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Abstract. We study the transfinite sequence of topologies on the ordi-
nal numbers that is obtained through successive closure under Cantor’s
derivative operator on sets of ordinals, starting form the usual interval
topology. We characterize the non-isolated points in the ξ-th topology as
those ordinals that satisfy a strong iterated form of stationary reflection,
which we call ξ-simultaneous-reflection. We prove some properties of the
ideals of non-ξ-simultaneous-stationary sets and identify their tight con-
nection with indescribable cardinals. We then introduce a new natural
notion of Π1

ξ-indescribability, for any ordinal ξ, which extends to the

transfinite the usual notion of Π1
n-indescribability, and prove that in the

constructible universe L, a regular cardinal is (ξ + 1)-simultaneously-
reflecting if and only if it is Π1

ξ-indescribable, a result that generalizes
to all ordinals ξ previous results of Jensen [28] in the case ξ = 2, and
Bagaria-Magidor-Sakai [5] in the case ξ = n. This yields a complete
characterization in L of the non-discreteness of the ξ-topologies, both in
terms of iterated stationary reflection and in terms of indescribability.

1. Introduction

Cantor’s derivative operator on a topological space (X, τ) is the map dτ
that assigns to every subset A of X the set of its limit points. By declaring
the sets dτ (A) to be open one generates a finer topology. Through suc-
cessive applications of this process, and by taking unions at limit stages,
one obtains a polytopological space (X, τ0, τ1, . . . , τξ, . . .), where τ0 = τ and
τζ ⊆ τξ whenever ζ < ξ. The study of such spaces has been of great in-
terest in recent years, not so much in topology but, perhaps surprisingly,
in proof theory and modal logic. When (X, τ) is scattered, the derived
polytopological spaces (X, τ0, τ1, . . . , τξ, . . .) are known in the literature as
GLP-spaces, for they provide a natural topological interpretation of the
logic GLP (Japaridze [24]), namely the polymodal extension of the classi-
cal Gödel-Löb provability logic GL to infinitely-many modal operators [n],
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n < ω. The logic GL yields a complete axiomatization of the arithmeti-
cal properties of Gödel’s provability operator Prov for Peano Arithmetic
(PA) (Solovay [33]), whereas GLP completely axiomatizes the arithmetical
properties of the operators Provn, for n < ω, where Provn stands for n-
provability, i.e., being provable in PA together with all Πn true aritmetical
sentences (Japaridze [24, 25]; but see also [23, 11]). See [3] and [15] for more
on the history and results on GLP; and also [6] and [7] for applications
in proof theory and ordinal analysis of arithmetic. The main obstacle in
the study of GLP has been its incompleteness with respect to any class of
Kripke frames. But Beklemishev and Gabelaia [12] finally showed in 2011
that GLP is complete under topological semantics with respect to the class
of all GLP-spaces. The question remained, however, about the complete-
ness of GLP when one restricts the semantics to ordinal spaces, i.e., spaces
(δ, τ), where δ is a limit ordinal and τ is the usual interval topology.

Andreas Blass [14] proved in 1990 the consistency with ZFC of the com-
pleteness of GL under topological semantics for ordinal spaces greater than
or equal to ℵω with the usual topology τ0 (a result obtained, independently,
by Abashidze [1]), and also with the topology τ1, known as the club topology.
In 2011, Lev Beklemishev [10] was able to combine Blass’ results to prove
the completeness of GLP2, the fragment of GLP with only two modal
operators, with respect to ordinal topological semantics. For GLP3, not
to mention the general GLPn case, or even the full GLP, this is not yet
known. The problem is set-theoretic, for as shown by Blass, even for GLP2

the non-completeness is also consistent with ZFC, relative to the existence
of a Mahlo cardinal.

For the completeness of GLP, a necessary requirement is that the topolo-
gies τn, n < ω, are all non-discrete. But already for the τ2 topology on
ordinals, the non-isolated points α must reflect simultaneously pairs of sta-
tionary sets, i.e., for all pairs S T of stationary subsets of α, there is some
β < α such that S ∩ β and T ∩ β are both stationary in β. Any regular α
with this property is a large cardinal in the constructible universe L, namely
a weakly-compact, i.e., Π1

1-indescribable, cardinal (Magidor [31]). It follows
that the non-discreteness of the τ2 topology is equiconsistent with the exis-
tence of a weakly-compact cardinal. Beklemishev [8] and the author showed,
independently, that the non-isolated points in the τn topology are exactly
those ordinals that are n-simultaneously-reflecting (see definition 2.8 and
theorem 2.11 below). Moreover, Bagaria, Magidor, and Sakai [5] recently
showed that in L the non-isolated points of the τn+1 topology are exactly
those ordinals whose cofinality is a Π1

n-indescribable cardinal. Thus, in the
constructible universe there is an exact correspondence between the prop-
erties of (n + 1)-simultaneous-reflection, being a non-isolated point in the
τn+1 topology, and having Π1

n-indescribable cofinality.
In the last few years there has been interest in exploring further extensions

of GLP obtained by adding an arbitrary number of modal operators [ξ], for
ξ < Λ, where Λ is some ordinal, or even for the whole proper class of ordi-
nals. The resulting logics GLPΛ and their fragments have been intensively
studied in [2, 13, 19, 20, 21, 22]. In this paper we are chiefly interested in
the ordinal GLP-spaces associated to GLPΛ, namely, the polytopological
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spaces (δ, {τξ : ξ < Λ}), where δ is a limit ordinal, or the class OR of all or-
dinal numbers. Particularly, we are interested in determining the conditions
for the topologies τξ to be non-discrete. As we have remarked above, this
is a set-theoretic question involving strong forms of stationary reflection, a
well-studied property that implies the consistency of large cardinals (see,
e.g., [16, 26, 27, 31, 32]). In this paper we define some notions of iterated
stationary reflection and simultaneous stationary reflection, which we call
ξ-stationarity and ξ-simultaneous-stationarity, respectively, and show that
the latter gives the exact property for a point in the τξ topology to be non-
isolated. As it turns out, these notions correspond precisely to some large
cardinals in the constructible universe L, namely Π1

ξ-indescribable cardinals.
Given the existing vast amount of literature on stationary reflection, both
in pure set theory and in its applications to other areas, e.g., Abelian groups
and modules (see [18]), we believe our theory of ξ-stationary sets opens up
new avenues for research both for the extension to the ξ-stationary case of
known results on stationary sets and for applications to other areas.

In section 2 of this paper we give a detailed exposition of the theory of
ξ-stationary and ξ-simultaneously-stationary sets and prove that an ordi-
nal is non-isolated in the τξ topology if and only if it is ξ-simultaneously-
reflecting (theorem 2.11). In section 3 we consider the ideal of non-ξ-
simultaneously-stationary sets on a given ordinal α, and the correspond-
ing dual filter, and we prove that the ideal is proper if and only if α is
ξ-simultaneously-reflecting (theorem 3.1), thus giving yet another charac-
terization of the non-isolated points of the τξ topology. Sections 2 and 3 are
the revised version of our circulated manuscript [4]. Section 4 is devoted to
indescribable cardinals. We introduce a new notion of Π1

ξ-indescribability,

for any ordinal ξ, and prove (proposition 4.3) that every Π1
ξ-indescribable

cardinal is (ξ + 1)-simultaneously-reflecting. We also consider the associ-
ated Π1

ξ-indescribable filters and analyze their connection with the non-ξ-

simultaneously-stationary ideals. In particular, we prove (proposition 4.4)
that if κ is Π1

ξ-indescribable, then the Π1
ξ-indescribable filter and the non-ξ-

simultaneous-stationary ideal are normal. Finally, in section 5 we prove that
in L a regular cardinal is (ξ+1)-reflecting if and only if it is Π1

ξ-indescribable,

and therefore if and only if it is (ξ + 1)-simultaneously-reflecting. We finish
by showing, modulo suitable large cardinals, that it is consistent that the τξ
topology on ordinals is non-discrete while τξ+1 is discrete.

2. Derived topologies on ordinals

The interval topology on a non-zero ordinal number δ (or on δ = OR, the
proper class of all ordinal numbers) is the topology generated by the set B0

consisting of {0} and the open intervals (α, β), for α < β ≤ δ.
We shall define a transfinite sequence of topologies 〈τξ : ξ ∈ OR〉 on δ,

with τ0 being the interval topology. Notice that B0 is actually a base for
τ0. Also note that τ0 is a Hausdorff scattered topology in which 0 and all
successor ordinals less than δ are isolated points and every non-zero limit
ordinal is a limit point.
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Given τξ, let dξ : P(δ)→ P(δ) be the Cantor’s derivative operator, defined
by:

dξ(A) = {α < δ : α is a limit point of A in the τξ topology}.
Thus, α ∈ dξ(A) if and only if every set in τξ that contains α contains also
some element of A different from α. Observe that dξ(A) is a closed subset
of δ in the topology τξ, for every A and ξ. Hence dξ(dξ(A)) ⊆ dξ(A). Also
notice that if ξ′ ≤ ξ, then dξ(dξ′(A)) ⊆ dξ′(A).

