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Abstract

On the occasion of his 70th birthday, the work of Adrian Mathias in
set theory is surveyed in its full range and extent.

1 Introduction

Adrian Richard David Mathias (born 12 February 1944) has cut quite a figure
on the “surrealist landscape” of set theory ever since it became a modern and
sophisticated field of mathematics, and his 70th birthday occasions a commem-
orative account of his mathematical oeuvre. It is of particular worth to provide
such an account, since Mathias is a set theorist distinctive in having both es-
tablished a range of important combinatorial and consistency results as well as
in carrying out definitive analyses of the axioms of set theory.

Setting out, Mathias secured his set-theoretic legacy with the Mathias real,
now squarely in the pantheon of generic reals, and the eventual rich theory
of happy families developed in its surround. He then built on and extended
this work in new directions including those resonant with the Axiom of De-
terminacy, and moreover began to seriously take up social and cultural issues
in mathematics. He reached his next height when he scrutinized how Nico-
las Bourbaki and particularly Saunders Mac Lane attended to set theory from
their mathematical perspectives, and in dialectical engagement investigated how
their systems related to mainstream axiomatic set theory. Then in new specific
research, Mathias made an incisive set-theoretic incursion into dynamics. Lat-
terly, Mathias refined his detailed analysis of the axiomatics of set theory to
weaker set theories and minimal axiomatic sufficiency for constructibility and
forcing.

We discuss Mathias’s mathematical work and writings in roughly chrono-
logical order, bringing out their impact on set theory and its development. We
describe below how, through his extensive travel and varied working contexts,
Mathias has engaged with a range of stimulating issues. For accomplishing
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this, Mathias’s webpage proved to be a valuable source for articles and details
about their contents and appearance. Also, discussions and communications
with Mathias provided detailed information about chronology and events. The
initial biographical sketch which follows forthwith is buttressed by this informa-
tion.

Mathias came up to the University of Cambridge and read mathematics at
Trinity College, receiving his B.A. in 1965. This was a heady time for set theory,
with Paul Cohen in 1963 having established the independence of the Axiom of
Choice and of the Continuum Hypothesis with inaugural uses of his method of
forcing. With the infusion of new model-theoretic and combinatorial methods,
set theory was transmuting into a modern, sophisticated field of mathematics.
With the prospect of new investigative possibilities opening up, Mathias with
enterprise procured a studentship to study with Ronald Jensen at Bonn, already
well on the way to becoming the leading set theorist in Europe.

With Jensen and through reading and study, Mathias proceeded to assimilate
a great deal of set theory, and this would lay the groundwork not only for his
lifelong research and writing but also for a timely survey of the entire subject. In
the summer of 1967, he with Jensen ventured into the New World, participating
in a well-remembered conference held at the University of California at Los
Angeles from 10 July to 5 August, which both summarized the progress and
focused the energy of a new field opening up. There, he gave his first paper [46],
a contribution to the emerging industry of independences among consequences
of the Axiom of Choice.1

At the invitation of Dana Scott, Jensen and Mathias spent the autumn
and winter of 1967/68 at Stanford University, and the year flowing into the
summer proved to be arguably Mathias’s most stimulative and productive in set
theory. Mathias benefitted from the presence at Stanford of Harvey Friedman
and Kenneth Kunen and from the presence at nearby Berkeley of Jack Silver and
Karel Př́ıkrý. With inspirations and initiatives from the U.C.L.A. conference,
Mathias worked steadily to complete a survey of all of the quickly emerging
set theory, “Surrealist landscape with figures”. This was in typescript samizdat
circulation by the summer, and proved to be of enormous help to aspiring set
theorists. Almost as an aside, Mathias and Kopperman established model-
theoretic results about groups [32].

What came to occupy center stage were developments stimulated by a sem-
inar at Stanford in the autumn of 1967 and cumulating in dramatic results
established back in Bonn in the summer of 1968. As described in § 2, Mathias
established decisive results about the partition relation ω −→ (ω)ω2 , coming up
with the key concept of capturing for the Mathias real and establishing that
the relation holds in Solovay’s model. Mathias quickly announced his results
in [41] and in four weeks penned On a generalization of Ramsey’s theorem [42],
submitted in August 1968 to Trinity College for a research fellowship.

Unsuccessful, Mathias forthwith spent the academic year 1968/69 at the
University of Wisconsin, Madison, at the invitation of Kunen. There Mathias
became familiar with the work of Kunen and David Booth, particularly on
combinatorics of ultrafilters over ω. In late 1968, Mathias again applied for
research fellowships at Cambridge with [42], and by April 1969, he was notified

1Mathias [46] established, with forcing, that Tarski’s Order Extension Principle, that every
partially ordered set can be extended to a total ordering, is independent of Mostowski’s
Ordering Principle, that every set has a total ordering.
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that he was successful at Peterhouse. June 1969 he spent at Monash University,
Australia, and by then he had come to an elaboration of his work, also described
in § 2, in terms of happy families, Ramsey ultrafilters generically included in
them, and Mathias forcing adapted to the situation.

In October 1969 Mathias duly took up his fellowship at Peterhouse. In 1970,
he with [42] was admitted to the Ph.D. by the University of Cambridge; from
October 1970 for five years he held a university assistant lectureship; and from
1972 he held a Peterhouse teaching fellowship. Mathias would spend just over
two decades as a fellow at Peterhouse, in a position of considerable amenity
and stability. In 1971, with energy and enthusiasm he organized the Cambridge
Summer School of Logic, August 1 to 21, a conference that arguably rivaled the
U.C.L.A. conference, and brought out a proceedings [44]. From 1972 to 1974,
Mathias edited the Mathematical Proceedings of the Cambridge Philosophical
Society. This journal had been published as the Proceedings of the Cambridge
Philosophical Society since 1843 and had published mathematical papers; Math-
ias during his tenure managed to attach the “mathematical” to its title.2 In
1973, Mathias worked at the Banach Center at Warsaw to fully update his 1968
survey. The revision process however got out of hand as set theory was ex-
panding too rapidly, and so he would just publish his survey, with comments
added about recent work, as Surrealist landscape with figures [51]. In late 1974,
Mathias was finally able to complete a mature, seasoned account of his work on
ω −→ (ω)ω2 and Mathias reals, and this appeared with a publication delay as
Happy families [48] in 1977. In 1978, Mathias organized another summer school
at Cambridge, August 7 to 25, and brought out a corresponding compendium
[52]. The academic year 1979/80 Mathias spent as Hochschulassistent to Jensen
at the Mathematical Institute at Freiburg; since then, the Freiburg group of
logicians have been unfailingly hospitable and encouraging to Mathias.

In ongoing research through this period and into the mid-1980s, Mathias
obtained important results on filters and in connection with the Axiom of De-
terminacy, building on his work on ω → (ω)ω2 . Moreover, Mathias began to take
up topics and themes in rhetorical pieces about mathematics as set in society
and culture. § 2 describes this far-ranging work.

In the 1980s, an unhappy climate developed in Peterhouse, and in 1990,
Mathias did not have his fellowship renewed. This was a remarkable turn of
events, not the least for setting in motion a memorable journey, a veritable
wanderer fantasy that started in the last year of his fellowship: The academic
year 1989/90 Mathias spent at the Mathematical Sciences Research Institute,
Berkeley, and the Spring of 1991 he was Visiting Professor at the University
of California at Berkeley. For 1991/92 Mathias was Extraordinary Professor
at the University of Warsaw. For much of 1992/93 he was Dauergast at the
research institute at Oberwolfach in Germany. The years 1993 to 1996 Mathias
spent at Centre de Recerca Matemàtica of the Institut d’Estudis Catalans at
Barcelona at the suggestion of Joan Bagaria. 1996/97 he was in Wales. For
1997/98, Mathias was at the Universidad de los Andes at Bogotá, Colombia, at
the suggestion of Carlos Montenegro.

At the beginning of these wanderings, Mathias engaged in a controversy with
the distinguished mathematician Saunders Mac Lane. This stimulated Mathias
to fully take up the investigation of the scope and limits of “Mac Lane set

2Mathias, personal communication.
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theory”, something that he had started to do while still at Peterhouse. Over
several years in the mid-1990s, the timing too diffuse to chronicle here, Mathias
provided a rich, definitive analysis of weak set theories around Mac Lane and
Kripke-Platek. § 3 describes these developments, which established Mathias as
a major figure in the fine axiomatization of set theory.

