tree
Property at κ; that is, every κ-tree has a cofinal branch.

Lemma 3.1. Suppose κ is weakly compact. Let δ, σ < κ be non-zero ordinals, and
let 〈Ti ⊆ <κκ : i < δ〉 be a sequence of regular trees. Let U be the tree of partial
colorings of

∏
i<δ Ti into σ many colors, where a node of U on level α corresponds

to a coloring of all tuples 〈ti ∈ Ti : i < δ〉 where sup{ln(ti) : i < δ} < α.
Suppose Z ⊆ U has size κ and each z ∈ Z corresponds to a coloring cz which is

not monochromatic on any somewhere dense matrix contained in its domain. Then
there is a coloring c of all of

∏
i<δ Ti such that c is not monochromatic on any

somewhere dense matrix.

Proof. Note that if 〈uα : α < β〉 is a strictly increasing sequence of nodes of U
for some limit ordinal β, then there is a unique node on level supα<β lh(uα) that
extends each uα. Furthermore, note that U is a κ tree. Fix a set Z ⊆ U as in the
hypotheses.
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Let S be the set of all predecessors of elements of Z. Then S is a κ-tree. By the
weak compactness of κ, fix a length κ branch through S. This branch corresponds
to a coloring c of all of

∏
i<δ Ti. Now, for each α < κ there is a node z ∈ Z such

that the domain of cz includes 〈ti ∈
∏
i<δ

⋃
ζ<α Ti(ζ)〉 and both c and cz color those

sequences the same way. For each α < κ, choose one such node and label it zα.
Now, pick any somewhere dense 〈Xi ⊆ Ti : i < δ〉 such that there is some α < κ

satisfying (∀i < δ)(∀x ∈ Xi) lh(x) < α. Fix such an α < κ. We must show that
|c“

∏
i<δXi| > 1. We have that for all 〈xi ∈ Xi : i < δ〉,

c(〈xi : i < δ〉) = czα(〈xi : i < δ〉).

By the hypothesis on czα , we have |czα“
∏
i<δXi| > 1. Thus, |c“

∏
i<δXi| > 1 as

desired. �

Lemma 3.2. Suppose κ is weakly compact. Let σ, δ > 0 be ordinals and assume
δ, σ < κ. Assume SDHL′(δ, σ, κ) holds. Let 〈Ti ⊆ <κκ : i < δ〉 be a sequence of
regular trees. Then there is a level 1 ≤ ζ < κ such that for every coloring

c :
∏
i<δ

⋃
ξ<ζ

Ti(ξ)→ σ,

there is a somewhere dense matrix 〈Xi ⊆
⋃
ξ<ζ Ti(ξ) : i < δ〉 such that c is constant

on
∏
i<δXi.

Proof. Assume there is no such level ζ. Then for each ζ < κ we may pick a coloring
cζ :

∏
i<δ

⋃
ξ<ζ Ti(ξ)→ σ which is not constant on any somewhere dense matrix in

the domain of cζ . Letting U be the tree of partial colorings described in Lemma
3.1, the set Z = {cζ : ζ < κ} is a subset of U of size κ. Applying Lemma 3.1, we
obtain a coloring c :

∏
i<δ Ti → σ for which there is no somewhere dense matrix

〈Xi ⊆ Ti : i < δ〉 such that |c“
∏
i<δXi| = 1. Hence, SDHL′(δ, σ, κ) fails, which is

a contradiction. �

The following bounded version is the analogue of the Finite Halpern-Läuchli
Theorem for finitely many trees on ω (see, for instance, Theorem 3.9 in [19]).

Lemma 3.3. Suppose κ is weakly compact. Let σ, δ < κ be nonzero ordinals and
assume SDHL′(δ, σ, κ) holds. Let 〈Ti ⊆ <κκ : i < δ〉 be a sequence of regular trees.
Then there is a level 1 ≤ ζ < κ such that for every coloring

c̄ :
⊗
i<δ

Ti(ζ)→ σ,

there is a somewhere dense matrix 〈Yi ⊆ Ti(ζ) : i < δ〉 such that c̄ is constant on⊗
i<δ Yi.

Proof. Fix some ζ < κ for which the Lemma 3.2 holds. For each i < δ and each
node t ∈

⋃
ξ<ζ Ti(ξ), associate a node fi(t) ∈ Ti(ζ) such that fi(t) w t. Now fix a

coloring c̄ :
⊗

i<δ Ti(ζ)→ σ. Let c :
∏
i<δ

⋃
ξ<ζ Ti(ξ)→ σ be defined by

c(〈ti : i < δ〉) := c̄(〈fi(ti) : i < δ〉).