We then define τξ+1 as the topology generated by

Bξ+1 := Bξ ∪ {dξ(A) : A ⊆ δ}.
If λ is a limit ordinal, then let τλ be the union

⋃
ξ<λ τξ, which is the

topology on δ generated by Bλ :=
⋃
ξ<λ Bξ.

Clearly, for every ξ ≤ ξ′ we have τξ ⊆ τξ′ , and so for every A ⊆ δ,
dξ′(A) ⊆ dξ(A). Notice that the sets of the form

I ∩ dξ0(A0) ∩ . . . ∩ dξn−1(An−1)

where I ∈ B0, n < ω, ξi < ξ and Ai ⊆ δ, all i < n, form a base for τξ.

Proposition 2.1. For every ξ′ < ξ and every A,B ⊆ δ,
dξ′(A) ∩ dξ(B) = dξ(dξ′(A) ∩B).

Proof. Suppose γ ∈ dξ′(A) ∩ dξ(B). If U ∈ τξ with γ ∈ U , then γ ∈
U∩dξ′(A) ∈ τξ. And since γ ∈ dξ(B), and ξ′ < ξ, we have that (U∩dξ′(A))∩
B − {γ} 6= ∅. Since U was arbitrary, this implies that γ ∈ dξ(dξ′(A) ∩ B).
We have thus shown that dξ′(A) ∩ dξ(B) ⊆ dξ(dξ′(A) ∩B).

Now suppose γ ∈ dξ(dξ′(A) ∩ B). Then clearly γ ∈ dξ(B). Also, since
dξ(dξ′(A)∩B) ⊆ dξ(dξ′(A)) ⊆ dξ′(A), we have that γ ∈ dξ′(A)∩dξ(B). And
this shows that dξ(dξ′(A) ∩B) ⊆ dξ′(A) ∩ dξ(B). �

Corollary 2.2. For every ordinal ξ, the sets of the form

I ∩ dξ′(A0) ∩ . . . ∩ dξ′(An−1)

where I ∈ B0, n < ω, ξ′ < ξ, and Ai ⊆ δ, all i < n, form a base for τξ.

Proof. Fix a basic set I ∩ dξ0(A0)∩ . . .∩ dξn−1(An−1) of τξ, with I ∈ B0 and
ξ0 ≤ . . . ≤ ξn−1 < ξ. If n = 0, or if n > 0 and ξi = ξn−1, for all 0 ≤ i < n,
then there is nothing to prove. If i is the largest such that ξi < ξn−1, then by
the proposition above we may replace dξi(Ai)∩dξi+1

(Ai+1) by dξi+1
(dξi(Ai)∩

Ai+1) = dξn−1(dξi(Ai)∩Ai+1). By repeating this replacing operation finitely-
many times we end up with a set of the form dξn−1(B0) ∩ . . . ∩ dξn−1(Bm)
that is equal to dξ0(A0) ∩ . . . ∩ dξn(An−1). �

We shall investigate the conditions on δ under which the topologies τξ are
non-discrete.

In the case of τ0, a point is not isolated if and only if it is a limit ordinal.
Thus τ0 is non-discrete if and only if δ > ω.

Notice that d0(A) is the set of limit points of A in the ordinal ordering.
Thus, if the cofinality1 of α is uncountable and α ∈ d0(A), then d0(A) ∩ α
is a club (i.e., closed and unbounded) subset of α, in the usual set-theoretic

1For all undefined set-theoretic notions and standard set-theoretic results see, e.g., [28].
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sense. Thus, not surprisingly, τ1 is known in the literature as the club
topology and, as the proof of the next Proposition shows, α ∈ δ is a non-
isolated point in this topology if and only if α has uncountable cofinality.
Hence τ1 is non-discrete if and only if δ > ω1.

Proposition 2.3. The set B1 := B0 ∪ {d0(A) : A ⊆ δ} is a base for τ1.

Proof. Suppose α belongs to the basic set I ∩d0(A0)∩ . . .∩d0(An−1), where
I ∈ B0. If n = 0, then there is nothing to prove. So suppose n > 0.
Then α must be a limit ordinal. If α has cofinality ω, then we can pick
a sequence C of order-type ω cofinal in α so that {α} = d0(C). Thus,
α ∈ d0(C) ⊆ I ∩ d0(A0)∩ . . . d0(An−1). If α has uncountable cofinality, then
I ∩ d0(A0)∩ . . .∩ d0(An−1)∩ α is club in α, and so α ∈ d0(I ∩ d0(A)∩ . . .∩
d0(An−1) ∩ α) ⊆ I ∩ d0(A) ∩ . . . ∩ d0(An). �

2.1. Stationary reflection. As a warm-up for the general case, let us look
first into the necessary conditions on δ for the τ2 topology to be non-discrete.

Recall that for α an ordinal of uncountable cofinality, a set S of ordinals
is called stationary in α if S ∩ C 6= ∅, for every club C ⊆ α.

One can easily check that for every A ⊆ δ,

d1(A) = {α : A is stationary in α}.

If S is a stationary subset of α, then d1(S) is known in the literature as the
trace of S. The operation d1 is also known as the Mahlo operation (see [26]
or [27]).

If α is an ordinal of uncountable cofinality and S is a stationary subset
of α, one says that S reflects at β < α if S is stationary in β. And S is
said to be reflecting if it reflects at some β < α. Finally, we say that α is
stationary-reflecting if every stationary subset of α is reflecting.

If α has uncountable cofinality and is not stationary-reflecting, then there
must exist some stationary subset S of α such that d1(S) = {α}, in which
case α is an isolated point of B2. So, for τ2 to be a non-discrete topology on
δ we need, at least, that some α < δ be stationary-reflecting.

One can easily see that an ordinal α of uncountable cofinality is stationary-
reflecting if and only if cof(α), the cofinality of α, is stationary-reflecting.
Also, observe that if a cardinal κ is stationary-reflecting, then κ cannot be
the successor of a regular cardinal. For if λ is regular and κ = λ+, then
the set Eκλ := {β < κ : cof(β) = λ} is stationary. But Eκλ cannot reflect
at any β < κ, because any such β has a club subset consisting of ordinals
of cofinality less than λ. Therefore, the first stationary-reflecting ordinal, if
it exists, must be either a weakly inaccessible cardinal or the successor of a
singular cardinal. Thus, if, e.g., δ ≤ ℵω+1, then τ2 is discrete on δ.

But for τ2 to be non-discrete we need more than just the existence of
a stationary-reflecting cardinal α < δ. What is needed is some α < δ of
uncountable cofinality such that every pair A,B of stationary subsets of
α simultaneously reflect, meaning that there exists some β < α such that
β ∈ d1(A)∩d1(B). Let us call such an α simultaneoulsy stationary-reflecting,
or s-reflecting for short.
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Proposition 2.4. If α is s-reflecting, then d1(A0) ∩ . . . ∩ d1(An−1) is sta-
tionary, for all stationary A0, . . . , An−1 ⊆ α. Also, and in particular, if α is
stationary-reflecting, then for every stationary A ⊆ α, d1(A) is stationary.

Proof. Suppose first that n = 2. So, fix A0 and A1, and fix a club subset C
of α. The sets C ∩ A0 and C ∩ A1 are stationary in α, and therefore they
simultaneously reflect at some β < α. Thus β ∈ C ∩ d1(A0) ∩ d1(A1).

Now, assuming the proposition holds for n, let us show it holds for n+ 1.
So, fix A0, . . . , An stationary, and suppose C ⊆ α is club. By the inductive
hypothesis, C∩d1(A0)∩. . .∩d1(An−1) is stationary. So, since the proposition
holds for n = 2, the set d1(C ∩ d1(A0) ∩ . . . ∩ d1(An−1)) ∩ d1(An) is also
stationary, hence nonempty. But clearly d1(C ∩ d1(A0) ∩ . . . ∩ d1(An−1)) ∩
d1(An) ⊆ C ∩ d1(A0) ∩ . . . ∩ d1(An). �

Proposition 2.5.

(1) An ordinal α < δ is not isolated in the τ2 topology on δ if and only
if α is s-reflecting. Thus, B2 generates a non-discrete topology on δ
if and only if some α < δ is s-reflecting.

(2) B2 is a base for the τ2 topology on δ if and only if every stationary-
reflecting α < δ is s-reflecting.