During his three-year period in Barcelona, Mathias was stimulated by col-
leagues and circumstances to pursue a set-theoretic approach to a basic iteration
problem in dynamics. After establishing the subject in 1996, he would elabo-
rate and refine it well into the next millennium. § 4 describes this work, which
decisively put the face of well-foundedness on dynamics.

In early 1999, Mathias landed on the island of La Réunion in the Indian
Ocean, the most remote of the overseas départements of France, and obtained
tenure at the university in 2000. At last there was stability again, though he
was retired from the professoriate in 2012, with France d’outre mer also being
subject to the French university rules for mandatory retirement.

Through these years, Mathias would continue to travel, and at Barcelona
during a “set theory year” 2003/04, Mathias newly investigated set theories
weaker than Kripke-Platek and intended to be axiomatic bases for developing
constructibility, specifically in being able to carry the definition of the truth
predicate for bounded formulas. Thus in continuing engagement with axiomat-
ics, Mathias soon addressed the problem of finding the weakest system that
would support a smooth, recognizable theory of forcing. He met with remark-
able success in the theory of rudimentary recursion and provident sets. § 5
describes this work, his finest and at the same time deepest work on the ax-
iomatics of set theory.

In the fullness of time, Mathias returned to his first tussle with ill-suited
set theories, the “ignorance of Bourbaki”. After pointing out mathematical
pathologies, Mathias gave full vent to his disapproval of Bourbaki’s logic and
influence in a lengthy piece. Though there is polemic, one also sees both Math-
ias’s passionate advocacy of set theory in the face of detractors, and his hope for
a kind of regeneration of mathematics through competition rather than central-
ization. The last section, § 6, gets at these matters, very much to be considered
part of his mathematical oeuvre.

On July 18, 2015, Adrian Mathias was admitted to the degree of Doctor of
Science by the University of Cambridge.3 Mathias was honored at the Fifth
European Set Theory Conference held at the Isaac Newton Institute at Cam-
bridge by having August 27, 2015 declared as “Mathias Day”, a day given over
to talks on his work and its influence.

2 ω −→ (ω)ω2 and Mathias Reals

Recall that in the Erdős-Rado partition calculus from the 1950s, [X]γ = {y ⊆
X | y has order type γ} for X a set of ordinals, and that the partition relation
for ordinals

β −→ (α)γδ

3The Doctor of Science is a higher doctorate of the university. According to the Statutes
and Ordinances of the University of Cambridge (p. 519): “In order to qualify for the degree of
Doctor of Science or Doctor of Letters a candidate shall be required to give proof of distinction
by some original contribution to the advancement of science and of learning.”
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asserts that for any partition f : [β]γ → δ, there is an H ∈ [β]α homogeneous
for f , i.e., |f“[H]γ | ≤ 1.

Frank Ramsey established Ramsey’s Theorem, that for 0 < r, k < ω, ω −→
(ω)rk and the Finite Ramsey Theorem, that for any 0 < r, k,m < ω, there is an
n < ω such that n −→ (m)rk [80].

In 1934, the youthful Paul Erdős, still at university in Hungary, and György
Szekeres popularized the Finite Ramsey Theorem with a seminal application to
a combinatorial problem in geometry.4 Erdős forthwith, in a letter to Richard
Rado, asked whether the “far-reaching” generalization ω −→ (ω)ω2 of Ramsey’s
Theorem can be established, and by return post Rado provided the now well-
known counterexample deploying a well-ordering of the reals—the first result
of Ramsey theory after Ramsey’s.5 With this, Ramsey theory and the parti-
tion calculus as developed by Erdős and his collaborators would focus on finite
exponents, i.e., partitions of [β]γ for finite γ.

In the post-Cohen climate of Axiom of Choice independence results, the
young Harvey Friedman, in a seminar conducted by Dana Scott at Stanford
on partition relations in the autumn of 1967, newly raised the possibility of
establishing the consistency of ω −→ (ω)ω2 . Alerted to a related possibility raised
by Scott, that definable partitions of [ω]ω might have infinite homogeneous sets,
Fred Galvin and Karel Př́ıkrý at Berkeley established, by the winter of 1967,
the now well-known and widely applied Galvin-Př́ıkrý Theorem [22]. A set
Y ⊆ [ω]ω is Ramsey if and only if there is an x ∈ [ω]ω such that [x]ω ⊆ Y
or [x]ω ⊆ [ω]ω − Y . Nash-Williams, Cohen, and Ehrenfeucht in early contexts
had established that open sets are Ramsey. Reconstruing the classical notion of
a set of reals being Borel, Galvin and Př́ıkrý established that Borel partitions
have large homogeneous sets: If Y is Borel, then Y is Ramsey. Analytic (Σ1

1)
sets are classically the projection of Borel subsets of the plane, and Silver at
Berkeley forthwith improved the result to: If Y is analytic, then Y is Ramsey
[82].

For Mathias, this past would be a prologue. In June of 1968, back in Bonn,
he returned to the possibility of ω −→ (ω)ω2 , i.e., that every Y ⊆ [ω]ω is Ramsey.
With ideas, results, and concepts in the air, he would in a few weeks put together
the workings of a known pivotal model with a newly tailored genericity concept
to achieve a decisive result.6

Mathias had learned from Silver of Solovay’s celebrated 1964 model in which
every set of reals is Lebesgue measurable [83], and discussions with Jensen led
to its further understanding. Solovay’s model was remarkable for its early so-
phistication and revealed what standard of argument was possible with forcing.
Starting with an inaccessible cardinal, Solovay first passed to a generic extension
given by the Lévy collapse of the cardinal to render it ω1 and then to a desired
inner model, which can most simply be taken to be the constructible closure
L(R) of the reals. The salient point here is that in the generic extension V[G],

if Y is a set of reals ordinal definable from a real r, then there is
a formula ϕ(·, ·) such that: x ∈ Y if and only if V[r][x] |= ϕ[r, x].

(∗)

Solovay used this to get the Lebesgue measurability of Y with an infusion of

4Cf. [21].
5Cf. [20].
6Mathias [42, § 0] describes the progression, from which much of what follows, as well as

the previous paragraph, are drawn.
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random reals.
After Př́ıkrý came up with Př́ıkrý forcing for measurable cardinals in the

summer of 1967, Mathias started exploring a version of this forcing for ω around
the end of 1967. Mathias forcing has as conditions 〈s,A〉, where s ⊆ ω is finite,
A ⊆ ω is infinite, and max(s) < min(A), ordered by:

〈t, B〉 ≤ 〈s,A〉 if and only if s is an initial segment of t and B ∪ (t− s) ⊆ A.

A condition 〈s,A〉 is to determine a new, generic subset of ω through initial
segments s, the further members to be restricted to A. A generic subset of ω
thus generated is a Mathias real.

Mathias opined that ω −→ (ω)ω2 should hold in Solovay’s inner model if
every infinite subset of a Mathias generic real is also Mathias generic, and that
this indeed should be the case from his previous work. In the small hours of July
7, 1968, everything fell into place when Mathias came up with the property of
capturing, a sort of well-foundedness notion. A Mathias condition 〈s,A〉 captures
a dense set ∆ of conditions if and only if every infinite subset B of A has a finite
initial segment t such that 〈s ∪ t, A − (max t + 1)〉 ∈ ∆. Mathias saw that for
any 〈s,A〉 and dense set ∆, there is an infinite subset A′ of A such that 〈s,A′〉
captures ∆. With this, Mathias proved (a) for any condition 〈s,A〉 and formula
ψ of the forcing language, there is an infinite B ⊆ A such that 〈s,B〉 decides ψ,
i.e., s need not be extended to decide formulas, as well as (b) if x is a Mathias
real over a model M and y ⊆ x is infinite, then y is a Mathias real over M .
Thus, ω −→ (ω)ω2 was confirmed in Solovay’s inner model: For a set Y of reals
definable from a real r as in (*), by (a) there is in V[r] a Mathias condition
〈∅, A〉 that decides ϕ(r, c), where c is the canonical name for a Mathias real.
There is surely in V[G] a real x ⊆ A Mathias generic over V[r], and by (b) x
confirms that Y is Ramsey.