By the property of ζ, there is a somewhere dense matrix 〈Xi ⊆
⋃
ξ<ζ Ti(ξ) : i < δ〉

such that |c“
∏
i<δXi| = 1. For each i < δ, let

Yi := {fi(t) : t ∈ Xi}.
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The sequence 〈Yi ⊆ Ti(ζ) : i < δ〉 is a somewhere dense matrix, and by the definition
of c we have |c̄“

⊗
i<δ Yi| = 1. �

Remark 3.4. We point out that the set of ζ < κ satisfying Lemma 3.2 is closed
upwards, and hence Lemma 3.3 also holds for ζ in a final segment of κ.

By Lemmas 3.1, 3.2, and 3.3, and the remarks in this section, we have shown
that the variants in this section are equivalent, when κ is weakly compact.

Theorem 3.5. Suppose κ is weakly compact. Let σ, δ > 0 be ordinals and assume
δ, σ < κ. Then SDHL′(δ, σ, κ) holds if and only if SDHL(δ, σ, κ) holds.

It is not known for an arbitrary κ whether or not the somewhere dense version
SDHL(δ, σ, κ) implies the strong tree version HL(δ, σ, κ). However, if κ weakly
compact, they are in fact equivalent. The proof of this involves the following lemma.

Lemma 3.6. Let κ > 0 be a cardinal and let δ, σ < κ be non-zero ordinals. Let
〈Ti : i < δ〉 be a sequence of regular trees. Fix c :

⊗
i<δ Ti → σ. Suppose there is

a level sequence ~x = 〈xi ∈ Ti : i < δ〉 such that for each ξ < κ, there is a level
sequence 〈Xi ⊆ Ti(ζ) : i < δ〉 for some ζ such that 〈Xi : i < δ〉 is ξ-~x-dense and
|c“

⊗
i<δXi| = 1. Then the conclusion of HL(δ, σ, κ) holds.

Proof. We will construct a sequence of strong subtrees 〈T ′i ⊆ Ti : i < δ〉, as wit-
nessed by the same set A ⊆ κ independent of i, such that for each ζ ∈ A, there is
some σζ < σ such that c“

⊗
i<δ T

′
i (ζ) = {σζ}. Then, by the pigeonhole principal,

there will be κ many σζ that are equal to the same ordinal, call it σ′. Let Ã ⊆ A
be the set of levels associated to the color σ′. We may then thin each T ′i to a

strong subtree T ′′i as witnessed by Ã (independent of i) such that for each ζ ∈ Ã,
c“

⊗
i<δ T

′′
i (ζ) = {σ′}. This is the conclusion of HL(δ, σ, κ).

For each i < δ, instead of directly constructing T ′i , we will construct a subset Si of
T ′i and T ′i will be the set of all initial segments of elements of Si. Each Si will be the
union of level sets: Si :=

⋃
ζ∈A Li,ζ where each Li,ζ will be a subset of Ti(ζ). At the

same time, we will construct A ⊆ κ. We will have it so (∀ζ ∈ A) |c“
⊗

i<δ Li,ζ | = 1.
Initially the set A is empy and no Li,ζ ’s have been defined.

Now assume we are at some stage of the construction. There are three cases:
Case 1: No Li,ζ ’s have been constructed so far (and A is empty). In this case,

set ξ to be the level of the xi and for each i < δ, let Ui,ξ+1 := Ti(ξ+ 1)∩Cone(xi).
Case 2: Some Li,ζ ’s have been constructed and there is a largest ξ < κ for

which some Li,ξ exists. Fix this ξ. For each i < δ, define Ui,ξ+1 := Ti(ξ + 1) ∩
(
⋃
t∈Li,ξ Cone(t)).

Case 3: The set of η’s for which the Li,η’s exist is below but cofinal in some fixed
ξ < κ. Let Wi ⊆ Ti(ξ) be the set of t ∈ Ti(ξ) such that the set of η < ξ such that t �
η ∈ Li,η is cofinal in ξ. For each i < δ, define Ui,ξ+1 := Ti(ξ+ 1)∩ (

⋃
t∈W Cone(t)).

Assuming one of the three cases above holds, we have both an ordinal ξ and a set
Ui,ξ+1 ⊆ Ti(ξ + 1) for each i < δ. Apply the hypothesis of the lemma to get a level
sequence 〈Xi : i < δ〉 that is (ξ + 1)-~x-dense and |c“

⊗
i<δXi| = 1. For each i < δ,

let X ′i ⊆ Xi be such that each t ∈ X ′i extends some u ∈ Ui,ξ+1, every u ∈ Ui,ξ+1 is
extended by some t ∈ X ′i, and no two elements of X ′i extend the same element of
Ui,ξ+1. Let ζ be the level of the X ′i. Add ζ to the set A and set Li,ζ := X ′i for each
i < δ. This completes the construction and the proof. �
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Theorem 3.7. Let κ > 0 be a weakly compact cardinal and let δ, σ < κ be non-zero
ordinals. Then SDHL(δ, σ, κ) implies HL(δ, σ, κ).

