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Abstract. We study density requirements on a given Banach space that guarantee the ex-

istence of subsymmetric basic sequences by extending Tsirelson’s well-known space to larger

index sets. We prove that for every cardinal κ smaller than the first Mahlo cardinal there is a

reflexive Banach space of density κ without subsymmetric basic sequences. As for Tsirelson’s

space, our construction is based on the existence of a rich collection of homogeneous families

on large index sets for which one can estimate the complexity on any given infinite set. This is

used to describe detailedly the asymptotic structure of the spaces. The collections of families

are of independent interest and their existence is proved inductively. The fundamental stepping

up argument is the analysis of such collections of families on trees.

1. Introduction

Recall that a set of indiscernibles for a given structureM is a subset X with a total ordering

< such that for every positive integer n every two increasing n-tuples x1 < x2 < · · · < xn and

y1 < y2 < · · · < yn of elements of X have the same properties in M. A simple way of finding

an extended structure on κ without an infinite set of indiscernibles is as follows. Suppose that

F is a family of finite subsets of κ that is compact, as a natural subset of the product space

2κ, and large, that is, every infinite subset of κ has arbitrarily large subsets in F . Let MF be

the structure (κ, (F ∩ [κ]n)n) that has κ as universe and that has infinitely many n-ary relations

F ∩ [κ]n ⊆ [κ]n. It is easily seen that MF does not have infinite indiscernible sets.

While in set theory and model theory indiscernibility is a well-studied and unambiguous

notion, in the context of the Banach space theory it has several versions, the most natural one

being the notion of a subsymmetric sequence or a subsymmetric set. In a normed space (X, ‖·‖),
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a sequence (xα)α∈I indexed in an ordered set (I,<) is called C-subsymmetric when

‖
n∑
j=1

ajxαj‖ ≤ C‖
n∑
j=1

ajxβj‖

for every sequence of scalars (aj)
n
j=1 and every α1 < · · · < αn and β1 < · · · < βn in I. When

C = 1 this corresponds exactly to the notion of an indiscernible set and it is easily seen that

this can always be assumed by renorming X with an appropriate equivalent norm. Another

closely related notion is unconditionality. Recall that a sequence (xi)i∈I in some Banach space

is C-unconditional whenever

‖
∑
i∈I

θiaixi‖ ≤ C‖
∑
i∈I

aixi‖

for every sequence of scalars (ai)i∈I and every sequence (θi)i∈I of signs. Of particular interest are

the indiscernible coordinate systems, such as the Schauder basic sequences. The unit bases of

the classical sequence spaces `p, p ≥ 1 or c0 (in any density) are subsymmetric and unconditional

(in fact, symmetric, i.e. indiscernible by permutations) bases. Moreover, every basic sequence in

one of these spaces has a symmetric subsequence. But this is not true in general: there are basic

sequences without unconditional subsequences, the simplest example being the summing basis of

c0. However, it is more difficult to find a weakly-null basis without unconditional subsequences

(B. Maurey and H. P. Rosenthal [MaRo]). Now we know that there are Banach spaces without

unconditional basic sequences. The first such example was given by W. T. Gowers and B. Maurey

[GoMa], a space which was moreover reflexive. Concerning subsymmetric sequences, we mention

that the unit basis of the Schreier space [Schr] does not have subsymmetric subsequences, and

the Tsirelson space [Tsi] is the first example of a reflexive space without subsymmetric basic

sequences.

All these are separable spaces so it is natural to ask if large spaces must contain infinite

unconditional or subsymmetric sequences, since from the theory of large cardinals we know that

infinite indiscernible sets exist in large structures. In general, this is a consequence of certain

Ramsey principles (i.e. higher-dimensional versions of the pigeonhole principles). Indeed, it was

proved by Ketonen [Ke] that Banach spaces with density bigger than the first ω-Erdős cardinal

have subsymmetric sequences. Recall that a cardinal number κ is called ω-Erdős when every

countable coloring of the collection of finite subsets of κ has an infinite subset A of κ where the

color of a given finite subset F of A depends only on the cardinality of F . Such cardinals are large

cardinals, and their existence cannot be proved on the basis of the standard axioms of set theory.

It is therefore natural to ask what is the minimal cardinal number nc (ns) such that every Banach

space of density at least nc (resp. ns) has an unconditional (respectively, subsymmetric) basic

sequence. It is natural to consider also the relative versions of these cardinals restricted to various

classes of Banach spaces like, for example, the class of reflexive spaces where we use the notations

ncrefl and nsrefl, respectively. Note that it follows from E. Odell’s partial unconditionality result

[Od2] that every weakly-null subsymmetric basic sequence is unconditional, hence ncrefl ≤ nsrefl.

Moreover, an easy application of Odell’s result and Rosenthal’s `1-dichotomy gives that nc ≤ ns.

Concerning lower bounds for these cardinal numbers, it was proved by S. A. Argyros and

A. Tolias [ArTo] that nc > 2ℵ0 , and by E. Odell [Od1] that ns > 2ℵ0 . For the reflexive case,
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we know that ncrefl > ℵ1 ([ArLoTo]), and in the recent paper [ArMo], S. A. Argyros and P.

Motakis proved that nsrefl > 2ℵ0 . Finally we mention that in [LoTo2] the Erdős cardinals are

characterized in terms of the existence of compact and large families and the sequential version

of nsrefl. More precisely it is proved that the first Erdős cardinal eω is the minimal cardinal

κ such that every long weakly-null basis of length κ has a subsymmetric basic sequence, or

equivalently the minimal cardinal κ such that there is no compact and large family of finite

subsets of κ.

The study of upper bounds is of different nature and seems to involve more advanced set-

theoretic considerations connected to large cardinal principles. This can be seen, for example,

from the aforementioned result of Ketonen or from results of P. Dodos, J. Lopez-Abad and S.

Todorcevic who proved in [DoLoTo] that nc ≤ ℵω holds consistently relative to the existence of

certain large cardinals and who proved in [LoTo2] that Banach’s Lebesgue measure extension

axiom implies that ncrefl ≤ 2ℵ0 .

In this paper we continue the research on the existence of subsymmetric sequences in a

normed space of large density, and we prove that nsrefl is rather large, distinguishing thus the

cardinals nsrefl and ncrefl. In contrast to the sequential version of nsrefl, that is closely linked to

indiscernibles of relational structures MF for compact and large families F , the full version of

nsrefl is more related to the existence of indiscernibles in structures that are not just relational but

also have operations, suggesting that not only we need to understand families on finite sets but

also “operations” with them. In the separable context, this is well-known and can be observed

in the construction of the Tsirelson space, where finite products of the Schreier family are used

in a crucial way. The natural approach in the non-separable setting would be to generalize

Tsirelson’s construction using analogues of the Schreier family, certain large compact families,

on larger index sets. However, in the uncountable level these families cannot be spreading and

therefore, if one just copies Tsirelson’s construction on the basis of them, the corresponding

non-separable Tsirelson-like spaces will always contain almost isometric copies of `1 ([LoTo2,

Theorem 8.2]). This lead us to change our perspective and use the well-known interpolation

technique [LiTz, Example 3.b.10], an approach that appeared recently in the work of Argyros

and Motakis mentioned above. In this perspective, a key tool is a suitable operation ×, that we

call multiplication, of compact families of finite sets. In fact, the multiplication is an operation

which associates to a family F on the fixed index set I and family H on ω, a family F ×H on I

which has, in a precise sense, many elements of the form
⋃
n∈x sn, where x ∈ H and (sn)n<ω is

an arbitrary sequence of elements of F . It is well known that such multiplication exists in ω and

it models in some way the ordinal multiplication on uniform families. It is also the main tool to

define the generalized Schreier families on ω, vastly used in modern Banach space theory to study

ranks of compact notions (e.g. summability methods), or of asymptotic notions (e.g. spreading

models). These are uniform families, so that any restriction of them looks like the entire family.

We generalize this property to the uncountable level by defining homogeneous families, that

despite being uncountable families on large index sets, have countable Cantor-Bendixson rank

which moreover does not change substantially when passing to restrictions. In particular, if F
is homogeneous, then the structureMF does not have infinite sets of indiscernibles, but we also

get lower and upper bounds for the rank of the collection of their (finite) sets of indiscernibles.
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We then introduce the notion of a basis of families, which is a rich collection of homogeneous

families admitting a multiplication, and we prove that they exist on quite large cardinal numbers.

The existence of such bases is proved inductively. For example, we prove that if κ has a basis

then 2κ has also a basis. This is done by representing 2κ as the complete binary tree 2≤κ, and

observing that we can use the height function ht : 2≤κ → κ + 1 to pull back a basis on κ to

a restricted version of basis on 2≤k, consisting of homogeneous families of finite chains of 2≤κ.

Actually, we prove the following more general equivalence (Theorem 3.1).

Theorem. For an infinite rooted tree T the following are equivalent.

(a) There is a basis of families on T .

(b) There is a basis of families consisting of chains of T and there is a basis consisting of

antichains of T .

In particular, we obtain a basis on 2ω that can be used to build a reflexive space of density 2ω

without subsymmetric basic sequences, giving another proof of the result in [ArMo]. Also, one

proves inductively that for every cardinal number κ smaller than the first inaccessible cardinal,

there is a basis on κ and a corresponding Banach space of density κ with similar properties. We

then use Todorcevic’s method of walks on ordinals [To] to build trees on cardinals up to the first

Mahlo cardinal number and find examples of reflexive Banach spaces of large densities without

subsymmetric basic subsequences. Moreover, as observed above for the structure MF , we can

bound the complexity of the (finite) subsymmetric basic sequences and obtain the following.

Theorem. Every cardinal κ below the first Mahlo cardinal has a basis. Consequently, for every

such cardinal κ and every α < ω1, there is a reflexive Banach space X of density κ with a

long unconditional basis and such that every bounded sequence in X has an `α1 -spreading model

subsequence but the space X does not have `β1 -spreading model subsequences for β large enough,

only depending on α. In particular, X contains no infinite subsymmetric basic sequence.

The paper is organized as follows. In Section 2 we introduce some basic topological, com-

binatorial and algebraic facts on families of finite chains of a given partial ordering. We then

define homogeneous families and bases of them. We finish this part by proving some upper

bounds for the topological rank of a family that uses the well-known Ramsey property of bar-

riers on ω. Section 3 is the main part of this paper. The main motive of study is, given a

tree, the collection A �T C of all finite subtrees of T whose chains are in a fixed family C and

such that the family of immediate successors of a given node is in another fixed family A. We

study A �T C both combinatorially and topologically. The combinatorial part is based on the

canonical form of a sequence of finite subtrees, and allow us to define a natural multiplication.

The topological one consists in finding upper bounds of the rank of the family A�T C in terms

of the corresponding ranks of the families A and C, much in the spirit of how one easily bounds

the size of a finite tree from its height and splitting number. This operation allows to lift bases

on chains and of immediate successors to bases on the whole tree, our main result of this work

done in Theorem 3.1. We apply this in Section 4 to prove that cardinal numbers smaller than

the first Mahlo cardinal have a basis. To do this, we represent such cardinals as nodes of a

tree having bases on chains and on immediate successors. We achieve this last part by proving
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several principles transference of basis. Finally, we use bases to build reflexive Banach spaces

without subsymmetric basic sequences.

2. Basic definitions

Let I be a set. A set F is called a family on I when the elements of F are finite subsets of

I. Let P = (P,<) be a partial ordering. A family on chains of P is a family on P consisting of

chains of P. Let Ch< be the collection of all chains of P. Given k ≤ ω, let

[I]k :={s ⊆ I : #s = k}, [I]k< :=[I]k ∩ Ch<,

[I]≤k :={s ⊆ I : #s ≤ k}, [I]≤k< :=[I]≤k ∩ Ch<.

For a family F on I and A ⊆ I, let F � A := F ∩P(A). Recall that a family F on I is hereditary

when it is closed under subsets and it is compact when it is a closed subset of 2I := {0, 1}I , after

identifying each set of F with its characteristic function. In this case, F is a scattered compact

space. Since each element of F is finite, it is not difficult to see that F is compact if and only

if every sequence (sn)n∈ω in F has a subsequence (tn)n∈ω forming a ∆-system with root in F ,

that is, such that

tk0 ∩ tk1 = tl0 ∩ tl1 ∈ F for every k0 6= k1 and l0 6= l1.

The intersection tk ∩ tl, k 6= l is called the root of (tn)n. By weakening the notion of com-

pactness, we say that F is pre-compact if every sequence in F has a ∆-subsequence (with root

not necessarily in F). It is easy to see then that F is pre-compact if and only if its ⊆-closure

{s ⊆ I : s ⊆ t for some t ∈ F} is compact.

Recall the Cantor-Bendixson derivatives of a topological space X:

X(0) := X, X(α) =
⋂
β<α

(X(β))′

where Y ′ denotes the collection of accumulation points of Y , that is, those points p ∈ X such

that each of its open neighborhoods has infinitely many points in Y . The minimal ordinal α

such that X(α+1) = X(α) is called the Cantor-Bendixson rank rkCB(X) of X. In the case of a

compact family F on an index set I, being scattered, its Cantor-Bendixson index is the first α

such that F (α) = ∅, and therefore it must be a successor ordinal.

Definition 2.1. Given a compact family F on some index set I, let

rk(F) := rkCB(F)−

where (α + 1)− = α. We say that a compact family F is countably ranked when rk(F) is

countable. Let P be a partial ordering. A family F on chains of P the small rank relative to P
of F is

srkP(F) := inf{rk(F � C) : C is an infinite chain of P}.

A compact and hereditary family F on chains of P is called (α,P)-homogeneous if [P ]≤1 ⊆ F
and

α = srkP(F) ≤ rk(F) < ι(α),
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where ι(α) is defined below in Definition 2.4. F is P-homogeneous if it is (α,P)-homogeneous

for some α < ω1.

When I is countable, its rank is countable as well. Hence the small rank of a compact

family is always countable. In general, rk(F) ≤ #I and the extreme case can be achieved. For

total orderings P we are going to use srk, α-homogeneous and homogeneous instead of srkP ,

(α,P)-homogeneous and P-homogeneous, respectively.

Definition 2.2. The normal Cantor form of an ordinal α is the unique expression α = ωα[0] ·
n0[α] + · · ·+ ωα[k] · nk[α] where α ≥ α[0] > α[1] > · · · > α[k] ≥ 0 and ni[α] < ω for every i ≤ k.

Suppose that ∗ is an operation on countable ordinals and suppose that α > 0 is a countable

ordinal. We say that α is ∗-indecomposable when β ∗ γ < α for every β, γ < α.

Remark 2.3. It it well-known that

(i) α is sum-indecomposable if and only α = ωβ.

(ii) α > 1 is product-indecomposable if and only if α = ωβ for some sum-indecomposable β.

(iii) For α > ω, α is exponential-indecomposable if and only if α = ωα.

(iv) product-indecomposability imply sum-indecomposability, and exponential-indecomposability

imply product and sum indecomposability.

So, 1, ω, ω2 and 1, ω, ωω are the first 3 sum-indecomposable, and product-indecomposable or-

dinals, respectively. If we define, given α < ω1, α0 := α, αn+1 := (αn)α and αω := supn αn, then

ω, ωω, (ωω)ω are the first 3 exponential-indecomposable ordinals. We will use exp-indecomposable

to refer to exponential-indecomposable ordinals.

Definition 2.4. Given a countable ordinal α, let

ι(α) = min{λ > α : λ is exp-indecomposable}.

Let Fn(ω1, ω) be the collection of all functions f : ω1 → ω such that supp f := {γ < ω1 :

f(γ) 6= 0} is finite. When considered the pointwise sum + (Fn(ω1, ω),+) is an ordered commu-

tative monoid. Let ν : ω1 → Fn(ω1, ω) be defined by ν(α)(γ) = ni[α] if and only if γ = α[i]. Let

σ : Fn(ω1, ω)→ ω1 be defined by σ(f) =
∑

i≤k ω
αi · f(αi), where {α0 > · · · > αn ≥ 0} = supp f .

In other words, σ is the inverse of ν. Given α, β < ω1, the Hessenberg sum (see e.g. [Si]) is

defined by

α+̇β := σ(ν(α) + ν(β)).

It is easy to see that if α is exp-indecomposable, then β+̇γ < α for every β, γ < α.

Definition 2.5. Let F and G be families on chains of a partial ordering P. Define

F ∪ G :={s ⊆ P : s ∈ F or s ∈ G},
F tP G :={s ∪ t : s ∪ t is a chain and s ∈ F , t ∈ G},
F t G :={s ∪ t : s ∈ F , t ∈ G},

F �P (n+ 1) :=(F �P n) tP F ; F �P 1 := F ,
F � (n+ 1) :=(F � n) tP F ; F � 1 := F .
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Observe that when P is a total ordering the operations tP and t are the same.

Proposition 2.6. The operations ∪, tP and t preserve pre-compactness and hereditariness.

Moreover, if F and G are countably ranked families on chains of P, then

(i) rk(F ∪ G) = max{rk(F), rk(G)},
(ii) rk(F t G) = rk(F)+̇rk(G),

(iii) rk(F tP G) ≤ rk(F)+̇rk(G).

Consequenlty, if F and G are P-homogeneous, then F ∪ G, F tP G and F t G are (γ,P)-

homogeneous with γ ≥ max{srkP(F), srkP(G)} .

Proof. It is easy to see that if F and G are pre-compact, hereditary, then F ∗ G is pre-

compact, hereditary, for ∗ ∈ {∪,tP ,t}. Let us see (i): An easy inductive argument shows that

(F ∪ G)(α) = F (α) ∪ G(α) for every countable α. (ii): It is a general fact that for every compact

spaces K and L and every α one has that

(K × L)(α) =
⋃

β+̇γ=α

(K(β) × L(γ)). (1)

When K and L are countable, we have that rk(K×L) = rk(K)+̇rk(L). The proof of (1) is done

by induction on α and by considering the case when α is sum-indecomposable or not. Now let F
and G be with countable rank. Suppose that P is a total ordering. Let F ×G → F tG, (s, t) 7→
s∪t. This is clearly continuous, onto and finite-to-one, so rk(FtG) = rk(F×G) = rk(F)+̇rk(G).

If P is in general a partial ordering, then it follows from this that rk(F tP G) ≤ rk(F)+̇rk(G),

proving (iii). Now suppose that F and G are P-homogeneous. We have clearly that

max{srkP(F), srkP(G)} ≤ min{srkP(F ∪ G), srkP(F tP G), srkP(F t G)}. (2)

On the other hand, max{rk(F ∪G), rk(F tP G), rk(F tG) ≤ rk(F)+̇rk(G). Since rk(F), rk(G) <

λ := max{ι(srkP(F)), ι(srkP(G)), it follows by the indecomposability of λ that rk(F)+̇rk(G) < λ.

This, together with (2) gives the desired result. �

2.1. Bases of homogeneous families. We recall a well-known generalization of Schreier fam-

ilies on ω, called uniform families. We are going to use them mainly as a tool to compute upper

bounds of ranks of operations of compact families. We use the following standard notation: given

M, s, t ⊆ ω, we write s < t to denote that max s < min t and let M/s := {m ∈M : s < m}.
Notice that a family F on ω is pre-compact if and only if every sequence in F has a block

∆-subsequence (sn)n∈ω, that is, such that s < sm \ s < sn \ s for every m < n, where s is

the root of (sn)n. We write s v t to denote that s is an initial part of t, that is, s ⊆ t and

t ∩ (max s+ 1) = s, and s @ t to denote that s v t and s 6= t.

