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ABSTRACT: 

In this paper we study a tropocollagen model in order to consider the temperature 

effect. Both situations with triple helix structure having one and two hydrogen bonds by each 

set of three amino acid are presented. Ising models are used for evaluating the statistical 

properties. Finally comparison with the experimental data is considered. The theoretical 

results agree very well with the experimental points. 

1- INTRODUCTION 

Collagen is present in ligaments, the matrix of bond and provides the intracellular 

binding substance in muscle and in other organs. Collagen can by solubilized, and with dilute 

acid converted into tropocollagen. 

The tropocollagen is formed as a triple helix of length about 2,800 Å and a diameter of 

about15 − Å.  Each composing chain is a sequence of amino acid. One third of the total 

residues are glycine, about, one eight are proline and one in ten is hydroxy- proline. Each chain 

is binding with the other two by hydrogen bonds. 

In the present paper we study the temperature effect in tropocollagen- like structures. 

We assume a simple version of the tropocollagen structure which is considered having only 

two components allow to form hydrogen bonds. These are hydroxyl- prolin and glycine. 

It is very well know the structures of the triple helix of the tropocollagen. One model 

assumes that there are hydrogen bonds among hydroxyl- pralines and glycines respectively. On 

the other hand, a hypothetical model considers the no existence of glycine bonds among 

them. We study both situations. 

We introduce a model consisting of molecules having two possible states. They 

represent the existence or not of hydrogen bond. Besides, the hydrophobic and 

electromagnetic interactions among molecules are also allowed. Principally, the cooperative 

effect is due to these interactions in the melting process.  

We use an Ising model in order to evaluate the partition function from which 

macroscopie observable are derived. 

 

2- COLLAGEN ISING MODEL 

As we mentioned in the introduction, in this paragraph we are going to introduce and 

study some mathematical and physics facts of the theoretical model for the tropocollagen. 



3 
 

We are indeed interested in the bond breaking by temperature effect. Due to the fact 

that there is a correlation effect of interaction among certain bonds, there will appear a 

cooperative behavior in the bond breaking. 

The two assuming visions about the collagen structures, that is to say either the 

existence or not of the hydrogen bond among glycine units, here appear together only 

parametrized by same suitable variable. 

When these variables take extremes values, one obtains the two different theories. 

First of all, we present in a the collagen structure in the first, from which some ideas 

can be derived: 

 

 

 

 

 

 

 

 

 

 

 

On the left hand we have a collagen structure for its bond interaction. On the right, it is 

the same structure just planar. The bonds are of two types. 

We remind that the vertical bonds are of covalent type and do not break with smooth 

changes of the temperature. Contrarly horizontal and slant bond are of hydrogen type and 

break by the effect of the temperature. 

As it is mentioned by Poland and Scheraga1the helical configuration of most systematic 

ordered structure found in polymers is largely due to the non bonded interaction, that is to say 

the correlation or “steric” effect. Here we will study the collagen structure in the ising nearest- 

neighbor model, as described for example in Thompson 2. 

In order to express the interactive energy among the molecule composing the collagen 

we indicate with 휀1and  휀2 the free energies of the hydrogen bonds between hydroxiproline 

and glycine respectively which are mark ked by o and in the figure 1. On the other hand, we 

introduce the correlation or “steric” energies which are �̅�, �̅�and �̅�. The first are represents the 

energy between             and            ; the second are between             and           ; and finally 

between                and                 . All of them are considered as nearest- neighbors. 

1 
2 

3 

4 

5 

6 

7 

8 

9 
10 



4 
 

We use a set of parameter 

{𝜇} = {𝜇1, 𝜇2, … , 𝜇𝑁} 

in order to describe all the bond states, assuming that the collagen has 𝑁 bonds or 

equivalently 
3

2
𝑁 principal molecules. For simplicity  𝑁 is even. The possible values of 𝜇𝑗  are 

given as follows. 