Proof. Fix c :
⊗

i<δ Ti → σ. Using Lemma 3.3, we claim that there is a level
sequence ~x = 〈xi ∈ Ti : i < δ〉 such that for each ζ < κ, there is a level sequence
〈Xi ⊆ Ti : i < δ〉 that is ζ-~x-dense and |c“

⊗
i<δXi| = 1. From this, the conclusion

of HL(δ, σ, κ) follows from Lemma 3.6. To show the claim, suppose towards a
contradiction that it is false. For each ~x ∈

⊗
i<δ Ti we can associate the first

ζ(~x) < κ for which we cannot find a ζ(~x)-~x-dense level sequence 〈Xi : i < δ〉 such
that |c“

⊗
i<δXi| = 1. We can build a strictly increasing sequence 〈ηα ∈ κ : α < κ〉

of ordinals such that for every α < κ,

ηα+1 > ζ(~x) for all ~x ∈
⋃
η≤ηα

⊗
i<δ

Ti(η).

For i < δ, set

T ∗i :=
⋃
α<κ

Ti(ηα).

Applying SDHL(δ, σ, κ) to the restriction of c to
⊗

i<δ T
∗
i , we find a somewhere

dense matrix 〈X∗i : i < δ〉 of the sequence of trees 〈T ∗i : i < δ〉 on which c is constant.
This means that there exists α < α′ < κ and ~x = 〈xi : i < δ〉 ∈

⊗
i<δ Ti(ηα) such

that for all i < δ,

X∗i dominates Cone(xi) ∩ Ti(ηα′).

It follows that 〈Xi : i < δ〉 is an ηα′ -~x-dense c-monochromatic level sequence,
contradicting the definition of ζ(~x) and the fact that

ηα′ ≥ ηα+1 > ζ(~x).

This finishes the proof. �

Fact 2.4 and Theorem 3.7 yield the following.

Theorem 3.8. HL(1, k, κ) holds for each positive integer k and each weakly com-
pact cardinal κ.

4. The Halpern-Läuchli Theorem at a measurable cardinal

In Theorem 4.6, we prove that for any positive integer d, assuming the existence
of a cardinal κ which is κ + d-strong cardinal (see Definition 4.5), it is consistent
that HL(d, σ, κ) holds at a measurable cardinal κ, for all σ < κ. Actually, in
Theorem 4.3 we prove an asymmetric version of the SDHL(δ, σ, κ) which holds for
finitely or infinitely many trees on a measurable cardinal. The requisites for that
theorem are that certain partition relations hold in a model M of ZF and that κ
remains measurable after forcing over M with Add(κ, λ), where Add(κ, λ) denotes
the forcing which adds λ many κ-Cohen subsets of κ via partial functions from
λ×κ into 2 of size less than κ and λ is large enough for a certain partition relation
to hold. For infinitely many trees, the relevant partition relations hold assuming
AD, and hence in L(R) assuming in V the existence of a limit of Woodin cardinals
with a measurable above. However, we do not currently know of such a model of
ZF over which forcing with many Cohen subsets of a measurable cardinal preserves
the measurability (see Question 6.6 in the next section). Nevertheless, we prove
Theorem 4.3 in this generality with the optimism that such a model will be found.
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We point out that Harrington’s original forcing proof of HL(d, k, ω) can be lifted,
with minor modifications, to obtain HL(d, σ, κ) for κ measurable and σ < κ, pro-
vided, as in [18], we work in a model of ZFC in which κ remains measurable after
forcing with Add(κ, λ), where λ satisfies the partition relation λ → (κ+)2d

2 . In
order for this to hold via methods of Woodin, one needs to assume the existence of
a cardinal κ which is κ+ 2d-strong. Thus, in a somewhat straightforward manner,
combining known results, one may arrive at a κ + 2d-strong cardinal as an upper
bound for the consistency strength of HL(d, σ, κ) for κ measurable and σ < κ.

However, we are interested in the actual consistency strength of HL(d, σ, κ) for
κ measurable. The version of Harrington’s forcing proof for perfect subtrees of
<ω2 given by Todorcevic in Theorem 8.15 of [8] uses the weaker partition relation
λ → (ℵ0)d2, rather than the usual λ → (ℵ0)2d

2 . If we could lift his argument to a
measurable cardinal, this would bring the consistency strength down to a d-strong
cardinal. One of the key lemmas in Todorcevic’s proof, though, relies strongly
on the fact that ℵ0 is the least infinite cardinal and could not be generalized to
uncountable κ. However, using that κ is measurable, we found a way around this.
We modified Harrington’s argument and proved Lemma 4.2 which uses partition
relations which are satisfied when κ is measurable (assuming δ < ω). This lemma
aids in bringing the upper bound of the consistency strength of HL(d, σ, κ) for κ
measurable down to a κ+ d-strong cardinal in Theorem 4.6.