Definition 2.7. Given a family F on ω and n < ω, let

F{n} := {s ⊆ ω : n < s and {n} ∪ s ∈ F}.

Let α be a countable ordinal number, and let F be a family on an infinite subset M ⊆ ω. The

family F is called an α-uniform family on M when ∅ ∈ F and

(a) F = {∅} if α = 0;

(b) F{m} is β-uniform on M/m for every m ∈M , if α = β + 1;
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(c) F{m} is αm-uniform on M/m for every m ∈M and (αm)m∈M is an increasing sequence

such that supm∈M αm = α, if α is limit.

It is important to remark that uniform families are not uniform fronts, which were introduced

by P. Pudlak and V. Rödl in [Pu-Ro] following previous works of C. Nash-Williams. Recall that

a family B on M is called an α-uniform front on M when B = {0} if α = 0, and if α > 0 then

∅ /∈ B, and B{n} is a γ-uniform front on M/n for every n ∈ M , if β = γ + 1, and B{n} is a

αn-uniform front on M/n for every n ∈M and (αn)n∈M is increasing with supm∈M αm. In fact,

given a uniform family F , the collection of its ⊆-maximal elements Fmax is a uniform front:

Proposition 2.8. (a) Every uniform family is compact.

(b) The following are equivalent:

(b.1) F is an α-uniform family on M .

(b.2) Fmax is an α-uniform front on M such that F = Fmax = (Fmax)v.

Proof. (a) is proved by a simple inductive argument on α. To prove that (b.1) implies (b.2),

one observes first that (Fmax)v = F , because F is compact, and then again use an inductive

argument. The proof of that (b.2) implies (b.1) one uses the well-known fact that if B is a

uniform front, then B = Bv (see for example [ArTod]). �

Definition 2.9. Given two families F and G on ω their sum and product are defined by

F ⊕ G :={s ∪ t : s < t, s ∈ G and t ∈ F},

F ⊗ G :={
⋃
i<n

si : {si}i ⊆ F , max si < min si+1, i < n, and {min si}i ∈ G}.

The following are well-known facts of uniform fronts, and that are extended to uniform families

by using the previous proposition. For more information on uniform fronts, we refer to [Lo],

[LoTo1] and [ArTod].

Proposition 2.10. (a) The rank of an α-uniform family is α.

(b) The unique n-uniform family on M , n < ω, is [M ]≤n.

(c) If F is an α-uniform family on M , then F � N is an α-uniform family on N for every

N ⊆M infinite. Consequently, α-uniform families on ω are α-homogeneous.

(d) If F is an α-uniform family on M , and θ : M → N is an order-preserving bijection, then

{θ”(s) : s ∈ F} is an α-uniform family on N .

(e) Suppose that F and G are α and β uniform families on M , respectively. Then F ∪ G,

F ⊕ G, F t G and F ⊗ G are max{α, β}, α + β, α+̇β and α · β-uniform families on M ,

respectively.

(f) Uniform fronts have the Ramsey property: if c : F → n is a coloring of a uniform front

on M , then there is N ⊆M infinite such that c is constant on F � N .

(g) Suppose that F and G are uniform families on M . Then there is some N ⊆M such that

either F � N ⊆ G or G � N ⊆ F . Moreover, when rk(F) < rk(G), the first alternative

must hold and in addition (F � N)max ∩ (G � N)max = ∅.
(h) If F is a uniform family on M then there is N ⊆M infinite such that F � N is hereditary.
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(i) If F is compact and v-hereditary family on ω, then there is M ⊆ ω infinite such that

F �M is a uniform family on M . �

Remark 2.11. (i) The only new observation in the previous proposition is the fact in (e)

that states that unions and square unions of uniform families is a uniform family, and

that can be easily proved by induction on the maximum of the ranks.

(ii) A simple inductive argument shows that for every countable α and every M ⊆ ω infinite

there is an α-uniform family Fα on M , and, although uniform families are not necessarily

hereditary using (d) and (h) one can build them being hereditary.

We obtain the following consequence for families on an arbitrary partial ordering.

Corollary 2.12. Suppose that P = (P,<P ) is a partial ordering, and suppose that F and G are

compact and hereditary families with rk(F) < srk(G). Then every infinite chain C of P has an

infinite subchain D ⊆ C such that F � D ⊆ G.

Proof. Fix F , G and C as in the statement. By going to a subchain of C, we assume that

(C,<P ) has order type ω. Since (C,<P ) is order-isomorphic to ω with its natural order, it

follows from Proposition 2.10 (i), (g) that there is some infinite subchain D ⊆ C such that

F � D ⊆ G. �

Among uniform families, the generalized Schreier families have been widely studied and used

particularly in Banach space theory. They have an algebraic definition and have extra properties,

as for example being spreading. Also, they have a sum-indecomposable rank. We recall the

definition now.

Definition 2.13. The Schreier family is

S := {s ⊆ ω : #s ≤ min s}.

A Schreier sequence is defined inductively for α < ω1 by

(a) S0 := [ω]≤1,

(b) Sα+1 := Sα ⊗ S and

(c) Sα :=
⋃
n<ω(Sαn � ω \ n) where (αn)n is such that supn αn = α, if α is limit.

Note that the family Sα depends on the choice of (αn) converging to limit ordinals α.

Definition 2.14 (Spreading families). A family F on ω is spreading when for every s = {m0 <

· · · < mk} ∈ F and t = {n0 < · · · < nk} with mi ≤ ni for every i ≤ k one has that t ∈ F .

The following is easy to prove.

Proposition 2.15. Suppose that F and G are spreading. Then F ∪G, F tG, F ⊕G and F ⊗G
are spreading. �

The generalized Schreier families are uniform families and they have extra properties.

Proposition 2.16. (a) Sα is hereditary, spreading and ωα-uniform.

(b) For every α ≤ β there is n < ω such that Sα � (ω \ n) ⊆ Sβ.
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(c) For every α, β and γ such that α+β ≤ γ there is n < ω such that (Sα⊗Sβ) � (ω\n) ⊆ Sγ.

Proof. (a) The first two properties are well-known. The proof of that Sα is a ωα-uniform

family is done by induction on α. The case α = 0 is trivial, while it is easy to verify that S is

an ω-uniform family, so Sα+1 = Sα ⊗ S is a ωα · ω = ωα+1-uniform family by Proposition 2.10

and inductive hypothesis. Suppose that α is limit. For a given m,n ∈ ω, let αnm < ωαn be such

that (αnm)m is increasing, supm α
n
m = αn and (Sαn){m} is a αnm uniform family. Since for every

m ∈ ω we have that

(Sα){m} =
⋃
n≤m

(Sαn){m} � (ω \m)

it follows from Proposition 2.10 (e) that (Sα){m} is a βm := maxn≤m α
n
m-uniform family on ω/m.

It is easy to see that (βm)m is increasing and satisfies that supm βm = ωα. (b) is proved by a

simple inductive argument. �

Definition 2.17. Let S be the collection of all hereditary, spreading uniform families on ω.

Proposition 2.18. For every α < ω1 there is a hereditary, spreading α-uniform family on ω.

Proof. Let (Sα)α<ω be a Schreier sequence, and given a countable ordinal α with normal

Cantor form α =
∑

i≤k ω
αi · ni we define

Fα := (Sα0 ⊗ [ω]≤n0)⊕ · · · ⊕ (Sαk ⊗ [ω]≤nk).

Then each Fα is a hereditary, spreading α-uniform family on ω. �

We present now the concept of basis, that intends to generalize the notion of uniform family

on ω, and the multiplication ⊗ between them. It seems that there is no canonical definition for

the multiplication F × G of two families on an index set I. However, when G is a family on ω

we can define it quite naturally as follows.

Definition 2.19. Let F be a homogeneous family on chains of a partial ordering P, and let H
be a homogeneous family on ω. We say that a family G on chains of P is a multiplication of F
by H when

(M.1) G is homogeneous and ι(srkP(G)) = ι(srkP(F) · srk(H)).

(M.2) Every sequence (sn)n<ω in F such that
⋃
n sn is a chain of P has an infinite subsequence

(tn)n such that for every x ∈ H one has that
⋃
n∈x tn ∈ G.

Example 2.20. (i) F �P n is a multiplication of any homogeneous family F by [ω]≤n.

(ii) If P does not have any infinite chain, then any homogeneous family F on chains of P has

finite rank and given any homogeneous family H on ω, G = F satisfies (M.2) .

Notice that always F ⊆ G for every multiplication G of F by any family H 6= {∅}. When

the family F = [κ]≤1 and H is the Schreier family S, then the existence of a family G satisfying

(M.2) is equivalent to κ not being ω-Erdős (see [LoTo2], and the remarks after Theorem 4.1).

Let us use the following notation. Given a collection C of families on chains of P and α < ω1

let Cα := {F ∈ C : srkP(F) = α}.



HOMOGENEOUS FAMILIES ON TREES AND SUBSYMMETRIC BASIC SEQUENCES 11

Definition 2.21 (Basis of homogeneous families). Let P = (P,<) be a partial ordering with an

infinite chain. A basis (of homogeneous families) on chains of P is a pair (B,×) such that:

(B.1) B consists of homogeneous families on chains of P, it contains all cubes, and Bα 6= ∅ for

all ω ≤ α < ω1.

(B.2) B is closed under ∪ and tP , and if F ⊆ G ∈ B is such that ι(srkP(F)) = ι(srkP(G))

then F ∈ B.

(B.3) × : B×S→ B is such that for every F ∈ B and every H ∈ S one has that F ×H is a

multiplication of F by H.

When P = (P,<) is a total ordering, we simply say that B is a basis of families on P .

Proposition 2.22. There is basis of families on ω.

Proof. Let B be the collection of all F homogeneous families on ω such that ι(srk(F)) =

ι(srk(〈F〉spr), where 〈F〉spr is the set of all {n1 < · · · < nk} such that there is {m1, · · · ,mk} ∈ F
such that mi ≤ ni for all i = 1, · · · , k. Given F ∈ B and H ∈ S, let

F ×ω H := (F ⊗H)⊕F .

It is routine to check all properties of basis, except (M.2): Suppose that (sk)k is a sequence in F .

Let (tk)k<ω be a ∆-subsequence with root t ∈ F such that t < tk\t < tk+1\t for every k. Suppose

that x ∈ H. Then {min tk \ t}k∈x ∈ H, because H is spreading. Hence,
⋃
k∈x(tk \ t) ∈ F ⊗ H.

Since t <
⋃
k∈x(tk \ t), it follows that

⋃
k∈x tk = t ∪

⋃
k∈x(tk \ t) ∈ (F ⊗ G)⊕F . �

The following gives a characterization of the existence of a basis.

Proposition 2.23. A partial ordering P with an infinite chain has a basis if and only if there

is a pair (B,×), called pseudo-basis such that (B.3) holds for (B,×), and

(B.1’) B consists of homogeneous families on chains of P, it contains all cubes, and for every

ω ≤ α < ω1 there is F ∈ B such that α ≤ srkP(F) ≤ ι(α).

(B.2’) B is closed under ∪ and tP .

Proof. Suppose that (B,×) satisfies (B.1’), (B.2’) and (B.3). Let C = {pn}n be an infinite

chain of P, of order type ω. Fix a basis (B(ω),×ω) of families on ω. For each G ∈ B(ω), let

G := {{pn}n∈x : x ∈ G}. Then G is homeomorphic to G. Given F ∈ B, let F̃ := {s ∈ F :

s ∩ C = ∅}. Now let B′ be the collection of all unions F̃ ∪ G such that F ∈ B, G ∈ S,

and finally let B′′ be the collection of all P-homogeneous families F such that there is some

G ∈ B′ with F ⊆ G and ι(srkP(F)) = ι(srkP(G)). For each F ∈ B′′ we choose GF ∈ B and

HF ∈ B(ω) such that F ⊆ G̃F ∪HF ∈ B′ and ι(srkP(F)) = ι(srkP(G̃F ∪HF )). Then we define

F ×′H := (G̃F ×H)∪ (HF ×ω H). It is easy to check that (B′′,×′) is a basis on chains of P. �

2.2. Ranks and uniform families. The objective of this part is mainly to present two results.

The first one, Proposition 2.25, states that the fact that K(α) 6= ∅ for a compact metrizable space

K can be coded by a nice mapping f : B → K defined on an α-uniform family B. The second

one, Proposition 2.27, gives an upper bound for the rank of a family of finite sets, and its proof

uses the Ramsey property of uniform barriers.
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Definition 2.24. Given families F on ω and G on a partial ordering P, we say that a mapping

f : F → G between two families is (v,⊆)-increasing when s v t implies that f(s) ⊆ f(t).

The fact that a point is in a certain derivative of a compact metrizable space K can be

witnessed by a continuous and 1-1 mapping from a uniform family into K.

Proposition 2.25. Suppose that K is a compact metrizable space and let α < ω1. Then a point

p ∈ K is such that p ∈ K(α) if and only if for every α-uniform family B there is a 1-1 and

continuous function θ : B → K such that θ(∅) = p. In case K = F is a compact family on

I, p ∈ F (α) if and only if for every α-uniform family B there is a 1-1 and continuous mapping

θ : B → F such that p = θ(∅) and such that θ is (v,⊆)-increasing.

Proof. Given p ∈ K and ε > 0, let B(p, ε) be the open ball around p and radius ε. The proof

is by induction on α. Suppose that p ∈ K(α) and let B be a α-uniform family on M and C the

collection of v-maximal subsets in B. Without loss of generality we assume that M = ω. Let

αn < α be such that C{n} is αn-uniform on ω/n. Choose (pn)n in K(αn) converging non-trivially

to p such that there are mutually disjoint closed balls Bn around pn with diam(Bn) ↓n 0. Since

each pn ∈ K(αn) it follows by inductive hypothesis that for each n there is a 1-1 and continuous

function

θn : B{n} = C{n} → Bn

with θn(∅) = pn. Let θ : B → K be defined by θ(∅) = p, θ(s) := θmin s(s\{min s}), for s 6= ∅. By

the choice of the balls Bn it follows that θ is 1-1. We verify now that θ is continuous: Suppose

that (sk)k tends to s. Suppose first that s 6= ∅, let n := min s. Then there is k0 such that for every

k ≥ k0 one has that min sk = n. It follows that for every k ≥ k0, θ(sk) = θn(tk) and θ(s) = θn(t),

where tk := sk \ {n} and t := s \ {n}. Hence, limk→∞ θ(sk) = limk→∞ θn(tk) = θn(t) = θ(s).

Suppose now that s = ∅. Fix γ > 0 and suppose that d(p, θ(sk)) ≥ γ for every k belonging to an

infinite subset M ⊆ ω. Without loss of generality, we may assume that (sk)k∈M is a ∆-system

with empty root such that sk < sl if k < l in M . Since θ(sk) ∈ Bnk , for nk := min sk for every

k, and since (nk)k∈M tends to infinity, (pnk)k∈M converges to p, so that there is some k such

that d(p, θ(sk)) < γ, a contradiction. The reverse implication is trivial.

Now, if F is a compact family on I and α is a countable ordinal, then p ∈ F (α) if and only if

p ∈ (F � I0)α for some countable subset I0. Now we can apply the first part of the Proposition

to the compact and metrizable K = F � I0 and find, recursively on α a 1-1 and continuous

θ : B → F � I0 which in addition is (v,⊆)-increasing. �

The following technical result will be useful to prove result on upper bounds of ranks.

Lemma 2.26. Suppose that B and C are uniform families, F is a compact family on some index

set I with rk(F) < rk(C). Suppose that λ : B ⊗ C → F is (v,⊆)-increasing. Then there is a

finite subset x of ω and some infinite set x < M such that {x} t B � M ⊆ B ⊗ C and such

that λ is constant on {x} t (B � M)max. If in addition λ is continuous, then λ is constant on

{x} t (B �M).

Proof. Let B0 := Bmax, C0 := Cmax, and for each s ∈ B0⊗C0, let s =
⋃
i≤ks si be the canonical

decomposition of s; i.e. si < si+1 are in B0 and {min si}i≤ks ∈ C0. A use of the Ramsey property

of uniform fronts gives an infinite subset M ⊆ ω such that one of the following conditions hold.
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(a) For every s0 < · · · < sk−1 in B0 �M with {min si}i<k ∈ C �M \ C0 and every sk−1 < x <

y ∈ B0 �M one has that λ(
⋃
i<k si ∪ x) 6= λ(

⋃
i<k si ∪ y).

(b) For every s =
⋃
i≤ks si ∈ B0 �M ⊗ C0 �M there is k < ks such that for every sk−1 < x <

y ∈ B0 �M one has that λ(
⋃
i<k si ∪ x) = λ(

⋃
i<k si ∪ y).

Suppose that (a) holds. Let (si)i<ω be a sequence in B0 �M such that si < si+1 for every i. Let

f : C �M → F be defined by f(x) := λ(
⋃
i∈x si).

Claim 2.26.1. There is f(∅) ⊆ z ∈ F (rk(C)) and consequently, rk(F) ≥ rk(C).

Proof of Claim: This is done by induction on the rank α of C. For each m ∈ M , Cm is αm-

uniform on Mm := M/sm, and satisfies (a), where αm ↑ α if α is limit, and αm = α− if α is

successor. So, if we define fm : Cm � Mm → F , fm(x) = f(sm ∪
⋃
i∈x si), then we can find

fm(∅) ⊆ zm ∈ F (αm) for every m. By (a), it follows that (zm)m are pairwise different. Since F is

compact, there is a subsequence (zm)m∈N which is a non-trivial ∆-system, with root z ∈ F (α).

Since θ is (v,⊆)-increasing, then so is f . Hence f(∅) ⊆ f(sm) ⊆ zm, so f(∅) ⊆ z. �

Suppose that (b) holds. Fix s =
⋃
i≤ks si ∈ B0 � M ⊗ C0 � M . Let k < ks be such that,

setting x :=
⋃
i<k si, then λ(x ∪ y) = λ(x ∪ z) for every x < y < z for every y, z ∈ B0 � M . We

claim that λ(x ∪ y) = λ(x ∪ z) for every x < y, z ∈ B0 � M . Find y, z < w ∈ B0 � M . Then

λ(x ∪ y) = λ(x ∪ w) = λ(x ∪ z).
If we assume that λ is in addition continuous, since B � M is scattered, the set of isolated

points is dense. Hence {x} t (B � M)max is dense in {x} t (B � M). Since λ is constant on

{x} t (B �M)max, it is constant on {x} t (B �M). �

We obtain the following upper estimation on ranks.

Proposition 2.27. Suppose that F and G are countable ranked families and suppose that λ :

F → G is ⊆-increasing. Then

rk(F) < sup
t∈G

(rk({s ∈ F : λ(s) ⊆ t}) + 1) · (rk(G) + 1).

If in addition λ is continuous, then we obtain that

rk(F) < sup
t∈G

(rk({s ∈ F : λ(s) = t}) + 1) · (rk(G) + 1).