𝜇𝑗 = +1 (𝑗 − 𝑏𝑜𝑛𝑑 𝑖𝑛𝑡𝑎𝑐𝑡)𝑎𝑛𝑑 

−1(𝑗 − 𝑏𝑜𝑛𝑑 𝑏𝑟𝑜𝑘𝑒𝑛) 

where the position of the 𝑗 − 𝑡ℎ bond is show in the figure 1. As the reader may see the 

even 𝑗′𝑠 are those between glycine molecules and the odd ones between hydroxyproline 

molecules and the bond energies  휀2and  휀1 respectively. Thus, the total bond energy of the 

system is given by 

𝐸((𝜇)) = −휀1̅ ∑ 𝜇2𝑗

𝑁 2⁄

𝑗=1

− 휀2̅ ∑ 𝜇2𝑗

𝑁 2⁄

𝑗=1

 

 

On the other hand, the total steric or correlation energy is expressed as following: 

𝐸𝐶((𝜇)) =
1

𝑍
∑ (𝜇2𝑗𝜇2𝑗+1 + 𝜇2𝑗+1𝜇2𝑗+2 + 𝜇1𝜇2 + �̅� ∑ 𝜇2𝑗

𝑁 2−1⁄

𝑗=1

𝜇2𝑗+2 + �̅� ∑ 𝜇2𝑗−1

𝑁 2−1⁄

𝑗=1

𝜇2𝑗+1)

𝑁 2−1⁄

𝑗=1

 

From here, the partition function of the system takes the form: 

𝑍𝑁
𝑜𝑝𝑒𝑛

= ∑ 𝑒𝑥𝑝 −
1

𝑅𝑇
𝐸𝐵({𝜇} + 𝐸𝐶{𝜇})

(𝜇)

 

there𝑅 is the gas constant and 𝑇 the temperature. 

3- A)Partition Function Evaluation: 

Here we compute in some different cases the partition function. As a first step, we 

assume that the collage is a chain of molecules. This is a usual hypothesis for long polymer in 

the Ising context. 

For example see Poland and Scheraga1 and Wartell and Montrol. However, futher we 

will consider the “end effect” for a non- closed chain. We note that in both cases the transfer 

matrix is just the same. But in the latter case all the eigenvalues are taken into account. 

Introducing the variables 𝜎𝑗 =  (𝜇2𝑗−1𝜇2𝑗) we then have the transfer matrix 

𝐿(𝜎𝑗, 𝜎𝑗+1) = 𝑒𝑥𝑝휀1𝜇2𝑗−1 + 휀2𝜇2𝑗−2 − 𝛼 𝜇2𝑗  𝜇2𝑗+1 +   𝜇2𝑗+1 𝜇2𝑗+2 − 𝛽 𝜇2𝑗+1 𝜇2𝑗+2 − 𝛾 𝜇2𝑗−1 𝜇2𝑗+1 

(2) 
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were휀1 =
�̅�𝑖

𝑅𝑇
 ;  𝛼 =

�̅�

𝑅𝑇
 ;  𝛽 =

�̅�

𝑅𝑇
 and 𝛾 =

�̅�

𝑅𝑇
 

in the case with closed ends, the partition function appears to be given by 

𝑍𝑁
𝑐𝑙𝑜𝑠𝑒𝑑 = ∑ 𝑒𝑥𝑝 −

1

𝑅𝑇
𝐸𝐿({𝜇})

{𝜇}

+ 𝐸𝐶 ({𝜇} +
𝛼

2
𝜇𝑁𝜇1𝛽𝜇𝑁𝜇2 + �̅�𝜇𝑁−1𝜇1) = ∑ 𝐿(𝜎𝑗, 𝜎𝑗+1)

𝑁 2⁄

{𝜎}
𝑗=1

= 𝑇𝑅𝐴𝐶𝐸 𝐿𝑁 2⁄ = ∑𝑖
𝑁 2⁄



𝑖=1

≅ 𝑚𝑎𝑥
𝑁 2⁄

 

We remind the line before the latter just expresses the matrix product on 𝑁 2⁄  equal 

matrices 𝐿. The ′𝑠 are the eigenvalues of the matrix 𝐿. 