Definition 4.1. Temporarily let P be the forcing to add λ Cohen subsets of κ.
A collection X ⊆ P is called image homogenized if for all p1, p2 ∈ X and ξ, α, β
∈ Ord, if α is the ξ-th element of Dom(p1) and β is the ξ-th element of Dom(p2),
then p1(α) = p2(β).

Suppose that we have parameterized conditions in P according to [λ]δ. That is,
for each ~α ∈ [λ]δ we have some p~α. For each ~α ∈ [λ]δ, let

〈ν(~α, ξ) : ξ < ot(Dom(p~α))〉
be the increasing enumeration of the elements of Dom(p~α).

Lemma 4.2. Let 1 ≤ δ < κ ≤ λ be ordinals with κ and λ infinite cardinals and κ
strongly inaccessible. Assume that for all µ1, µ2 < κ,

κ→ (µ1)δ·2µ2
.

For each ~α ∈ [κ]δ, let p~α be a condition in the forcing to add λ many Cohen subsets
of κ. Assume that the set of conditions p~α ∈ [κ]δ are image homogenized. Then for
each γ < κ there is a sequence

〈Hi ⊆ κ : i < δ〉
such that (∀i < δ) ot(Hi) ≥ γ, (∀i < j < δ) every element of Hi is less than every
element of Hj, and the conditions p~α for ~α ∈

⊗
i<δHi are pairwise compatible.

Proof. Consider a function ι from δ · 2 to δ · 2 such that ι � [0, δ) is an increasing
sequence of elements in δ · 2 and ι � [δ, δ · 2) is an increasing sequence of elements in
δ · 2. Given a set A ∈ [Ord]δ·2, let ι[A] := 〈αι(i) : i < δ · 2〉, where A enumerated in

increasing order is 〈αi : i < δ · 2〉. If ~α, ~β ∈ [Ord]δ are such that (∃A) ι[A] = 〈~α, ~β〉,
then we say that ~α is ι-related to ~β. The idea is that ι codes the relationship

between ~α and ~β. Given any ~α, ~β ∈ [Ord]δ, there is some ι such that ~α is ι-related

to ~β.
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Call a function ι from δ · 2 to δ · 2 acceptable iff for all i < δ · 2,

ι(i), ι(δ + i) ∈ {2 · i, 2 · i+ 1}.

The idea is that when we have our final sequence 〈Hi : i < δ〉, if ~α, ~β ∈
⊗

i<δHi,

then ~α will be ι-related to ~β for some ι that is acceptable. Also, as can be easily

verified by the reader, given any acceptable ι, there are ~α, ~β, ~σ ∈
⊗

i<δ Hi such

that ~α is ι-related to ~β, ~α is ι-related to ~σ, and ~β is ι-related to ~σ.
For an acceptable ι : δ · 2→ δ · 2, let cι be a coloring of subsets of κ of size δ · 2

which encodes the following information. Given A ∈ [κ]δ·2, let ~α and ~β be such

that ι[A] = 〈~α, ~β〉 (so ~α is ι-related to ~β). The value of cι(A) should encode

1) the relative ordering of the elements of Dom(p~α) and Dom(p~β), and finally

2) whether or not p~α and p~β are compatible.

This coloring cι can be seen to use strictly less than κ colors. Now fix γ < κ. By
our assumption that

(∀µ1, µ2 < κ)κ→ (µ1)δ·2µ2
,

get a set H ⊆ κ of ordertype at least γ · δ which is homogeneous for each cι.
Partition H into δ pieces, from left to right, of size at least γ to get our sequence

〈Hi : i < δ〉. We claim that for any two ~ζ, ~η ∈
⊗

i<δHi, p~ζ and p~η are compatible.

Suppose, towards a contradiction, that there are ~ζ and ~η such that p~ζ and p~η

are incompatible. There is an ι such that ~ζ is ι-related to ~η and ι is acceptable.

