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Abstract

In this brief note, we introduce a general new concept of solution of
a general n-person non-cooperative strategy game. This new concept of average
equilibrium point generalizes that of equilibrium point. As a particular case the
concept of equilibrium point is obtained. We prove a general theorem of existence
for any average of an average equilibrium point in any mixed extension of a finite
n-person game. Moreover some further cases are also studied
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1 Introduction

Consider an n-person finite non-cooperative game given in standard form:

Γ = {Σi;Ai; i ∈ N}

where N = {1, 2, 3, . . . , n} is the set of players. Σi denotes the set of strategies of
the players i ∈ N , wich is considered to be non-empty and finite. Finally

Ai :
n

X
j=1

Σj → R

denotes the payoff of the players i ∈ N . Here R stand for set of real numbers.

The mixed extension of σ indicates by

Γ̃ = {Σ̃i : Ei; i ∈ N}

is formed by the sets Σ̃i of mixed strategies over Ei, for any i ∈ N , and the expec-

tation Ei defined on X
j∈N

Σ̃j

This settings of finite n-person game and its mixed extension Σ̃, can be extended
for more generalized situations, namely we introduce the concept of general game.

Γ = {Σi;Ai; i ∈ N}

where the strategy set σi is a non-empty closed convex and bounded in an euclidean
space.

On the other hand, the payoff function Ai is considered by simplicity continuous.
Then we remind that a real continuous function

f : Σ ⊂ Rn → R

defined as a non-empty, convex, compact set σ in a euclidean space, is said to be
quasi-concave if the sets

fλ = {σ ∈ Σ : f(σ) ≥ λ)}

for any real λ are convex.

So in this way, we present the Nash’s important result:

Given any general n-person game where the payoff functions of each player is
quasi-concave in the variable

σi ∈ Σi

for any σ−i = (σ1, . . . ,σi−1,σi+1, . . . ,σn) ∈ X
j 6=i

Σj, there exists an equilibrium point,

namely:

σ̄ = (σ̄i, σ̄−i) : Ai(σ) ≥ Ai(σi, σ̄−i) ∀i∀σi
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This important concept has been generalized in several directions. For example,
recently, we have defined the friendly equilibrium points and we have derived gen-
eralization of this result in normal and extensive games. Selten [6] was the first of
refined the perfect equilibrium point to proper and then Myerson [4] refined to per-
fect equilibrium. Further there have been further refinement as for example that of
Garcia Jurado [2]

2 Average Equilibrium Points

Now in this section, we extend the concept of equilibrium point to that of average
equilibrium point.

We have some different kinds of new concepts. First we define the strict average
equilibrium of a general non-cooperative n-person game

σ = {Σi;Ai; i ∈ N}
where Σi is a non-empty, compact and convex subset in an euclidean space. The
payoff functions Ai are linear in the variable σi for σ−iX

j 6=i
Σj:

Ai(· ,σ−i) linear

Therefore consider the average weight αi,βi with the property 0 ≤ αi,βi ≤ 1 and
αi + βi = 1

A point σ̄ = (σ̄1, . . . , σ̄n) ∈ X
j=1

Σj is called (αi,βi)-average equilibrium point of

the game σ if

αi max
ρi

Ai(ρi, σ̄−i) + βi min
ρi

(ρi, σ̄−i) = Ai(σ̄i, σ̄−i) ∀i∀σi
Theorem 1 Given σ, where Ai(· , σ̄−i) is linear in σi for each σ−i, and a set of av-
erage (αi,βi) for each player, then there always exists an (αi,βi) average equilibrium
point

Proof. Consider for an arbitrary σ = X
j∈N

Σj the set:

ψi(σ) = {τi ∈ Σi : Ai(τi,σ−i) = αi max
ρi
Ai(ρi,σ) + βi min

ρi
Ai(ρi,σ−i)}

This set is non-empty, convex and compact, since Ai is continuous and linear in σ̄i.
Take ρ̄i as a point reaching the maximum and ρi reaching the minimum. Therefore
a point defined as τi = αiρ̄i + βiρi belongs to ψi(σ). Taking the Cartesian product