Proof. Let α := supt∈G(rk({s ∈ F : λ(s) ⊆ t})+1), β := rk(G), and suppose that F (α·(β+1)) 6=
∅. Let B and C be α and β + 1 uniform families, let f : B ⊗ C → F be a 1-1, continuous and

(v,⊆)-increasing function, and let θ := λ◦f . By hypothesis, θ is (v,⊆)-increasing, so it follows

from Lemma 2.26 that there are x ⊂ ω finite and x < M infinite such that {x}tB �M ⊆ B⊗C
and such that θ is constant on {x}t(B �M)max with value t ∈ G. This implies that the mapping

θ0(y) := θ(x ∪ y) for every y ∈ B � M is a 1-1 and continuous mapping θ0 : B � M → {s ∈ F :

λ(s) ⊆ t}, hence rk({s ∈ F : λ(s) ⊆ t}) ≥ α, and this is impossible.

Suppose that in addition λ is continuous. Then the desired result is proved similarly by

changing the definition of α with α := supt∈G(rk({s ∈ F : λ(s) = t}) + 1), and then using the

particular case of continuous functions in Lemma 2.26. �
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3. Bases of families on trees

A tree T is determined by its chains and antichains. Given two families A and C on chains

and on antichains of a tree T , respectively, one can define a third family A�T C consisting of all

subsets of T generating a subtree whose antichains are in A and its chains are in C. In general,

the antichains of a tree are difficult to understand; on the contrary, the particular antichains

consisting of immediate successors of a node are typically simpler (e.g. in a complete binary

tree), and it makes more sense to define A�T C in terms of these particular simpler antichains.

This operation on families will allow us, for example, to step up from a basis of families on a

cardinal number κ to a basis on its cardinal exponential 2κ, and more.

Recall that a (set-theoretical) tree T = (T,<) is a set of nodes T with a partial order < such

that {u < t : u ∈ T} is well ordered for every t ∈ T . A rooted tree is a tree with a minimal

element 0, called the root of T . All trees we use are rooted, so that whenever we say tree, we

mean a rooted tree. Trees are a sort of lexicographical product of two orderings, the one defining

the tree order < and the following. Given t ≤ u in T , let Ist(u) be the immediate successor of t

which is below u, that is, Ist(u) be the smallest v ≤ u such that t < v. Then, given t ∈ T and

x ⊆ T , let

Ist”x := {Ist(u) : t < u ∈ x}.
For simplicity, we write Ist for Ist”(T ), that is, the set of all immediate successors of t in T . For

every t ∈ T , fix a total ordering <t of Ist. Let <a be the partial ordering in T defined by t <a u

if and only if there is v such that t, u ∈ Isv and t <v u. Hence, a chain with respect to <a is a set

of immediate successors of a fixed node. Notice that both < and <a can be extended to a total

ordering ≺ on T by defining t0 ≺ t1 if and only if t0 < t1, or if t0 and t1 are <-incomparable

and Ist0∧t1(t0) <a Ist0∧t1(t1). We are now able to state the main result of this section.

Theorem 3.1. The following are equivalent for an infinite tree T .

(a) There is a basis of families on T .

(b) There is a basis of families on chains of (T,<), if there is an infinite <-chain, and there

is a basis of families of families on chains of <a, if there is an infinite <a-chain.

Notice that it follows from König’s Lemma that when T is infinite, either there is a <-chain

or an infinite <a-chain. We pass now to recall well-known combinatorial principles on trees. Let

T = (T,<) be a complete rooted tree with root 0. Recall that a chain of a tree is a totally

ordered subset of it. Given t ≤ u ∈ T , let

[t, u] := {v ∈ T : t ≤ v ≤ u}.

Similarly, one defines the corresponding (semi) open intervals. Given x ⊆ T , let x≤t := x∩ [0, t],

x≥t := {u ∈ x : t ≤ u}, and let x<t and x>t be their open analogues.

Given t, u ∈ T , let

t ∧ u := max(T≤t ∩ T≤u),

which is well defined by the completeness of T . We say that s ⊆ T is ∧-closed when t∧u ∈ s for

every t, u ∈ s. Given s ⊆ T , let 〈s〉 be the subtree generated by s, that is, the minimal ∧-closed

subset of T containing s. We say that a subset τ ⊆ T is a subtree of T when 〈τ〉 = τ .
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Definition 3.2. Given a family F on T , let

〈F〉 := {x ⊆ 〈s〉 : s ∈ F}.

The following easy fact will be helpful:

Proposition 3.3. For every finite set s ⊆ T and every t ∈ T , we have that

〈s〉 = {t0 ∧ t1 : t0, t1 ∈ s},

Ist”〈s〉 = Ist”s.

In particular, 〈s〉 is finite whenever s is finite. In general, if (si)i∈I is a family of subsets of T ,

then

〈
⋃
i∈I

si〉 =
⋃

{i,j}∈[I]2

〈si ∪ sj〉.

Finally, given s ⊆ T , let

(s)max := {maximal elements of s}.

Definition 3.4. Let s = (tk)k∈ω be a sequence of nodes in T .

(a) s is called a comb if s is an antichain such that

tk ∧ tl = tk ∧ tm and tk ∧ tl < tl ∧ tm for every k < l < m.

The chain (uk)k, uk = tk ∧ tl (k < l) is called the ∧-chain of the comb (tk)k.

u1

u2

u3

t3

t2

t1

Figure 1. A comb (tk)k∈ω and its corresponding ∧-chain (uk)k.

(b) s is called a fan if

tk ∧ tl = tk′ ∧ tl′ for every k 6= l and k′ 6= l′.

The node u := tk ∧ tl (k 6= l) is called the ∧-root of the fan (tk)k.

u

· · ·
tk

· · ·
t2t1

Figure 2. A fan (tk)k∈ω and its corresponding ∧-root u.
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Proposition 3.5. Every infinite subset of T contains either an infinite chain, or an infinite

comb, or an infinite fan.

Proof. Fix a sequence (tk)k∈ω such that tk 6= tl for k 6= l. By the Ramsey Theorem, there is

M0 such that either (tk)k∈M0 is a chain or an antichain.

Claim 3.5.1. If (tk)k∈M0 is an antichain, then there is M1 ⊆M0 such that tk ∧ tl = tk ∧ tm for

every k < l < m in M1.

Proof of Claim: If (tk)k∈M0 is an antichain and since there are no infinite decreasing chains in

T , by the Ramsey Theorem, there is M1 ⊆M0 such that

(a1) either tk ∧ tl = tk ∧ tm for ever k < l < m in M1,

(b1) or else tk ∧ tl < tk ∧ tm for ever k < l < m in M1.

Let us see that (b1) cannot happen: Fix k0 < k1 < k2 < k3 in M1. Then

tk0 ∧ tk1 ∧ tki = (tk0 ∧ tk1) ∧ (tk0 ∧ tki) = tk0 ∧ tk1 ,

for i = 2, 3. On the other hand,

tk0 ∧ tk1 = tk0 ∧ tk1 ∧ tki = (tk0 ∧ tki) ∧ (tk1 ∧ tki) ∈ {tk0 ∧ tki , tk1 ∧ tki},

for i = 2, 3; so either tk0 ∧ tk1 = tk0 ∧ tki for some i = 2, 3, or else tk1 ∧ tk2 = tk0 ∧ tk1 = tk1 ∧ tk3 .

Both cases are impossible since they contradict (b1). �

For each k ∈ M1, let uk := tk ∧ tl for some (all) l > k in M1. Yet again, since there are no

infinite decreasing chains in T , by the Ramsey Theorem, there is M2 ⊆M1 such that

(a2) either uk = ul = u for every k < l in M2,

(b2) or uk < ul for every k < l in M2.

If (a2) holds, then (tk)k∈M2 is a fan with ∧-root u. If (b2) holds, then (tk)k∈M2 is a comb with

∧-chain (uk)k∈M2 . �

Corollary 3.6. Every infinite subtree of T contains either an infinite chain or an infinite fan.

Consequently,

(a) If A ⊆ T is an infinite accumulation point of a sequence of subtrees of T , then A is a

subtree of T that contains either an infinite chain or an infinite fan.

(b) For every family F on T with countable rank one has that

srk(F) = inf{rk(F � X) : X is an infinite chain, comb or fan}.

�

Proposition 3.7. Suppose that τ0, τ1 are subtrees of T . Then

Cha � 〈τ0 ∪ τ1〉 =(Cha � τ0) ta (Cha � τ1), (3)

Chc � 〈τ0 ∪ τ1〉 ⊆(Chc � τ0) tc (Chc � τ1) tc [T ]≤1. (4)

Proof. (3) follows from the fact that Ist”(〈s〉) = Ist”(s). For (4), let c be a chain of 〈τ0 ∪ τ1〉,
and suppose that t0 < t1 belong to c\(τ0∪τ1). Then t0 = u0∧v0 and t1 = u1∧v1 with u0, u1 ∈ τ0

and v0, v1 ∈ τ1. Then, either u0 ∧ u1 = t0 or v0 ∧ v1 = t0, and both are impossible. �
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We introduce the operation �T .

Definition 3.8 (The operation �T ). Let Cha and Chc be the collection of all <a-chains and of

all <-chains of T , respectively. Given two families A and C on T , let A �T C be the family of

all finite subsets s of T such that

(a) 〈s〉 ∩ Cha ⊆ A; that is, for every t ∈ T , one has that Ist”〈s〉 ∈ A.

(b) 〈s〉 ∩ Chc ⊆ C; that is, every chain in 〈s〉 belongs to C.

Remark 3.9. (i) The family A�T C is closed under generated subtrees, that is, 〈s〉 ∈ A�T C
if s ∈ A�T C.

(ii) When [Ist]
≤1 ⊆ A for all t ∈ T the condition (a) above is equivalent to

(a’) For every t ∈ 〈s〉, one has that Ist”(s) ∈ A.

(iii) (A�T C) ∩ Chc = C ∩ Chc, and when [T ]≤2
c ⊆ C, then (A�T C) ∩ Cha = A ∩ Cha.

We introduce some notation. We are going to use a and c to refer to <a and <. For example,

ta, srka, tc, srkc

denote t(T,<a), srk(T,<a), t(T,<) and srk(T,<) respectively.

Proposition 3.10. Let A and C be two families on chains of (T,<a) and of (T,<), respectively.

(a) If A and C are compact, hereditary, then so is A�T C.

(b) srk(A�T C) ≤ min{srka(A), srkc(C)} when Cha and Chc are non-compact.

(c) Suppose that [T ]≤2
a ⊆ A and that [T ]≤2

c ⊆ C. Then

srk(A�T (C tc [T ]≤1) =


srka(A) if Chc ⊆ [T ]<ω

srkc(C) if Cha ⊆ [T ]<ω

min{srka(A), srkc(C)},min{srka(A), srkc(C) + 1} otherwise.

Proof. Set F := A �T C. (a): Hereditariness of F is trivial. Suppose that s is an infinite

subset of T which is the limit of a sequence (τk)k in F . Since F is, by definition, ∧-closed, we

may assume without loss of generality that each τk is a subtree. It follows that s is a subtree

of T as well. Hence, by Corollary 3.6, s contains either an infinite chain C, or an infinite fan

F . In the first case, τk ∩ F ∈ C for every k and τk ∩ C →k C, which is impossible since C is

compact. If s contains an infinite fan F with ∧-root u, then Isu”(F ) is an accumulation point

of the sequence (Isu”(sk))k in A, which is impossible by the compactness of A.

(b) is trivial. (c): Set F := A �T (C tc [T ]≤1). Clearly srk(F) ≤ srk(C). Since [T ]≤2
c ⊆ C,

we have that srk(F) ≤ srk(A). Now we use Corollary 3.6 to compute srk(F). If X is an

infinite chain then clearly rk(F � X) ≥ srk(C) + 1. Suppose that X = {tn}n<ω is an infinite

fan with ∧-root u. For each n < ω, let vn := Isu(tn). Since for every x ⊆ ω one has that

〈{tn}n∈x〉 = {tn}n∈x ∪ {u}, it follows that the maximal chains of 〈{tn}n∈x〉 have cardinality 2,

so, they belong to C, by hypothesis. This means that {tn}n∈x ∈ F if and only if {vn}n∈x ∈ A,

and consequently rk(F � X) = rk(A � {vn}n) ≥ srka(A). Finally, suppose that X = {tn}n is

a comb with ∧-chain C := {uk}k. In one hand, given {tk}k∈x ∈ F , we have by definition that

{uk}k∈x ∈ C tc [T ]≤1. Hence, rk(F � X) ≤ rk(C � C) + 1. On the other hand, given {uk}k∈x ∈ C



HOMOGENEOUS FAMILIES ON TREES AND SUBSYMMETRIC BASIC SEQUENCES 18

we know that {uk}k∈x ∪ {tp} ∈ C tc [T ]≤1, where p := maxx. Since

〈{tk}k∈x〉 = {tk, uk}k∈x

it follows that 〈{tk}k∈x〉 ∈ A �T (C tc [T ]≤1) whenever {uk}k∈x ∈ C. So, {uk}k∈x ∈ C 7→
{tk}k∈x ∈ F is continuous and 1-1. Hence rk(F � X) ≥ srkc(C). �

Definition 3.11 (The Basis on T ). Let T be an infinite tree, and suppose that for (T,<a
) and (T,<) either they have a basis of families on their chains or they do not have infi-

nite chains. Let (Ba,×a) be either a basis of families on chains of (T,<a) or Ba := {A :

A is hereditary and A ⊆ Cha} and A×a H := A for every A ∈ Ba and H ∈ S, if there are no

infinite <a-chains. We define similarly (Bc,×c). Let B be the collection of all families F on T

such that

(BT.1) F , 〈F〉 are homogeneous and rk(〈F〉) < ι(srk(F)).

(BT.2) 〈F〉 ∩ Cha ∈ Ba and 〈F〉 ∩ Chc ∈ Bc.

Given F ∈ B and H ∈ S, let

(BT.3) F×H := ((A×aH)ta [T ]≤1)�T ((C×cH)�c5) where A := 〈F〉∩Cha and C := 〈F〉∩Chc.

Notice also that since T is infinite it follows from König’s Lemma that either there is an

infinite <a-chain or an infinite <-chain. Notice also that there is no infinite <a-chain if and only

if [T ]<ωa is a compact and hereditary family, and similarly for <.

Proposition 3.12. Suppose that F ∈ B. Then

(a) ι(srk(F)) = ι(srk(〈F〉)) = ι(srka(F ∩ Cha)) = ι(srka(〈F〉 ∩ Cha)) = ι(srkc(F ∩ Chc)) =

ι(srkc(〈F〉 ∩ Chc)) if both Cha and Chc are not compact.

(b) ι(srk(F)) = ι(srk(〈F〉)) = ι(srkc(F ∩ Chc)) = ι(srkc(〈F〉 ∩ Chc)) if Cha is compact.

(c) ι(srk(F)) = ι(srk(〈F〉)) = ι(srka(F ∩ Cha)) = ι(srka(〈F〉 ∩ Cha)) if Chc is compact.

Proof. We only prove (a); (b) and (c) have a similar proof. We know that

srk(F) ≤ srk(〈F〉) ≤ rk(〈F〉) < ι(srk(F)),

by definition of B. This means that ι(srk(F)) = ι(srk(〈F〉)). Similarly,

srka(F ∩ Cha) ≤ srka(〈F〉 ∩ Cha) ≤ rk(〈F〉) < ι(srk(F)) ≤ ι(srka(F ∩ Cha)).

So, ι(srka(F ∩ Cha)) = ι(srka(〈F〉 ∩ Cha)). On the other hand,

srk(F) ≤ srka(F ∩ Cha) ≤ rk(F) < ι(srk(F)),

hence ι(srk(F)) = ι(srka(F ∩ Cha)). Similarly one proves that ι(srk(F)) = ι(srkc(F ∩ Chc)) =

ι(srkc(〈F〉 ∩ Chc)). �

The next to results are the keys to show Theorem 3.1.

Lemma 3.13. If rk(A), rk(C) < λ with λ exp-indecomposable, then rk(A�T C) < λ.

Lemma 3.14. × is a multiplication.
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The upper bound for the rank of A �T C in terms of the ranks of A and C is treated in the

next Subsection 3.1, and the multiplication × is studied in the Subsection 3.2, where we find

the canonical form of a ∆-sequence of finite subtrees of T .

Proposition 3.15. Let A ∈ Ba and C ∈ Bc be such that [T ]≤2
a ⊆ A and [T ]≤2

c ⊆ C. In addition,

suppose that ι(srk(A)) = ι(srk(C)) if Cha and Chc are not compact. Then A�T C ∈ B.

Proof. Fix A and C as in the statement, and set F := A �T C. Then 〈F〉 = F . Suppose

that Cha,Chc are not compact. We know by Proposition 3.10 that ι(srk(F)) = ι(srka(A)) =

ι(srkc(C)) = λ. Since A and C are homogeneous, it follows that rk(A), rk(C) < λ. By Lemma

3.13, we obtain that rk(F) < λ = ι(srk(F)). By Remark 3.9, F ∩Cha = A ∈ Ba and F ∩Chc =

C ∈ Bc, so F ∈ B. The cases when Cha or Chc is compact are proved in a similar way. �

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. Let us see that (B,×) defined on Definition 3.11 is a basis of families

on T . (B.1): Notice that if τ is a finite tree, then

#τ ≤ a(τ)c(τ)+1 − 1

a(τ)− 1
(5)

where a(τ) and c(τ) are the maximal cardinality of a <a-chain and a <-chain, respectively.

This means that if F = [T ]≤n, then 〈F〉 ⊆ [T ]n
n+1

. Hence, 〈F〉 is homogeneous and srk(F) =

srk(〈F〉) = ω. It is easy to see that (BT.2) holds for F = [T ]≤n. Now let ω ≤ α < ω1.

Suppose that Cha,Chc 6⊆ [T ]<ω. Let A0 ∈ Ba
α, and C0 ∈ Bc

α. Then A := A0 ∪ [T ]≤2 ∈ Ba
α and

C := C0tc [T ]≤1 ∈ Bc. We can apply Proposition 3.10 to F := A�T C to conclude that F ∈ Bα.

Suppose that Cha is compact. Let C ∈ Bc
α, and set

F := C ∪ {s ⊆ {ti}i<n : {ti}i<n is a finite comb with chain {ui}i<n ∈ C}.

Notice that 〈F〉 = F ⊆ [T ]≤2
a �T (Ctc [T ]≤1), so it follows that rk(F) < ι(srka(C)) = ι(srk(F)) =

α. This means that F is homogeneous. On the other hand, C ⊆ F ∩ Chc ⊆ C tc [T ]≤1, so

F ∩ Chc ∈ Bc. So, F ∈ Bα. Finally, suppose that Chc is compact. Let A ∈ Ba
α, and set

F := A�T [T ]≤2
c . It is easy to see that F ∈ Bα.

(B.2): Suppose that F ,G ∈ B. It is easy to see that F ∪ G ∈ B. Let us see that F t G ∈ B.

Then F t G is homogeneous, with infinite rank. On the other hand,

〈F t G〉 ⊆ 〈〈F〉 t 〈G〉〉 ⊆ (〈F〉 ta 〈G〉)�T (〈F〉 tc 〈G〉 tc [T ]≤1),

by Proposition 3.7. Now,

rk(〈F 〉 ta 〈G〉) ≤rk(〈F 〉)+̇rk(〈G〉) < max{ι(srk(F)), ι(srk(G))} ≤ ι(srk(F t G))

rk(〈F 〉 tc 〈G〉 tc [T ]≤1) ≤rk(〈F 〉)+̇rk(〈G〉) + 1 < max{ι(srk(F)), ι(srk(G))} ≤ ι(srk(F t G)).