Since p~ζ and p~η are incompatible, fix σ1 6= σ2 such that ν(~ζ, σ1) = ν(~η, σ2) but

p~ζ(ν(~ζ, σ1)) 6= p~η(ν(~η, σ2)). The fact that it must be that σ1 6= σ2 follows from

the fact that the p~α are image homogenized. Since whether or not p~ζ and p~η are

compatible was encoded into cι, any two ~α, ~β ∈
⊗

i<δHi such that ~α is ι-related to
~β will be such that p~α and p~β are incompatible. Since ι is acceptable, fix ~α, ~β, ~σ ∈⊗
i<δHi such that ~α is ι-related to ~β, ~α is ι-related to ~σ, and ~β is ι-related to ~σ. By

1) of the definition of cι and the fact that the conditions are image homogenized, we

have ν(~α, σ1) = ν(~β, σ2). Also, ν(~α, σ1) = ν(~σ, σ2) and ν(~β, σ1) = ν(~σ, σ2). Thus,

ν(~α, σ1) = ν(~β, σ1). Now we have ν(~β, σ1) = ν(~β, σ2), which is impossible because
ν is an increasing enumeration of the elements of Dom(p~β) and σ1 6= σ2. �

In the next theorem, we consider ω to be a measurable cardinal. Notice that 1)
and 2) of the hypothesis of the theorem follow from λ→ (κ)δ·2κ . The conclusion of
this theorem clearly implies SDHL(δ, σ, κ), and hence also HL(δ, σ, κ) by Theorem
3.7. We point out that this proves the analogue for trees on κ of the asymmetric
Dense Set Version, Theorem 8.15 in [8], for trees on ω.

Theorem 4.3. Let κ be an infinite cardinal, δ < κ a non-zero ordinal, and λ ≥ κ
a cardinal for which the following partition relations hold:

1) λ→ (κ)δκ, and
2) κ→ (µ1)δ·2µ2

, for all pairs µ1, µ2 < κ.

Assume that κ is a measurable cardinal in the forcing extension to add λ many
Cohen subsets of κ. Let Ti ⊆ <κκ for i < δ be regular trees, and let σ < κ be
non-zero and

c :
⊗
i<δ

Ti → σ.
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Then there are ζ < κ and 〈ti ∈ Ti(ζ) : i < δ〉, such that for all ζ ′ satisfying
ζ ≤ ζ ′ < κ, there are ζ ′′ satisfying ζ ′ ≤ ζ ′′ < κ and 〈Xi ⊆ Ti(ζ ′′) : i < δ〉 such that,
for each i < δ, Xi dominates Ti(ζ

′) ∩ Cone(ti), and

|c“
⊗
i<δ

Xi| = 1.

Furthermore, if c“
⊗

i<δXi = {0}, then (∀i < δ) ti = ∅.
In particular, HL(δ, σ, κ) holds.

Proof. Note that κ is strongly inaccessible. Let P be the poset to add δ × λ many
Cohen subsets of κ presented in the following way: p ∈ P iff p is a size < κ partial
function from λ×δ to <κκ and for all (α, i) ∈ Dom(p), p(α, i) ∈ Ti. For the ordering
of P, q ≤ p iff

Dom(q) w Dom(p) and (∀x ∈ Dom(p)) q(x) w p(x).

If each Ti = <κκ, then it is trivial to see that this forcing is equivalent to adding
λ Cohen subsets of κ. If not, then as long as each Ti does not have any isolated
branches or leaf nodes (which we assume), then because no path leaves tree Ti at
a limit level < κ, one show that the forcings are still equivalent. Without loss of
generality, (∀p ∈ P) the size of Dom(p)∩ (λ×{i}) does not depend on i. Similarly,
we may assume (∀p ∈ P) the length of the sequence p(x) does not depend on
x ∈ Dom(p).

Let Ġ be the canonical name for the generic object. In particular, 1  Ġ :
λ̌× δ̌ → κ̌κ̌. Since 1  (κ̌ is a measurable cardinal), let U̇ be such that 1  (U̇ is a
κ̌-complete ultrafilter on κ̌).

For each ~α ∈ [λ]δ, let p~α ∈ P be a condition and σ~α < σ be a color such that if
〈αi : i < δ〉 is the increasing enumeration of ~α, then

p~α  {ζ < κ̌ : c(〈Ġ(αi, i) � ζ : i < δ〉) = σ̌~α} ∈ U̇ .

We may assume that if σ~α = 0, then p~α = 1. This is because if 1 does not force the
color of U̇ many levels to be 0, then there by the nature of the forcing relation and
since U̇ is an ultrafilter, there is some condition p such that

p  {ζ < κ̌ : c(〈Ġ(αi, i) � ζ : i < δ〉) 6= 0} ∈ U̇ .

Then, since σ < κ and U̇ is κ-complete (in the extension), there is p′ ≤ p and σ
such that

p′  {ζ < κ̌ : c(〈Ġ(αi, i) � ζ : i < δ〉) = σ} ∈ U̇ .
Then set p~α = p′ and σ~α = σ and we are done. We may also assume, by possibly
making the conditions p~α stronger, that for each ~α ∈ [λ]δ and i < δ, that

(αi, i) ∈ Dom(p~α).