ψ(σ) =
n

X
i=1

ψi(σ)

we define a multivalent application from
n

X
i=1

Σi to the same set. This application

is non-empty, compact and convex. Now if we prove that its graph is closed, then
we can apply Kakutani’s fixed point theorem. This theorem assures that under the
mentioned condition there exists a fixed point σ̄, fulfilling

σ̄ ∈ ψ(σ̄)

such a point is indeed an (αi,βi) average equilibrium point of the game σ.
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We need to prove that the graph of ψ is closed. Consider a converging sequence
of points σ(n) ∈ X

i∈N
Σi

σ(n)→ σ = (σi,σi)

then for any given player i ∈ N and any converging sequence of strategies τi(n) ∈
ψ((σ(n)), we have from the definition of ψ((σ(n)) that

Ai(τi(n),σ−i(n) = αi max
ρi
A(ρi,σ−i(n)) + βmin

ρi
Ai(ρi,σ−i(n))

Then we need to prove that a limit point τi : τi(n)→ τi together of σ−i belongs to
Gψi or equivalently

Ai(τi, τ−i) = αi max
ρi
Ai(ρi,σ−i) + βi min

ρi
Ai(ρi,σ−i)

But for both given converging sequences

σ(n)→ σ and τ (n)→ τ

by the continuity of the payoff functions Ai we have that

lim
n→∞

max
ρi
Ai(ρi,σ−i(n)) = max

ρi
Ai(ρi,σ−i)

lim
n→∞

min
ρi
Ai(ρi,σ−i(n)) = min

ρi
Ai(ρi,σ−i)

and
lim
n→∞

Ai(τi,σ−i) = Ai(τi,σ−i)

moreover, from here we obtain

Ai(τi,σ−i) = αi max
ρi
Ai(ρi,σ−i) + βi min

ρi
Ai(ρi,σ−i)

for each payoff function.

Therefore we have proved that the graph ψ is closed. In this way we have satisfied
all requirements of Kakutani’s fixed point theorem. Thus the existence of a fixed
point σ̄ for the multivalued function ψ is guaranteed: σ̄ ∈ ψ(σ̄). But this in term
of the payoff functions says

Ai(σ̄i, σ̄−i) = max
ρi
Ai(ρi,σ−i) + βi min

ρi
Ai(ρi,σ−i)

for each player i ∈ N . This is an average equilibrium point for the game σ.(q.e.d).

Before we provide an intuitive idea of solution together with the stability for the
strategic situation described by the game σ, we remark that mathematically it is
possible to extend the concept of average equilibrium point, by allowing the averages
for each player (αi,βi) to be function of the strategy σi : (αi(σ−i),βi(σ−i)). In
order to have the existence of a functional average point in the game it is needed
that αi(σ−i(n)) → αi(σ−i) and βi(σ−i(n)) → βi(σ−i). From an intuitive point of
view, here we have a fact the average change for a given player — the approach of
the strategies of all the remaining players.
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Now we will provide an intuitive argument for the concept of averaging equilibrium
strategy. Remember that the intuitive argument of the concept of equilibrium point
for a non-cooperative game, is that, for a given player i ∈ N , if all the remaining
players coincide to play σ−i, then player i ∈ N it is better off if choses σi such that
he obtain a maximum:

Ai(σi,σ−i) = max
ρi
Ai(ρi,σ−i)

This intuitive motivation is essential for taking the equilibrium point concept as
fundamental in game theory.

However several authors explain as a second important aspect, the stability fact.
This is explained as follows: Assuming that all the decide to play σ = (σ1, . . . ,σn)
and this point is an equilibrium point. Therefore (it seems apparently) since player
i ∈ N reaches it maximum, he does not possess any argument to change from it: σi.
The reason of it is that if he changes, he might obtain less payoff.