As a first case, we consider 𝛼 = 0, that is to say to correlation between hodrixiproline 

and glycine is negligible. 

Therefore the maximum eigenvalue of 𝐿is obtained as 

𝑚𝑎𝑥 =  𝑒−(𝛽+𝛾){cosh 휀1 + (sinh2 휀1 + 𝑒4)}1/2{cosh 휀2 + (sinh2 휀2 + 𝑒4𝛽)}
1 2⁄

 

As a second and interesting case, we have the situation when correlation between 

hidroxyproline and glycine is not negligible. However, in our analysis we need in such a case 

another restriction which is related with the existence of the hydrogen bond between glycine 

units. Here, we compute the characteristic polynomial corresponding to the transfer matrix 

𝐿, resulting as: 

𝑃() = 4 − 𝑝1
3 + 𝑝2

2 − 𝑝3 + 𝑝4

= 4 − 2 𝑒−(𝛽+𝛾)[𝑒−𝛼 𝑐𝑜𝑠ℎ(휀1 + 휀2) + 𝑒𝛼 𝑐𝑜𝑠 ℎ(휀1 − 휀2)]
3

+ [−4 𝑒−2𝛾 𝑠𝑖𝑛ℎ 2𝛽 𝑐𝑜𝑠ℎ 2휀1

− 4 𝑒−2𝛽 𝑠𝑖𝑛ℎ 2𝛾 𝑐𝑜𝑠ℎ 2휀2

+ 4 𝑠𝑖𝑛ℎ2 𝛼 𝑐𝑜𝑠ℎ 2(𝛽 + 𝛾) − 4 𝑠𝑖𝑛ℎ 2(𝛽 + 𝛾) 𝑐𝑜𝑠ℎ2 𝛼]

− 8𝑒−(𝛽+𝛾)(𝑒𝛼 𝑐𝑜𝑠ℎ(휀1 + 휀2) + 𝑒−𝛼 𝑐𝑜𝑠ℎ(휀1 − 휀2) 𝑠𝑖𝑛ℎ 2𝛽 ℎ 𝑠𝑖𝑛 2 

+ 4(𝑐𝑜𝑠ℎ 4𝛽 𝑐𝑜𝑠ℎ 4𝛾 − 𝑐𝑜𝑠ℎ 4𝛽 − 𝑐𝑜𝑠ℎ 4𝛾 + 1) = 0 

The reader will realize that the task of compunting the root of the above characteristic 

polynomial is extremely complicated. Therefore we study a more simple but interesting case 

which appears when 𝑝1 = 𝑝3and 𝑝4 = 1. These condition express that either 

휀1 = 0 𝑜𝑟 휀2 = 0.  
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This condition, physically is quite plausible since means in the case 휀2 = 0 that the 

hydrogen bond between glycine do not exist or is negligible. 

Thus, the partition function in the “closed” case might be gotten. In the next section 

study the open case. 

 

B)End effect: 

Here we consider the collagen Ising model when no “closed” ends is assumed. In this 

case, that is to say with “open” ends and end effect will appear. However, we will show that 

the results are similar as the previous considered case since a small difference will be 

introduced as end effect. 

We remember from (3) that 

𝑍𝑁
𝑜𝑝𝑒𝑛

= ∑ 𝑒
−𝛼𝜇1𝜇2

𝑁

𝐿2 1

𝜎1𝜎𝑁 2⁄

 

(𝜎1, 𝜎𝑁 2⁄ )𝑒𝜀1𝜇𝑁−1+𝜀2𝜇𝑁 

In order to reduce for computational purposes the last expression, let use consider the 

matrix  𝐿 as 𝐿 = 𝑋𝑋−1 where  is the respective diagonalized matrix of  𝐿 and 𝑋 matrix 

whose columns are the normalized eigenvectors respectively. Therefore 

𝐿(𝜎, 𝜎1) = ∑ ∑ 𝑋((𝜎, 𝜏)2𝛿𝜏 𝜔𝑋−1

𝜔

, 𝜔, 𝜎1

𝜏

) = ∑ 𝑋(𝜎, 𝜏)