There is a coloring c̃ : [λ]δ → κ such that after we apply the partition relation
λ→ (κ)δκ, we get a set H ∈ [λ]κ such that the following are satisfied:

1) the sequence 〈 (ξ, p~α(ν(~α, ξ))) : ξ < ot(Dom(p~α))〉 does not depend on
~α ∈ [H]δ and therefore the set of p~α for ~α ∈ [H]δ are image homogenized,

2) the value σ~α does not depend on ~α ∈ [H]δ, and
3) for a fixed i < δ, the sequence 〈p~α(αi, i) ∈ Ti : i < δ〉 does not depend on

~α ∈ [H]δ.
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For each i < δ, let ti ∈ <κκ be the unique value of the p~α(i, αi)’s for ~α = 〈αi : i <
δ〉 ∈ [H]δ. Let ζ be the common length of each ti. Let σ′ < σ be the unique value
of σ~α for ~α ∈ [H]δ. Note that if σ′ = 0, then each p~α for ~α ∈ [H]δ equals 1, so
(∀i < δ) ti = ∅.

Now pick an arbitrary ζ ′ satisfying ζ ≤ ζ ′ < κ. Let γ < κ be a cardinal
such that for each i < δ, the cardinality of the set T (ζ ′) ∩ Cone(ti) is ≤ γ. Now
apply Lemma 4.2 to get a sequence 〈Hi ⊆ H : i < δ〉 such that (∀i < δ) ot(Hi) ≥ γ,
(∀i < j < δ) every element of Hi is less than every element of Hj , and the conditions
p~α for ~α ∈

⊗
i<δHi are pairwise compatible. To apply this lemma, we needed

hypothesis 2) of this theorem (to hold in the ground model). We could instead
apply Lemma 4.2 in the forcing extension as long as 2) holds in the extension, and
the sequence 〈Hi : i < δ〉 would be in the ground model because the forcing is
<κ-closed.

For each i < δ, let Si := Ti(ζ
′) ∩ Cone(ti), the set of immediate successors of

ti in Ti. For each i < δ and t ∈ Si, pick αi,t ∈ Hi so that every element of Si is
mapped to a unique element of Hi. This is possible because the cardinality of Si is
≤ γ and γ is ≤ the ordertype of Hi. For i < δ, let Ai := {αi,t : t ∈ Si} ⊆ Hi. Let
X ⊆

⊗
i<δHi be the set X :=

⊗
i<δ Ai. The conditions p~α for ~α ∈ X are pairwise

compatible.
Let p ∈ P be a condition which extends

⋃
{p~α : ~α ∈ X} and for all i < δ and

t ∈ Si, p(αi,t, i) = t. To see that there exists such a p, first note that |X | < κ
and the conditons p~α ∈ X are pairwise compatible, therefore by the nature of P,⋃
~α∈X p~α is an element of P. Second, since (∀~α ∈ X )(∀i < δ) p~α(αi, i) = ti, we may

define p so that p(i, αi,t) = t for all i < δ and t ∈ Si and this will not clash with
the p~α.

Since |X | < κ, 1  (U̇ is a κ̌-complete ultrafilter), and by the hypothesis on each
pair (p~α, σ~α), we have that p  there are arbitrarily large levels ζ ′′ < κ̌ such that
for each ~α ∈ X̌ , we have

č(〈Ġ(αi, i) � ζ
′′ : i < δ̌〉) = σ̌′.

We may extend p to a condition p′ ≤ p as well as get a level ζ ′′ ∈ [ζ ′, κ) such that
the following are satisfied:

1) p′  for each ~α = 〈αi : i < δ〉 ∈ X̌ , we have

č(〈Ġ(αi, i) � ζ
′′ : i < δ̌〉) = σ̌′.

2) for each i < δ and each t ∈ Si, there is a unique t̃ ∈ Ti(ζ
′′) such that

p′  Ġ(α̌i,t, ǐ) w ˇ̃t.

For each i < δ, let
Xi := {t̃ : t ∈ Si}.

We have that each Xi dominates Si and

c“
⊗
i<δ

Xi = {σ′}

(because the coloring c is in the ground model, so it is absolute). �

The following theorem of Erdős and Rado provides many examples of cardinals
λ which satisfy the hypothesis in Theorem 4.3, when δ is finite.

Theorem 4.4 (Erdős-Rado, [7]). For r ≥ 0 finite and κ an infinite cardinal,
ir(κ)+ → (κ+)r+1

κ .
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In particular, if GCH holds, then for finite d ≥ 2, κ+d → (κ+)dκ.

Definition 4.5 ([13]). Given a cardinal κ and an ordinal d, κ is κ + d-strong
if there is an elementary embedding j : V → M with critical point κ such that
Vκ+d = Mκ+d.