However, it is important to emphasis that the previous argument might lack an
important aspect of stability. Consider that for the choice of player i ∈ N assuming
known σ−i, the player has to consider the two more important aspects, namely the
optimization and the stability. The concept of equilibrium point takes in consider-
ation only the first one. However, the second aspect to be considered of stability,
perhaps it is the most important. Assuming for any reason a player j 6= i changes
his strategy σj to lower one, in such a situation that the might be no rational in the
sense that he might not attach his maximum.

Aj(τj,σi,σN−{i,j}) = max
ρj
Ai(ρj,σi,σN−{i,j})

where σN−{i,j} indicates

σ(σj,σi,σ1, . . . ,σj−i,σj+1, . . . ,σi−1,σi+1, . . . ,σn)

but we the effect that for the player i ∈ N the payoff at the new point is destructive,
that is to say

Ai(σi, τj,σN−{i,j})� Ai(σi,σ−i) = max
ρi
Ai(ρi,σ−i)

Thus, these facts show the global importance of cautions to give weights to the
fundamental concepts of optimization and stability.

For the reader information, we would like to say that already in the literature it
was introduced by us Marchi E. [3] the concept of stable equilibrium, however also
this concept has some objections regarding the fact that the stability is considered
in a strong way because it is very good but we loose of the payoff. On the other
hand the concept of equilibrium point is very good for the payoff but it might be
very acquard for the sense of stability. Thus, we are faced with the dual problem
how we tackle this multicriteria optimization. The interested reader will referred to
the book by Steuer [7]. From here one can get many different concepts of solutions
which generally the most important aspect is the Pareto optimality. We sketch new
issues.
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Indeed if we have αi(σi) and βi(σ−i), then one takes as final result an optimal
solution a multicriteria optimization of optimal point described in Stener[].

On the other hand if the αi and βi are functions of σi then we are faced with the
fact that

αi(σi)Ai(σi,σ−i)

as well as

βi(σi)Ai(σi,σ−i)

are product of function. Therefore we suggest that the reader consider the simple
contribution by Marchi E. [3] and Flouras [1] for possible extensions.

An example

Take an example of two by two elements having the structure for the payoff as
following:

A1 :

0

a11

a22

0

A2 :

0

b11

b22

0

Therefore the expectation function are of the form:

E1(x, y) = a11xy + a22(1− x)(1− y) = a11xy + a22 − xa22 − ya22 + a22xy

= x [(a11, a22y − a22)]− a22y + a22 x ∈ Σ̃1, y ∈ Σ̃2

E2(x, y) = b11xy + b22(1− x)(1− y) = b11xy + b22 − xb22 − yb22 + b22xy

= y [(b11, b22x− b22)]− b22x+ b22

If we draw the set Σ̃1xΣ̃2 as follows:

1

0
0

x̄

Σ̃2

Σ̃1

ȳ 1

Fig. 1

then where

(a11 + a22) y − a22 = 0

or

ȳ =
a22

a11 + a22
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In the case that a22 > 0 and a11 > 0 then 0 < ȳ < 1, and for that point, for all x
the payoff function E1 is maximum since it is constant. For

y <
a22

a11 + a22
the payoff function E1 reaches a maximum at the point x = 0 since the first number
is negative, and the remaining do not depend on them. Finally, when

y >
a22

a11 + a22
E1 reaches the maximum at x = 1

Now we consider the second payoff function. Consider the member

(b11 + b22)x− b22 = 0

then

x =
b22

b11 + b22
In this case b22 > 0 and b11 > 0 the 0 < x̄ < 1 and for that case, for all the y the
payoff function E2 is maximum since it is constant. For

x <
b22

b11 + b22
the payoff function E2 reaches a maximum at the point y = 0 since the first number
is negative, and the remaining do not depend on them. Then the last case, when:

x >
b22

b11 + b22
E2 reaches the maximum at y = 1.

Consequently, there are three equilibrium points, namely x = y = 0, x = y = 1
and an interior one (

b22
b11 + b22

,
a22

a11 + a22

)
In this way we found is rather elementary way all the equilibrium points of our

game. The powerful and excellent method, we have followed is due to Winkels (1979).
Perhaps in the future by extending in a suitable way this important method it would
possible to have important new approaches.