With energy and initiative Mathias, in four weeks starting July 8, penned
On a generalization of a theorem of Ramsey [42], providing a comprehensive
account of Solovay’s model, Mathias reals, and the consistency of ω −→ (ω)ω2 ,
as well a forcing proof of Silver’s analytic-implies-Ramsey result and a range of
results about Mathias reals that exhibited their efficacy and centrality.

By June of 1969, Mathias had uncovered a rich elaboration of his work. As
formulated in Booth, an ultrafilter U over ω is Ramsey if and only if for any
f : [ω]2 −→ 2 there is an H ∈ U homogeneous for f [10]. For a filter F , F -
Mathias forcing is Mathias forcing with the additional proviso that conditions
〈s,A〉 are to satisfy A ∈ F . Mathias realized that a real x Mathias over a ground
model V generates a Ramsey ultrafilter F on ℘(ω) ∩ V given by F = {X ∈
℘(ω)∩V | x−X is finite} and that generically adjoining x to V is equivalent to
first generically adjoining the corresponding F , without adjoining any reals, and
then doing F -Mathias forcing over V[F ] to adjoin x. A happy family is, in one
formulation, a set A of infinite subsets of ω such that ℘(ω)−A is an ideal, and:
whenever Xi ∈ A with Xi+1 ⊆ Xi for i ∈ ω there is a Y ∈ A which diagonalizes
the Xi’s, i.e., its increasing enumeration f satisfies f(i+1) ∈ Xi for every i ∈ ω.
The set of infinite subsets of ω is a happy family, as is a Ramsey ultrafilter. A
happy family is just the sort through which one can force a Ramsey ultrafilter
without adjoining any reals. Mathias thus had a tripartite elaboration: One
entertains happy families by overlaying Ramsey ultrafilters, which themselves
can be reduced to Mathias reals. With this, Mathias could give systematic
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generalizations not only of his earlier results but those of Galvin-Př́ıkrý and
Silver.

Coordinating this work with Př́ıkrý forcing, Mathias established a corre-
sponding characterization, that if U is a normal ultrafilter over a measurable
cardinal κ, then a countable x ⊆ κ is Př́ıkrý generic if and only if for any X ∈ U ,
x−X is finite [45]. This “Mathias property” would become a pivotal feature of
all generalized Př́ıkrý forcings (cf. [23]).

Mathias eventually laid out his theory with all its trimmings and trappings
in Happy families [48], proving the Ramseyness results as well as further, 1969
results in the elaborated context. For H a happy family, say that a set Y ⊆
[ω]ω is H-Ramsey if and only if there is an x ∈ H such that [x]ω ⊆ Y or
[x]ω ⊆ [ω]ω − Y . Mathias established that every analytic set is H-Ramsey
for every happy family H. At the other end, Mathias established results about
Solovay’s inner model if one started with a Mahlo cardinal: In the Lévy collapse
of a Mahlo cardinal to ω1, every set of reals in L(R) is in fact H-Ramsey for
every happy family H, and also, in L(R) there are no maximal almost disjoint
families of subsets of ω.

To frame [48] at one end, it is worth mentioning that Mathias in [48], for
the happy-families improvement of Silver’s analytic-implies-Ramsey, returns to
a classical characterization of analytic sets. The Luzin-Sierpiński investigation
of analytic sets in the 1910s was the first occasion where well-foundedness was
explicit and instrumental, and today one can vouchsafe the sense of analytic
sets as given by well-founded relations on finite sequences of natural numbers.
Mathias in his researches would continue to engage with the theory of analytic
sets, and his work would itself draw out his later contention that set theory
itself is ultimately the study of well-foundedness.

To elaborate on the Mahlo cardinal results at the other end of [48], Mathias
made a distinctive advance by incorporating elementary substructures into the
mix to establish results about the L(R) of the Lévy collapse of a Mahlo cardinal
instead of just an inaccessible cardinal. Mathias’s result from [48, § 5] that, in
this Lévy collapse, every set of reals in L(R) is H-Ramsey for every happy family
H would eventually be complemented 30 years later in terms of consistency by
Todd Eisworth [18], who showed, applying a later Henle-Mathias-Woodin [53]
result, that if the Continuum Hypothesis holds and every set of reals in L(R) is
U -Ramsey for every Ramsey ultrafilter U , then ω1 is Mahlo in L. A prominent
open problem addresses Mathias’s first, 1968 result that in the Solovay Lévy
collapse of an inaccessible to ω1, every set of reals in L(R) is Ramsey. Is the
consistency strength of having an inaccessible cardinal necessary? Halbeisen and
Judah, among others, considered this question and established related results
[24].

For Mathias’s other Mahlo cardinal result, a family of infinite subsets of ω
is almost disjoint if distinct members have finite intersection, and is maximal
almost disjoint (m.a.d.) if moreover no proper extension is almost disjoint.
Mathias observed that m.a.d. families generate happy families, and showed that
m.a.d. families cannot be analytic. He moreover built on his previous work to
show that in the Lévy collapse of a Mahlo cardinal to ω1, there are no m.a.d.
families in L(R). Almost a half a century later, Asger Törnquist showed that in
Solovay’s original Lévy collapse of just an inaccessible cardinal to ω1, there are
no m.a.d. families in L(R) [86]. The question remains whether it is consistent,
relative to ZF, whether there are no m.a.d. families.
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As to the core of Mathias’s [48], the extent to which a piece of mathemat-
ics is pursued and extended by others is a measure of both its mathematical
significance and depth. Early on, topological proofs of Silver’s analytic-implies-
Ramsey result were found by Erik Ellentuck [19] and of Mathias’s analytic-
implies-U -Ramsey for Ramsey ultrafilters U were found by Alain Louveau and
Keith Milliken [36, 78]. The Ellentuck Theorem is “an infinite dimensional Ram-
sey theorem” in what is now considered optimal form, deploying what is now
widely known as the Ellentuck topology, with open sets of form O〈a,S〉 = {x ∈
ωω | a ⊆ x ⊆ S} for a Mathias condition 〈a, S〉. Andreas Blass and Claude
Laflamme took Mathias’s theory from [48] to a next level of generalization, ex-
tending it to non-Ramsey ultrafilters and corresponding Mathias-type generic
reals [7, 34].

In their [14], Timothy Carlson and Stephen Simpson established “dual”
Ramsey theorems. Their Dual Ramsey Theorem asserts that, with (ω)k the
set of partitions of ω into k cells, if k < ω and (ω)k = C1∪C2∪ . . .∪Cn with the
Ci’s Borel, then there is an i and some k-cell partition H such that all its k-cell
coarsenings lie in Ci (partitions are taken to be equivalence relations on ω, and
the topology here is the product topology on 2ω×ω). They established a dual
Ellentuck theorem and introduced a dual Mathias forcing. Carlson subsequently
generalized a large part of the Ramsey theory at the time to Ramsey spaces,
structures that satisfy a corresponding Ellentuck theorem [13]. A Ramsey space
is a space of infinite sequences with a topology such that every set with the prop-
erty of Baire is Ramsey and no open set is meager. Stevo Todorčević’s [85] is
a magisterial axiomatic account of abstract Ramsey spaces, with corresponding
combinatorial forcing and Ellentuck theorems.

Returning to the original Mathias real, it has taken a fitting place in the
pantheon of generic reals. Mathias forcing, in a filter form, was deployed in
the classic [40, p. 153] by Martin and Solovay, in a proof that in modern terms
can be construed as showing that Martin’s Axiom implies p = c, i.e., that
the pseudo-intersection number is the cardinality of the continuum. Mathias
forcing has since become common fare in the study of cardinal invariants of the
continuum. After Richard Laver in [35] famously established the consistency of
Borel’s Conjecture with a paradigmatic countable support iteration featuring
Laver reals, he noted that, after all, Mathias reals could have been deployed
instead [35, p. 168]. James Baumgartner worked this out in an incisive account
[5] of iterated forcing for the 1978 Cambridge conference organized by Mathias.
Mathias reals in various forms would occur in a range of work on ultrafilters,
e.g., by Blass and Saharon Shelah on ultrafilters with small generating sets [9].