Theorem 4.6. Let d ≥ 1 be any finite integer and suppose κ is a κ + d-strong
cardinal in a model V of ZFC satisfying GCH. Then there is a forcing extension in
which κ remains measurable and HL(d, σ, κ) holds, for all σ < κ.

Proof. Let 〈κα : α < κ〉 enumerate all the strongly inaccessible cardinals in V below
κ. Let Pκ denote the κ-length reverse Easton support iteration of Add(κα, κ

+d
α ),

and let Gκ be Pκ-generic over V . Then in V [Gκ], κ is still measurable by a standard
lifting of the embedding, and GCH holds at and above κ since |Pκ| = κ. Thus, in
V [Gκ], the partition relation κ+d → (κ)dκ holds. Since κ is measurable in V [Gκ],
the partition relations κ → (µ1)d·2µ2

holds for all pairs µ1, µ2 < κ. Let Q denote

Add(κ, κ+d) in V [Gκ], and let H be Q-generic over V [Gκ]. By an unpublished result
of Woodin (see for instance [9] for a proof) κ remains measurable in V [Gκ][H], since
κ is κ+ d-strong in V . Thus, the hypotheses of Theorem 4.3 are satisfied in V [Gκ],
and therefore HL(d, σ, κ) holds in V [Gκ]. �

We conclude this section by pointing out that, in place of Add(κα, κ
+d
α ), one

could use a reverse Easton iteration of κ+d
α -products with <κα-support of κα-Sacks

forcing, as in [9], to achieve a model with κ measurable and HL(d, σ, κ) holding.
However, the homogeneity argument in the body of Theorem 4.3 would use κ+

colors, and so we would need to start with a cardinal κ which is (κ+ d+ 1)-strong
in the ground model to get an analogue of Theorem 4.6. It should be noted though
that for trees of height ω, Harrington’s original forcing proof can also be modified to
use Sacks forcing; the larger λ needed to accommodate the homogeneity argument
would need to satisfy λ→ (ω)2d

2ω .

5. Preserving SDHL(δ, σ, κ) under forcing

If a forcing has size less than κ, it almost preserves the statement that SDHL(δ, σ, κ)
holds for all σ < κ by the following argument. For this section, fix κ and 1 ≤ δ, σ <
κ.

Proposition 5.1. Let P be a forcing of size <κ. Let 〈Ti ⊆ <κκ : i < δ〉 be a
sequence of regular trees, let ċ be a name for a coloring, and let p be a condition
such that p  ċ :

⊗
i<δ Ti → σ̌. If SDHL(δ, |P| · σ, κ) holds, then, in the ground

model, there is a somewhere dense matrix 〈Xi ⊆ Ti : i < δ〉 and a condition p′ ≤ p
such that p′  |ċ“

⊗
i<δ X̌i| = 1.

Proof. Let c′ :
⊗

i<δ Ti → P × σ be any coloring where given any ~x ∈
⊗

i<δ Ti,
c′(~x) equals some (q, σ′) satisfying q  ċ(~x) = σ̌′. Apply SDHL(δ, |P| · σ, κ) to the
coloring c′ to get a somewhere dense matrix 〈Xi ⊆ Ti : i < δ〉 and a color (p′, σ′)
such that p′  ċ“

⊗
i<δ X̌i = {σ̌′}. This finishes the proof. �

The reason why this last proposition doesn’t give us the full preservation of
(∀σ < κ) SDHL(δ, σ, κ) is because there is the requirement that the sequence of
trees be in the ground model. The following remains open.

Question 5.2. Is there a forcing of size <κ which destroys SDHL(δ, σ, κ) for any
δ, σ < κ (where δ ≥ 2)?
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Now, a forcing which is ≤κ-closed will not add any new regular trees or colorings.
Hence, SDHL(δ, σ, κ) will be preserved. For the rest of the section, we will show
that SDHL(δ, σ, κ) is preserved by <κ-closed forcings assuming κ is measurable.

Proposition 5.3. Assume κ is measurable and SDHL(δ, σ, κ) holds. Then also
SDHL(δ, σ, α) holds for a stationary set of α < κ.

Proof. Let U be a normal ultrafilter on κ. Let M = UltU (V ). Consider any length
δ sequence of regular trees and any coloring (using ≤ σ colors) of those trees in M .
The sequence of trees and the coloring are also in V , and since SDHL(δ, σ, κ) holds
there, there is some somewhere dense matrix in V on which the coloring is constant.
Since Vκ ⊆ M , the somewhere dense matrix is in fact in M . Thus, SDHL(δ, σ, κ)
holds in M . By  Los’s theorem, SDHL(δ, σ, α) holds for a set of α < κ in U . Thus,
SDHL(δ, σ, α) holds for a stationary set of α < κ. �

Proposition 5.4. Assume that SDHL(δ, σ, α) holds for a stationary set S of α < κ.
Then SDHL(δ, σ, κ) holds.