Now we will verify that the points suggested by the previous method are indeed
equilibrium points. The first one

E1(0, 0) = a22 ≥ E1(x, 0) = −xa22 + a22 = a22(1− x) 0 ≤ x ≤ 1

E2(0, 0) = b22 ≥ E2(0, y) = b22(1− y) 0 ≤ y ≤ 1

and indeed it is an equilibrium point.
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On the other hand, now we try with

E1(1, 1) = a11 ≥ E1(x, 1) = a11x 0 ≤ x ≤ 1

E2(1, 1) = b11 ≥ E2(1, y) = b11y 0 ≤ y ≤ 1

and again it is an equilibrium point. Finally we try to verify with the interior one:(
b22

b11 + b22
,

a22
a11 + a22

)

E1

(
b22

b11 + b22
,

a22
a11 + a22

)
= −a22

a22
a11 + a22

+ a22

= a22

(
−a22

a11 + a22
+ 1

)
= a22

a11
a11 + a22

≥ E1

(
x,

a22
a11 + a22

)
= −a22

a22
a11 + a22

+ a22

= a22

(
−a22

a11 + a22
+ a22

)
= a22

a11
a11 + a22

On the other hand, finally

E2

(
b22

b11 + b22
,

a22
a11 + a22

)
= −b22

b22
b11 + b22

+ b22

= b22

(
−b22

b11 + b22
+ 1

)
= b22

b11
b11 + b22

≥ E2

(
b22

b11 + b22
, y

)
= −b22

b22
b11 + b22

+ b22

= b22

(
−b22

b11 + b22
+ b22

)
= b22

b11
b11 + b22

and so we have proved and verified all the equilibrium points.

Now we can try to see what happen and to study the average equilibrium point.

We just take the same game. The max is provided in the Fig. 1

1

0
0

x̄

Σ̃2

Σ̃1

ȳ 1

Fig. 2
2

1

2

1
max
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It would be possible to write down the geometric features, but for argument of
completeness and to concern the reader, we are going to go over for the minimum.

We recall that

E1(x, y) = x [(a11 + a22)y − a22]− a22y + a22

and

E2(x, y) = y [(b11 + b22)x− b22]− b22x+ b22

Fig. 3

min

0
0

x̄

Σ̃2

Σ̃1

ȳ

2

2 1

1 2

2

At the point

ȳ =
a22

a11 + a22

If a22 > 0 then 0 < ȳ < 1 and for that point, for all x the payoff E1 is minimum
since it is constant. For

y <
a22

a11 + a22

the payoff function E1 reaches the minimum at the point x = 1. Finally if

y >
a22

a11 + a22

then the payoff function E1 reaches the minimum at the point x = 0.

Now consider the case of the payoff function for the second player. At the point

x̄ =
b22

b11 + b22

If b22 > 0 and b11 > 0 then 0 < x̄ < 1 for all y the payoff E2 is reaches a minimum
since it is constant. For

x <
b22

b11 + b22

the payoff function E2 reaches the minimum at the point y = 1. The last point to
considered is when

x >
b22

b11 + b22

then the payoff E2 reaches the minimum at the point y = 0.
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Now we will present and complete explicatively an average equilibrium point. In
general it is very complicate the explicit computation of an arbitrary one. We do
not want in this paper to attack the general presentation, however we study a rather
simple one.

Consider in the graphs presented in fig 2 and 3 and take

E1(0, 0) = a22

E2(1, 0) = −a22 + a22 = 0

then the average equilibrium point for the component of the function player it is:

α1a22 = E1(x, 0) = −a22 + a22

then

α1 = (1− x)

On the other hand

E2(x, 0) = max lim
2
E2(2, 0)

provided that

(1− x) ≤ x̄ =
b22

b11 + b22

Thus, the point (x, 0) is an average equilibrium point with weights

αi = (1− x), βi = x, α2 = 1, β2 = 0
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