3 Varia

In his two decades at Peterhouse, Mathias pursued research that built on and
resonated with his Ramseyness work as well as forged new directions. Moreover,
he began to articulate ways of thinking and points of view about mathematics
as set in society and culture.

Following on his incisive incorporation of Ramsey ultrafilters, Mathias made
contributions to an emerging theory of filters and ultrafilters. A filter F over
ω is a p-point if and only if whenever Xi ∈ F for i ∈ ω, there is a Y ∈ F
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such that Y − Xi is finite for every i ∈ ω. The Rudin-Keisler ordering ≤RK

is defined generally by: For filters F,G ⊆ ℘(I), F ≤RK G if and only if there
is an f : I → I such that F = f∗(G), where f∗(G) = {X ⊆ I | f−1(X) ∈
G}. These concepts emerged in the study of the Stone-Čech compactification
βN, identifiable with the ultrafilters over ω. Walter Rudin showed that the
Continuum Hypothesis (CH) implies that there is a p-point in βN − N, and
since p-points are topologically invariant and there are non-p-points, βN−N is
not homogeneous. Answering an explicitly posed question, Mathias showed in
[43] that CH implies that there is an ultrafilter U over ω with no p-point below
it in the Rudin-Keisler ordering. For this, Mathias used properties of analytic
sets.

With a neat observation, Mathias showed in [47] that ω −→ (ω)ω2 implies
that the filters over ω are as curtailed as they can be. Let Fr = {X ⊆ ω | ω −
X is finite}—the Fréchet filter. A filter over ω is feeble, being as far from being
an ultrafilter as can be, if and only if there is a finite-to-one f : ω → ω such that
f∗(F ) = Fr. In [47], Mathias pointed out that for filters F over ω extending
Fr, F is feeble if and only if a corresponding PF ⊆ ℘(ω) is Ramsey. Hence,
ω → (ω)ω2 implies that every filter over ω extending Fr is feeble! Being feeble
would become a pivotal concept for filters,7 especially as it was soon seen that
a filter over ω extending Fr is feeble if and only if it is meager in the usual
topology on ℘(ω). In Solovay’s model or under the assumption of the Axiom of
Determinacy, every filter extending Fr is feeble forthwith because every set of
reals has the Baire property.

Already in the early 1970’s, whether ZFC (Zermelo-Fraenkel set theory with
the Axiom of Choice) implies that there are p-point ultrafilters over ω became
a focal question. As an approach to the question, the present author asked
whether, if not such an ultrafilter, at least coherent filters exist, where in the
above terms, a filter over ω is coherent if and only if it extends Fr, is a p-point,
and is not feeble [28]. Remarkably, in [50], Mathias quickly established that if
0# does not exist or 2ℵ0 ≤ ℵω+1, then there are coherent filters. The elegant
proof depended on a covering property for families of sets, with Jensen’s recent
Covering Theorem for L providing the ballast with 0#. Around 1978, Shelah
famously established8 that it is consistent relative to ZFC that there are no
p-point ultrafilters. Still, the question of whether ZFC implies that there are
coherent filters has remained. Adding to the grist, the 1990 [27], with Mathias a
co-author, contains a range of results about and applications of coherent filters.
This paper came about as a result of another co-author, Winfried Just, having
rediscovered the main results of Mathias’s [50] around 1986.

Continuing his engagement with analytic sets, Mathias with Andrzej Os-
tazewski and Michel Talagrand in [77] addressed the following proposition queried
by Rogers and Jayne: Given a non-Borel analytic set A, there is a compact set
K such that K ∩ A is not Borel. They showed that Martin’s Axiom + ¬CH
implies this proposition, and that V=L implies its negation.

With his work on ω −→ (ω)ω2 in hand, Mathias pursued the study of analo-
gous partition properties for uncountable cardinals as they became topical. The
situating result would be the Kechris-Woodin characterization of the Axiom of
Determinacy, AD [30]. With Θ the supremum of ordinals ξ such that there is a

7Cf. [8, § 6].
8Cf. [87] or [81, VI§§ 3 & 4].
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surjection: ℘(ω)→ ξ and the demarcating limit of the effect of AD, they showed
that assuming V=L(R), AD is equivalent to Θ being the limit of cardinals κ
having the strong partition property, i.e., κ −→ (κ)κα for every α < κ.

With James Henle in [25], Mathias lifted results about “smooth” functions
from Happy families [48, § 6] to the considerably more complex situation of un-
countable κ satisfying the strong partition property. They achieved a remark-
ably strong continuity for functions [κ]κ → [κ]κ and applied it to get results
about the Rudin-Keisler ordering in this context.

With Henle and Hugh Woodin in [26], Mathias elaborated on the Happy
families [48, § 4] forcing for the happy family of infinite subsets of ω, newly
dubbed the “Hausdorff extension”. They showed that assuming ω → (ω)ω2 , the
Hausdorff extension not only adjoins no new real but no new sets of ordinals
at all. With this, they could show, applying [25] and pointing out that AD +
V=L(R) implies ω → (ω)ω2 , the following: if AD, then in the Hausdorff extension
of L(R), Θ is still the limit of cardinals κ having the strong partition property
and there is a Ramsey ultrafilter over ω. In particular, AD fails, and so V=L(R)
is necessary for the Kechris-Woodin characterization.

In a determinacy capstone of sorts, in [53], Mathias squarely took up a ZF
(Zermelo-Fraenkel set theory) issue about ordinals and their subsets that arose
in the investigation of AD and provided a penetrating exegesis. An ordinal is
unsound if and only if it has subsets An for n ∈ ω such that uncountably many
ordinals are realized as ordertypes of sets of form

⋃
{An | n ∈ a} for some a ⊆ ω.

Woodin had asked whether there is an unsound ordinal, and eventually showed
that AD implies that there is one less than ω2. While the issue remains unsettled
in ZF, in [53], Mathias showed that (a) if ω1 is regular, then every ordinal less
than ωω+2

1 is sound, and (b) ℵ1 ≤ 2ℵ0 , i.e., there is a uncountable well-orderable
set of reals, if and only if ωω+2

1 is exactly the least unsound ordinal. The proofs
proceed through an intricate combinatorial analysis of indecomposable ordinals
and a generalization of the well-known Milnor-Rado paradox. An interesting
open question is the following: in Solovay’s model in which every set of reals is
Lebesgue measurable, starting specifically from L as the ground model, is every
ordinal sound?

During this period, no doubt with the fellowship of Peterhouse an intellectual
stimulus, Mathias became rhetorically engaged with various sociological and
cultural aspects of mathematics. An opening shot was an address given at
the Logic Colloquium ’76, of which a whiff remains in the proceedings [49, p.
543] in which Mathias likened postures in mathematics to stances in religion.9

In Logic and terror, read to the Perne Club10 on February 12, 1978, Mathias
deftly potted some history in the service of drawing out first the surround of the
Law of the Excluded Middle A ∨ ¬A and of the Law of Contradiction A ∧ ¬A,
and then in connection with the latter, the tension between (formal) logic and
(Hegelian) dialectic in the Soviet Union, eventually resolved by Stalin’s back-
door admittance of the former (published as [54] and [55]).

9With his recent conversion to Catholicism, Mathias considered that [49, p. 543] “parallels
may be drawn between Platonism and Catholicism, which are both concerned with what is
true; between intuitionism and Protestant presentations of Christianity, which are concerned
with the behaviors of mathematicians and the morality of individuals; between formalism and
atheism, which deny any need for postulating external entities; and between category theory
and dialectical materialism.”

10The Perne Club is a club of Peterhouse where papers are read to senior and junior members
of the College on historical and philosophical matters.
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The ignorance of Bourbaki, read to the Quintics Club11 on October 29, 1986,
would set in motion initiatives in Mathias’s later work (published as [56, 57]
and translated as [60] and [69]). He argued that Bourbaki, in their setting up
of a foundations for mathematics, ignored Gödel’s work on incompleteness until
much later and that the set theory that they did fix on was inadequate. With
more deftly potted history, Mathias suggested that the reason for these was
Bourbaki’s underlying accentuation of the geometrical over the arithmetical.
Extending his reach, Mathias took on the distinguished mathematician Saun-
ders Mac Lane in this view, newly stressing that while weak set theories are
adequate for set formation, they are not for recursive definition—a theme to be
subsequently much elaborated by Mathias.