Proof. (1): If α has uncountable cofinality and is not s-reflecting, then there
are stationary A,B ⊆ α such that d1(A) ∩ d1(B) = {α}, hence α is an
isolated point. Now suppose α is s-reflecting. If α belongs to an arbitrary
basic open set U = I ∩ di(A0) ∩ . . . di(An−1), where i < 2 and I ∈ B0, then
we claim that U contains some ordinal other than α, which will show that
α is not an isolated point. If n = 0, then U = I and so this is clear. If
n > 0 and i = 0, then U is closed and unbounded in α. If i = 1, then by
proposition 2.4, I ∩di(di(A0)∩ . . .∩di(An−1)) is stationary in α, and clearly

I ∩ di(di(A0) ∩ . . . ∩ di(An−1)) ⊆ U.
(2): Suppose α is stationary-reflecting but not s-reflecting. So, there

exist A and B stationary subsets of α such that d1(A) ∩ d1(B) = {α}. But
{α} 6∈ B2, and so B2 fails to be a base.

For the converse, suppose α belongs to an arbitrary basic open set U =
I ∩ di(A0) ∩ . . . di(An−1), where i < 2 and I ∈ B0. We need to show
that α ∈ U ′ ⊆ U , for some U ′ ∈ B2. If α = 0 or α is a successor, then
α ∈ {α} ∈ B0. If α has countable cofinality, then for any set C of order-type
ω and cofinal in α we have α ∈ d0(C) = {α} ∈ B1. If α has uncountable
cofinality and is not stationary-reflecting, then for some stationary A ⊆ α
we have α ∈ d1(A) = {α} ∈ B2. So suppose α is stationary-reflecting,
hence s-reflecting. If n = 0, then U = I and so there is nothing to show.
If n > 0 and i = 0, then U is closed and unbounded in α and so α ∈
di(α ∩ U) ⊆ U . So, suppose i = 1. Then by proposition 2.4 we get that
I ∩ di(di(A0) ∩ . . . ∩ di(An−1)), is stationary in α, and so

α ∈ di(α ∩ I ∩ di(di(A0) ∩ . . . ∩ di(An−1))) ⊆ U.
�

It is easy to see, using the characterization of weakly-compact cardinals
in terms of Π1

1 indescribability (see [28], [29], or Section 4 below), that



DERIVED TOPOLOGIES ON ORDINALS 7

every weakly compact cardinal is s-reflecting. Thus, from proposition 2.5,
(1) it follows that in every model of set theory where there exists a weakly
compact cardinal less than some ordinal δ, the topology τ2 on δ is non-
discrete. Further, R. Jensen [28] shows that in the constructible universe
L a regular cardinal κ is stationary-reflecting if and only if it is weakly
compact, hence if and only if it is s-reflecting. Thus, proposition 2.5, (2)
implies that in L the set B2 is a base for the τ2 topology, on any given δ.

2.2. ξ-Stationarity. We are ready now to investigate the general condi-
tions that δ must satisfy for the topologies τξ to be non-discrete. We begin
with some definitions that generalize the notions of stationary set and sta-
tionary reflection.

Definition 2.6. We say that A ⊆ δ is 0-stationary in α if and only if A is
unbounded in α (i.e., A ∩ α 6= ∅ and for every β < α there is γ ∈ A ∩ α
greater than β).

For ξ > 0, we say that A is ξ-stationary in α < δ if and only if for every
ζ < ξ, every subset S of δ that is ζ-stationary in α ζ-reflects to some β ∈ A,
i.e., S is ζ-stationary in β.

We say that an ordinal α is ξ-reflecting if it is ξ-stationary in α.

Note that A is 1-stationary in α if and only if A ∩ α is stationary in α.
Clearly, if A is ξ-stationary in α, then A is also ζ-stationary in α, for all
ζ < ξ. And if ξ is a limit ordinal, then A is ξ-stationary in α if and only if
A is ζ-stationary in α, for all ζ < ξ.

Notice also that every limit ordinal α is 0-reflecting, and α is 1-reflecting
if and only if it has uncountable cofinality. Moreover, α is 2-reflecting if and
only if it is stationary-reflecting.

Finally, let us observe that there is no ordinal α such that α is α + 1-
reflecting. For suppose, to the contrary, that α is the least such ordinal.
Then there is β < α such that α∩ β = β is α-stationary in β. In particular,
β is β + 1-stationary in β, contradicting the minimality of α. However, as
we shall see in the next section, it is possible for a (large) cardinal α to be
α-reflecting.

Proposition 2.7. For every ξ > 0, if A is ξ-stationary in α and C is a club
subset of α, then A∩C is also ξ-stationary in α. Hence, if α is ξ-reflecting,
then every club subset of α is ξ-stationary.

Proof. This is clear for ξ = 1, and also clear for ξ a limit ordinal, provided
it holds for all 0 < ζ < ξ. So suppose it holds for some ξ > 0 and let us see
that it also holds for ξ+1. Fix A ξ+1-stationary in α and a club C ⊆ α. By
the induction hypothesis, A ∩ C is ξ-stationary in α. If S is a ξ-stationary
subset of α, then by the induction hypothesis, S ∩ C is ξ-stationary in α.
So, since A is ξ + 1-stationary in α, there exists β ∈ A such that S ∩ C ∩ β
is ξ-stationary in β. Hence β ∈ C. �

As we shall see (proposition 2.10), similarly as in the case of τ2, for a
point α to be non-isolated in the τξ topology we need more than it be-
ing ξ-reflecting; what we need is that α satisfies the following property of
simultaneous ξ-reflection.
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Definition 2.8. We say that A ⊆ δ is 0-simultaneously-stationary in α
(0-s-stationary in α, for short), if and only if A is unbounded in α. For
ξ > 0, we say that A is ξ-simultaneously-stationary in α (ξ-s-stationary in
α, for short) if and only if for every ζ < ξ, every pair of subsets S and T
of δ that are ζ-s-stationary in α simultaneously ζ-s-reflect to some β ∈ A,
i.e., S and T are both ζ-s-stationary in β.

We say that an ordinal α is ξ-s-reflecting if it is ξ-s-stationary in α.

Note that if A is ξ-s-stationary in α, then A is also ζ-s-stationary in α,
for all ζ < ξ. And if ξ is a limit ordinal, then A is ξ-s-stationary in α if and
only if A is ζ-s-stationary in α, for all ζ < ξ.

Notice also that for ξ ∈ {0, 1}, A is ξ-s-stationary in α if and only if A
is ξ-stationary in α. However, the existence of a 2-s-reflecting cardinal has
higher consistency strength than the existence of a 2-reflecting cardinal, by
results of Magidor [31] and Mekler-Shelah [32].

Proposition 2.9. For every ξ > 0, if A is ξ-s-stationary in α and C is
a club subset of α, then A ∩ C is also ξ-s-stationary in α. Hence, if α is
ξ-s-reflecting, then every club subset of α is ξ-s-stationary.

Proof. Similar to the proof of 2.7. �

The next proposition establishes an exact correspondance between limit
points of the τξ topology and ξ-s-stationarity.

Proposition 2.10.

(1) For every ξ,

dξ(A) = {α : A is ξ-s-stationary in α}.
(2) For every ξ and α, A is ξ + 1-s-stationary in α if and only if A ∩

dζ(S)∩ dζ(T )∩α 6= ∅ (equivalently, if and only if A∩ dζ(S)∩ dζ(T )
is ζ-s-stationary in α) for every ζ ≤ ξ and every pair S, T of subsets
of α that are ζ-s-stationary in α.

(3) For every ξ and α, if A is ξ-s-stationary in α and Ai is ζi-s-stationary
in α for some ζi < ξ, all i < n, then A∩ dζ0(A0)∩ . . .∩ dζn−1(An−1)
is ξ-s-stationary in α.

Proof. We prove (1), (2), and (3) by simultaneous induction on ξ. (1) is
clear for ξ ≤ 1, and by Proposition 2.4, (2) holds for ξ ≤ 1 and (3) holds for
ξ ≤ 2.

(1), (2), and (3) also hold for ξ a limit ordinal, assuming they hold for
all ζ < ξ. In the case of (1) and (3) this is clear. As for (2), suppose A is
ξ+1-s-stationary in α, and S and T are ξ-s-stationary in α. So, there exists
β ∈ A ∩ α such that S and T are ξ-s-stationary in β, hence since (1) holds
for ξ, we have that β ∈ A ∩ dξ(S) ∩ dξ(T ). To see that A ∩ dξ(S) ∩ dξ(T )
is in fact ξ-s-stationary, suppose X is ζ-s-stationary in α, for some ζ < ξ.
Then since by (3) for ξ the set T ∩ dζ(X) is ξ-s-stationary in α, we have

A ∩ dξ(S) ∩ dξ(T ) ∩ dζ(X) = A ∩ dξ(S) ∩ dξ(T ∩ dζ(X)) 6= ∅.
Suppose now that (1) and (2) hold for ξ and let us see that (1) holds for

ξ + 1. If α ∈ dξ+1(A), then α ∈ dξ(A), hence by the induction hypothesis
A ∩ α is ξ-s-stationary in α. Now suppose S, T ⊆ α are ξ-s-stationary
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in α. Again by the induction hypothesis α ∈ dξ(S) ∩ dξ(T ), and since
α ∈ dξ+1(A) and dξ(S) ∩ dξ(T ) is a basic neighborhood of α in the τξ+1

topology, A∩((dξ(S)∩dξ(T ))\{α})) 6= ∅. If β ∈ A∩((dξ(S)∩dξ(T ))\{α})),
then by the inductive hypothesis both S and T are ξ-s-stationary in β. This
shows A is ξ + 1-s-stationary in α.