From this and Lemma 3.13 we obtain that

rk(〈F t G〉) < ι(srk(F t G))
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On the other hand, by Proposition 3.7 and Remark 3.9 (iii) we know that

〈F t G〉 ∩ Cha =(F ∩ Cha) ta (G ∩ Cha) ∈ Ba

〈F t G〉 ∩ Chc ⊆(〈F〉 ∩ Chc) tc (〈G〉 ∩ Chc) tc [T ]≤1 ∈ Bc.

Since

ι(srk(〈F t G〉 ∩ Chc)) = max{ι(srkc(F ∩ Chc)), ι(srkc(G ∩ Chc))} =

=ι(srkc((〈F〉 ∩ Chc) tc (〈G〉 ∩ Chc) tc [T ]≤1))

it follows from the property (B.2) of Bc that 〈F t G〉 ∩ Chc ∈ Bc, so F t G ∈ B.

Suppose that F ⊆ G ∈ B is a homogeneous family such that ι(srk(F)) = ι(srk(G)). Then,

〈F〉 ⊆ 〈G〉, so,

rk(〈F〉) ≤ rk(〈G〉) < ι(srk(G)) = ι(srk(F)) ≤ ι(srk(〈F〉)). (6)

So, 〈F〉 is homogeneous. Now, 〈F〉 ∩ Cha ⊆ 〈G〉 ∩ Cha ∈ Ba and 〈F〉 ∩ Chc ⊆ 〈G〉 ∩ Chc ∈ Bc.

Suppose that Cha and Chc are both non-compact. Then, srka(〈F〉 ∩ Cha) ≥ srk(〈F〉). Hence,

from (6) we obtain that

srka(〈F 〉 ∩ Cha) ≤ srk(〈G〉 ∩ Cha) ≤ rk(〈G〉) < ι(srk(〈F〉)) ≤ ι(srka(〈F〉 ∩ Cha)).

This means that ι(srka(〈F〉)) = ι(srka(〈G〉)), and consequently, 〈F〉 ∩ Cha ∈ Ba. Similarly,

〈F〉 ∩ Chc ∈ Bc, hence F ∈ B. The cases when Cha or Chc are compact are proved similarly.

(B.3) is the content of Lemma 3.14. �

3.1. The operation �T and ranks. We compute an upper bound of the rank of the family

A�T C in terms of the ranks of A and C, respectively. Fix a tree T , a compact and hereditary

family C on chains of T and a compact and hereditary family on immediate successors of nodes

of T . As we have observed in (5) for finite trees, it is natural to expect an upper bound of the

rank of A�T C by an exponential-like function of the rank of A and the rank of C.

Definition 3.16. Given a countable ordinal number α, we define a function fα : ω1 → ω1 as

follows:

fα(0) :=1

fα(ξ + 1) :=fα(ξ) · (max{α, ξ} · ω)

fα(ξ) := sup
η<ξ

fα(η), when ξ is limit.

Remark 3.17. (a) fα is a continuous strictly increasing mapping such that fα(ξ) is sum-

indecomposable for every α and ξ.

(b) fα(ξ) ≥ (α · ω)ξ always, and if ξ ≤ α then fα(ξ) = (α · ω)ξ.

(c) fβ(ξ) < α for every β, ξ < α if and only if α is exp-indecomposable: Suppose that α

is closed under f·(·). Let β, ξ < α. Then βξ ≤ fβ(ξ) < α. Suppose that α is exp-

indecomposable. Let β, ξ < α. Since f·(·) is increasing in both variables, and since α is

product-indecomposable, w.l.o.g. we assume that β is sum-indecomposable, i.e. β = ωβ0

with ξ ≤ β < α. Then,

fβ(ξ) = (β · ω)ξ = ω(β0+1)·ξ < ωα = α.
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Lemma 3.13 follows from Remark 3.17 (c) and the following.

Lemma 3.18. rk(A�T C) < frk(A)+1(rk(C) + 1).

Definition 3.19. Given a subtree U of T with root 0, let

stem(U) := {t ∈ U : every u ∈ U is comparable with t}.

Let (A�T C)T be the subset of A�T C consisting of subtrees of T .

Notice that stem(U) is a non-empty chain in U , because 0 ∈ stem(U).

Proposition 3.20. For every countable ordinal α one has that x ∈ (A �T C)(α) if and only if

there is some subtree y of T containing x such that y ∈ ((A�T C)T )(α).

Proof. First of all, by definition x ∈ A �T C if and only if 〈x〉 ∈ A �T C. Also, since A �T C
is hereditary, it follows that each (A �T C)(α) is also hereditary. This proves that if x ⊆ y ∈
((A �T C)T )(α), then x ∈ (A �T C)(α). Now we prove that if x ∈ (A �T C)(α) then there is

there is a subtree x ⊆ y on T belonging to (A �T C)(α) by induction on α. The case α = 0 is

treated above. Suppose that α is limit, and let (αn)n be an increasing sequence with supremum

α. By inductive hypothesis, for every n there is some subtree yn of T such that x ⊆ yn and such

that yn ∈ ((A �T C)T )(αn). By compactness, there is an infinite set M such that (yn)n∈M is a

∆-sequence with root y. A limit of subtrees is a subtree, hence y is a subtree that contains x

and y ∈
⋂
n∈M ((A�T C)T )(αn), so y ∈ ((A�T C)T )(α). Suppose that x ∈ (A�T C)(α+1). Choose

a non-trivial ∆-sequence (xn)n in (A �T C)(α) with limit x, and for each n choose a subtree

yn of T containing xn and in ((A �T C)T )(α). Now find an infinite subset M ⊆ ω such that

(yn)n is a ∆-sequence with root y. Since xn ⊆ yn, it follows that (yn)n∈M is non-trivial, hence

x ∈ y ∈ ((A�T C)T )(α+1). �

Definition 3.21. Given a chain c of T , let (A�T C)c := {x ∈ (A�T C)T : c v stem(x)}.

To simplify the notation, let F := A�T C. Observe that Fc is always a compact family, and

that F∅ = F .

Lemma 3.22. Let c be a chain in C. If rk(Fc) ≥ frk(A)+1(ξ) then c ∈ C(ξ).

Proof. For each countable ordinal ξ, set βξ := frk(A)+1(ξ). Fix a chain c ∈ C such that

rk(Fc) ≥ βξ, and we have to prove that c ∈ C(ξ). The proof is by induction on ξ. The case ξ = 0

or limit are trivial. Suppose that ξ = η + 1. Since C is compact, we can assume without loss of

generality that c is maximal such that rk(Fc) ≥ βξ, i.e.

if c  c′ ∈ C, then rk(Fc′) < βξ. (7)

When c 6= ∅, let Let tc := max c.

G :={x ∈ Fc : Istc”(x) ⊆ x}
H :={x ∈ Fc : x ∩ Istc = ∅}.

It is easy to see that both G and H are compact, and since subtrees are closed under ∧is one

has that

Fc = G ∪ H.
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Since βξ is sum-indecomposable, it follows that when c 6= ∅, then max{rk(G), rk(H)} ≥ βξ, so

we have the following two cases to consider.

Case 1. c 6= ∅ and rk(G) ≥ βξ. Let now

I :={u ∈ Istc : rk(Fc∪{u}) ≥ βη}
J :=Istc \ I
GI :={x ∈ G : Istc ∈ A � I}
GJ :={x ∈ G : Istc ∈ A � J}.

Clearly G ⊆ GI t GJ . So, there are two subcases to consider.

Subcase 1.1 rk(GI) ≥ βξ. Notice that I is finite because otherwise, for each u ∈ I we know by

inductive hypothesis that c ∪ {u} ∈ C(η), so c ∈ C(ξ). Since

GI ⊆
⋃
K⊆I

⊔
u∈K
Fc∪{u}

it follows that there is some u ∈ I such that Fc∪{u} has rank at least βξ, contradicting (7).

Subcase 1.2 rk(GJ) ≥ βξ. Let λ : GJ → A � J be defined by λ(x) := Istc(x). This mapping

is ⊆-increasing and since λ(x) = x ∩ Istc for every x ∈ GJ , it follows that λ is continuous. By

Proposition 2.25, the definition of frk(A)+1(·) we obtain that

βη · (rk(A) · ω) ≤ βξ ≤ GJ < sup
y∈A�J

(rk{x ∈ Gj : λ(x) = y}+ 1) · rk(A � J).

So there must be y ∈ A � J such that

rk{x ∈ GJ : λ(x) = y} ≥ βη.

We also have that

{x ∈ GJ : λ(x) = y} ⊆
⊔
u∈y
Fc∪{u}. (8)

Observe that y 6= ∅, because {x ∈ GJ : λ(x) = ∅} = {c} has rank 0. Hence, it follows from

(8) that there must be u ∈ y such that Fc∪{u} has rank at least βη, contradicting the fact that

u ∈ J .

Case 2. c 6= ∅ and rk(H) ≥ βξ, or c = ∅. Let H̃ = H if c 6= ∅, and let H̃ = F when c = ∅. Let

µ : H̃ → Cc be defined by µ(x) := {min(x \ c)} ∪ c when c  x and µ(c) := c. Since rk(H̃) ≥ βξ,
given a βξ-uniform family B, we can find f : B → H̃ continuous, 1-1 and (v,⊆)-increasing. Let

λ : B → Cc be defined for x ∈ B by

λ(x) :=
⋃
yvx

µ(f(y)).

Notice that λ(x) ∈ C and that λ is (v,⊆)-increasing. Moreover λ is continuous: Suppose

that xn →n x in B. W.l.o.g. we assume that (xn)n is a ∆-sequence with root x such that

xm \ x < xn \ x for every m < n and that λ(xn) →n d ∈ C. We have to prove that λ(x) = d.

Since x ∈ xn for every n, it follows that λ(x) ⊆ d. Now suppose that there is t ∈ d \ λ(x); by
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definition this would mean that t < min(λ(x) \ c); since d ⊆ f(x) we have that t ∈ f(x), but

then

min(f(x) \ c) ≤T t < min(
⋃
yvx

µ(f(y)) ≤T min(f(x) \ c)

which is impossible. For every x ∈ Bmax let ϕ(x) be the maximal initial part of x such that

λ(x) = λ(∅), and let M be an infinite subset of ω such that B0 := ϕ”(B � M) is a γ-uniform

family on M for some γ ≤ βξ.
Subcase 2.1. γ = βξ. Since c  λ(x) for every x 6= ∅ in B, and since B0 6= {∅}, it follows that

c  λ(x) = µ(∅) = c′. By the definition of B0 it follows that the restriction of f to B0 satisfies

that f(x) ∈ Fc′ . Consequently, rk(Fc′) ≥ γ = βξ, a contradiction with (7).

Subcase 2.2. γ < βξ. Let B1 and B2 be βη-uniform and ξ-uniform families on M , respectively.

Since by definition βξ ≥ βη · (ξ ·ω), it follows that γ, βη ·ξ < βξ. Since βξ is sum-indecomposable,

it follows that (βη · ξ) + γ < βξ. Hence, by the properties of the uniform families (Proposition

2.10) we obtain that there is N ⊆M such that

((B1 ⊗ B2)⊕ B0) � N ⊆ B.

Fix now x ∈ (B0 � N)max, set Nx := N/x, and λx : (B1 ⊗ B2) � Nx → Cc, λx(y) := λ(x ∪ y).

Since c /∈ C(ξ), it follows that rk(Cc) < ξ. Since λx is (v,⊆)-increasing and continuous, it

follows from Lemma 2.26 that there is some x < y finite and y < P infinite, y ∪ P ⊆ Nx, such

that {y} t B1 � P ⊆ (B1 ⊗ B2) � N and such that λx is constant on {y} t B1 � P with value

d = λ(x∪ y) ∈ Cc. Since B1 � P contains non-empty elements z, it follows that x @ x∪ y ∪ z, so

by the maximality of x,

c ⊆ λ(∅) = λ(x)  λ(x ∪ y ∪ z) = λ(x ∪ y).

On the other hand, the mapping f0 : B2 � P → Fd, f0(z) := f(x∪y∪z), witnesses that rk(Fd) ≥
βη, so by inductive hypothesis, d ∈ C(η). In this way we can find x < y0 < y1 < · · · < yn < · · ·
such that λ(x ∪ yn) ∈ C(η) and

c ⊆ λ(∅) = λ(x)  λ(x ∪ yn) (9)

for every n. Since λ is continuous and x∪yn →n x, it follows that λ(x∪yn)→n λ(x) = λ(∅) and

non-trivially, by (9). Hence, λ(∅) ∈ C(ξ), and so c ∈ C(ξ), because C is hereditary and c ⊆ λ(∅).
This is impossible. �

Proof of Lemma 3.18. Suppose otherwise that rk(A �T C) ≥ frk(A)+1(rk(C) + 1). Then by

Proposition 3.20, it follows that rk((A �T C)T ) ≥ frk(A)+1(rk(C) + 1). So, by Lemma 3.22, we

have that ∅ ∈ C(rk(C)+1), a contradiction. �

3.2. Canonical form of sequences of finite subtrees. We prove here Lemma 3.14, that is if

F ∈ B and H ∈ S, then for every sequence (sn)n<ω in F there is an infinite subset M ⊆ ω such

that
⋃
n∈x sn ∈ F ×H for every x ∈ H � M . The proof is based on a combinatorial analysis of

sequences of finite subtrees of T , done in the next Lemma 3.32, that uses crucially the Ramsey

property. This relation between the Ramsey theory, uniform fronts and BQO-WQO theory of

trees is well studied and has produced fundamental results like Kruskal Theorem [Kr] (see also

Nash-Williams paper [Na1]) and Laver Theorem [La].
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We start with some simple analysis of the tree generated by two finite subtrees τ0 and τ1.

Definition 3.23. Given τ0, τ1 two finite subtrees of T and t ∈ τ0 ∪ τ1, let

i(t) := min{i ∈ 2 : t ∈ τi},
π(τ0, τ1) :={w ∈ 〈τ0 ∪ τ1〉 : (τ0 \ τ1)≥w 6= ∅ and (τ1 \ τ0)≥w 6= ∅},
σ(τ0, τ1) :=π(τ0, τ1)max,

σ(τ0, τ1) :={t0 ∧ t1 : t0 ⊥ t1 are in τ0 ∪ τ1 and t0 ∧ t1 /∈ τ0 ∪ τ1}.

Definition 3.24. For each w ∈ σ(τ0, τ1), fix t0(w) ∈ (τ0 \ τ1)≥w and t1(w) ∈ (τ1 \ τ0))≥w such

that w = t0(w) ∧ t1(w) /∈ τ0 ∪ τ1 and whenever w ∈ σ(τ0, τ1), then t0(w) ⊥ t1(w)

Proposition 3.25. σ(τ0, τ1) ⊆ σ(τ0, τ1).

Proof. Clearly σ(τ0, τ1) ⊆ π(τ0, τ1), so given w ∈ σ(τ0, τ1), let us prove that w is maximal

there, so that w ∈ σ(τ0, τ1). Suppose otherwise that there is w′ ∈ σ(τ0, τ1) such that w < w′ and

let us get a contradiction. If Isw(t0(w)) = Isw(w′), then w = t0(w)∧ t1(w) = t1(w′)∧ t1(w) ∈ τ1,

a contradiction. Otherwise, w = t0(w) ∧ t1(w) = t0(w) ∧ t0(w′) ∈ τ0, which contradicts the

hypothesis. �

Given t, u ∈ T , let

t ∧is u :=

{
min{t, u} if t, u are comparable

Ist∧u(t) if t, u are incomparable.

The following easy fact will be helpful:

Proposition 3.26. For every finite set s ⊆ T , every finite subtree τ ⊆ T and every t ∈ T , we

have that

〈s〉is = {t0 ∧ t1 : t0, t1 ∈ s} ∪ {t0 ∧is t1 : t0, t1 ∈ s, t0 ⊥ t1},
〈τ〉is = τ ∪ {t0 ∧is t1 : t0, t1 ∈ τ, t0 ⊥ t1},
Ist”s = Ist”〈s〉is.

In particular, if t ∈ 〈s〉is, then u ∈ (s)≥t 6= ∅.

Definition 3.27. Given two finite subtrees τ0, τ1, let

% := %(τ0, τ1) = τ0 ∩ τ1

% := %(τ0, τ1) := 〈τ0〉is ∩ 〈τ1〉is
%0 := % ∪ {0}

(τ0, τ1)∞ := {u ∈ (%0)max : (π(τ0, τ1))≥u 6= ∅}.

Proposition 3.28. For every u ∈ (τ0, τ1)∞ one has that #(σ(τ0, τ1))≥u = 1.

Proof. If u ∈ (τ0, τ1)∞, then clearly (σ(τ0, τ1))≥u 6= ∅. Suppose there are w0 6= w1 ∈
(σ(τ0, τ1))≥u for some u ∈ (τ0, τ1)∞. Observe that w0 ⊥ w1, since both of them are maxi-

mal in π(τ0, τ1). Hence,

u ≤ t0(w0) ∧ t0(w1) = t1(w0) ∧ t1(w1),
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so that

u < t0(w0) ∧is t
0(w1) = t1(w0) ∧is t

1(w1) ∈ 〈τ0〉is ∩ 〈τ1〉is = % ⊆ %0,

contradicting the maximality of u in %0. �

Definition 3.29. For every u ∈ (τ0, τ1)∞, let $τ0,τ1(u) be the unique element of (σ(τ0, τ1))≥u.

Proposition 3.30. For every w ∈ π(τ0, τ1), either there is u ∈ (τ0, τ1)∞ such that w ≤ $τ0,τ1(u),

or else there is u ∈ (%0)max such that w < u. Consequently, σ(τ0, τ1) ⊆ ran ($τ0,τ1).

Proof. Given w ∈ π(τ0, τ1), suppose there is no u ∈ (%0)max such that w < u and let

u := max{v ∈ %0 : v ≤ w}.

Let us prove that u is maximal in %0 so that w witnesses that u ∈ (τ0, τ1)∞. Suppose by

contradiction that there is v ∈ (%0)max such that u < v and in particular, v ∈ %. Notice that

the definition of u implies that v ⊥ w. Hence, u ≤ w ∧ v < w, so that u < w ∧is v ≤ w. But

w ∧is v = t0(w) ∧is v = t1(w) ∧is v, so that w ∧is v ∈ % and we get a contradiction with the

maximality of u below w. It follows that u ∈ (τ0, τ1)∞ and w ≤ $τ0,τ1(u).

Finally, suppose that w ∈ σ(τ0, τ1). Then, w ∈ σ(τ0, τ1), by Proposition 3.25. It is easy to see

from the definition of σ(τ0, τ1) that there is no u ∈ (%0)max such that w < u. Hence w ≤ $τ0,τ1(u)

for some u ∈ (τ0, τ1)∞ and it follows from the maximality of w that w = $τ0,τ1(u). �

The following result guarantees that the new points of the tree generated by two finite subtrees

τ0 and τ1 are given by the function $τ0,τ1 and hence, they are controlled by the maximal elements

of (τ0, τ1)∞.