𝜏

𝜏𝑋−1(𝜏, 𝜎1) 

 

The first equality is just the replacing of the diagonal matrix  where 𝛿 is Kronecker’s 

delta. Since 𝑋 is an orthonormal matrix, if holds 𝑋−1(𝜏, 𝜔) = 𝑋(𝜔, 𝜏) which implies that 

𝐿(𝜎, 𝜎1) = ∑ 𝜆𝜏 𝑋(𝜎, 𝜏)𝑋(𝜎1, 𝜏)

𝜏

 

Similarly, it is easy to see that 

𝐿𝑠(𝜎, 𝜎1) = ∑ 𝜆𝜏𝑋(𝜎, 𝜏)𝑋(𝜎1, 𝜏)

𝜏

 

 

Now replacing (11) into (7), it appears that the partition function with end effect is 

𝑍𝑁
𝑜𝑝𝑒𝑛

= ∑𝜏
𝑁−1

𝜏

𝐶𝜏 

where 

𝐶𝜏 = ∑ 𝑒−𝛼𝜇1𝜇2  𝑋(𝜎1, 𝜏)

𝜎1     𝜎

(𝜎𝑁 2⁄ , 𝜏)𝑒𝜀1𝜇𝑁−1휀2𝜇𝑁 

For large N, we can approximate 

(7) 

(9) 

(10) 

(11) 

(12) 

(13) 
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𝑍𝑁
𝑜𝑝𝑒𝑛

= ∑𝜏
𝑁/2−1

𝜏

𝐶𝜏 

where is an index corresponding  to the maximum eigenvalues. Because it is needed to 

compute 

log 𝑍𝑁
𝑜𝑝𝑒𝑛

=  (
𝑁

2
− 1) 𝑙𝑜𝑔 �̅� + 𝑙𝑜𝑔 C�̅� =

𝑁

2
𝑙𝑜𝑔 �̅� 

 

for large 𝑁. From here we have that the end effect for very large 𝑁 is negligible. This fact is 

satisfied in our case for the collagen. 

Therefore, by such an argument, we do not go further into this matter. 

4- MEDIUM NUMBER OF INTACT HYDROGEN BONDS 

In this paragraph, we are going to consider and study the medium number or average 

of intact hydrogen bonds varying the temperature. This is in general obtained as 

𝜃𝜏(𝑇) =
1

2 𝑁
(𝑁 +

𝜕

𝜕휀
log𝑚𝑎𝑥

𝑁 2⁄
+

𝜕

𝜕휀
log𝑚𝑎𝑥

𝑁 2⁄
) =

𝑀𝐼

𝑁
 

were means the average. 

Replacing  𝑚𝑎𝑥 in the closed case from the equation (5) into (15), we get 

𝜃𝜏(𝑇) =
1

2 
[1 +

1

2 

sinh 휀1

(sinh2 휀1 + 𝑒4𝛾)1 2⁄
+ 

sinh 휀2

(sinh2 휀2 + 𝑒4𝛽)1 2⁄
] 

 

On the other hand, in the case when휀2 = 0, and in the reciprocal situation, it is 

possible to obtain𝜃𝜏(𝑇). 

It is interesting to see that in the closed chain case the condition of having a half of 

intact bonds, that is to say 𝜃1(𝑇𝑚) =
1

2
, where 𝑇𝑚 is the respective temperature, it holds to a 

relation for correlation energies, namely 

(𝛾 − 𝛽) =  
1

2
log |

sinh 휀1

sinh 휀2
| 

which can be easily derived from (16). In the case when 𝛽 = 𝛾 implies that 휀1 = 휀2. In 

general, because the hydroxyproline gives more statibility to the collagen structure, 휀1 > 휀2, 

which means that 𝛾 > 𝛽. This happens at temperature 𝑇𝑚. 