Now suppose A is ξ + 1-s-stationary in α. To see that α ∈ dξ+1(A), let
U be a basic open set in the τξ+1 topology, with α ∈ U . We may assume
U = I ∩ dζ(A0) ∩ . . . dζ(An−1), where I ∈ B0 and ζ ≤ ξ (see Corollary 2.2).
If n = 0, then U = I is an open interval, and so A ∩ I contains ordinals
other than α. So suppose n > 0. If ζ < ξ, then U is a basic open set of τξ,
and since by induction hypothesis α ∈ dξ(A), we have A ∩ (U \ {α}) 6= ∅.
So, suppose ζ = ξ. By the induction hypothesis, Ai is ξ-s-stationary in α,
for all i < n. So, since A is ξ + 1-s-stationary, by the induction hypothesis
on (2) for ξ, we have that A ∩ dξ(dξ(A0) ∩ dξ(A1)) is ξ-s-stationary in α.
Similarly, we get that A∩ dξ(dξ(dξ(A0)∩ dξ(A1))∩ dξ(A2)) is ξ-s-stationary
in α. And so on. Finally, we get that the set

X := A ∩ I ∩ dξ(. . . dξ(dξ(A0) ∩ dξ(A1)) ∩ . . .) ∩ dξ(An−1))

is ξ-s-stationary in α. Hence, since X ⊆ A∩U , we have A∩ (U \ {α}) 6= ∅.
This proves (1) for ξ + 1.

Next, assume (1), (2), and (3) hold for ξ and we will show that (3) holds
for ξ + 1.

By (1) we only need to show that

A ∩ dζ0(A0) ∩ . . . ∩ dζn−1(An−1) ∩ dζ(S) ∩ dζ(T ) 6= ∅

for all ζ-stationary subsets S and T of α, with ζ ≤ ξ.
Suppose first that n = 1. If ζ0 = ζ, then A ∩ dζ0(A0) ∩ dζ(dζ(S) ∩ dζ(T ))

is contained in A ∩ dζ0(A0) ∩ dζ(S) ∩ dζ(T ) and is ζ-s-stationary in α, by
(2). If ζ0 < ζ, then by induction hypothesis on (3), dζ0(A0) is ζ-s-stationary
in α. Hence, again by (2), A ∩ dζ(dζ0(A0)) ∩ dζ(dζ(S) ∩ dζ(T )) 6= ∅ and is
contained in A∩dζ0(A0)∩dζ(S)∩dζ(T ). Finally, if ζ0 > ζ, then by (2) the set
A∩dζ0(A0) is ζ0-s-stationary in α, and hence A∩dζ0(A0)∩dζ(S)∩dζ(T ) 6= ∅.

Now suppose n > 1. By (2) and the inductive hypothesis for (3), the set
dζ(dζ(S)∩dζ(T )) is ξ-s-stationary in α. Also, by induction hypothesis on n,
the set A∩ dζ0(A0)∩ . . .∩ dζn−2(An−2) is ξ+ 1-s-stationary in α. Therefore,
letting η := max{ζn−1, ζ}, we have that the set

A ∩ dζ0(A0) ∩ . . . ∩ dζn−2(An−2) ∩ dη(dζn−1(An−1)) ∩ dη(dζ(S) ∩ dζ(T ))

which is contained in

A ∩ dζ0(A0) ∩ . . . dζn−2(An−2) ∩ dζn−1(An−1) ∩ dζ(S) ∩ dζ(T )

is non-empty.

Finally, assuming that (1) and (3) hold for ξ + 1, let us see that (2) also
holds for ξ + 1. Assume first that A is ξ + 2-s-stationary in α. By the
induction hypothesis we only need to show that A ∩ dξ+1(S) ∩ dξ+1(T ) is
ξ + 1-s-stationary in α, for every S and T that are ξ + 1-s-stationary in α.
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So fix S and T ξ + 1-s-stationary in α, and take any ζ-s-stationary subsets
X and Y of α, for some ζ ≤ ξ. By (1) for ζ it is sufficient to check that

A ∩ dξ+1(S) ∩ dξ+1(T ) ∩ dζ(X) ∩ dζ(Y ) 6= ∅.
By (3) for ξ + 1, the sets S ∩ dζ(X) and T ∩ dζ(Y ) are ξ + 1-s-stationary in
α. Hence, since A is ξ + 2-s-stationary in α, by (1) for ξ + 1, there exists
some β ∈ A such that

β ∈ dξ+1(S∩dζ(X))∩dξ+1(T ∩dζ(Y )) = dξ+1(S)∩dξ+1(T )∩dζ(X)∩dζ(Y ).

Now suppose A∩dζ(S)∩dζ(T )∩α 6= ∅ for every ζ ≤ ξ+1 and S, T that are
ζ-s-stationary in α. We claim that A is ξ+ 2-s-stationary. By the induction
hypothesis we only need to check that every S, T that are ξ+ 1-s-stationary
in α ξ+ 1-s-reflect to some β ∈ A. So fix such S and T . By our assumption,
there is β ∈ A ∩ dξ+1(S) ∩ dξ+1(T ) ∩ α. Thus, by (1) for ξ + 1, both S and
T are ξ + 1-s-stationary in β. �

Theorem 2.11. For every ξ, an ordinal α < δ is not isolated in the τξ
topology on δ if and only if α is ξ-s-reflecting. Thus Bξ generates a non-
discrete topology on δ if and only if some α < δ is ξ-s-reflecting.

Proof. We have already proved this in the previous sections for 0 ≤ ξ ≤
2 (propositions 2.3 and 2.5). Notice that the theorem holds for limit ξ,
provided it holds for all ζ < ξ. So let us assume that it holds for some fixed
ξ > 1 and we will see that it holds for ξ + 1.

If α is not ξ + 1-s-reflecting, then for some ζ ≤ ξ and some A,B that are
ζ-s-stationary in α, dζ(A)∩ dζ(B) is not ζ-s-stationary in α (by proposition
2.10 (2)). So, for some ζ ′ < ζ and some S, T that are ζ ′-stationary in α,
dζ(A) ∩ dζ(B) ∩ dζ′(S) ∩ dζ′(T ) = {α}, hence α is an isolated point in the
topology τξ+1.

Now suppose that α is ξ + 1-s-reflecting. By the induction hypothesis, α
is not isolated in the τξ topology. Let us see that α is not isolated in the τξ+1

topology either. So suppose that α ∈ U , where U is a basic open set in τξ+1,
which may be assumed to be of the form U = I ∩ dζ(A0) ∩ . . . ∩ dζ(An−1),
with ζ ≤ ξ and I an open interval. But since I ∩ α is a club subset of α,
propositions 2.9 and 2.10 imply that U is ξ + 1-s-stationary in α. �

Proposition 2.12. If A is ξ-s-stationary in α, then A \ dξ(A) is also ξ-s-
stationary in α.

Proof. This follows directly from proposition 2.10 (1) and the general fact
that a topological space (X, τ) is scattered if and only if dτ (A) = dτ (A \
dτ (A)), for every A ⊆ X, where dτ is Cantor’s derivative operator on (X, τ).

�

The following proposition shows that ξ-reflection and ξ-s-reflection are,
essentially, properties of regular cardinals.

Proposition 2.13.

(1) α is ξ-reflecting if and only if cof(α) is ξ-reflecting.
(2) α is ξ-s-reflecting if and only if cof(α) is ξ-s-reflecting.

Hence, the first ξ-reflecting and the first ξ-s-reflecting ordinals, whenever
they exist, are regular cardinals.
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Proof. Fix a club C ⊆ α of order-type cof(α), and let i : C → cof(α) be
the unique continuous order-isomorphism. Then, for every S ⊆ α and every
0 < ζ ≤ ξ, S is ζ-stationary (ζ-s-stationary) in α if and only if S ∩ C is
ζ-stationary (ζ-s-stationary) in α (Propositions 2.7 and 2.9), if and only if
the image of S ∩ C under i is ζ-stationary (ζ-s-stationary) in cof(α). The
last equivalence may be shown by an easy induction on ζ. �

3. The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ordinal ξ, let Iξα be the set of non-ξ-s-

stationary subsets of α, and let Fξα = (Iξα)∗ := {A ⊆ α : α−A ∈ Iξα}. Thus,
I0
α is the set of bounded subsets of α, and F0

α is the set of tail subsets of α.
If α has uncountable cofinality, then I1

α is the ideal of non-stationary subsets

of α and F1
α is the club filter over α. Notice that ζ ≤ ξ implies Iζα ⊆ Iξα and

Fζα ⊆ Fξα. Also note that A ⊆ α belongs to Fξα if and only if there for some
ζ < ξ and some ζ-s-stationary sets S, T ⊆ α, the set dζ(S) ∩ dζ(T ) ∩ α is
contained in A. In particular, if S ⊆ α is ζ-s-stationary, with ζ < ξ, then

dζ(S) ∩ α ∈ Fξα.