Corollary 3.31. 〈τ0 ∪ τ1〉 = τ0 ∪ τ1 ∪ {$τ0,τ1(u) : u ∈ (τ0, τ1)∞}.

Proof. If w ∈ 〈τ0∪τ1〉\(τ0∪τ1), then there are t0 ∈ τ0 \τ1 and t1 ∈ τ1 \τ0 such that w = t0∧ t1
and notice that t0 ∧ t1 ∈ σ(τ0, τ1). Then, by Proposition 3.30, there is u ∈ (τ0, τ1)∞ such that

t0 ∧ t1 = $τ0,τ1(u). The other inclusion follows directly from the definitions. �

To prove that × is a multiplication we have to deal with the tree generated by a sequence

of finite subtrees. Given a sequence (τk)k of finite subtrees and M ⊆ ω, let τM be the subtree

generated by
⋃
k∈M τk. In order to be able to control the chains and the immediate successors

of some τM , we will first find some suitable infinite M such that the subsequence (τk)k∈M has

some uniformity respective to the new points of τM . This is the content of the next result, that

can be seen as a generalization of Proposition 3.5, which guarantees the existence of an infinite

fan, chain or comb inside any infinite subset of a tree.

If we assume each τk to be a singleton {tk} and apply Proposition 3.5 to get an infinite M

such that {tk : k ∈ M} is a fan, a chain or a comb, then the corresponding tree τM is given by

{tk : k ∈ M} ∪ {w}, {tk : k ∈ M} or {tk : k ∈ M} ∪ {wk : k ∈ M}, respectively. The case (2.1)

corresponds to {tk : k ∈ M} being a comb, so that the new points {$k : k ∈ M} form a chain;

case (2.2) corresponds to {tk : k ∈M} being a fan with root w which is the only new point; case

(2.3) corresponds to {tk : k ∈ M} being a chain and no new points ($k = tk); and case (2.4)

corresponds to tk = tk′ for all k, k′ ∈M .
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In the next result, after refining the sequence to get a fixed τ∞ and $i(u) := $i,j(u) = $i,k(u)

for i < j < k, each of these four cases might happen for each of the sequences of points

($k(u))k∈M .

Theorem 3.32 (Canonical form of sequences of subtrees). Suppose that (τk)k is a sequence of

finite subtrees of T forming a ∆-system with root % and such that (〈τk〉is)k forms a ∆-system

with finite root %. Then there is a subsequence (τk)k∈M such that

(1) For every i 6= j and k 6= l in M one has that

τ∞ :=(τi, τj)∞ = (τk, τl)∞ (10)

(2) Let u ∈ τ∞. For each i < j write $i,j(u) := $τi,τj (u). Then $i(u) := $i,j(u) = $i,k(u)

for every i < j < k, and $i(u) ≤ $j(u) for every i ≤ j.
Moreover, one of the following holds.

(2.1) $i(u) < $j(u) for every i < j and $i(u) /∈
⋃
k τk for every i < j.

(2.2) w(u) := $i(u) = $j(u) /∈
⋃
k τk for every i.

(2.3) $i(u) < $j(u) and $i(u) ∈ τi \ % for every i < j.

(2.4) w(u) := u = $i(u) = $j(u) ∈ % for every i < j.

Definition 3.33. We call a ∆-sequence (τk)k of root % such that (〈τk〉is)k is a ∆-sequence of

root % satisfying (1) and (2) of Theorem 3.32 above a well-placed sequence. In this case, let

τ0
∞ be the set of those u ∈ τ∞ such that w(u) = $i(u) = $j(u) for every i < j in ω and let

τ1
∞ := τ∞ \ τ0

∞. For each u ∈ τ1
∞, let z(u) := supi∈ω$i(u).

Given I ⊆ ω, we use the terminology τI to denote 〈
⋃
k∈I τk〉.

u0

w0(u0)

w1(u0)

Case (2.1)

wk(u0)

wk+1(u0)

Case (2.4)

u2 = w(u2)

· · ·· · ·

z

u1

Case (2.2)

w(u1)

· · ·· · · u3

w0(u3)

w1(u3)

Case (2.3)

wk(u3)

wk+1(u3)

Figure 3. A well placed sequence (τk)k.
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Each color in the figure corresponds to one of the elements of the sequence: blue nodes belong

to the subtree τ0, yellow nodes to τ1, and so on. Black is used to denote elements of the extended

root % and white, to nodes not belonging to any of the subtrees.

Proof of Theorem 3.32. We will apply the Ramsey Theorem and refine the sequence (τk)k∈ω
finitely many times in order to get the desired subsequence (τk)k∈M .

First, since % is finite and each (τi, τj)∞ ⊆ %0 = %∪ {0}, it follows from the Ramsey Theorem

that we may assume, by passing to a subsequence (τk)k∈M , that (1) holds.

Now fix u ∈ τ∞. Applying the Ramsey Theorem and passing again to a subsequence, we may

assume that exactly one of the following holds:

(a1) $i,j(u) /∈ % for every i < j in M .

(b1) $i,j(u) ∈ % for every i < j in M .

If (b1) holds, since % is finite, we may pass to a further subsequence and get that $i,j(u) =

$k,l(u) for every i < j and k < l in M . In particular we get (2.4).

From now on we will assume that (a1) holds and prove that we have one of the other three

cases (2.1), (2.2) or (2.3).

Claim 3.33.1. For every i < j in M and k ∈M \ {i, j}, one has that $i,j(u) /∈ τk.

Proof of Claim: We color a triple i < j < k by 0 if $i,j(u) ∈ τk, by 1 if $i,j(u) /∈ τk and

$i,k(u) ∈ τj , by 2 if $i,j(u) /∈ τk, $i,k(u) /∈ τj and $j,k(u) ∈ τi and by 3 otherwise. By the

Ramsey Theorem, we may assume that all triples in M are monochromatic. We prove that its

color is 3. In the other two cases, there are i < j and k 6= l such that

$i,j(u) ∈ τk ∩ τl = %

which contradicts (a1). �

For each i < j, let tii,j(u) ∈ τi \ % and tji,j(u) ∈ τj \ % be such that

$i,j(u) = tii,j(u) ∧ tji,j(u).

Since each τi is finite and tii,j(u) ∈ τi, we may assume by the Ramsey Theorem that

ti(u) := tii,j(u) = tii,k(u) for every i < j < k.

Hence, for each i < j < k in M , $i,j(u) and $i,k(u) are comparable since they are both below

ti(u).

Claim 3.33.2. By passing to an infinite subset of M , we may assume that $i,j(u) = $i,k(u)

for every i < j < k in M .

Proof of Claim: By the Ramsey Theorem, we may assume that one of the following holds:

(a2) $i,j(u) = $i,k(u) for every i < j < k in M .

(b2) $i,j(u) < $i,k(u) for every i < j < k in M .

(c2) $i,j(u) > $i,k(u) for every i < j < k in M .
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Notice that (c2) is impossible, since trees have no infinite strictly decreasing chains. We claim

that (b2) is also impossible and therefore, (a2) holds. Given i < j < k, if (b2) holds, then

$i,j(u) ≤ tji,j(u), tki,k(u), so that $i,j(u) ∈ π(τj , τk). By the maximality of $j,k(u) in π(τj , τk),

we get that $i,j(u) ≤ $j,k(u). Then, $i,j(u) ≤ $i,k(u) ∧$j,k(u).

If $i,j(u) < $i,k(u) ∧ $j,k(u), then the fact that $i,k(u) ∧ $j,k(u) ∈ π(τi, τj) contradicts

the fact that $i,j(u) is maximal in π(τi, τj). If $i,j(u) = $i,k(u) ∧ $j,k(u), then we get that

$i,j ∈ τk, which is a contradiction with Claim 3.33.1. Therefore, (b2) cannot be true and we

conclude that (a2) holds. �

Let now $i(u) := $i,j(u) for every i < j.

Claim 3.33.3. By passing to an infinite subset of M , we may assume that either $i(u) = $j(u)

for every i < j in M , or $i(u) < $j(u) for every i < j in M .

Proof of Claim: By the Ramsey Theorem, we may assume that one of the following holds:

(a3) $i(u) = $j(u) for every i < j in M .

(b3) $i(u) < $j(u) for every i < j in M .

(c3) $i(u) > $j(u) for every i < j in M .

(d3) $i(u) and $j(u) are incompatible for every i < j in M .

Again (c3) is impossible, since trees have no infinite strictly decreasing chains. We claim

that (d3) is also impossible and therefore, either (a3) or (b3) holds. If (d3) holds, then we

have that for i < j < k < l, u ≤ $i(u) = tki,k(u) ∧ tkj,k(u) < tki,k(u) ∧is t
k
j,k(u) ∈ 〈τk〉is and

tki,k(u) ∧is t
k
j,k(u) = tli,l(u) ∧is (u)tlj,l ∈ 〈τl〉is, contradicting the maximality of u in %0. Hence,

either (a3) or (b3) holds. �

In any case, by Claim 3.33.1 we may assume that $i(u) /∈ τk for i 6= k. Hence, by the Ramsey

Theorem, we may assume that one of the following holds:

(a4) $i(u) /∈
⋃
k τk for every i in M .

(b4) $i(u) ∈ τi \ % for every i in M .

Now, if (a3) holds, (b4) cannot hold and we get that u satisfies (2.2). If (b3) and (a4) hold,

we get (2.1) and if (b3) and (b4) hold, then we get (2.3). This concludes the proof of the

theorem. �

Corollary 3.34. Given a well-placed sequence (τk)k<ω, I ⊆ ω and u ∈ τ1
∞, we have that:

(i) For every t ∈ [u, z(u)], there is i ∈ I such that if t′ ∈ (τI)>t with Ist(t
′) 6= Ist(z(u)), then

t′ ∈ τi.
(ii) (τI)<z(u) ⊆

⋃
k∈I(τk ∪ {$k(u)}).

Proof. (i): Let u ≤ t ≤ z(u) and suppose there are i0 < i1 in I and tj ∈ (τij \ %)>t such that

Ist(tj) 6= Ist(z(u)), j = 0, 1. Let w = t0 ∧ t1 and notice that w ∈ π(τi0 , τi1). By Proposition

3.30, either there is v ∈ τ∞ such that w ≤ $i0,i1(v) or there is v ∈ (%0)max such that w < v.

Since u ∈ (%)max and u ≤ t ≤ w, the second alternative cannot hold and the first alternative

holds with u = v. Since w ≤ $i0,i1(u) = $i0(u) < z(u), it follows that w = t. But then,

t = $i1(u) ∧ t1 ∈ τi1 , which is impossible both in cases (2.1) and (2.3). Finally, notice that if
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t′ ∈ (τI)>t\
⋃
k∈I τk is such that Ist(t

′) 6= Ist(z(u)), then there are i0 < i1 in I and tj ∈ (τij \%)>t′ ,

so that that Ist(tj) = Ist(t
′) 6= Ist(z(u)), j = 0, 1, which we just proved that cannot happen.

(ii): If t ∈ τI \
⋃
k∈I τk, by Corollary 3.31, there are i0 < i1 in I such that t = $i0,i1(v)

for some v ∈ τ∞. If t ≤ z(u), the maximality of u and v guarantee that u = v. Hence,

t = $i0,i1(u) = $i0(u) �

Corollary 3.35. Given a well-placed sequence (τk)k<ω, I ⊆ ω and u ∈ τ0
∞, we have that:

(i) For every t ∈ Isw(u), there is a i ∈ I such that (τI)≥t ⊆ τi.
(ii) For every t ∈ [u,w(u)[, there is i ∈ I such that if t′ ∈ (τω)>t with Ist(t

′) 6= Ist(w(u)), then

t′ ∈ τi.
(iii) (τI)<w(u) ⊆

⋃
k∈I τk.

Proof. (i): Let t ∈ Isw(u) and suppose there are i0 < i1 in I and tj ∈ (τij \ %)≥t, j = 0, 1. Let

w = t0 ∧ t1 and notice that w ∈ π(τi0 , τi1). By Proposition 3.30, either there is v ∈ τ∞ such that

w ≤ $i0,i1(v) or there is v ∈ (%0)max such that w < v. Since u ∈ (%)max and u ≤ w(u) < t ≤ w,

the second alternative cannot hold and the first alternative holds with u = v, which cannot hold

as well, since $i0(u) = w(u) < t ≤ w. Finally, notice that if t′ ∈ (τI)>t \
⋃
k<ω τk, then there are

i0 < i1 in I and tj ∈ (τij \ %)>t′ , so that that tj > t, j = 0, 1, which we just proved that cannot

happen.

(ii): Given t ∈ [u,w(u)[, suppose there are i0 < i1 in I and tj ∈ (τij \ %)>t such that

Ist(tj) 6= Ist(w(u)), j = 0, 1. Let w = t0∧ t1 and notice that w ∈ π(τi0 , τi1). By Proposition 3.30,

either there is v ∈ τ∞ such that w ≤ $i0,i1(v) or there is v ∈ (%0)max such that w < v. Since

u ∈ (%)max and u ≤ t ≤ w, the second alternative cannot hold and the first alternative holds

with u = v. Since w ≤ $i0,i1(u) = $i0(u) = w(u), it follows that w = t = w(u), a contradiction.

Finally, notice that if t′ ∈ (τI)>t \
⋃
k∈I τk is such that Ist(t

′) 6= Ist(w(u)), then there are i0 < i1
in I and tj ∈ (τij \ %)>t′ , so that that Ist(tj) = Ist(t

′) 6= Ist(w(u)), j = 0, 1, which we just proved

that cannot happen.

(iii): If t ∈ τI \
⋃
k∈I τk, by Corollary 3.31, there are i0 < i1 in I such that t = $i0,i1(v) for

some v ∈ τ∞. Hence, if t < w(u), the maximality of u and v guarantee that u = v. Hence,

t = $i0,i1(u) = $i0(u) = w(u), a contradiction. �

Corollary 3.36. Let (τk)k∈ω be a well-placed sequence of finite subtrees of T . There are finite

sets a, f ⊆ T and, for each z ∈ f, there is a chain {$i(z) : i ∈ ω} such that for any finite

∅ 6= I ⊆ ω, the following hold:

1. For every t ∈ τI , there are z ∈ f and i ∈ I such that

# ([t ∧ z, t] ∩ (τI \ τi)) ≤ 1.

2. For every z ∈ f,

[0, z] ∩ (τI \
⋃
i∈I

τi) ⊆ {$i(z) : i ∈ I}.

3. For every t ∈ τI \ a, there is i ∈ I such that

#(Ist(τI) \ Ist(τi)) ≤ 1.
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Proof. Let

f :=((%0)max \ τ∞) ∪ {w(u) : u ∈ τ0
∞} ∪ {z(u) : u ∈ τ1

∞}

and let us prove property 1.

Given t ∈ τI , if there is u ∈ (%0)max such that t ≤ u, then either u ∈ f, or w(u) ∈ f or z(u) ∈ f,

depending on whether u ∈ (%0)max\τ∞, u ∈ τ0
∞ or u ∈ τ1

∞, respectively. In any case, there is z ∈ f

such that t ∧ z = t so that property 1 holds trivially. Otherwise, there is a unique u ∈ (%0)max

such that u < t. In case u /∈ τ∞, it follows from the definition of τ∞ that (π(τi, τj))≥u = ∅ for

every i 6= j in I, which implies property 1. If u ∈ τ1
∞, then z(u) ∈ f and t∧z(u) ∈ [u, z(u)]. Then,

Corollary 3.34.(i) guarantees that there is i ∈ ω such that ]t ∧ z(u), t] ⊆ τi, so that property 1

holds. Finally, if u ∈ τ0
∞, then w(u) ∈ f and u ≤ t ∧ w(u) ≤ w(u). If t ∧ w(u) < w(u), then

Corollary 3.35.(ii) guarantees that there is i ∈ ω such that ]t ∧ w(u), t] ⊆ τi, so that condition

1 holds. If t ∧ w(u) = w(u), it follows that w(u) ≤ t and the case when t = w(u) is trivial.

If w(u) < t, Corollary 3.35.(i) applied to Isw(u)(t) guarantees that there is i ∈ ω such that

]t ∧ w(u), t] ⊆ τi, so that property 1 holds and this concludes the proof of condition 1.

To prove property 2, given z ∈ f, let us consider three different cases. If z = z(u) for some

u ∈ τ1
∞, let ($i(z))i∈ω be the sequence ($i(u))i∈ω and if z = w(u) for some u ∈ τ0

∞, let

($i(z))i∈ω be the constant sequence equal to $i(u) = w(u). Finally, if z ∈ (%0)max \ τ∞, let

($i(z))i∈ω be the constant sequence equal to z

Now, given t ∈ τI \
⋃
i∈I τi, by Corollary 3.31 there are i0 < i1 in I such that t = $i0,i1(v) =

$i0(v) for some v ∈ τ∞ since the sequence is well-placed. Then, if t ≤ z, the maximality of

v implies that z ∈ τ∞ and since u is also maximal, u = v and t = $i0(v) = $i0(u), which

concludes the proof of property 2.

It remains to prove property 3. Let

a :=%0 ∪ {w(u) : u ∈ τ0
∞}

and let t ∈ τI \ a and u ∈ (%0)max be such that u < t or t < u (the equality cannot hold since

%0 ⊆ a and t /∈ a).

If t < u, and there are i0 < i1 such that Ist”(τij ) \ {Ist(u)} 6= ∅ for j = 0, 1, then choose

tj” ∈ Ist(τij ) \ {Ist(u)}, j = 0, 1. Then, t0, t1 ⊥ u, hence τi0 3 t0 ∧ u = t = t1 ∧ u ∈ τi1 , and so

t ∈ %, which is impossible.

Suppose now that u < t. If u /∈ τ∞, then property 2 holds trivially. If u < t and u ∈ τ0
∞, we

have to consider that cases t < w(u) and w(u) < t (again the equality cannot hold since w(u) ∈ a

and t /∈ a). If t < w(u), then Corollary 3.35.(ii) implies that Ist(τI) = Ist”(τi) ∪ {Ist(w(u))} for

some i ∈ I, so that property 2 holds. If w(u) < t, then Corollary 3.35.(i) applied to Isw(u)(t)

implies that Ist”(τI) = Ist(τi) for some i ∈ I, so that property 2 holds. If u < t and u ∈ τ1
∞, then

Corollary 3.34.(i) implies that Ist”(τI) = Ist(τi) ∪ {Ist(z(u))} for some i ∈ I, so that property 2

holds, including in case z(u) < t. �

Proof of Lemma 3.14. Fix F ∈ B and H ∈ S. Set A := 〈F〉 ∩ Cha, C := 〈F〉 ∩ Chc and

G := F ×H. Then, F ⊆ A �T C. Then G = ((A×a H) ta [T ]≤1)�T ((C ×c H)�c 5). Suppose

that Cha and Chc are not compact. By Proposition 3.12,

λ := ι(srk(F)) = ι(srk(〈F〉)) = ι(srka(A)) = ι(srkc(C)). (11)
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It follows from this, the property (M.1) of ×a and ×c, and (11) that

ι(srka(A×a H) ta [T ]≤1) =ι(srka(A×a H)) = ι(srka(A) · srk(H)) = max{λ, ι(srk(H))},
ι(srkc(C ×c H)�c 5) =ι(srka(C ×c H)) = ι(srkc(C) · srk(H)) = max{λ, ι(srk(H))}, (12)

so, by Proposition 3.15 we obtain that G ∈ B. By Proposition 3.10,

srk(F) · srk(H) ≤srk(A�T C) · srk(H) ≤ min{srka(A), srkc(C)} · srk(H) ≤
≤min{srka(A×a H), srkc(C ×c H)} ≤ srk(G).