Toward the end of what would be his time at Peterhouse, Mathias, exhibit-
ing research breadth and prescience, made a first observation on a conjecture
of Erdős, one which would become a focal problem more than two decades
later. Erdős around 1932, while still an undergraduate, made one of his ear-
liest conjectures, in number theory: For any sequence x1, x2, x3, . . . with each
xn either −1 or +1 and any integer C, there exist positive m and d such that
C < |

∑m
k=1 xkd|. This is a remarkably simple assertion, and the problem of try-

ing to affirm it came to be known as the Erdős Discrepancy Problem. Mathias
around 1986 affirmed the conjecture for C = 1, and latterly published the proof
in the proceedings of a 1993 conference celebrating Erdős’ 80th birthday [59].
Much later in 2010, the Polymath Project took up solving the Erdős Discrepancy
Problem as a project, Polymath5; Polymath Project was started by Timothy
Gowers to carry out collaborative efforts online to solve problems. Polymath5
describes aspects of the collaborative effort on the Erdős conjecture [79], and
under Annotated Bibliography, the Mathias paper [59] is annotated: “This one
page paper established that the maximal length of [the] sequence for the case
where C = 1 is 11, and is the starting point for our experimental studies.”
Extending the polymath project work, Boris Konev and Alexei Lisitsa showed
that every sequence of length at least 1161 satisfies the conjecture in the case
C = 2 [31]. Finally and suddenly, Terence Tao in September 2015 announced a
proof of the Erdős conjecture [84].

4 Mac Lane Set Theory

At the beginning of his worldly wanderings, Mathias engaged in a notable
controversy—in the classical sense of an exchange carried out in published
articles—with Mac Lane. This stimulated Mathias to fully take up the in-
vestigation of the scope and limits of “Mac Lane set theory”, something that
he had started to do while still at Peterhouse.

The publication of Mac Lane’s Mathematics: Form and Function [37] met
with a noticeable lack of response or even acknowledgement. One exception was
Mathias’s [58], which took issue with Mac Lane’s advocacy of a weak set theory
and his contention that set theory cannot serve a substantial foundational role
because of independence results. Mac Lane’s set theory, ZBQC, is ZFC without
Replacement and with Separation restricted to the ∆0 (bounded quantifier) for-
mulas. Mathias pointed out that this is inadequate for iterative constructions.

11The Quintics Club is an undergraduate mathematics club for the junior members of five
colleges of the University of Cambridge of which Peterhouse is one.
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The spatial (geometric) and temporal (arithmetical, iterative) are two modes
that posit “an essential bimodality of mathematical thought”, and set theory
buttresses the latter as a study of well-foundedness. In reply, Mac Lane main-
tained that his ZBQC does better fit what most mathematicians do [38]; that
for other work “there are other foundations”; that there is “no need for a single
foundation”. To Mathias’s veering toward set theory as a foundation for math-
ematics “in ontological terms”, Mac Lane opined: “Each mathematical notion
is protean, thus deals with different realities, so does not have an ontology”.

A decade later, Mathias in a last rhetorical article [62] divided “[o]pponents
of a full-blooded set-theoretic account of the foundations of mathematics” among
three categories: Those who “may hold, with Mac Lane, that . . . [ZBQC] suf-
fices for ‘all important mathematics’ ”; those who “may hold, with the early
Bourbakistes, that ZC [Zermelo set theory, including Foundation and Choice]
suffices”; and those who “may accept the axioms of ZFC, but deny the relevance
of large cardinals to ordinary mathematics”. Focusing on the last, Mathias
formulated in palatable terms and described the essential involvement of large
cardinal properties in several “strong statements of analysis”: Σ1

2 sets have the
perfect set property; Π1

1 sets are determined; Σ1
2 sets are universally Baire; and

Σ1
2 sets are determined. Moreover, Mathias issued challenges to find various

direct proofs, e.g., of Σ1
2 sets being universally Baire implying that Π1

1 sets are
determined, that does not proceed through large cardinals—a potent kind of
argument insisting on purity of proofs.12 Mathias’s [62] was followed by Mac
Lane’s [39] in the manner of a reply. He simply wrote contrarily that “Mathias
has not produced any counter examples of actual [sic] mathematics which re-
quires the use of a stronger [than ∆0] separation”, and argued for ZBQC being
bolstered by an equiconsistency with a suitable categorical foundation recently
established with the Mitchell-Benabou language.

Having taken on the question of the adequacy of weak set theories for math-
ematics in his exchange with Mac Lane, Mathias during a period of relative
stability in the mid-1990s at the Centre de Recerca Matemàtica at Barcelona,
would become deeply engaged with the analysis of the strength of various set
theories. Slim models of Zermelo set theory [64] resonates with his initial in-
sistence on adequate set theories supporting recursive definitions. Let Z be
Zermelo set theory (without Choice) and KP, Kripke-Platek set theory.13 To
specify for here and later, as Mathias has it, Z has Extensionality, Empty Set,
Pairing, Union, Power Set, Foundation, Infinity, and Separation; and KP has
Extensionality, Empty Set, Pairing, Union, Π1 Foundation, ∆0 Separation, and
∆0 Collection.

With Foundation for A being the assertion A 6= ∅ −→ ∃x ∈ A(x ∩ A = ∅),
Foundation for sets A—the usual Foundation—and Foundation for classes A
are easily seen to be equivalent in the presence of Separation, as first observed
by Gödel. The axiom system KP is usually formulated with Foundation for all
classes A, but Mathias considers it befitting to have just Π1 Foundation, which
expectedly is Foundation for Π1-defined classes. The schemes of ∆0 Separation
and ∆0 Collection are analogously restricted to ∆0 formulas and so forth for

12That every Σ1
2 set is universally Baire is equivalent to every set of ordinals having a sharp,

and that every Π1
1 set is determined is equivalent to every real having a sharp. Hence, the

first implies the second through large cardinals hypotheses.
13Cf. [17] for the historical particulars on Zermelo’s axiomatization and [4] for Kripke-Platek

set theory.
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other classes of formulas in the Lévy hierarchy, where Collection generally is the
following the following scheme, a variant of Replacement:

∀x ∈ a∃yϕ(x, y) −→ ∃b∀x ∈ a∃y ∈ bϕ(x, y).

Affirming that Z is weak as a vehicle for recursive definitions while KP is
“orthogonal” in providing a natural setting for such, Mathias established in [64]
that in Z + KP, one can recursively define a supertransitive (i.e., closed under
subsets) inner (i.e., containing all ordinals) model that exhibits evident failures
of Replacement, starting with the class Vω = HF of hereditarily finite sets not
being a set. Bringing together some classical ideas, he deployed a simple yet
potent scheme for controlling entry into inner models according to growth rates
of functions from ω to ω.

In the magisterial The strength of Mac Lane set theory [65], Mathias provided
a rich and definitive analysis of set theories around Mac Lane’s and Kripke-
Platek, bringing in the full weight of basic themes and delineating a range of
theories according to relative consistency, motivating concepts, and basic set-
existence principles and techniques. With remarkable energy and both syntactic
and semantic finesse, Mathias set out sharp results in minimal settings, elabo-
rating and refining a half a century of work.

First, Mathias carries out von Neumann’s classical construction, with min-
imal hypotheses, of the inner model of well-founded sets, to effect the relative
consistency of the Axiom of Foundation as well as Transitive Containment,
viz. that every set is a member of a transitive set. Transitive Containment is a
consequence of KP, a first step toward Replacement. Mathias takes MAC to be
Mac Lane’s ZBQC together with Transitive Containment; takes M to be MAC
without Choice; and next takes up what is to become a focal Axiom H:

∀u∃t(
⋃
t ⊆ t ∧ ∀z(

⋃
z ⊆ z ∧ |z| ≤ |u| −→ z ⊆ t)).

That is, for any set u, there is a transitive set t of which every transitive set of size
at most |u| is a subset. Axiom H is a second step toward Replacement. Mathias
approximates having Mostowski collapses, i.e., transitizations of well-founded,
extensional relations, and makes isomorphic identifications to get the relative
consistency of having Axiom H, e.g., Con(MAC) implies Con(MAC+H). Drawing
out the centrality of Axiom H, Mathias shows that over a minimal set theory H
is equivalent to actually having Mostowski collapses, and with a minimal Skolem
hull argument, that over MAC, H subsumes KP, being equivalent, quite notably,
to Σ1 Separation together with ∆0 Collection.