Theorem 3.1. For every ξ, an ordinal α is ξ-s-reflecting if and only if Iξα
is a proper ideal, hence if and only if Fξα is a proper filter.

Proof. Assume first that α is ξ-s-reflecting (hence α 6∈ Iξα), and let us show

that Iξα is an ideal. For ξ = 0 this is clear. So, suppose ξ > 0 and A,B ∈ Iξα.
There exist ζA, ζB < ξ, and there exist sets SA, TA ⊆ α that are ζA-s-
stationary in α, and sets SB, TB ⊆ α that are ζB-s-stationary in α, such
that dζA(SA) ∩ dζA(TA) ∩A = dζB (SB) ∩ dζb(TB) ∩B = ∅. Hence,

(dζA(SA) ∩ dζA(TA) ∩ dζB (SB) ∩ dζB (TB)) ∩ (A ∪B) = ∅.
By proposition 2.10 (3), the set X := dζA(SA)∩dζA(TA)∩dζB (SB)∩dζB (TB)
is max{ζA, ζB}-s-stationary in α. Now notice that

dmax{ζA,ζB}(X) ⊆ X
and so we have

dmax{ζA,ζB}(X) ∩ α ∩ (A ∪B) = ∅

which witnesses that A ∪B ∈ Iξα.
For the converse, assume Iξα is a proper ideal, hence Fξα is a proper filter.

Suppose that A and B are ζ-s-stationary subsets of α, for some ζ < ξ. Then

dζ(A) ∩ α and dζ(B) ∩ α are in Fξα. Moreover, if S, T ⊆ α are any ζ ′-s-
stationary sets, for some ζ ′ < ξ, then also dζ′(S) ∩ α and dζ′(T ) ∩ α belong

to Fξα. Hence, since Fξα is a filter,

dζ(A) ∩ dζ(B) ∩ dζ′(S) ∩ dζ′(T ) ∩ α ∈ Fξα
which implies, since Fξα is proper, that dζ(A)∩dζ(B)∩dζ′(S)∩dζ′(T )∩α 6= ∅.
This shows that dζ(A) ∩ dζ(B) is ξ-s-stationary in α. Since A and B were
arbitrary, this implies that α is ξ-s-reflecting. �

If F ⊆ P(A), for some set A, we say that S ⊂ A has positive F-measure,
or is F-positive, if S ∩B 6= ∅ for every B ∈ F . Thus, if A ⊆ α has positive

Fξα-measure, then A is a ξ-s-stationary subset of α. Let us denote by (Fξα)+
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the set of all subsets of α of positive Fξα-measure. Notice that (Fξα)+ is

non-empty if and only if Fξα is proper, i.e., it does not contain the empty

set, in which case (Fξα)+ is exactly the set of ξ-s-stationary subsets of α.

We shall next address the issue of the consistency of Bξ being a base or a
sub-base for a non-discrete topology on δ. By Theorem 2.11 this reduces to
the consistency of the existence of an ξ-s-reflecting cardinal.

4. Indescribable cardinals

Recall that a formula of second-order logic is Σ1
0 (or Π1

0) if it does not
have quantifiers of second order, but it may have any finite number of first-
order quantifiers and free first-order and second-order variables. In general,
a formula is Σ1

n, for n > 0, if it is of the form

∃X0, . . . , Xkϕ(X0, . . . , Xk)

where k < ω, the variablesX0, . . . , Xk are of second order, and ϕ(X0, . . . , Xk)
is Π1

n−1.

And a formula is Π1
n, for n > 0, if it is of the form

∀X0, . . . , Xkϕ(X0, . . . , Xk)

where ϕ(X0, . . . , Xk) is Σ1
n−1.

The notion of n-stationarity is Π1
n expressible (see the proof of proposition

4.3 below). However, to express ξ-stationarity for ξ ≥ ω we need to extend
the definition of Π1

n and Σ1
n formulas to include the limit case.

Definition 4.1. For ξ any ordinal, we say that a formula is Σ1
ξ+1 if it is of

the form
∃X0, . . . , Xkϕ(X0, . . . , Xk)

where ϕ(X0, . . . , Xk) is Π1
ξ .

And a formula is Π1
ξ+1 if it is of the form

∀X0, . . . , Xkϕ(X0, . . . , Xk)

where ϕ(X0, . . . , Xk) is Σ1
ξ .

If ξ is a limit ordinal, then we say that a formula is Π1
ξ if it is of the form∧

ζ<ξ

ϕζ

where ϕζ is Π1
ζ , all ζ < ξ, and it has only finitely-many free second-order

variables. And we say that a formula is Σ1
ξ if it is of the form∨

ζ<ξ

ϕζ

where ϕζ is Σ1
ζ , all ζ < ξ, and it has only finitely-many free second-order

variables.

The indescribability of rank-initial segments of the set-theoretic universe
with respect to Π1

ξ sentences yields the following notion of Π1
ξ-indescribable

cardinal. (Other notions of Π1
ξ-indescribability have been considered in the

literature, e.g., by Jensen [17].)
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Definition 4.2. A cardinal κ is Π1
ξ-indescribable if for all subsets A ⊆ Vκ

and every Π1
ξ sentence ϕ, if

〈Vκ,∈, A〉 |= ϕ

then there is some λ < κ such that

〈Vλ,∈, A ∩ Vλ〉 |= ϕ.

One may also define, similarly, the notion of Σ1
ξ-indescribable cardinal.

However, it is easily seen that a cardinal κ is Π1
ξ-indescribable if and only if

it is Σ1
ξ+1-indescribable.

Note that if κ is Π1
ξ-indescribable, then necessarily ξ < κ. One can easily

sen that if κ is a measurable cardinal, then κ is Π1
ζ-indescribable for all

ζ < κ. Also, if j : M →M is an elementary embedding, with M a transitive
model of ZFC, and with critical point κ, then κ is Π1

ζ-indescribable in M , for
every ζ < κ. It follows that the consistency of the existence of the ω-Erdös
cardinal ηω implies the consistency of the existence of a cardinal κ that is
Π1
ζ-indescribable, for all ζ < κ (by arguments as in [26] Theorem 17.33 and

Exercise 17.29). Also, if κ is Π1
ξ-indescribable, then κ is Π1

ξ-indescribable in

the constructible universe L (by an argument similar to [29] 6.7).

Proposition 4.3. Every Π1
ξ-indescribable cardinal is (ξ + 1)-s-reflecting.

Hence, if ξ is a limit ordinal and a cardinal κ is Π1
ζ-indescribable for all

ζ < ξ, then κ is ξ-s-reflecting.

Proof. Let κ be an infinite cardinal. Clearly, the fact that a set A ⊆ κ
is 0-s-stationary (i.e., unbounded) in κ can be expressed as a Π1

0 sentence
ϕ0(A) over 〈Vκ,∈, A〉. Inductively, one can now show that for every ξ > 0,
the fact that a set A ⊆ κ is ξ-s-stationary in κ can be expressed by a Π1

ξ

sentence ϕξ over 〈Vκ,∈, A〉. Namely, by the sentence∧
ζ<ξ

(A is ζ-s-stationary)

in the case ξ is a limit ordinal, and by the sentence∧
ζ<ξ−1

(A is ζ-s-stationary) ∧

∀S, T (S, T are (ξ − 1)-s-stationary in κ→
∃β ∈ A(S and T are (ξ − 1)-s-stationary in β))

which is easily seen to be equivalent to a Π1
ξ sentence, in the case ξ is a

successor ordinal.
Now suppose κ is Π1

ξ-indescribable, and suppose that A and B are ζ-s-
stationary subsets of κ, for some ζ ≤ ξ. Thus,

〈Vκ,∈, A,B〉 |= ϕζ [A] ∧ ϕζ [B].

By the Π1
ζ-indescribability of κ there exists β < κ such that

〈Vβ,∈, A ∩ β,B ∩ β〉 |= ϕζ [A ∩ β] ∧ ϕζ [B ∩ β]

which implies that A and B are ζ-s-stationary in β. Hence κ is (ξ + 1)-s-
reflecting. �
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Thus, if there exists a Π1
ξ-indescribable cardinal κ below some ordinal δ,

then κ, and also all ordinals less than δ of cofinality κ, are limit points in
the τξ+1 topology on δ.

4.1. Indescribable filters. Suppose ϕ is a Π1
ξ sentence, and A ⊆ κ is such

that 〈Vκ,∈, A〉 |= ϕ. Then we let

RA,ϕ := {α < κ : 〈Vα,∈, A ∩ α〉 |= ϕ}.

If κ is a Π1
ξ-indescribable cardinal, then the Π1

ξ-indescribable filter F ξκ on κ
is the proper filter generated by the sets RA,ϕ. Notice that if ζ ≤ ξ, then

F ζκ ⊆ F ξκ .