On the other hand, by Remark 3.9, G ∩Cha = (A×aH)ta [T ]≤1, and G ∩Chc = (C ×cH)�c 5.

By Proposition 3.12 and the above, ι(srk(G)) = max{λ, srk(H)} = ι(srk(F) · srk(H)). Hence,

srk(G) < ι(srk(F) · srk(H)). The cases when Cha or Chc are compact are proved similarly. We

only check that G ∈ B when Cha is compact. We know that rk((A×aH)ta [T ]≤1) ≤ rk(A) + 1.

Since λ := ι(srk(F)) = ι(srk(〈F〉)) = ι(srkc(C)), it follows that rk((A×a H) ta [T ]≤1) < λ. By

this, (12), Lemma 3.13 and Proposition 3.12,

rk(〈G〉) = rk(G) < max{λ, srk(H)} = srk(G) = srk(〈G〉).

This ends the proof of property (M.1) for ×. Let us prove now (M.2) for ×. In any of the three

possible cases, depending on the compactness of Cha and Chc, we have that F ×H = A�T C.

Claim 3.36.1. The family 〈F〉is := {〈s〉is : s ∈ F} is compact.

Proof of Claim: It is clear that an accumulation point A of the family 〈F〉is is a subtree closed

under is. Going towards a contradiction, we suppose that A is infinite subtree. Then by Corollary

3.6 it contains an infinite chain or an infinite fan. It cannot contain an infinite fan F because

then this would be an accumulation point of F ∩ Cha. Suppose that C = tnn<ω is a chain

included in A, tn < tn+1. The only non-trivial case is when tn = Isun(tn+1) for some infinite

chain D = {un}n<ω. Then, D is an accumulation point of 〈F〉∩Chc, and this is impossible. �

Let (τk)k be a sequence in 〈F〉. We may assume by the previous claim that each τk is a

tree and that the sequence (〈τk〉is)k is a ∆-sequence. By Corollary 3.36 there is a subsequence

(σk)k<ω of (τk)k and there are a, f finite subsets of T such that 1., 2. and 3. there hold. By

refining the subsequence (νk)k<ω finitely many times, we may assume that for every I ∈ H, we

have that:

(i) For all z ∈ f, {wi(z) : i ∈ I} ∈ (〈F〉 ∩ Chc)×c H.

(ii) For all z ∈ f,
⋃
i∈I(νi ∩ [0, z]) ∈ (〈F〉 ∩ Chc)×c H.

(iii) For all t ∈ a,
⋃
i∈I Ist”νi ∈ (〈F〉 ∩ Cha)×a H.

For (i) we use that [T ]≤1 ⊆ F . Fix I ∈ H � M and let us prove that νI ∈ F × H, which is

enough to guarantee that
⋃
i∈I νi ∈ F ×H, since this family is hereditary.

Claim 3.36.2. For every t ∈ νI one has that (νI)≤t ∈ C.

Proof of Claim: Given t ∈ νI , by property 1. of the sequence (νk)k∈M , there are z ∈ f, t ∈ νM
and i ∈M such that

(νM ) ∩ [t ∧ z, t] ⊆ νi ∪ {t}.
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Then, the property 2. of (νk)k∈M implies that

νI ∩ [0, z] ⊆ (
⋃
i∈I

(νi ∩ [0, z])) ∪ {wi(z) : i ∈ I} ∪ {z}.

Hence,

νI ∩ [0, t] ⊆νI ∩ [t ∧ z, t] ∪ (νI ∩ [0, z]) ⊆ (νi ∩ [t ∧ z, t]) ∪ (
⋃
i∈I

(νi ∩ [0, z])) ∪ {wi(z) : i ∈ I} ∪ {t, z}.

Now notice that

• νi ∩ [t ∧ z, t] ∈ 〈F〉 ∩ Chc ⊆ (〈F〉 ∩ Chc)×c H;

•
⋃
i∈I(νi ∩ [0, z]) ∈ (〈F〉 ∩ Chc)×c H by (ii) above;

• {wi(z) : i ∈ I} ∈ (〈F〉 ∩ Chc)×c H by (i) above;

• {t, z} ∈ [T ]≤2 ⊆ C � 2.

Putting all together, we obtain that

νI ∩ [0, t] ∈ ((〈F〉 ∩ Chc)×c H)�c 5 = C.

�

Claim 3.36.3. For every t ∈ νI one has that Ist”(νI) ∈ A.

Proof of Claim: Given t ∈ νI , if t /∈ a, the property 2. of (νk)k∈M implies that there are j ∈ I
and t ∈ Ist such that

Ist”(νI) ⊆ Ist”(νj) ∪ {t} ∈ (〈F〉 ∩ Cha) ta [T ]≤1.

If t ∈ a, it follows from (iii) above that

Ist”(νI) ⊆
⋃
i∈I

Is”(νi) ∈ (〈F〉 ∩ Cha)×a H

In any case, we have that Ist”(νI) ∈ A. �

These two claims imply that νI ∈ F ×H for every I ∈ H. �

4. Bases of families on (not so) large cardinals

The purpose of the section is to use Theorem 3.1 to prove the following.

Theorem 4.1. Every cardinal θ strictly smaller than the first Mahlo cardinal has a basis of

families on θ.

Recall that κ is ω-Erdős when for every coloring c : [κ]<ω → 2 there is an infinite c-

homogeneous subset A ⊆ κ, that is, for s, t ∈ A, c(s) = c(t) when #s = #t. A compact

and hereditary family on κ is called large when srk(F) ≥ ω, or, equivalently, when F satisfies

(M.2) for [κ]≤1 and the Schreier family S. It is proved in [LoTo2] that the existence of such

families in κ is equivalent to κ not being ω-Erdős.

Problem 1. Characterize when κ has ≥ ω-homogeneous families.
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Problem 2. Characterize the cardinal numbers κ such that that there exists c : [κ]<ω → 2 and

an ≥ ω-homogeneous family on κ such that every s ∈ F is c-homogeneous and such that for

every sequence (sn)n<ω in F and every l < ω there are n1 < · · · < nl such that
⋃l
i=1 sni is

c-homogeneous.

The first such κ not satisfying this coloring property is at least the first Mahlo cardinal and

smaller than the first ω-Erdős cardinal. In order to prove Theorem 4.1, it suffices to find for

every cardinal number κ less than the first Mahlo cardinal a tree T on κ such that there is a

basis of families on chains of (T,<) and a basis of families on chains of (T,<a). The proof of

the existence of the tree T is done recursively on κ. For example, when κ is not strong limit,

there must be λ < κ such that 2λ ≥ κ, so, by inductive hypothesis, there must be a basis on λ,

and it is natural that this basis can be lift up to a basis on <-chains via the height mapping.

The case when κ is not regular is similar. When on the contrary κ is inaccessible, the tree T on

κ is substantially more complicated, and in fact relies on the method of walks in ordinals.

4.1. Binary trees. We start by analyzing the case of binary trees. Let T be the complete

binary tree 2≤κ, and assume that there is a basis of families on κ. We have the height function

ht : T → κ + 1 that preserves chains of T . We are going to see how to use the height function

ht to transfer a basis of families on κ to a basis on <-chains of T , and prove the following.

Theorem 4.2. Suppose that κ has a basis. Then 2κ also has a basis.

Definition 4.3. Let P = (P,≤P ) and Q = (Q,≤Q) be partial orderings and λ : P → Q.

(i) λ is chain-preserving when p0 ≤P p1 implies that λ(p0) ≤Q λ(p1) or λ(p1) ≤Q λ(p0).

(ii) λ is 1-1 on chains when λ � C is 1-1 for every chain C of P.

(iii) λ is adequate when it is chain-preserving and 1-1 on chains.

In other words, λ is chain-preserving if it is a graph homomorphism between the corresponding

comparability graphs. Observe that λ is chain-preserving if and only if λ”(C) is a chain of Q for

every chain C of P. Observe also that when Q is a total ordering, every mapping λ : P → Q is

chain preserving. The main result here is the following.

Theorem 4.4. Let P and Q be partial orderings which have infinite chains, and let λ : P → Q
be adequate. If Q has a basis of homogeneous families, then so has P.

We can prove now the stepping up result from κ to 2κ.

Proof of Theorem 4.2. Suppose that κ has a basis. Let T be the complete binary tree 2≤κ.

The height mapping ht : T → κ + 1 is strictly monotone, so it follows from Theorem 4.4 that

there is a basis of families on chains of T . Each set Ist has size 2, so it follows from Theorem

3.1 that the cardinal number 2κ has a basis. �

Remark 4.5. Let ε be the first exp-indecomposable ordinal > ω. Then it is easy to see that

f1(α) = (α · ω)α. Using this, and the construction of the basis on 2κ from the one in κ we can

give upper bounds of the ranks of ωα-homogeneous families in small exponential cardinals. For

the index set ω we have ωα-families of rank exactly ωα (e.g. Schreier families). We obtain in

the index set 2ℵ0 ωα-homogeneous families Fα such that
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ωα ≤ srk(Fα) ≤ rk(Fα) <

{
ωω

α+1+ω if α < ω

ωω
α+α·ω if ω ≤ α < ε.

One step up further, we have families on 22ℵ0 such that

ωα ≤ srk(Fα) ≤ rk(Fα) <

{
ωω

ωα+1+ω+ωα+2
if α < ω

ωω
ωα+α·ω+ωα+1

if ω ≤ α < ε,

and so on.

Definition 4.6 (preimage). Given partial orderings P and Q, λ : P → Q and a family G on

chains of Q, let

λ−1(G) :={s ⊆ P : s is a chain of P and λ”s ∈ G}.

Lemma 4.7. Suppose that P and Q are two partial orderings, λ : P → Q is adequate. Suppose

also that G is a family on chains of Q.

(a) If G is pre-compact, hereditary, then so is λ−1(G).

(b) If G is countably ranked, then

rk(λ−1(G)) <ω · (rk(G) + 1), . (13)

Consequently, if P has infinite chains, and G is (α,Q)-homogeneous, α ≥ ω, then λ−1G
is (β,P)-homogeneous with α ≤ β < ι(β).

Proof. Set F := λ−1(G). It is clear that F is hereditary when G is hereditary. Suppose that

G is pre-compact. Let (xn)n be a sequence in F . W.l.o.g. we assume that (xn)n converges to

A ⊆ P . Limit of chains are chains, so A is a chain of P . The proof will be finished when we

verify that A is finite. We assume that (λ”xn)n is a ∆-sequence with root y. It is easy to see

that λ”A ⊆ y. Since λ is 1-1 on chains, it follows that #A ≤ #y, so A is finite. Suppose that G
has countable rank. We apply Proposition 2.27 to λ : F → G to conclude that

rk(F) < sup
y∈G

(rk({x ∈ F : λ(x) ⊆ y}) + 1) · (rk(G) + 1). (14)

Observe that given y ∈ G, since λ is 1-1 on chains, it follows that

{x ∈ F : λ(x) ⊆ y} ⊆ [P ]≤#y,

so from (14) we obtain the desired inequality in (13).

Suppose that P has infinite chains and let G be (α,Q)-homogeneous. Let us see that F is

(β,P)-homogeneous with β ≥ α. Let X be an infinite chain of P such that srkP(F) = rk(F �
X) = β. Then Y := λ”X is an infinite chain of Q. Since h : F � X → G � Y , h(s) := λ”s is an

homeomorphism, it follows that rk(G � Y ) = β, hence srk(G) ≤ β. On the other hand, it follows

from (13) and the fact that G is homogeneous that

rk(F) < ω · (rk(G) + 1) < ι(srk(G)) ≤ ι(srk(G)).

�
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Proof of Theorem 4.4. Let (C,×Q) be a basis of families on chains of Q. Let B be the

collection of all P-homogeneous families λ−1G with G ∈ C. For each F ∈ B, choose GF such that

F = λ−1(GF ), and for H ∈ S, let F×H := λ−1(GF×QH). We check that (B,×) satisfies (B.1’),

(B.2’) and (B.3), which is enough to guarantee the existence of a basis on P, by Proposition 2.23.

Given G ∈ Cα, λ−1G ∈ B and by Lemma 4.7 we know that λ−1G is β-uniform with α ≤ β < ι(α).

We check now (B.2’). Suppose that G0,G0 ∈ C. Then λ−1G0 tP λ−1(G1) = λ−1(G0 tQ G1), so

λ−1G0 tP λ−1(G1) ∈ B, because G0 tQ G1 ∈ C. Similarly one shows that B is closed under ∪.

Finally, we verify (B.3) for (B,×). Fix F ∈ B and H ∈ S. Then F ×H = λ−1(GF ×Q H).

ι(srkP(F ×H)) =ι(srkQ(GF ×Q H)) = max{ι(srkQ(GF )), ι(srk(H))}
=ι(srkP(F) · srk(H)).

Let now (sn)n be a sequence in F such that C :=
⋃
n sn is a chain. Then λ”C =

⋃
n λ”sn is a

Q-chain, and λ”sn ∈ GF . By the property (M.2) of ×Q, we obtain that there is a subsequence

(tn)n of (sn)n such that
⋃
n∈x λ”tn ∈ GF×QH for every x ∈ H. This means that

⋃
n∈x tn ∈ F×H

for such x ∈ H. �

4.2. Trees from walks on ordinals. We pass now to study certain trees on inaccessible

cardinal numbers. They are produced using the method of walks on ordinals. We introduce

some basic notions of this. For more details we refer the reader to the monograph [To].

Definition 4.8. A C-sequence C := (Cα)α<θ is a sequence such that Cα ⊆ α is a closed and

unbounded subset of α with otp(Cα) = cof(α). The C-walk from β to α < β is the finite sequence

of ordinals defined recursively by

Tr(α, β) :=(β)a π(α,min(Cβ \ α))

Tr(α, α) :=(α).

We write then the C-walk as β = π0(α, β) > · · · > πl(α, β) = α, where l + 1 = ht(π(α, β), and

for each i ≤ l, πi(α, β) is the ith term of π(α, β). Let

%2(α, β) := ht(Tr(α, β))− 1.

We now define the mapping %0 : [θ]2 → (P(θ))<ω for α ≤ β recursively by

%0(α, β) :=(Cβ ∩ α)a %0(α,min(Cβ \ α))

%0(α, α) :=∅.

Let T = T (%0) be the tree whose nodes are %(·, β) � α, α ≤ β, ordered by end-extension as

functions. Given t ∈ T (%0), let αt ≤ βt be such that t = %0(·, βt) � αt. We say that (αt, βt)

represents t.

Proposition 4.9. T has size θ, and if θ is strong limit, then for every t ∈ T one has that

#Ist(T ) < θ.

Proof. This is a tree on a quotient of [θ]≤2, so it has cardinality θ. Now observe that the

immediate successors of t = %0(·, β) � α are extensions u of t whose support is α+ 1. It follows

that the number of them is at most (2α)<ω < θ, when we assume that θ is strong limit. �



HOMOGENEOUS FAMILIES ON TREES AND SUBSYMMETRIC BASIC SEQUENCES 36

In other words, the partial ordering <a is the disjoint union of small partial orderings. This

is the content of the next fact. Recall that given a sequence of partial orderings (Pi)i∈I we

denote by
⊎
i∈I Pi its disjoint union, which is the partial ordering on

⋃
i∈I Pi × {i} defined by

(p, i) < (q, j) if and only if i = j and p <Pi q.

Proposition 4.10. Suppose that θ is a regular cardinal number such that ωω1
1 < θ, and suppose

that every ξ < θ has a basis on families on ξ. Suppose that (θξ)ξ<θ is a sequence of infinite

ordinals such that supξ θξ = θ. Then the disjoint union of
⊎
ξ<θ(θξ, <) has a basis of families

on chains of the disjoint union.

Proof. The proof is a counting argument. Set P :=
⊎
ξ<θ(θξ, <). First of all, let C ⊆ θ be such

that #C = θ and (θξ)ξ∈C is strictly increasing with supremum θ. For each ξ ∈ C let (Cξ,×′ξ)
be a basis on θξ × {ξ}. Let F : C → ωω1

1 be the mapping that to ξ ∈ C and α < ω1 assigns

F (ξ)(α) := min{rk(F) : F ∈ Cξα} < ι(α) < ω1.

Since ωω1
1 < θ there must be D ⊆ C of cardinality θ and f ∈ ωω1

1 such that F (ξ) = f for every

ξ ∈ D. Define now for each ξ < θ, µξ := min{γ ∈ D : θξ ≤ θγ}. Fix ξ < θ. Let Bξ be equal to

Cξ if ξ ∈ D, and let Bξ be the collection of families {x× {ξ} : x ⊆ θξ and x× {µξ} ∈ F} for

F ∈ Cµξ . For ξ ∈ D, let ×ξ = ×′ξ. Suppose that ξ /∈ D. For each F ∈ Bξ, let GF be such that

F = {x× {ξ} : x ⊆ θξ and x× {µξ} ∈ GF}, and define

F ×ξ H := {x× {ξ} : x× {µξ} ∈ GF ×µξ H}.

It is easy to see that (Bξ,×ξ) is a basis on θξ × {ξ} for every ξ < θ. Let B be the collection of

all P-homogeneous families F such that F � θξ × {ξ} ∈ Bξ. Define for F ∈ B and H ∈ S

F ×H :=
⋃
ξ<θ

(F � (θξ × {ξ})×ξ H).

We check that (B,×) is a pseudo-basis on chains of P. It is easy to see that B contains all finite

cubes. Now let ω ≤ α < ω1 and we prove that Bα 6= ∅. For each ξ ∈ D, let Fξ ∈ Cξα. Define

for each ξ < θ Gξ = Fξ if ξ ∈ D, and Gξ := {x× {ξ} : x ⊆ θξ and x× {µξ} ∈ Fµξ}. Notice that

each Fξ is αξ-uniform with α ≤ αξ < ι(α). Notice also that supξ<θ rk(Fξ) = f(α) < ι(α). Now

let G :=
⋃
ξ<θ Gξ. Since

rk(G) ≤ sup
ξ<θ

rk(Gξ) + 1 = f(α) + 1 < ι(α),

and srkP(G) = α, it follows that G is (α,P)-homogeneous. It is easy to see that B is closed

under ∪ and t. Now we prove that × is a multiplication. Fix F ∈ B and H ∈ S, and suppose

that F is (α,P)-homogeneous. By definition

ι(srkP(F ×H)) =ι(min
ξ<θ

(srk((F � (θξ × {ξ}))×ξ H))) =

= max{min
ξ<θ

ι(srk((F � (θξ × {ξ})), ι(srk(H))}

= max{ι(α), ι(srk(H))} = ι(srkP(F) · srk(H)).