Mathias next makes the steep ascent to the first height, parsimoniously build-
ing the constructible hierarchy L and the relative consistency of AC without a
direct recursive definition. Working in M, he simulates Gödel’s recursive set-by-
set generation along well-orderings, takes transitizations, and makes identifica-
tions as before for adjoining H, to define L. Working out condensation, Mathias
then gets to his first significantly new result, that

Con(M) implies Con(M + KP + V=L),

completing the circle to its first announcement in his [58]. With Z weak for
recursive definitions, this approach notably provides the first explicit proof of
“Con(Z) implies Con(Z + AC)”, once announced by Gödel. This speaks to a
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historical point: Between 1930 and 1935, Gödel tried to generate L recursively
along well-orderings, themselves provided along the way in “autonomous pro-
gression”. It was only after his embrace of Replacement in 1935, giving the
von Neumann ordinals as canonical versions of all well-orderings, that he could
rigorously get an inner model built on the spine of the ordinals.14

Setting out on a further climb, Mathias next layers, with the mediation of L,
the region between M + KP and Z + KP in terms of Σn Separation. The thrust
is that with V=L, Σn Separation implies the consistency of Σn−1 Separation,
and that Σn Separation implies the same in the sense of L. With H a steady
pivot, Mathias proceeds in a minimal setting to construct Σn hulls based on
L-least witnesses, and there is a notable refinement of analysis deploying “fine
structure” lemmas, adapted from work of Sy Friedman, to control quantifier
complexity.

Proceeding in a different direction that draws out a subtle interplay between
power set and recursion, Mathias develops, partly with the purpose of getting
sharp independence results, a theory subsuming M+KP first isolated for “power-
admissible sets” by Harvey Friedman. The germ is to incorporate ∀x ⊆ y and
∃x ⊆ y as part of bounded quantification, setting up a new basis for a Lévy-type
hierarchy, the Takahashi hierarchy of Σ℘n formulas. Working through a subtle
syntactical analysis, Mathias develops normal forms and situates ∆℘

0 Separation.
The focus becomes KP℘, which is M + KP + Π℘

1 Foundation +∆℘
0 Collection.

Bringing in the Gandy Basis Theorem, standard parts of admissible sets, and
forcing over ill-founded models, Mathias is able to establish the surprising result
that, unlike for KP,

KP℘ + V=L proves the consistency of KP℘,

and delimitative results, e.g., even KP℘ +AC+ “every cardinal has a successor”
does not prove H (nor therefore Σ1 Separation).

Mathias attends, lastly, to systems type-theoretic in spirit, working the
theme that MAC with its Power Set and ∆0 Separation, is latently in this
direction. Mathias shows that e.g., in MAC “strong stratifiable Σ1 Collection”
is provable, a narrow bridge to Quine’s NF. Also, Mathias provides the first
explicit proof of a result implicit in John Kemeny’s 1949 thesis, that MAC is
equiconsistent with the simple theory of types (together with the Axiom of
Infinity).

Although definitively developed with a wide range of themes and concepts
and a great deal of detail, one can discern in Mathias’s [65] a base line speak-
ing to his earlier engagements about and larger conception of set theory. As
he retrospectively wrote [65, 10.7], “The purpose of my paper . . . is to study
the relation of Mac Lane’s system, which encapsulates in set-theoretic terms
his mathematical world, to the Kripke-Platek system that gives a standard
formalization of a certain kind of abstract recursion.” As a reviewer noted,
“Monumental in conception and rich in results, this paper merits the attention
not just of set-theorists, but of all mathematicians concerned with the broader
foundations of mathematics” [6].

Mathias’s later [72] can be seen as extending the sharp deductive analysis of
[65] to encompass Replacement and thus full ZF. Consider the scheme

∀y ∈ u∃!zϕ(y, z) −→ ∃w∀y ∈ u∀z(ϕ(y, z)→ z ∈ w) (Repcoll)

14Cf. [29, § 4].
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with passive parameters allowed in ϕ and y possibly a vector of variables.
Loosely speaking, any class function restricted to a set has range included in a
set. Instances of this scheme have hypotheses stronger than those of Collection
and conclusions weaker than those of Replacement. Replacement implies Col-
lection over ZF, since if ∀u∃zϕ and a is a set, one can for each x ∈ a functionally
specify the least rank of a witnessing z. A. K. Simpson had asked about the
strength of Repcoll, and Mathias answered his question in [72] by showing that,
unexpectedly,

the theory M + Repcoll implies ZF,

where, to recall, M is the relatively weak theory, MAC without Choice. Actually,
Infinity does not play a role here, and can be effaced from both sides. Also, if
Infinity is retained, then Transitive Containment can be effaced from the left
side. The thrust of the proof is to show that in M, every set has a rank, and,
using this together with ∆0 Separation and Repcoll, to work inductively up the
Lévy hierarchy of formulas to full Separation and that exact ranges of class
functions of sets are sets as well.

We further tuck in here work connected by a thread, of even later vintage.
Mac Lane had envisioned his foundational set theory as sufficient for math-
ematics, inclusive of category theory, and the Mac Lane-Mathias controversy
had turned on the possible necessity of strong, even large cardinal, hypothe-
ses. In recent affirmations, the very strong large cardinal principle, Vopěnka’s
Principle, has been pressed to display categorical consequences, e.g., that all re-
flective classes in locally presentable categories are small-orthogonality classes.
In collaborative work with Joan Bagaria, Carles Casacuberta and Jǐŕı Rosický,
Mathias (a) sharpened this result by reducing the hypothesis to having a proper
class of supercompact cardinals yet still drawing a substantial conclusion; (b)
got categorical equivalents to Vopěnka’s Principle; and (c) showed as a conse-
quence that “the existence of cohomological localizations of simplicial sets, a
long-standing open problem in algebraic topology, is implied by the existence of
arbitrarily large supercompact cardinals” [2, 3].

5 Dynamics

During his time at Barcelona, Mathias was also stimulated by colleagues and
circumstances to pursue a set-theoretic approach to a basic iteration problem
in dynamics, having once been alerted to such a possibility in the late 1970s.
Then, chaotic dynamics, with the stuff of period orbits, strange attractors, and
the like, was quite the rage, with the straightforward mathematical context of
iterating functions providing simply posed problems. Mathias took up a basic
issue cast in general terms; saw the applicability of descriptive set theory; and
established substantial results that revealed a remarkable structure for recurrent
points and “long delays” in dynamics. With [61] an initial article, Mathias,
once established at La Réunion, put together the main account [63] as well as
produced [70, 68, 67] containing refinements and further solutions. Taking an
initial cue from dynamics, in [63], Mathias started by setting up a transfinite
context:

Let χ be a Polish space (complete, separable metric space) and f : χ → χ
a continuous function. We say that 〈χ, f〉 is a dynamical system, a topological
space with a continuous function acting on it. Define a relation yf on χ by
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xyf y if and only if there is an increasing α : ω → ω with limn→∞ fα(n)(x) = y,
i.e., y is a cluster point of the f -iterates of x. This is basic to topological
dynamics which focuses on recurrent points, point b such that by b. Let

ωf (x) = {y | xyf y} and

Γf (X) =
⋃
{ωf (x) | x ∈ X},

both being yf -closed as yf is easily seen to be a transitive relation. For a ∈ χ,
recursively define

A0(a, f) = ωf (a) ,

Aβ+1(a, f) = Γf (Aβ(a, f)) , and

Aλ(a, f) =
⋂
ν<λA

ν(a, f) for limit λ.

Then A0(a, f) ⊇ A1(a, f) ⊇ A2(a, f) ⊇ . . . again by the transitivity of yf .
Let ϑ(a, f) by the least ordinal ϑ such that Aϑ+1(a, f) = Aϑ(a, f), and let
A(a, f) = Aϑ(a,f)(a, f). The thrust of Mathias’s work is to investigate the
closure ordinal ϑ(a, f) as providing the dynamic sense of yf .