 

5- PARAMETERS EVALUATION 

In this section we consider some aspect related with the evaluation of observable 

parameters. First of all, if the statistical weight contributing the partition function at 

temperature 𝑇 is𝑒𝑥𝑝 휀(𝑡) 𝜇𝑗. 

(14) 

(16) 

(17) 
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We here remind that this is the case of a unidimentional ring without correlation. 

Therefore at  𝑇 = 𝑇𝑚 the statistical weight must be equal for balance reasons. Thus the free 

energy divided by 𝑅𝑇is 휀(𝑇𝑚) = 0. 

It is intuitively clear that the melting temperature and the free energies are different 

for the two bond types. This fact implies that the enthalphy and entropy are also different. 

then, we can write 

휀1(𝑇) =
ΔG1

RT
=

ΔH1 − TΔS1

RT
 

 

whereΔG1is the free energy change at the bond breaking, similarly ΔH1 the change of 

enthalpy and ΔS1 the change of entropy. At the melting temperature 𝑇𝑚 of the first type 

bonds, 𝜇1(𝑇𝑚) = 0. 

from which: ΔH1 = 𝑇𝑚1
, ΔS1. 

Therefore we obtain 

휀1(𝑇) =
ΔH1

𝑅𝑇𝑚1

(
𝑇𝑚1

𝑇
− ħ) 

Similary, for the second type of bond. 

Assuming that 𝑇𝑚2
< 𝑇 < 𝑇𝑚1

 and near each other, then the equation (17) can be 

written at 𝑇𝑚as 

𝑒2(𝛾𝛽)
휀1(𝑇𝑚)

휀2(𝑇𝑚)
≅

Δ1

ΔH2
Δ 

 

where 

Δ
𝑇𝑚1

− 𝑇𝑀

𝑇𝑚2
− 𝑇𝑀

𝑇𝑚2

𝑇𝑀1

 

 

The previous equality is obtained by taking account (19). 

From the equation (16) we may evaluate the derivative of the average of intact 

hydrogen bonds. After some manipulations and using (20) we get the following expression 

(
𝜕𝜃

𝜕
)

𝑇=𝑇𝑀

ΔH2

2𝑅𝑇𝑀
𝑒−2𝛽(1 + Δ−1) 

 

from which we may relate 𝛽 with the rate of change at 𝑇 = 𝑇𝑀 of the average. 

On the other hand, due to the fact that the entropy changes ΔS1 and ΔS2 might be 

considered equal, seince they take into consideration the degrees of freedom of broken 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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state; which are considered to be similar in the two types of molecules. With this, and 

considering (19) we obtain for the enthalpies 

ΔH1

𝑇𝑚1

=  
ΔH2

𝑇𝑚2

 

Using all the above relation (21), (22) and (23) we can evaluate 1(𝑇) in terms of the 

parameters 𝑇𝑚1
, 𝑇𝑚2

 

ΔH2and(
𝜕𝜃

𝜕𝑇
)

𝑇
= 𝑇𝑚 

 

 

6- COMPARISON WITH EXPERIMENTAL DATA 

From an experimental point of view the soluble collagen denaturation is considered as 

the change of intriensic viscosity as a temperature function. H. Boedtker and P. Doty in 1956 

performed same experiments with soluble collagen in citrate at PH 3.7. their experimental 

results are used in this paper in order to compare them with the presented theory. 

The enthalphy variation, following T. A. Orofino, A. Ciferri and J.J. 

Hermans and D. Puett and L.U.Rajagh6 is near 2𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. The experimental value of 

𝑇𝑀 𝑖𝑠 29,2C . with the use of (20), (22) and (23) and considering the equation (16) which 

gives the average of intact hydrogen bonds 𝜃𝐼(𝑇), taking into account proper values. 

The denaturation curve very well adjusts the experimental points presented in 4). 

In the second case when only when only the hydroxiproline can form hydrogen bonds, 

the theory agrees with experiments presented in  

 

FINAL REMARKS 

For both models we get from a practical point of view, identical denaturation curves. 

Therefore, one might not decide between them. The stability of both models might be 

explained on the following bases. 
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