Recall that that if X = 〈Xα : α < κ〉 is a sequence of subsets of a cardinal
κ, then the diagonal intersection of X is the set

∆α<κXα := {β < κ : β ∈
⋂
α<β

Xα}.

Observe that for every ξ,

dξ(∆α<κXα) ⊆ ∆α<κdξ(Xα).

For suppose ∆α<κXα is ξ-s-stationary in β. If α0 < β, then (∆α<κXα∩β)\
α0 ⊆ Xα0∩β, which implies that Xα0 is ξ-s-stationary in β, i.e., β ∈ dξ(Xα0).
Thus, β ∈

⋂
α<β dξ(Xα), hence β ∈ ∆α<κdξ(Xα).

Also, recall that a filter F on some cardinal κ is normal if it is closed
under diagonal intersections. Equivalently, if every regressive function on
an F-positive set S is constant on an F-positive subset of S.

If F is a normal filter on κ and it contains all tail sets, i.e., sets of the
form κ − λ, some λ < κ, then it contains all club subsets of κ. Moreover,
F is κ-complete, i.e., the intersection of less than κ-many elements of the
filter is also in the filter. For if 〈Xα : α < λ〉, some λ < κ, is a sequence of
members of the filter, put Xα = κ for all λ ≤ α < κ. Then by normality,
∆α<κXα is in the filter, and since κ− λ is also in the filter,

(∆α<κXα)− λ = (
⋂
α<λ

Xα)− λ ∈ F

and therefore
⋂
α<λXα ∈ F .

Proposition 4.4. If κ is a Π1
ξ-indescribable cardinal, and ξ > 0, then the

filter F ξκ is normal and κ-complete.

Proof. The proof of normality is similar to the one by Levy [30] in the case
0 < ξ < ω (see also [26], 6.11), using the fact that there is a universal Π1

ξ

formula. Namely, for each ξ > 0 there is a Π1
ξ formula ψξ(X, yξ, zξ), with

X a second order variable and yξ and zξ first-order variables, such that for
every Π1

ξ formula ϕ(X) there is kϕ ⊆ ξ such that for every limit ordinal α
greater than ξ and every A ⊆ Vα,

〈Vα,∈〉 |= ϕ[A] if and only if 〈Vα,∈〉 |= ψξ[A, kϕ, ξ].
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When ξ is a successor ordinal, the universal Π1
ξ formula may be obtained as

in [30]. When ξ is a limit ordinal, ψξ(X, yξ, zξ) may be taken as the formula

zξ is a limit ordinal ∧ yξ ⊆ ξ codes 〈yζ : ζ < zξ〉 ∧
∧
ζ<ξ

ψζ(X, yζ , zζ)

which is clearly equivalent to a Π1
ξ formula. Then, given any Π1

ξ formula

ϕ(X) =
∧
ζ<ξ ϕζ(X) we let kϕ to be a subset of ξ coding the sequence

〈kϕζ : ζ < ξ〉, so that for every limit ordinal α greater than ξ and every
A ⊆ Vα,

〈Vα,∈〉 |= ϕ[A] iff 〈Vα,∈〉 |=
∧
ζ<ξ

ψζ [A, kϕζ , ζ] iff 〈Vα,∈〉 |= ψξ[A, kϕ, ξ].

To prove normality, suppose X ⊆ κ is F ξκ -positive. Without loss of gener-
ality, every element ofX is a limit ordinal greater than ξ. Suppose f : X → κ
is regressive and, towards a contradiction, assume that f is not constant on
any positive set. So, for each α < κ there is some Aα ⊆ Vκ and kα ⊆ ξ such
that

〈Vκ,∈〉 |= ψξ[Aα, kα, ξ]

yet

〈Vλ,∈〉 |= ¬ψξ[Aα ∩ Vλ, kα, ξ]
for every λ ∈ X such that f(λ) = α. Let Γ : κ × κ → κ be the standard
definable bijection (see [26] 3.5), and let S := {Γ(α, β) : α < κ ∧ β ∈ Aα}
and T := {Γ(α, β) : α < κ ∧ β ∈ kα}. Let θ be the sentence “For every
ordinal x there is a bigger ordinal y”. Let ϕ(S, T, ξ) be the sentence

θ ∧ ∀α∀Y ∀v(Y = {β : Γ(α, β) ∈ S} ∧ v = T [α]→ ψξ(Y, v, ξ)),

which is equivalent to a Π1
ξ sentence: If ξ is a successor, then this is clear.

And if ξ is a limit, then it is also clear because it is equivalent to the sentence∧
ζ<ξ

(θ ∧ ∀α∀Y ∀v(Y = {β : Γ(α, β) ∈ S} ∧ v = T [α]→ ψζ(Y, v(ζ), ζ))).

Since 〈Vκ,∈, S, T, ξ〉 |= ϕ[S, T, ξ] and X is positive, there exists λ ∈ X such
that

〈Vλ,∈, S ∩ Vλ, T ∩ Vλ, ξ〉 |= ϕ[S ∩ Vλ, T ∩ Vλ, ξ].
But since f is regressive, α := f(λ) < λ, so Aα ∩ Vλ and T [α] belong to Vλ,
and therefore

〈Vλ,∈〉 |= ψξ[Aα ∩ Vλ, kα, ξ]
thus yielding a contradiction.

Finally, since F ξκ is normal and contains all the tail subsets of κ, it is
κ-complete. �

Observe that if X ∈ F ξκ , then X is (ξ + 1)-s-stationary. For suppose that
RA,ϕ ⊆ X, and S, T are ζ-s-stationary subsets of κ, for some ζ ≤ ξ. Then,
letting ψ(S, T ) be the Π1

ζ sentence asserting that S and T are ζ-s-stationary

(proposition 4.3), we have that RS,ψ, RT,ψ ∈ F ξκ and RA,ϕ ∩ RS,ψ ∩ RT,ψ ⊆
X ∩ dζ(S)∩ dζ(T ). Hence, since F ξκ is proper and RA,ϕ ∩RS,ψ ∩RT,ψ ∈ F ξκ ,
we have that X ∩ dζ(S) ∩ dζ(T ) ∩ κ is nonempty.
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Also, notice that if κ is Π1
ξ-indescribable, then for every ζ ≤ ξ and every

pair S, T of ζ-s-stationary subsets of κ, the set dζ(S)∩ dζ(T )∩ κ belongs to

F ξκ . Hence, Fξκ ⊆ F ξκ .

Proposition 4.5. If κ is a Π1
ξ-indescribable cardinal, and ξ > 0, then the

filter Fξ+1
κ is normal and κ-complete.

Proof. Let 〈Xα : α < κ〉 be a sequence of of members of Fξ+1
κ . Without loss

of generality, we may assume Xα = dζα(Sα) ∩ dζα(Tα) ∩ κ, where Sα and

Tα are ζα-stationary subsets of κ, some ζα ≤ ξ. Since the filter F ξκ contains
all the sets Xα, and is normal, we have that ∆α<κXα is also in the filter,
and therefore, by our observation above, it is (ξ + 1)-s-stationary. Thus,

dξ(∆α<κXα) ∩ κ ∈ Fξ+1
κ . Now we have the following inclusions:

dξ(∆α<κXα)∩κ ⊆ ∆α<κdξ(Xα)∩κ = ∆α<κdξ(dζα(Sα)∩ dζα(Tα)∩κ)∩κ ⊆

⊆ ∆α<κ(dζα(Sα) ∩ dζα(Tα) ∩ κ) = ∆α<κXα

and so ∆α<κXα ∈ Fξ+1
κ .

The κ-completeness follows from normality since all tail subsets of κ be-

long to Fξ+1
κ . �

5. Reflection and indescribability in L

As shown in [5], in the constructible universe L the converse to proposition
4.3 also holds for n > 0, and so a regular cardinal is (n+ 1)-reflecting if and
only if it is Π1

n-indescribable, and therefore if and only if it is (n + 1)-s-
reflecting. Hence, a regular cardinal is ω-reflecting, if and only if it is ω-s-
reflecting, and if and only if it is Π1

n-indescribable for every n < ω. Thus,
it follows from Theorem 2.11 that in L the topology τn+1 on some ordinal δ
in non-discrete if and only if there exists a Π1

n-indescribable cardinal below
δ. The non-isolated points are precisely those ordinals whose cofinality is
Π1
n-indescribable. Moreover, in L, for every n ≤ ω the set Bn is a base for

the τn topology.
The proof of the main theorem of [5] shows in fact that if V = L and κ is

a regular Π1
n−1-indescribable cardinal, then for every Π1

n formula ϕ(X) and
every A ⊆ κ such that 〈Vκ,∈, A〉 |= ϕ(A), there exists an n-s-stationary set
S ⊆ κ such that dn(S) ⊆ Dϕ,A. Hence, if κ is Π1

n-indescribable (equivalently,
regular and (n+ 1)-reflecting), then Fnκ = Fnκ .