Proof. Let 〈Ti ⊆ <κκ : i < δ〉 be a sequence of regular trees and let c :
⊗

i<δ Ti → σ
be a coloring. If we can find an α < κ such that each Ti ∩ <ακ is an α-tree and
SDHL(δ, σ, α) holds, then we will be done. A standard argument shows that for
each i < δ, there is a club Ci ⊆ κ such that Ti ∩ <ακ is an α-tree for each α ∈ Ci.
The set

⋂
i<δ Ci is a club, so it must intersect S. An α < κ in the intersection is as

desired. �

It is well known that if a forcing is <κ-closed, then it preserves stationary subsets
of κ. Thus, we have the following.

Theorem 5.5. If κ is measurable and SDHL(δ, σ, κ) holds, then SDHL(δ, σ, κ) also
holds in any forcing extension by a forcing which is <κ-closed.

Proof. Let P be a forcing which is <κ-closed. Let S ⊆ κ be the set of α < κ such
that SDHL(δ, σ, α) holds. The set S is stationary, since κ is measurable. After
forcing with P, since P is <κ-closed, SDHL(δ, σ, α) still holds for each α ∈ S. Since
P preserves stationary subsets of κ, S is stationary in the extension. Since in the
extension κ is the stationary limit of a set of α satisfying SDHL(δ, σ, α), it follows
that SDHL(δ, σ, κ) holds in the extension. �

Since for κ measurable, SDHL(δ, σ, κ) holds if and only if HL(δ, σ, κ) holds, the
strong tree version of Halpern-Läuchli at a measurable cardinal κ is preserved by
< κ-closed forcing.

6. Closing Comments and Open Problems

The following conjectures and questions are motivated by the results in the pre-
vious sections and their comparisons with results in [18], [10] and [5]. As mentioned
before, we are interested in the exact consistency strength of the Halpern-Läuchli
Theorem at a measurable cardinal.

Conjecture 6.1. For finite d ≥ 2, κ measurable and σ < κ, the consistency
strength of HL(d, σ, κ) is a κ+ d-strong cardinal.

If the conjecture turns out to be true, then there must be a positive answer to
the next question.
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Question 6.2. Given d ≥ 1, is there a model of ZFC in which there is measurable
cardinal κ such that HL(d, σ, κ) holds for all σ < κ, but HL(d + 1, σ, κ) fails for
some 2 ≤ σ < κ?

In Section 8 of [5], it is mentioned that a model satisfying the hypotheses of
Theorem 2.5 in [5] can be constructed, assuming the existence of a measurable
cardinal κ such that o(κ) = κ+2m+2. We conjecture that the form of Halpern-
Läuchli in [18] and [5] is strictly stronger than the form HL(d, σ, κ).

Conjecture 6.3. Let d ≥ 2 be a finite number. The consistency strength of
HL(d, σ, κ) for κmeasurable is strictly less than the consistency strength of Theorem
2.5 in [5] for coloring d-sized antichains.

Further, Dzamonja, Larson, and Mitchell point out that Theorem 2.5 in [5] is
not a consequence of any large cardinal assumption. This follows from results of
Hajnal and Komjáth in [10], a consequence of which is that there is a forcing of
size ℵ1 after which there is a coloring of the pairsets on <κ2 for which there is no
strong subtree homogeneous for the coloring. However, that theorem of Hajnal and
Komjáth does not seem to immediately provide a counterexample to HL(d, 2, κ),
and so we ask the following.

Question 6.4. For d ≥ 2, is there a large cardinal assumption on κ which implies
HL(d, 2, κ) holds?

Or is there an anologue of the Hajnal and Komjath result which would preclude
SDHL(2, σ, κ) from holding? That is, is the answer to Question 5.2 ‘yes’?

In Section 3 we showed that all the variants considered in this paper are equiv-
alent as long as κ is weakly compact, and showed that HL(1, k, κ) holds when κ
is weakly compact and k is finite. However, we have not shown that HL(d, 2, κ)
holds for κ weakly compact when d ≥ 2. In Section 8 of [5], an argument is pro-
vided showing that any cardinal κ satisfying their Theorem 2.5 for m ≥ 2 must be
weakly compact. However, that argument does not immediately seem to apply to
our situation and so we ask the following.

Question 6.5. For d ≥ 2, is there an uncountable cardinal κ below the least
measurable for which HL(d, 2, κ)?

Lastly, we ask for a model of ZF in which the hypotheses of Theorem 4.3 hold
for δ infinite.

Question 6.6. Is there a model of ZF satisfying the partition relations stated in
the hypotheses of Theorem 4.3 for some infinite δ < κ such that after forcing with
Add(κ, λ), κ is measurable?
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