Mathias first established that ϑ(a, f) ≤ ω1, with the inequality being strict
when A(a, f) is Borel. With the result, and context, reflective of familiar paths
for analytic sets, he associated to each x ∈ ωf (a) a tree of yf -descending finite
sequences, so that x /∈ A(a, f) if and only if the tree is well-founded. Then he
adapted to yf the Kunen proof of the Kunen-Martin Theorem on bounding
ranks of well-founded trees. Notably, Mathias’s argument works for any tran-
sitive relation in place of yf , and so it can be seen as a nice incorporation of
well-foundedness into the study of transitivity.

Particular to yf and dynamics, in [63], Mathias established a striking result
about recurrent points, points b such that b yf b. With an intricate metric
construction of a recurrent point, he showed that y ∈ A(a, f) if and only if for
some z, a yf z yf z yf y, so that in particular there are recurrent points in
ωf (a) exactly when A(a, f) 6= ∅.

More particular still with χ being Baire space, ωω, Mathias showed that if
s : ωω → ωω is the (backward) shift function given by s(g)(n) = g(n+ 1), then
for each ζ < ω1 there is an a ∈ ωω such that ϑ(a, s) = ζ, a “long delay”. For
this, he carefully embedded countable well-founded trees into the graph of yf .
Approaching the issue of whether there can be χ, f and a such that ϑ(a, f)
is actually ω1, Mathias adapted his embedding apparatus to ill-founded trees
and carried out a Cantor-Bendixson analysis on the hyperarithmetic hierarchy
to provide an effective answer: there is a recursive a ∈ ωω such that ϑ(a, s) =
ωCK
1 , the first non-recursive ordinal. For this Mathias was inspired by Kreisel’s

construction of a recursively coded closed set whose Cantor-Bendixson sequences
of derivations stabilizes at ωCK

1 .
Mathias’s formulations and results, being of evident significance for dynam-

ics, soon attracted those working in the area. In particular, Llúıs Alsedà, Moira
Chas, and Jaroslav Smı́tal set off Mathias’s results against a known backdrop
and established a characterization for the closed unit interval of reals of posi-
tive topological entropy [1]. This work led to new observations by Alexander
Sharkovskii, well-known for his pioneering work on periodic points for dynamical
systems [1, p. 1721].
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In [70], Mathias answered questions left open in [63]. Using Baire space
ωω and the shift function s, he showed that there is a recursive real a such
that A1(a, s) is not even Borel, and A2(a, s) is empty. In [63], Mathias had
approached, but did not resolve, whether there could be a some χ, f , and a with
the longest delay ϑ(a, f) = ω1 and indeed Alsedà, Chas and Smı́tal conjectured
no [1, p. 1720]. In the best result in this subject, certainly the one with the
most involved proof, Mathias established that with Baire space and the shift
function s, there is a recursive real b giving the longest delay, ϑ(b, s) = ω1. In
subsequently written papers [68, 67], Mathias set out ways for extending the
results of [70] to general χ and f .

Also stimulated by Mathias’s work, his colleague Christian Delhommé at La
Réunion has developed it in generalizing directions. For instance, he extended
Mathias’s [63] embedding of countable well-founded trees into the graph of ys to
countable binary relations, appropriately retracted, in a broadly general setting
[15].

While these may be the outward landmarks, there is a great deal of details
and elaboration of concepts in [63], as further pursued in [70, 68, 67]. The
subject that Mathias uncovered from a simple dynamics issue has remarkable
depth and richness, as his penetrating results and constructions have shown. As
such, it is a testament both to Mathias’s mathematical prowess as well as to his
insistence on well-foundedness as the bedrock of set theory.

6 Weaker Set Theories

In continuing travels but also with the stability afforded by La Réunion, Math-
ias, with his definitive work on Mac Lane set theory as providing a broad con-
text, pursued themes in the axiomatics of set theory with renewed energy. He
newly illuminated the interstices of deductible possibilities and refined system-
atic interconnections and minimal axiomatic sufficiency in connection with con-
structibility and forcing.

Mathias’s Weak systems of Gandy, Jensen, and Devlin [71], written dur-
ing the “set theory year” 2003/04 at Barcelona, provides a definitive analysis
of set theories weaker than Kripke-Platek (KP) for lack of full ∆0 Collection.
Mathias’s earlier [65] was initially stimulated by the question of the adequacy of
Mac Lane’s set theory for ongoing mathematics, and here he was initially stim-
ulated by the question of the adequacy of a basic set theory in Keith Devlin’s
Constructibility [16] for the investigation of constructibility in terms of Jensen’s
rudimentary set functions and the Jα hierarchy.

Mathias first variegates the landscape between ReS, which is KP without ∆0

Collection, and KP with a range of systems and variants, focal ones being the
following. DB “Devlin Basic” is ReS augmented with having Cartesian products.
GJ “Gandy-Jensen” is DB augmented with Rudimentary Replacement: for ∆0

formulas ϕ,

∀x∃w∀v ∈ x∃t ∈ w∀u(u ∈ t←→ u ∈ x ∧ ϕ(u, v)) .

Further augmentations with restricted versions of ∆0 Collection are formulated,
getting closer to full KP. Devlin’s original system is DB augmented with Infinity
and Foundation for all Classes. GJ axiomatizes the closure under the rudimen-
tary functions for Jensen’s fine structure investigations; a transitive set is closed
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under the rudimentary functions if and only if it models GJ minus Π1 Founda-
tion.

Mathias next sets out the crucial set formations that can be effected in
the various systems, and then establishes independences through over a dozen
models. In particular, he applied his “slim model” technique from [64] to get
a supertransitive inner model of DB but not GJ, the model showing that DB
cannot prove the existence of [ω]3.

Mathias’s distinctive contribution is to incorporate into the various systems
an axiom S asserting for all x the existence of S(x) = {y | y ⊆ x is finite}. Pro-
ceeding analogously to [65, § 6], Mathias carries out a subtle syntactical analysis
of formulas having ∀y ∈ S(x) and ∃y ∈ S(x) as part of bounded quantification
and sets up a corresponding hierarchy of ΣS

n formulas. With that, he augments
the various systems with Infinity and S and establishes corresponding Sepa-
ration, Collection, etc. for formulas in the new hierarchy as well as semantic
independences. With this preparation Mathias confirms in exacting detail the
flaws in Devlin’s book, Constructibility, especially the inadequacy of his ba-
sic set theory for formulating the satisfaction predicate for ∆0 formulas. GJ+
Infinity does work, as it axiomatizes the rudimentary functions. Answering a
call for doing without the theory of rudimentary functions, Mathias shows that
what also works for a parsimonious development of constructibility is Devlin’s
system (DB + Infinity + Foundation for all Classes) as augmented by S, as
well as the particularly enticing subsystem MW “Middle Way”: DB + Infinity
+ ∀a∀k ∈ ω([a]k ∈ V).

Already in the mid-1990s, deeply engaged in axiomatics, Mathias became
interested in the problem of finding the weakest system that would support a
smooth, recognizable theory of forcing. Through a period of germination in the
new millennium proceeding through his contextualizing work on weak systems
for constructibility, Mathias developed the concepts of rudimentary recursion
and provident set, finally to meet with a remarkable success, in his maturity,
which secures the axiomatic and methodological essence of a fundamental tech-
nique in set theory. With this work proceeding in forward and circling strides,
[73] provides an overview, and then [12, 76] systematically set out the details in
full.

The Rudimentary recursion, gentle functions and provident sets [12], with
Nathan Bowler, worked towards an optimal theory for forcing, drawing on pre-
vious axiomatics and getting at the recursions just sufficient for formulating
forcing. In KP, one has that if G is a total Σ1

1 function, then so is F given by
F (x) = G(F �x), and such recursions handily suffice for forcing. The first move
toward purity of method is to work only with rudimentarily recursive functions,
i.e., those F as given above but defined from rudimentary G.