With similar arguments as in [5] we will show that, in L, the same holds
for every ordinal ξ > 0, namely a regular cardinal is (ξ + 1)-reflecting if
and only if it is Π1

ξ-indescribable, and therefore if and only if it is (ξ + 1)-s-
reflecting. Hence, for every limit ordinal ξ, a regular cardinal is ξ-reflecting
if and only if it is ξ-s-reflecting, and if and only if it is Π1

ζ-indescribable
for every ζ < ξ. One direction is given by proposition 4.3. For the other
direction it is sufficient to prove the following.

Theorem 5.1. Assume V = L. Suppose ξ > 0 and κ is a regular (ξ + 1)-
reflecting cardinal. Then for every A ⊆ κ and every Π1

ξ sentence Ψ, if

〈Lκ,∈, A〉 |= Ψ, then there exists a ξ-stationary S ⊆ κ such that Ψ reflects
to every ordinal λ in dξ(S), i.e., 〈Lλ,∈, A ∩ λ〉 |= Ψ.
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Proof. We proceed by induction on ξ > 0. The case ξ = 1 is due to Jensen
([28] 6.1). So, suppose ξ > 1 and the Theorem holds for 0 < ζ < ξ. We
shall prove it for ξ.

Suppose κ is regular and (ξ + 1)-reflecting. So, ξ < κ. By the inductive
hypothesis, κ is Π1

ζ-indescribable, for every ζ < ξ. Hence κ is innaccessible
and the set Reg of regular cardinals below κ is stationary.

Fix A ⊆ κ and a Π1
ξ sentence Ψ, and suppose

〈Lκ,∈, A〉 |= Ψ.

We shall find a ξ-stationary S ⊆ κ such that Ψ reflects to every ordinal in
dξ(S). Since dξ(S) intersects every (ξ + 1)-stationary subset of κ, our proof
will also show that for every (ξ + 1)-stationary T ⊆ κ, every Π1

ξ sentence

true in 〈Lκ,∈, A〉 reflects to some ordinal in T . Thus, we shall assume,
inductively, that

(∗) For every regular ξ-reflecting cardinal λ, every ξ-stationary T ⊆ λ,
and every ζ < ξ, every Π1

ζ sentence true in 〈Lλ,∈, A ∩ λ〉 reflects to
some element of T .

The case ξ = 2 is shown in [28] 6.1, as part of the proof that in L, if a regular
cardinal is 2-reflecting, then it is Π1

1-indescribable. Notice that (∗) holds for
a limit ξ if and only if it holds for all (equivalently, for unboundedly many)
ordinals ξ′ < ξ.

The set R := {α < κ : ξ < α and α is not ξ-reflecting} is ξ-stationary in
κ, for given any ζ-stationary T ⊆ κ, some ζ < ξ, the least ordinal greater
than ξ where T ζ-reflects belongs to R. If α is a cardinal in R, then α is
not Π1

ζ-indescribable, for some ζ < ξ (proposition 4.3). So, for each regular
α ∈ R, let λα be the least ordinal greater than or equal to α+ω such that Lλα
contains some subset of α that is a witness to the non Π1

ζ-indescribability of

α, for some ζ < ξ. Let λ−α be the largest limit ordinal less than or equal to
λα. Note that λ−α > α.

Since we shall be only interested in the satisfaction of Ψ in structures
with universes of the form Lα, with α a limit ordinal, and so sufficient
coding apparatus is available, we may assume that all second-order variables
appearing in Ψ range over sets of ordinals.

Define

S := {α ∈ R ∩Reg : A ∩ α ∈ Lλ−α ∧ Lλ−α |= “〈Lα,∈, A ∩ α〉 |= Ψ”}.

We will show that S is ξ-stationary in κ. So fix any ζ0-stationary subset T
of κ, where ζ0 < ξ.

Fix a large k < ω. Let N := 〈Nα : α < κ〉 ∈ Lκ+ be the natural
continuous ⊆-increasing ∈-chain of Σk-elementary substructures of Lκ+ of
size < κ, such that |ξ|+ ∪ {κ, T,A} ⊆ N0 (so all Π1

ξ formulas are in N0),
and Nα ∩ κ is an ordinal, for every α < κ. Namely, let M0 be the Σk-
Skolem hull in Lκ+ , via the standard Σk-definable Skolem functions, of the
set |ξ|+ ∪ {κ, T,A}, and let Mα+1 be the Σk-Skolem hull in Lκ+ , via the
standard Σk-definable Skolem functions, of {Mα}∪Mα. If α is a limit, then
let Mα =

⋃
β<αMβ. For every α < κ, let f(α) be the least γ > f(β), for all
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β < α, such that Mγ ∩ κ is an ordinal. Since κ is regular, f(α) < κ, for all
α < κ. Then let Nα = Mf(α).

For every α < κ, and ζ < ξ greater than 0, let

Rζα :=
⋂

D∈Nα; ψ∈Π1
ζ

RζD,ψ

where

RζD,ψ := {α < κ : 〈Lα,∈, D ∩ α〉 |= ψ}

whenever D ⊆ κ and 〈Lκ,∈, D〉 |= ψ, and let RζD,ψ := κ, otherwise.

Since |Nα| < κ, and since κ is inaccessible and so there are < κ-many

Π1
ζ formulas, by the κ-completeness of the normal filter F ζκ we have that

Rζα ∈ F ζκ . Moreover, if α is a limit, then Rζα =
⋂
β<αR

ζ
β.

By normality, Eζ := 4α<κR
ζ
α ∈ F ζκ . If α ∈ Eζ , then Lα reflects all

Π1
ζ sentences, with parameters in Nα, that are true in Lκ. For if D ⊆ κ,

D ∈ Nα, ψ(X) is Π1
ζ , and Lκ |= ψ[D], then D ∈ Nβ, for some β < α. Hence,

since α ∈
⋂
η<αR

ζ
η, we have that α ∈ Rζβ, and therefore Lα |= ψ[D ∩ α].

Let C ⊆ κ be the club subset of all α such that Nα ∩ κ = α. So, C ∈ F ζκ .

Also, Reg ∈ F ζκ , because κ is regular, and this fact is Π1
1 expressible over

〈Vκ,∈〉.
Suppose α belongs to F ζ := C ∩ Reg ∩ Eζ ∈ F ζκ , and let Lγ be the

transitive collapse of Nα, via the collapsing isomorphism π : Nα → Lγ .
Note that π(κ) = α, because Nα ∩ κ = α, and therefore π(A) = A ∩ α and
π(T ) = T ∩ α. Also note that π is the identity on Π1

ξ formulas.

Claim 5.2. Lγ is correct about Π1
ζ sentences holding in Lα. That is, if

D ∈ Lγ, D ⊆ α, ψ(X) is a Π1
ζ formula, with X as its only free second-order

variable, and Lγ |= “Lα |= ψ[D]”, then Lα |= ψ[D].

Proof. Suppose Lγ |= “Lα |= ψ[D]”. We have π(D∗) = D, for some D∗ ⊆ κ.
Moreover, D∗ ∩ α = D. Since π is an isomorphism and π(ψ(X)) = ψ(X),
we have that Nα |= “Lκ |= ψ[D∗]”. Hence, by elementarity, Lκ+ |= “Lκ |=
ψ[D∗]”, and therefore Lκ |= ψ[D∗].

Thus, since α ∈ Rζα (because α ∈ Eζ and Rζα =
⋂
β<αR

ζ
β), we have that

α ∈ RζD∗,ψ, and so Lα |= ψ[D]. �

Claim 5.3. If α is the least element of F ζ greater than ξ, and Lγ is the
transitive collapse of Nα, then α ∈ R and λα ≤ γ + 1.

Proof. Let α ∈ F ζ \ξ be least, and let π : Nα → Lγ be the transitive collapse
isomorphism. Since the embedding id ◦ π−1 : Lγ → Lκ+ is Σk-elementary,
the natural continuous ⊆-increasing ∈-chain 〈N ′η : η < α〉 of Σk-elementary

substructures of Lγ of size < α such that |ξ|+ ∪{α, T ∩α,A∩α} ⊆ N ′0, and
N ′η ∩ α is an ordinal, is precisely 〈π(Nη) : η < α〉, hence it belongs to Lγ .
Since Nα |= |Nη| < κ, for every η < α, we have that Lγ |= |N ′η| < α. Hence

Lγ |= “|
⋃
η<α

N ′η| = α”.
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Thus, in Lγ we can define an enumeration D̄ := 〈〈Dβ, ψβ〉 : β < α〉 of
all the pairs 〈Dβ, ψβ〉 such that Dβ ⊆ α, ψβ is Π1

ζ , and Lα |= ψβ(Dβ). Let

ψ(X,x, ζ) be the universal Π1
ζ formula, and for each β < α, let kβ ⊆ ζ ∪ ω

code ψβ. Now let Γ be the canonical definable bijection between κ3 and κ
(see [26] 3.5), and let

D := {Γ(β, δ, 0) : β < α ∧ δ ∈ Dβ} ∪ {Γ(β, η, 1) : β < α ∧ η ∈ kβ}.
Thus, D ∈ Lγ+1. Note that D ⊆ α, because α being an infinite cardinal is
closed under Γ. Now letting θ(X) be a Π1

ζ formula equivalent to the formula

∀E∀k(∃β∀δ∀η((δ ∈ E ↔ Γ(δ, β, 0) ∈ X) ∧ (η ∈ k ↔ Γ(β, η, 1) ∈ X))→
ψ(E, k, ζ))

we have that Lα |= θ(D).
Since π is the identity on α, and π(κ) = α, for every α′ < α we have that

Nα′ ∩ κ = α′ if and only if π(Nα′) ∩ α = α′. It follows that C ∩ α = {α′ <
α : Nα′ ∩ κ = α′} = {α′ < α : π(Nα′) ∩ α = α′}, hence C ∩ α belongs to Lγ .