It is easy to see that × satisfies (M.2). �
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Observe that if t < u in T (%0), then we can take (αt, βt), (αu, βu) representing t and u

respectively such that αt < αu and βt ≤ βu: Take representatives (αt, βt), (αu, βu) of t and

u respectively. Then αt < αu and %0(·, βt) � αt = %0(·, βu) � αt, hence (αt,min{βt, βu}) is a

representative of t and satisfies the required condition together with (αu, βu). The following is

well-known.

Proposition 4.11. t < u if and only if %0(αt, βt) = %0(αt, βu). �

Definition 4.12. Given a C-sequence C on θ, let

I(C) := {C ⊆ θ : C v Cα for some α < θ}.

We consider I(C) ordered by @.

Proposition 4.13. %0 : (T,<)→ I(C)<ωlex is strictly monotone, and consequently %0 : (T,<)→
I(C)<ωqlex is adequate.

Proof. Suppose that t < u in T (%0).

Claim 4.13.1. Suppose that %i0(t) = %i0(u) for every i ≤ k. Then πi(αt, βu) = πi(αu, βu) for

every i ≤ k + 1 and %k+1
0 (t) v %k+1

0 (u).

Proof of Claim: Induction on k ≥ 0. Suppose is true for k− 1. Then πi(αt, βu) = πi(αu, βu) for

every i ≤ k. It follows that

πk+1(αt, βu) = min(Cπk(αt,βu) \ αt) = min(Cπk(αu,βu) \ αt)

Cπk(αt,βt) ∩ αt =%k0(t) = %k0(u) = Cπk(αu,βu) ∩ αu.

In particular, Cπk(αu,βu) ∩ [αt, αu[= ∅ hence min(Cπk(αu,βu) \ αt) = min(Cπk(αu,βu) \ αu), so

πk+1(αt, βu) = πk+1(αu, βu).

Finally,

%k+1
0 (t) =%k+1

0 (αt, βt) = %k+1
0 (αt, βu) = Cπk+1(αt,βu) ∩ αt = Cπk+1(αu,βu) ∩ αt v %k+1

0 (u).

�

It follows that %0
0(t) v %0

0(u), so there must be k < %2(αu, βu) such that %k0(t) @ %k0(u), since

otherwise for every k πk(αt, βu) = πk(αu, βu) would imply that αt = αu. �

So, the mapping %0 is adequate, hence if I(C)<ωlex has a basis of families on chains, then %0

will transfer it to a basis on <-chains. We need to analyze then the lexicographical orderings,

finite or infinite. This is the content of the next part. Given I and J , let πI : I × J → I,

πJ : I × J → J be the canonical projections. Given i ∈ I, j ∈ J , and ∆ ⊆ I × J , let

(∆)i :=πJ”(π−1
I (i) ∩∆),

(∆)j :=πI”(π−1
J (j) ∩∆).

be the corresponding sections.

Recall that given two partial orderings P = (P,≤P ) and Q = (Q,≤Q), let P ×lex Q :=

(P × Q,<lex) be the lexicographical product of P and Q defined by (p0, q0) <lex (p1, q1) if
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and only if p0 <P p1, or if p0 = p1 and q0 <Q q1. This generalizes easily to finite products

P1 ×lex P2 ×lex · · · ×lex Pn, and the corresponding finite powers Pnlex. One can also define

infinite lexicographical products, but they are not going to be used here. Instead we use quasi-

lexicographical power P<ωqlex on P<ω defined by (pi)i<m <qlex (qi)i<n if and only if m < n or if

m = n and (pi)i<m <lex (qi)i<m. Finally, let lh : P<ω → ω be the length function. The main

result here is the following.

Theorem 4.14. Let P and Q be partial orderings.

(a) If P and Q have bases of families on the corresponding chains, then P ×lex Q also has a

basis of families on its chains.

(b) If there is a basis on chains of P, then there is also a basis of families on chains of each

finite lexicographical power Pnlex and there is a basis of families on chains of P<ωlex .

Definition 4.15 (Fubini product of families). Given I and J , let πI : I×J → I, and πJ : I×J →
J be the canonical coordinate projections. Given families F and G on I and J respectively, let

F ~F G :={x ⊆ I × J : πI”x ∈ F and (x)i ∈ G for every i ∈ I}.

We call F ~F G the Fubini product of F and G. Given n ≥ 1, let Fn+1
F = FnF ~F F .

It is easy to see that if F and G are families on chains of P and Q, respectively, then F ~F G
is a family on chains of P ×lex G.

Definition 4.16 (Power operation). For each n < ω, let Fn be a family on chains of Pnlex, and

let G be a family on ω. We define ((Fn)n)G as the collection of all x ⊆ P<ω such that

(i) x ∩ [P ]n ∈ Fn for every n < ω.

(ii) lh”x ∈ G.

Given a family F on chains of P, let FG := ((FnF)n)G.

Lemma 4.17. Let P be Q two partial orderings. For each 1 ≤ n < ω, let Fn be a family on

chains of Pnlex, and suppose also that G and H are families on chains of Q and ω, respectively.

Set F := F1.

(a) If Fn, n < ω, G, H are pre-compact, hereditary, then so are F ~F G, ((Fn)n)H, and FH.

(b) If Fn, n < ω, G and H are countably ranked families, then

(b.1) rk(F ~F G) < (rk(G) · ω)) · (rk(F) + 1),

(b.2) rk(((Fn)n)H) < supn<ω(rk(Fn) + 1) · (rk(H) + 1),

(b.3) rk(FH) < (rk(F) · ω)ω · (rk(H) + 1), if rk(F) ≥ 1.

(c) When the corresponding families are countable ranked,

(c.1) srklex(F ~F G) = min{srkP(F), srkQ(G)},
(c.2) srkqlex(((Fn)n)H) = min{minn<ω srkPnlex(Fn), srk(H)}, and

(c.3) srkqlex(FH) = min{srkP(F), srk(H)}.
(d) If each Fn is (α,Pnlex)-homogeneous, G is (α,Q)-homogeneous and H is α-homogeneous,

then F~FG is (α, lex)-homogeneous, and both ((Fn)n)H and FH is (α, qlex)-homogeneous.

Proof. The operation ~F: The hereditariness is easy to prove. Suppose that F and G are pre-

compact. Let (xn)n be a sequence in F ~F G. Let M ⊆ ω be infinite and such that (πI”xn)n∈M
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is a ∆-sequence with root y. Let N ⊆M be infinite such that ((xn)p)n∈N is a ∆-sequence with

root zp for every p ∈ y. Let x :=
⋃
p∈y zp. It is easy to see that (xn)n∈N is a ∆-sequence with

root x. Suppose now that F and G have countable rank, and set H := F ~F G. We apply

Proposition 2.27 to the projection πP : P ×Q→ P to conclude that

rk(H) < sup
y∈F

(rk({x ∈ H : πP ”(x) ⊆ y}) + 1) · (rk(F) + 1).

Now observe that for a given y ∈ F one has that

{x ∈ H : πP ”x ⊆ y} ⊆
⊔
p∈y
{{p} × z ⊆ P ×Q : z ∈ G},

by definition of H. Clearly {{p} × z ⊆ P ×Q : z ∈ G} is homeomorphic to G, so by Proposition

2.6 (iii.3.),

rk({x ∈ H : πP ”x ⊆ y}) < rk(G) · ω.

The power operation: The fact that this operation preserves hereditariness is trivial to prove.

Suppose that each Fn is a pre-compact family on chains of Pnlex and that H is a pre-compact

family on ω. Set Z := ((Fn)n)H, and suppose that (xk)k is a sequence in Z. We assume

that (lh(xn))n is a ∆-sequence in ω with root z. Now for each n ∈ z and each k < ω, let

ynk := lh−1(n) ∩ xk ∈ Fn. Let (xk)k∈M be a subsequence of (xk)k such that for each n ∈ z one

has that (ynk )k∈M is a ∆-sequence with root yn. It is easy to verify that (xk)k∈M is a ∆-sequence

with root
⋃
n∈z yn. The inequality in (b.2) follows from Proposition 2.27. The properties of FH

follow from the corresponding properties of the Fubini product and the power operation.

(c) follows from the fact that if C = {(pn, qn)}n<ω is a chain of P ×lex Q then there is an

infinite M ⊆ ω such that either pm 6= pm for every m < n ∈ M , or pm = pn and qm 6= qn for

every m < n in M . Similarly, given a chain C = {pn}n<ω, there is an infinite M ⊆ ω such that

either lh(pn) = l for every n ∈M and {pn}n∈M is an infinite chain of F lF, or lh(pm) 6= lh(pn) for

every m 6= n in M . (d) is a consequence of (a) (b) and (c). �

Proof of Theorem 4.14. (a): Suppose that (BP ,×P) and (BQ,×Q) are bases of families on

chains of P and Q respectively. Let B be the collection of all P ×lexQ-homogeneous families F
such that

(i) πP”(F) := {πP”(x) : x ∈ F} ∈ BP .

(ii) (F)P := {(x)p : x ∈ F , p ∈ P} ∈ BQ.

Given F ∈ B and H ∈ S, let

F ×H := (πP”(F)×P H)~F ((F)P ×Q H).

We verify that (B,×) is a pseudo-basis. First of all, each family on B is P ×lexQ-homogeneous.

Next, given n < ω, πP”([P × Q]≤nlex ) = [P ]≤nP , and ([P × Q]≤nlex )P = [Q]≤nQ , so [P × Q]≤nlex ∈ B.

Now given α infinite, we choose F ∈ BPα and G ∈ BQα . Then Z := F ~F G ∈ Bα: We know

from Lemma 4.17 that Z is α-homogeneous. Since πP”(Z) = F and (Z)P = G, we have that

Z ∈ B. We check now (B.2’): Let F0,F1 ∈ B. Since πP”(F0 ∪ F1) = πP”(F0) ∪ πP”(F1) and

(F0 ∪ F1)P = (F0)P ∪ (F1)P , we obtain that B is closed under ∪. Secondly, πP”(F0 tlex F1) =
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πP”(F0) tP πP”(F1), and (F0)P , (F1)P ⊆ (F0 tlex F1)P ⊆ (F0)P tQ (F1)P . This means that

ι(srkQ((F0 tlex F1)P)) = max{ι(srkQ((F0)Q)), ι(srkQ((F1)Q))} = ι(srkQ((F0)P tQ (F1)P)),

so (F0 tlex F1)P ∈ BQ. Since in addition F0 tlex F1 is lex-homogeneous, we obtain that F0 tlex

F1 ∈ B, by definition. Finally we check that × is a multiplication. The property (M.1) of ×
follows from Lemma 4.17 (c). Now suppose that (sn)n is a sequence in F ∈ B. Let (tn)n be a

subsequence of (sn)n such that

(1) (πP”tn)n is a ∆-sequence with root y.

(2) For every x ∈ H one has that
⋃
n∈x πP”(tn) ∈ (πP”F)×P H.

(3) For every x ∈ H and every p ∈ y one has that
⋃
n∈x(tn)p ∈ (F)P ×Q H.

Since (F)P ⊆ (F)P ×H, the conditions above imply that given x ∈ H one has that
⋃
n∈x tn ∈

F ×H.

(b) Finite lexicographical powers have bases of families on chains by (a). For each n < ω, let

(Bn,×n) be a basis on chains of Pnlex. Let B be the collection of all qlex-homogeneous families

on P<ωqlex such that

(i) F � [P ]n ∈ Bn for every 1 ≤ n < ω.

(ii) lh”(F) := {lh”(s) : s ∈ F} ∈ H.

Given F ∈ B and H ∈ S, let

F ×H = (((F � [P ]n)×n H)n)lh”(F)×ωH.

We check that (B,×) is a pseudo-basis. Given 1 ≤ k < ω, set F := [P<ω]≤kqlex. Then for each n

one has that F � [P ]n = [[P ]n]≤klex ∈ Bn, and lh”(F) = [ω]≤k ∈ Bω, so F ∈ B. One shows as

in (a) that B is closed under ∪ and tqlex. Finally, we check that × is a multiplication. That

× satisfies (M.1) it follows from Lemma 4.17 (c). Let now F ∈ B, H ∈ Bω, and let (sk)k ∈ F .

Let (tk)k be a subsequence of (sk)k such that

(1) (lh”tk)k is a ∆-sequence with root y ⊆ ω.

(2) For every x ∈ H and every n ∈ y one has that
⋃
k∈x(sk ∩ [P ]n) ∈ (F � [P ]n)×n H.

(3) For every x ∈ H one has that
⋃
k∈x lh”(yk) ∈ (lh”F ×ω H).

It is easy to verify that
⋃
k∈x tk ∈ F ×H for every x ∈ H. �

4.3. Cardinals smaller than the first Mahlo have a basis.

Definition 4.18. A C-sequence on θ is small when there is a function f : θ → θ such that

otp(Cα) < f(minCα) for every α < θ.

Proposition 4.19. A strong limit cardinal θ has a small C-sequence if and only if θ is smaller

than the first Mahlo cardinal.

Proof. Suppose that θ is smaller than the first Mahlo cardinal. Choose a closed and unbounded

set D ⊆ θ consisting of non-inaccessible cardinals. For each α < θ let λ(α) ∈ D be the maximal

element of D smaller or equal than α, and for each λ in D let λ+
D be the first element of D bigger

than λ. Let f : θ → θ, f(α) = 2λ(α)+D + 1. f(α) < θ because we are assuming that θ is strong

limit. Observe also that 2α < f(α). We define now the C sequence. Fix α ∈ θ. Suppose first
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that α /∈ D. Write α = λ(α) + β. Since cof(α) = cof(β), we can choose a club Cα ⊆ [λ(α), α[

with otp(Cα) = cof(β). It follows that otp(Cα) = cof(β) < λ(α)+
D < f(λ(α)) = f(minCα).

Suppose that α ∈ D. If α is singular, then we choose Cα in a way that otp(Cα) = cof < minCα.

Observe that then otp(Cα) < minCα < f(minCα). Finally, if α is not strong limit, then let

β < α be such that 2β ≥ α. Let now Cα ⊆ [β, α[. It follows that otp(Cα) = cof(α) ≤ α ≤ 2β ≤
2minCα < f(minCα).

Suppose now that θ is bigger or equal to a Mahlo cardinal κ. By pressing down Lemma there

is a stationary set S of inaccessible cardinals of κ and γ < κ such that minCα = γ for every

α ∈ S. Hence α = cof(α) = otp(Cα) < f(γ) for every α, and this is of course impossible. �

Proof of Theorem 4.1. The proof is by induction on θ < µ0. We see that there is a tree

T = (T,<) on θ that has bases of families on chains of (T,<) and of (T,<a). Suppose that θ is

not strong limit. Then there is κ < θ such that θ ≤ 2κ. By Theorem 4.2, 2κ has a basis, so θ

does.

Suppose that θ is strong limit. Let T := T (%0) on θ. Let C be a small C-sequence on θ, and

let f : θ → θ be a witness of it. By inductive hypothesis, and by Proposition 4.10 we know that

the disjoint union
⊎
ξ<θ f(ξ) of (f(ξ))ξ<θ has a basis of families on chains. Let now λ : I(C)→⊎

ξ<θ f(ξ) =
⋃
ξ<θ f(ξ)× {ξ}, λ(C) := (otp(C),minC). Then λ : (I(C),@)→ (

⊎
ξ<θ f(ξ), <) is

chain preserving and 1-1 on chains. Hence, by Theorem 4.4, there is a basis of families on chains

of I(C)<ωqlex. Since T has infinite chains and Proposition 4.13 tells that %0 is strictly monotone,

it follows again by Theorem 4.4 that there is a basis of families on chains of (T,<).

Observe that
⋃
t∈T Ist is a disjoint union, #T = θ. Since we are assuming that θ is inaccessible,

it follows that T is < θ-branching, hence for every t ∈ T there is a basis of families on Ist. Hence,

by Proposition 4.10, there is a basis of families on chains of (T,<a). �

5. Subsymmetric sequences and `α1 -spreading models

We present now new examples of Banach spaces without subsymmetric basic sequences of

density κ. Their construction uses bases of families on κ. On one side, the multiplication of

families will imply the non existence of subsymmetric basic sequences. On the other side, the

fact that the families are homogeneous will allow to bound the complexity of finite subsymmetric

basic sequences. In fact, we will give examples of spaces such that every non-trivial sequence

on it has a subsequence such that a large family of finite further subsequences behave like `n1 .

Since in addition the spaces are reflexive, we will have, as for the Tsirelson space, that there are

no subsymmetric basic sequences.

Definition 5.1. Recall that a non-constant sequence (xn)n in a Banach space X = (X, ‖ · ‖) is

called subsymmetric when there is a constant C ≥ 1 such that

‖
n∑
i=1

aixli‖ ≤ C‖
n∑
i=1

aixki‖ (15)

for every n, scalars (ai)
n
i=1, l1 < l2 < · · · < ln and k1 < k2 < · · · < kn.

Sometimes it is assumed, not in here, that subsymmetric sequences are unconditional basic

sequences. Notice that by Rosenthal’s `1-Theorem and Odell’s partial unconditionality, it follows
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that if (xn)n is a subsymmetric basic sequence, then either is equivalent to the `1 unit basis, or

its difference sequence (x2n−x2n−1)n is subsymmetric and unconditional. This is sharp, as it is

shown by the summing basis of c0.

Definition 5.2. Let Sα be an α-Schreier family on ω. A bounded sequence (xn)n in a normed

space X is called an `α1 -spreading model when there is a constant C > 0 such that

‖
∑
n∈s

anxn‖ ≥ C
∑
n∈s
|an| for every s ∈ Sα.

Let us say that a sequence in a Banach space is non-trivial when it does not have norm-

convergent subsequences.

Remark 5.3. (a) Suppose that (Sα)α<ω1 is a generalized Schreier sequence. If (xn)n is a `α1 -

spreading model, and β ≤ α, then (xn)n is a `β1 -spreading model: This is a consequence

of the fact that for every β < α there is some integer n such that Sβ � ω \ n ⊆ Sα.

(b) Suppose that a space X does not contain `1 and it is such that every non-trivial sequence

has a `1-spreading model subsequence. Then X does not have subsymmetric sequences.

If in addition X have an unconditional basis, then X is in addition reflexive: Suppose

otherwise that (xn)n is a subsymmetric sequence (xn)n. It follows that (xn)n is bounded

and that (xn)n does not have norm-convergent subsequences. So, by hypothesis, there is

a `1-spreading model subsequence (yn)n. This implies that (yn)n is equivalent to the unit

basis of `1, and this is impossible. The latter condition follows from the James criterion

of reflexivity.

Definition 5.4. Recall that given a family F on κ, we define the corresponding generalized

Schreier space XF as the completion of c00(κ) with respect to the norm

‖x‖F := max{‖x‖∞,max
s∈F

∑
ξ∈s
|(x)ξ|}.

It is easy to see that the unit basis of c00(κ) is a 1-unconditional basis of XF , and that XF
is c0-saturated if F is compact, and contains a copy of `1 otherwise. When the family F is

compact, hereditary and α-homogeneous with α infinite, then every subsequence of the unit

basis of XF has a `1-spreading model subsequence, consequently, no subsequence of the unit

basis is subsymmetric. These families F exist on cardinal numbers not being ω-Erdős (see

[LoTo2]).