As described in [12], Mathias systematically developed a theory of rudimen-
tary recursion in weak set theories and toward their use in forcing. A significant
complication was that the composition of two rudimentarily recursive functions
is not necessarily rudimentarily recursive, and to finesse this, Bowler devel-
oped the gentle functions, functions H ◦ F where H is rudimentary and F is
rudimentarily recursive. The composition of gentle functions is gentle, and
this considerably simplified the formulation of forcing. That formulation also
to require having the forcing partial order as a parameter, the general theory
was extended to the p-rudimentarily recursive functions, functions F given by
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F (x) = G(p, F �x) with p as a parameter in the rudimentary recursion.
Forcing is to be done over the provident sets. A set is provident if and

only if it is non-empty, transitive, closed under pairing and for all x, p ∈ A
and p-rudimentarily recursive F , F (x) ∈ A. Mathias variously characterized
the provident sets, and ramified them as cumulative unions of transitive sets
in a canonical fashion. The Jensen rudimentary functions are nine, and can
be but together into one set formation function T such that for transitive u,⋃
n∈ω T

n(u) is rudimentarily closed. With this, given a transitive set c, define
cν and P cν by simultaneous recursion:

c0 = ∅ , cν+1 = c ∩ {x | x ⊆ cv} , cλ =
⋃
ν<λcν

P c0 = ∅ , P cν+1 = T (P cν ) ∪ cν+1 ∪ {cν} , P cλ =
⋃
ν<λP

c
ν .

This master recursion gradually builds up rudimentary closed levels relative to
c. Mathias showed that for transitive c and indecomposable ordinal ϑ, P cϑ is
provident. Moreover, one can define the provident closure of any non-empty
M by: Prov(M) =

⋃
{P cϑ | c is the transitive closure of some finite subset of

M}, where ϑ is the least indecomposable ordinal not less than the set-theoretic
rank of M . In particular, if M is already provident, Prov(M) = M exhibits a
canonical ramification. With this, one gets a finite set of axioms Prov warranting
the recursion so that the transitive models of Prov are exactly the provident
sets. The set Jν is provident if and only if ων is indecomposable, so that
Jω = Vω = HF is provident, the only provident set not satisfying Infinity, and
so are Jω2 ,Jω3 . . ..

With the above theory, Provident sets and rudimentary set forcing [76] duly
carries out a parsimonious development of forcing. The Shoenfield-Kunen ap-
proach15 is taken, carefully tailored to be effected in Prov + Infinity. Although
the overall scheme to be followed is thus straightforward, the progress step by
step reveals many eddies of deduction and astute choices of terms, drawing out
the methodological necessity and sufficiency of provident sets. Mathias eventu-
ally shows, in a rich surround of textured results established in his context, that
if M is provident, P ∈M is a forcing partial order, and G is P -generic over M ,
then M [G] is provident, with M [G] = Prov(M ∪ {G}). Moreover, he shows
of the various axioms of set theory like Power Set that they persist from M to
M [G]. Mathias’s [76] is a veritable paean to formalism and forcing, one that
exhibits an intricate melding of axiomatics and technique in set theory. As such,
it together with his [12] is Mathias’s arguably most impressive accomplishment
in axiomatics.

7 Bourbaki

In the fullness of time and with his remarkable work on axiomatics in hand,
Mathias latterly took up the lance once again against the windmill of the “ig-
norance of Bourbaki” [57], circling back to his first tussle with ill-suited set
theories. This time there would be telling mathematical pathologies exposed as
well as a remarkable arching argument inset in French history and praxis.

Bourbaki, in their first book, the 1954-1957 Théorie des Ensembles, devel-
oped a theory of sets in a logical formalism as the axiomatic basis of their

15Cf. [33, VII].
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structural exposition of mathematics. They adapted for purposes of quantifi-
cation the Hilbert ε-operator, which for each formula ϕ introduces a term εxϕ
replicating the entire formula. It will be remembered that Hilbert in the 1920’s
had introduced these terms, presumably motivated by the use of ideal points in
mathematics; he had ϕ(t)→ ϕ(εxϕ) for terms t, and defined the quantifiers by
∃xϕ ←→ ϕ(εxϕ) and ∀xϕ ←→ ϕ(εx¬ϕ). In [66], Mathias underlined the cu-
mulating complications in Bourbaki’s rendition by showing that their definition
of the cardinal number 1, itself awkward, when written out in their formalism
would have length 4,523,659,424,929 !

Earlier in 1948, André Weil, on behalf of Bourbaki, gave an invited ad-
dress to the Association of Symbolic Logic on set theory as a “foundations of
mathematics for the working mathematician” (cf. [11]). Bourbaki’s system has
Extensionality, Separation, Power Set, ordered pair as primitive with axioms
to match, and Cartesian products. From Separation and Power set, one gets
singletons {x}. In [74], Mathias showed, to blunt purpose yet with consider-
able dexterity, that there is a model of Bourbaki’s system in which the Pairing
Axiom, having {x, y}, fails!

Hilbert, Bourbaki and the scorning of logic [75] is Mathias’s mature criticism
of Bourbaki, one that works out rhetorically a line of argument through history,
mathematics, and education. There is a grand sweep, but also a specificity of
mathematical detail and a sensitivity to systemic influence, no doubt heightened
by his teaching years at La Réunion.

Mathias’s line of argument is as follows:

(a) Hilbert in 1922 proposed an alternative treatment of first-order logic using
his ε-operator,

(b) which, despite its many unsatisfactory aspects, was adopted by Bourbaki
for their exposition of mathematics,

(c) and by Godement for his classic Cours d’Algèbre, though leading him to
express distrust of logic.

(d) It is this distrust, intensified to a phobia by the vehemence of Dieudonné’s
writings,

(e) and fostered by, e.g., the errors and obscurities of a well-known undergrad-
uate text, Jacqueline Lelong-Ferrand and Jean-Marie Arnaudiès’ Cours de
mathèmatiques,

(f) that has, it is suggested, led to the exclusion of logic from the CAPES
examination—“tout exposé de logique formelle est exclu”.

(g) Centralist rigidity has preserved the underlying confusion and consequently
flawed teaching;

(h) the recovery will start when mathematicians adopt a post-Gödelian treat-
ment of logic.

For (a) and (b), Mathias recounts in detail Hilbert’s engagement with logic
and his program for establishing the consistency of mathematics and how Bour-
baki adopted wholesale the awkward Hilbert ε-operator approach to logic. Ac-
cording to Mathias, with the appearance of Gödel’s work on incompleteness
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“the hope of a single proof of the consistency and completeness of mathemat-
ics, in my view the only justification for basing an encyclopaedic account of
mathematics on Hilbert’s operator, had been dashed”. For (c), (d), and (e)
to be regarded as case studies, Mathias quotes at considerable length from the
sources, revealing most particularly in the last case tissues of confusion about
truth vs. provability and metalanguage vs. uninterpreted formalism. For (f)
and (g), Mathias is unrestrained about the over-centralized French educational
system and how in its rigidity it has perpetuated the Bourbaki hostility to logic
and set theory.

In the articulation of (h), Mathias synthetically puts forth layer by layer a
larger vision of mathematics and its regeneration, one that straddles his earlier
work and writing. He first observes, through inner minutes of Bourbaki, that
there was uncertainty and even dissension in the tribe about the adequacy of
their adopted set theory. Mathias then recapitulates, with specific examples
from his own writings, mathematics that the Bourbakistes would not be able
to encompass. Calling Bourbaki as well as Mac Lane structuralists, Mathias
regards structuralism and set theory as on opposite sides of the divide between
taking equality up to isomorphism as good enough and not, and recalls his
exchange with Mac Lane. Mathias then emphasizes how the divide brings out
a dual nature of mathematics, and how mathematics is impoverished by the
disregard of one side or the other. Mathias personally defines set theory as the
study of well-foundedness; as such, it is highly successful in meeting the call
for recursive constructions—and it is to be pointed out that his own work is a
particular and abiding testament to this. In a concluding peroration, Mathias
points to the stultifying effects of centralization and bureaucratization across
centuries and cultures and calls for intellectual independence within community,
as at Oxford and Cambridge, with all contributing through competition to the
regeneration of mathematics and more broadly, culture.

Adrian Mathias is an estimable mathematician with a remarkable range of
results addressing problems that emerged in the course of a wide-ranging en-
gagement with mathematics. From his work with Mathias reals to the dynamics
of iterated maps, he has uncovered a great deal of structure and brought forth
new understanding. But also, Mathias can be seen, quite distinctively, as a fine
analyst of social and cultural aspects of mathematics and the axiomatic basis
of concepts and methods of set theory. His work on the last attains an excep-
tional virtuosity, and with that, one can count Mathias—-whose work is going
from strength to strength—as one of the very few who through logical axiomatic
analysis has contributed to meaning in mathematics.
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