We claim that θ(D) does not reflect to any Lα′ with α′ ∈ C ∩ α and
greater than ξ. For, aiming for a contradiction, suppose α′ ∈ C ∩ α is the
least such that ξ < α′ and Lα′ |= θ[D ∩ α′]. Then,

D ∩ α′ = {Γ(δ, β, 0) : β < α′ ∧ δ ∈ Dβ ∩ α′} ∪ {Γ(β, η, 1) : β < α′ ∧ η ∈ kβ}
and therefore Lα′ |= ψβ[Dβ ∩ α′], for all β < α′. So, Lα′ reflects all Π1

ζ

sentences, with parameters in Nα′ , that are true in Lκ. Hence, α′ ∈ Rζα′ ,
and therefore α′ ∈ Eζ . Moreover, since Lα′ reflects the Π1

1 sentence implying
α′ ∈ Reg, we have that α′ ∈ F ζ , thus contradicting the minimality of α.

It follows that α ∈ R, for otherwise, by induction hypothesis α is Π1
ζ-

indescribable, hence Lα must reflect the sentence θ(D) to some η ∈ C ∩ α
greater than ξ.

Since C∩α,D ∈ Lγ+1, we have that λα ≤ γ+1, as C∩α and D, together
with the Π1

ζ formula θ(X), witness the non-Π1
ζ-indescribability of α. �

Let α and Lγ be as in the last claim. Then in Lγ there is no counterex-
ample to α not being ξ-reflecting, because Lκ+ |= “κ is Π1

ζ-indescribable”,

for every ζ < ξ, and so Lγ |= “α is Π1
ζ-indescribable”, for all ζ < ξ. Hence,

by Claim 5.2, we have that γ < λα ≤ γ + 1. Therefore, λ−α = γ. So, since
Lκ+ |= “〈Lκ,∈, A〉 |= Ψ”, we have that Lγ |= “〈Lα,∈, A ∩ α〉 |= Ψ”, and
thus α ∈ S.

To complete the proof that S is ξ-stationary in κ, it only remains to show
that T ∩ α is ζ0-stationary in α. Note first that T ∩ α ∈ Lγ . So, since
Lκ+ |= “Lκ |= T is ζ0-stationary in κ”, it follows by Σk-elementarity that
Lγ |= “Lα |= T ∩α is ζ0-stationary in α”. Now by Claim 5.2 above, we have
that Lα |= “T ∩α is ζ0-stationary in α”, and so T ∩α is indeed ζ0-stationary
in α.

We will next show that Ψ holds in 〈Lλ,∈, A〉 whenever λ ∈ dξ(S). Notice
first that since κ is (ξ + 1)-reflecting, dξ(S) 6= ∅. Also note that since
S ⊆ Reg, every λ ∈ dξ(S) is regular; for if λ were singular, there would
be a club subset of λ consisting only of singular cardinals which, since S is
stationary in λ, would have to intersect S.
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So, take λ ∈ dξ(S) and let us show that Ψ holds in 〈Lλ,∈, A〉. Suppose,
aiming for a contradiction, that 〈Lλ,∈, A〉 |= ¬Ψ. If ξ is a successor ordinal,
then we may assume Ψ is of the form ∀Xϕ(X), where ϕ(X) is Σξ−1; and
if ξ is a limit, then Ψ is of the form

∧
ζ<ξ ϕζ , where ϕζ is Π1

ζ . Thus, in the
successor case, for some B ⊆ λ,

Lλ |= ¬ϕ[B,A ∩ λ].

And in the limit case,

Lλ |= ¬ϕζ̄
for some ζ̄ < ξ.

Let ζ := ξ − 1, if ξ is a successor, and ζ := ζ̄ if ξ is a limit.
Let 〈Mα : α < λ〉 be the natural ⊆-increasing ∈-chain of elementary

substructures of Lλ+ , each of size < λ, such that |ζ|+ ∪ {λ,A ∩ λ} ⊆ M0,
and Mα ∩ λ is an ordinal, for every α. We also require that B ∈M0, in the
case ξ is a successor.

Since λ is regular and ξ-reflecting, by induction hypothesis it is Π1
ζ-

indescribable, for every ζ < ξ. Hence the Π1
ζ-indescribable filter F ζλ is normal

and λ-complete, for all ζ > 0.
For each α < λ, let

Sα :=
⋂

D∈Mα; ψ∈Π1
ζ

SD,ψ

where

SD,ψ := {α < λ : α is a limit ordinal ∧ Lα |= ψ[D ∩ α]}.

By λ-completeness, Sα ∈ F ζλ . Moreover, if α is a limit, then Sα =
⋂
β<α Sβ.

By normality, the sets C := {α < λ : Mα ∩ λ = α} and E := 4α<λSα
belong to F ζλ . Notice that if β ∈ C ∩ E, then Lβ reflects all Π1

ζ sentences,
with parameters in Mβ, that are true in Lλ.

Since S is ξ-stationary in λ, by our inductive hypothesis (∗) for ξ, we have

that S intersects every element of F ζλ . So, pick β ∈ C ∩ E ∩ S.
Let Lγ be the transitive collapse of Mβ, via the collapsing isomorphism

π : Mβ → Lγ . Note that since β ∈ C, π(λ) = β and therefore A ∩ β ∈ Lγ
(and also B ∩ β ∈ Lγ in the successor case). Then as in Claim 5.2, Lγ is
correct about Π1

ζ sentences holding in Lβ.

Thus, in the successor case, since Lλ+ |= “Lλ |= ¬ϕ[B,A ∩ λ]”, and
therefore

Lγ |= “Lβ |= ¬ϕ[B ∩ β,A ∩ β]”

we have that

Lβ |= ¬ϕ[B ∩ β,A ∩ β].

Hence, since β ∈ S, it follows that γ > λ−β , because B ∩ β ∈ Lγ \ Lλ−β .

Similarly, in the limit case we have

Lβ |= ¬ψζ [A ∩ β]

and it again follows that γ > λ−β , because no witness to ¬ψζ [A∩β] exists in

Lγ \ Lλ−β .
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But since Lλ+ |= “λ is Π1
ζ-indescribable”, we have that Lγ |= “β is Π1

ζ-

indescribable”. Hence, since Lγ is correct about Π1
ζ sentences holding in

Lβ, in Lγ there is no counterexample to β being not Π1
ζ-indescribable, and

therefore γ < λβ, which contradicts the fact that γ > λ−β , because γ is a

limit. This completes the proof of theorem 5.1. �

Thus, if V = L and there exists a Π1
ξ indescribable cardinal, then for

every ordinal δ greater than the first Π1
ξ indescribable cardinal, τξ+1 is a

non-discrete topology on δ. Moreover, if V = L, then for every ξ, the set Bξ
is a base for the τξ topology.

Assuming the consistency of the appropriate large cardinals (with ZFC)
one can easily get a model of ZFC where τξ+1 is discrete and τξ isn’t.

Theorem 5.4. CON(∃κ < λ (κ is Π1
ξ-indescribable ∧ λ is inaccessible))

implies CON(τξ is non-discrete ∧ τξ+1 is discrete).

Proof. Let κ be Π1
ξ-indescribable, and let λ > κ be inaccessible. In L, κ

is Π1
ξ-indescribable and λ is inaccessible. So, in L, let κ0 be the least Π1

ξ-
indescribable cardinal, and let λ0 be the least inaccessible cardinal above
κ0. Then Lλ0 is a model of ZFC in which κ0 is Π1

ξ-indescribable and no
ordinal greater than κ0 is 2-reflecting. The reason is that if α is a regular
cardinal greater than κ0, then α = β+, for some cardinal β. And since
Jensen’s principle �β holds, there exists a stationary subset of α that does
not reflect. �
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ICREA, Pg. Llúıs Companys 23, 08010 Barcelona, Catalonia (Spain), and
Universitat de Barcelona, Departament de Matemàtiques i Informàtica, Gran Via
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