Theorem 5.5. Suppose that θ is smaller than the first Mahlo cardinal number. Then for every

α < ω1 there is a Banach space X of density θ with a long 1-unconditional basis (uξ)ξ<θ such that

every subsequence of (uξ)ξ<θ has a further `α1 -spreading model subsequence, and no subsequence

of (uξ)ξ<θ is a `
ι(ωα)
1 -spreading model.

Proof. Fix a basis (B,×) on θ, let F be an ωα+1-homogeneous family in B and let X := XF .

Let (uξ)ξ∈M be an infinite subsequence of the unit basis (uξ)ξ<θ of XF . Since rk(F �M) > ωα,

and rk(Sα) = ωα there is some infinite subset N of M such that {ξn}n∈x ∈ F for every x ∈ Sα �
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N . Let N = {nk}k be the increasing enumeration of N , and set xk := uξnk for every k < ω. We

claim that

‖
∑
k∈x

akxk‖F =
∑
k∈x
|ak|

for every x ∈ Sα: Fix x ∈ Sα. Then {nk}k∈x ∈ Sα � N , because Sα is spreading. This means

that {ξnk}k∈x ∈ F , so

‖
∑
k∈x

akxk‖F = ‖
∑
k∈x

akuξnk‖F ≥
∑
k∈x
|ak|.

On the other hand, let given a subsequence (xn)n<ω be a subsequence of (uξ)ξ<θ, xn := uξn .

we assume that ξn < ξn+1 for every n. Let G := {x ⊆ ω : {ξn}n∈x ∈ F}. Then the mapping

x ∈ G 7→ {ξn}n∈x ∈ F is continuous and 1-1, hence rk(G) ≤ rk(F) < ι(ωα). Since ι(ωα)

is exp-indecomposable, rk(Sι(ωα)) = ωι(ω
α) = ι(ωα). It follows by the quantitative version of

Ptak’s Lemma (see for example [LoTo1, Lemma 4.7]) that for every ε > 0 there is some convex

combination (an)n∈x supported in x ∈ Sι(ωα) such that

sup
x∈G

∑
n∈x
|an| < ε.

This means that ‖
∑

n∈x anxn‖F < ε
∑

n∈x |an|. �

Definition 5.6. Recall that given an α-Schreier family Sα, let Tα := TSα be the α-Tsirelson

space defined as the completion of c00 under the norm

‖x‖α := max{‖x‖∞, sup
(Ei)i

1

2

∑
i

‖Eix‖α}

where the sup above runs over all sequences of sets (Ei)i such that Ei < Ei+1 and {minEi}i ∈ Sα,

and where Ex =
∑

n∈E(x)n.

An equivalent way of defining ‖ · ‖α is as follows. Let K0 := {±un}n<ω and let

Kn+1 := Kn ∪ {
1

2

∑
i<k

ϕi : {ϕi}i<k ⊆ Kn, ϕi < ϕi+1, i < k − 1, and {min suppϕi}i<k ∈ Sα}.

Let K :=
⋃
nKn. Then ‖x‖α = supϕ∈K〈ϕ, x〉. It is easy to see that each ϕ ∈ K has a

decomposition

ϕ =
∑
i

1

2i
ϕi

where ϕi is a vector with coordinates −1 or 1, supported in Sα·i and (fi)i pairwise disjointly

supported. It is well known that every normalized block subsequence of the unit basis (un)n
of Tα is equivalent to a subsequence of the unit basis. Since clearly from the definition every

subsequence of (un)n is a `α1 -spreading model, it follows that every non-trivial sequence in Tα
has a `α1 -spreading model subsequence. Now suppose that (xn)n is a non-trivial sequence in Tα.

W.l.o.g. we assume that (xn)n is a subsequence of the unit basis, xn = ukn . Let ε > 0, and

let n be such that ε2n > 1. By the quantitative version of Ptak’s Lemma, there is some convex
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combination (an)n∈x supported in x ∈ Sα·ω such that supx∈
⋃
i<n Sα·n

∑
k∈x |ak| < ε. We claim

that ‖
∑

n∈x anxn‖α ≤ 3ε: Fix ϕ ∈ K, ϕ =
∑

i 2−iϕi decomposed as above. Then,

|〈ϕ,
∑
j∈x

ajukj 〉| ≤
∑
i<n

1

2i
|〈ϕi,

∑
j∈x

ajunj 〉|+
1

2n

∑
j∈x
|aj | ≤

∑
i<n

1

2i

∑
j∈x∩suppϕj

|aj |+
1

2n

∑
j∈x
|aj | ≤ 3ε.

We have just proved the following.

Theorem 5.7. Tα is a reflexive Banach space whose unit basis is 1-unconditional and such

that every non-trivial sequence has a `α1 -spreading model subsequence but it does not have `α·ω1 -

spreading models. Consequently, Tα does not have subsymmetric basic sequences. �

5.1. The interpolation method. We recall the following well-known construction, presented

in a general, not necessarily separable, context: fix an infinite cardinal number κ, let (‖·‖n)n∈ω be

a sequence of norms in c00(κ) and ‖·‖X be a norm on c00(N) such that (en)n is a 1-unconditional

basic sequence of the completion X of (c00(N), ‖ · ‖X). Let Xn, n ∈ N, be the completion of

(c00(κ), ‖ · ‖n). For x ∈ c00(κ), define

‖|x‖| := ‖
∑
n

‖x‖n
2n+1

en‖X .

It is not difficult to see that ‖|·‖| is a norm on c00(κ) (the fact that (un)n is a 1-unconditional basic

sequence of (c00(N), ‖ · ‖X) is crucial to prove the triangle inequality). Let X be the completion

of (c00, ‖| · ‖|).

Remark 5.8. Observe that the dual unit ball of X is closed under the following operation. Given

x∗i ∈ BX∗i for i = 1, . . . , n and
∑n

i=1 bie
∗
i ∈ BX∗ , then

n∑
i=1

bi
2i+1

x∗i ∈ BX∗ .

To see this, there is a simple computation. Given x ∈ c00 we have that

|(
n∑
i=1

bi
2i+1

x∗i )(x)| ≤
n∑
i=1

|bi|
2i+1
‖x‖i = |(

n∑
i=1

|bi|e∗i )(
n∑
i=1

1

2i+1
‖x‖iei)| ≤

≤

∥∥∥∥∥
n∑
i=1

|bi|e∗i

∥∥∥∥∥
X∗

∥∥∥∥∥
n∑
i=1

1

2i+1
‖x‖iei

∥∥∥∥∥
X

≤ ‖x‖X

The following follows easily from the definition.

Proposition 5.9. Suppose that (xξ)ξ<λ is a C-unconditional basic sequence of each Xn. Then

(xξ)ξ<λ is a C-unconditional basic sequence of X. �

In our construction, this will be the case, so that we will be able to apply the following result.

Proposition 5.10. Suppose that X is a space with an unconditional basis and without isomor-

phic copies of `1. Then the following are equivalent.

(a) Every non trivial bounded sequence in X has an `α1 -spreading model subsequence.

(b) Every non-trivial weakly-convergent sequence in X has `α1 -spreading model subsequence.
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(c) Every non-trivial weakly-null sequence in X has `α1 -spreading model subsequence.

Proof. Suppose that (b) holds. It follows that c0 does not embed into X. Hence, by James’

criteria of reflexivity for spaces with an unconditional basis, X is reflexive, whence every bounded

sequence has a weakly-convergent subsequence and now (a) follows directly from (b). Now

suppose that (c) holds and let us prove (b): Suppose that (xk)k is a non-trivial weakly-convergent

sequence with limit x. Let x∗ ∈ SX∗ be such that x∗(x) = ‖x‖. Let yk := xk−x for every k. By

hypothesis, we can find ε > 0 and a subsequence (zn)n of (yn)n such that ‖
∑

n anyn‖ ≥ ε
∑

n |an|
for every sequence of scalars (an)n supported in Sα. Let (vn)n be a further subsequence of (zn)n
such that |x∗(vn)| ≤ ε/2 for every n. We claim that (vn + x)n is a subsequence of (xn)n which

is a `α1 -spreading model: Fix a sequence (an)n supported in Sα, and let y∗ ∈ BX∗ be such that

y∗(
∑

n anzn) ≥ ε
∑

n |an|. Let z∗ := y∗ − λx∗ ∈ Ker(x) ∩ 2BX∗ , where λ := y∗(x)/‖x‖. Then,

‖
∑
n

an(vn + x)‖ ≥1

2
z∗

(∑
n

an(vn + x)

)
=

1

2
z∗

(∑
n

anvn

)
≥ 1

2
y∗

(∑
n

anvn

)
−

−λx∗
(∑

n

anvn

)
≥ ε

4

∑
n

|an|.

�

Finally, one of the interesting features of the resulting space of the interpolation is given by

the following proposition.

Proposition 5.11. If Y can be isomorphically embedded into X, then a subspace Z of Y can be

isomorphically embedded into some Xn or into X.

Proof. Let Y0 ⊆ X be isomorphic to Y . If there is some n such that In : Y0 → Xn is not

strictly singular, then choosing Y1 ⊆ Y0 such that In � Y1 is an isomorphism we obtain that Y1

embeds into Xn. Suppose that all In � Y0 are strictly singular.

Fix a strictly positive summable sequence (εn)n,
∑

n εn < 1/4. Let y0 ∈ SY0 . Let n0 ∈ N be

such that

‖
∑
n>n0

1

2n+1
‖y0‖nen‖X ≤ ε0.

Let y1 ∈ SY0 be such that

max
n≤n0

‖y1‖n ≤ ε1

Let n1 > n0 be such that

‖
∑
n>n1

1

2n+1
‖y1‖nen‖X ≤ ε1.

Let now y2 ∈ SY0 be such that

max
n≤n1

‖y2‖n ≤ ε2.
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In this way, we can find an strictly increasing sequence (nk)k∈N of integers normalized vectors

yn ∈ Y0 such that for every k one has that

‖
∑
n>nk

1

2n+1
‖yk‖nen‖X ≤ εk

max
n≤nk−1

‖yk‖n ≤ εk.

Set w0 :=
∑

n≤n0
(‖y0‖n/2n+1)en ∈ X, and for each k ≥ 1, let

wk :=

nk∑
n=nk−1+1

‖ykn‖
2n+1

en ∈ X.

Let (ak)k be a sequence of scalars with maxk |ak| = 1. Then, after some computations, one can

show that∣∣∣∣∣‖∑
k

akyk‖X − ‖
∑
k

akwk‖X

∣∣∣∣∣ ≤|a0|‖
∑
n≤n0

1

2n+1
‖y0‖nen‖X+

+
∑
k≥1

|ak|

‖ ∑
n≤nk−1

1

2n+1
‖yk‖nen‖X + ‖

∑
n>nk

1

2n+1
‖yk‖nen‖X

 <

<
1

2
.

Since ‖wk‖X ≥ 3/4, and (wk)k is a block subsequence of the basis (en)n, it follows that

‖
∑

k akwk‖X ≥ 3/4 maxk |ak|, we obtain that∣∣∣∣∣‖∑
k

akyk‖X − ‖
∑
k

akwk‖X

∣∣∣∣∣ < 2

3
‖
∑
k

akwk‖X .

Hence,
1

3
‖
∑
k

akwk‖X ≤ ‖
∑
k

akyk‖X ≤
4

3
‖
∑
k

akwk‖X .

�

5.2. The Banach space X. The next result gives the existence of the desired Banach space X

of density κ, subject to the existence of bases of families on κ.

Theorem 5.12. Suppose that κ has a basis of families. Then for every 1 ≤ α < ω1 there is a

reflexive Banach space Xα of density κ with a long unconditional basis such that

(a) every bounded sequence without norm convergent subsequences has a `α1 -spreading model

subsequence, and

(b) Xα does not have `
ι(ωα)+α·ω
1 -spreading models.

Consequently,

(c) Xα does not have subsymmetric sequences;

(d) if ι(ωα) + α · ω ≤ β, then Xα and Xβ are totally incomparable, i.e. there is no infinite

dimensional subspace of Xα isomorphic to a subspace of Xβ.
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Proof. Let (B,×) be a basis of families on κ. Let F0 := [κ]≤1, and for n < ω let Fn+1 :=

Fn × Sα. Notice that rk(Fn) < ι(ωα) for every n. Let X be the interpolation space from an

α-Tsirelson space Tα and the sequence of generalized Schreier spaces XFn , n ∈ N. Since each

XFn is c0-saturated, and Tα is reflexive, it follows from Proposition 5.11 that X does not have

isomorphic copies of `1.

Claim 5.12.1. Every non-trivial bounded sequence has an `α1 -spreading model.

From this claim, and the fact that the unit basis (uγ)γ<κ is unconditional, we obtain that X

is reflexive. We pass now to prove that previous claim.

Proof of Claim: Fix such sequence (xk)k. Since X does not have isomorphic copies of `1, we may

assume, by Proposition 5.10, that (xk)k is a non-trivial weakly-null sequence. Since (uξ)ξ<κ is

a Schauder basis of X, by going to a subsequence if needed, we assume that (xk)k is disjointly

supported, and

‖xk‖ ≥ γ > 0 for every k.

The proof is now rather similar to that of Proposition 5.11.

Case 1. There is ε > 0, n ∈ N and an infinite subsequence (yk)k of (xk)k such that

‖yk‖n ≥ ε for every k.

For each k choose sk ∈ Fn � supp yk such that∑
ξ∈sk

|u∗ξ(yk)| ≥ ε.

By hypothesis, Fn+1 = Fn×Sα, so there is a subsequence (tk) of (sk)k such that
⋃
k∈v tk ∈ Fn+1

for every v ∈ Sα. Let (zk)k be the subsequence of (yk)k such that
∑

ξ∈tk |u
∗
ξ(zk)| ≥ ε for every

k. We claim that (zk)k is a `α1 -spreading model. So, fix a sequence of scalars (ak)k∈s indexed by

s ∈ Sα. Then t :=
⋃
k∈s tk ∈ Fn+1, hence,

‖
∑
k∈s

akzk‖ ≥
1

2n+2
‖
∑
k∈s

akzk‖n+1 ≥
1

2n+2

∑
ξ∈t

∣∣∣∣∣u∗ξ(∑
k∈s

akzk)

∣∣∣∣∣ =
1

2n+2

∑
k∈s
|ak|

∑
ξ∈tk

∣∣u∗ξ(zk)∣∣ ≥
≥ ε

2n+2

∑
k∈s
|ak|.

Case 2. For every ε > 0 and every n the set

{k ∈ N : ‖xk‖n ≥ ε} is finite.

So, let (yk)k be a subsequence of (xk)k such that

‖yk‖k−1 ≤
1

2k+1
for every k
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Now we can find (nk)k such that for every k one has that

‖
nk+1−1∑
n=nk

1

2n+1
‖yk‖ntn‖T ≥

γ

2

‖
∑

n/∈[nk,nk+1[

1

2n+1
‖yk‖ntn‖T ≤

γ

2k+4

For every k choose
∑nk+1−1

n=nk
bnt
∗
n ∈ ST ∗α and sn ∈ Fn with n ∈ [nk, nk+1[ such that

nk+1−1∑
n=nk

1

2n+1
bnψn(yn) ≥ γ

2
for every k,

where ψn :=
∑

ξ∈sn εξu
∗
ξ ∈ B(XFn )∗ and εξ is the sign of |u∗ξ(zk)| for every k, every n ∈ [nk, nk+1[

and every ξ ∈ sn. For every k let

ϕk :=

nk+1−1∑
n=nk

bn
2n+1

ψn ∈ BX∗ ,

because of Remark 5.8. Notice that ϕk(yk) ≥ γ/2 for every k. Given s ∈ Sα we have that

{nk}k∈s ∈ Sα, because Sα is a spreading family. Hence,

1

2

∑
k∈s

nk+1−1∑
n=nk

bnt
∗
n ∈ BT ∗α .

It follows from this and Remark 5.8 that

1

2

∑
k∈s

ϕk =
1

2

∑
k∈s

nk+1−1∑
n=nk

1

2n+1
bnψn ∈ BX∗ .

Now, fix s ∈ Sα and scalars (ak)k∈s, and for each k ∈ s, let σk be the sign of ak. Then,

‖
∑
k∈s

akyk‖ ≥|〈
1

2

∑
k∈s

σkϕk,
∑
k∈s

akyk〉| ≥
γ

4

∑
k∈s
|ak| −

∑
k∈s
|〈1

2

∑
j∈s\{k}

ϕj , akyk〉| ≥

≥γ
4

∑
k∈s
|ak| −

∑
k∈s
|ak|

∥∥∥∥∥∥
∑

n/∈[nk,nk+1[

1

2n+1
‖yk‖ntn

∥∥∥∥∥∥
Tα

≥

≥γ
4

∑
k∈s
|ak| −

∑
k∈s
|ak|

γ

2k+4
≥ γ

8

∑
k∈s
|ak|.

Hence, (yk)k is an `α1 -spreading model. �

(b): Suppose otherwise that (xk)k is a weakly-null sequence such that ‖
∑

k∈s akxk‖X ≥
ε
∑

k∈s |ak| for every sequence of scalars (ak)k∈s supported in s ∈ Sβ, for β := ι(ωα) + α · ω.

There are two cases to consider.

Case 1. There is some subsequence (yk)k of (xk)k some n and some C > 0 such that

1

2n+1
‖
∑
k∈s

akyk‖n ≤ ‖
∑
k∈s

akyk‖X ≤ C‖
∑
k∈s

akyk‖n
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for every (ak)k∈s supported in s ∈ Sι(ωα). Let θ : Fn → FIN, θ(s) := {k ∈ ω : supp yk ∩ s 6= ∅}.
This is a continuous mapping, so C := θ”Fn is compact, and γ := rk(C) ≤ rk(Fn) < ι(ωα),

by the choice of Fn. By the quantitative version of by Ptak’s Lemma we can find a convex

combination (ak)k∈s supported in Sι(ωα) such that
∑

k∈t |ak| < ε/(C supk ‖yk‖n) for every t ∈ C.
Let v ∈ Fn be such that

‖
∑
k∈s

akyk‖n =
∑
ξ∈v
|u∗ξ(

∑
k∈s

akyk)|.

Then

‖
∑
k∈s

akyk‖X ≤ C‖
∑
k∈s

akyk‖n ≤
∑
k∈θ(s)

|ak|‖yk‖n < ε,

and this is impossible.

Case 2. There is a normalized block subsequence (yk)k of (xk)k with yk :=
∑

i∈sk bixi and

sk ∈ Sι(ωα) and that is 2-equivalent to a block subsequence (wk)k of the basis (tn)n of Tα. Since

for every δ, γ there is an integer n such that Sδ ⊗ Sγ � (ω \ n) ⊆ Sδ+γ , we assume without loss

of generality
⋃
k∈x sk ∈ Sι(ωα)+α·ω for every x ∈ Sα·ω. Let K := supk ‖xk‖X. By Theorem 5.7,

let (ak)k∈v be a sequence supported in v ∈ Sα·ω such that ‖
∑

k∈v akwk‖Tα < (ε/2K)
∑

k∈v |ak|.
Hence,

‖
∑
k∈v

ak
∑
i∈sk

bixi‖X ≤ 2‖
∑
k∈v

akwk‖Tα <
ε

K

∑
k∈v
|ak| ≤ ε

∑
k∈v
|ak|

∑
i∈sk

|bi|,

and this is impossible because
⋃
k∈v sk ∈ Sι(ωα)+α·ω. �
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