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Abstract: In this short note we solve a non linear difference equation which becomes related 

to Fibonacci numbers. 
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1- A NON LINEAR DIFFERENCE EQUATION 

 

Consider the difference equation given by: 

𝑥𝑛−1 = �̅�𝑛𝑥𝑛 𝑥𝑛−1 + �̅�𝑛𝑥𝑛−2     𝑛 = 1, 2, …  

where 𝑥𝑛 is obtained from the previous values in a non linear way in the form expressed in it. The 

problem to be solved is to find 𝑥𝑛 in terms of the firsts values of it. We will propose a general form 

for the values of 𝑥𝑛 called quadrature and generating function procedure. The values of �̅�𝑛 will not 

be arbitrary but in the solution they will depend upon other parameters. Simply the proposal is as 

follows 

 

𝑥𝑛 = 𝛼𝑛 𝑐(𝑛) +
𝛽𝑛

𝑐(𝑛)
 

 

then  

𝑥𝑛 𝑥𝑛−1 = 𝛼𝑛𝛼𝑛−1𝑐(𝑛)𝑐(𝑛 − 1) +
𝛽𝑛

𝑐(𝑛)
𝛼𝑛−1𝑐(𝑛 − 1) + 𝛼𝑛𝛽𝑛−1

𝑐(𝑛)

𝑐(𝑛 − 1)
+

𝛽𝑛𝛽𝑛−1

𝑐(𝑛)𝑐(𝑛 − 1)
 

 

Introducing this expression in (1) and 𝑥𝑛−2, then after identifying terms we obtain the 

following recursive of difference equations 

𝛼𝑛+1𝑐(𝑛 + 1) = �̅�𝑛 𝛼𝑛𝛼𝑛−1𝑐(𝑛)𝑐(𝑛 − 1) 

𝛽
𝑛+1

𝑐(𝑛 + 1)
= �̅�𝑛

𝛽
𝑛

𝛽
𝑛−1

𝑐(𝑛)𝑐(𝑛 − 1)
 

 

On the other hand, 

𝛼𝑛𝛽𝑛−1

𝑐(𝑛)

𝑐(𝑛 − 1)
= 𝛽𝑛−1�̅�𝑛−1 𝛼𝑛−1𝛼𝑛−2𝑐(𝑛 − 2) 

 

then  

�̅�𝑛𝛽𝑛−1�̅�𝑛−1𝛼𝑛−1 + �̅�𝑛 = 0 

In a similar way 

𝛽𝑛−1𝛼𝑛

1

𝑐(𝑛 − 2)

𝛽𝑛

𝛽𝑛−1

𝛼𝑛−1

�̅�𝑛−1

𝛼𝑛−1𝛼𝑛−2 = 𝛽𝑛𝛼𝑛−1

𝑐(𝑛 − 1)

𝑐(𝑛)
 

from which it follows 

�̅�𝑛𝛼𝑛𝛽𝑛 + �̅�𝑛𝛽𝑛−1𝛼𝑛−1𝛼𝑛−2 = 0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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or 

�̅�𝑛 = −
�̅�𝑛 𝛼𝑛 𝛽

𝑛

𝛽
𝑛−1

𝛼𝑛−1𝛼𝑛−2

 

which is a condition to be fulfilled by the coefficient �̅�𝑛as we already mentioned. 

From the equality 

�̅�𝑛 = �̅��̅�𝑛 𝛽
𝑛−1

�̅�𝑛−1𝛼𝑛−1 = −
�̅�𝑛 𝛼𝑛 𝛽

𝑛

𝛽
𝑛−2

�̅�𝑛−1 𝛼𝑛−2

 

one derives 

 𝛼𝑛 𝛽𝑛 = �̅�2
𝑛−1 𝛽𝑛−1 𝛼𝑛−1 𝛽𝑛−2 𝛼𝑛−2 

 

This last difference equation is the same as that equation obtained by multiplying (4) and 

(5). 

Now the equation (12) has the general form of 

ɤ𝑛 = 𝜀𝑛−1ɤ𝑛−1ɤ𝑛−2 

Developing the first terms of (13) we have 

ɤ𝑛 = 𝜀𝑛−1𝜀𝑛−2 ɤ2
𝑛−2 ɤ𝑛−3 = 𝜀𝑛−1𝜀𝑛−2𝜀2

𝑛−3 ɤ3
𝑛−3

 ɤ𝑛−4

= 𝜀𝑛−1𝜀𝑛−2𝜀2
𝑛−3𝜀3

𝑛−4 ɤ5
𝑛−4

ɤ3
𝑛−5 =  𝜀𝑛−1𝜀𝑛−2𝜀𝑛−3

2 𝜀𝑛−4
3 𝜀𝑛−5

5 ɤ𝑛−5
8 ɤ𝑛−6 

5

= 𝜀𝑛−1𝜀𝑛−2𝜀𝑛−3
2 𝜀𝑛−4

3 𝜀𝑛−5
5 𝜀𝑛−6

8 ɤ𝑛−6
13 ɤ𝑛−7 

8  

Where yon immediately see that Fibonacci numbers appear in the developing of ɤ𝑛. 

We define 

0 1 1 2 3 5 8 13 21 

p(0) p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) 

 

as the Fibonacci numbers which are recursively given by 

𝑝(𝑛 + 1) = 𝑝(𝑛) + 𝑝(𝑛 − 1) 

with p(0) = 0 and p(1) = 1. 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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In order to find the solution of (13) let us consider some equalities. First we well prove that 

∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=1

∏ 𝜀𝑛−1−𝑠
𝑝(𝑠)

𝑛−2

𝑠=1

= ∏ 𝜀𝑛−1−𝑠
𝑝(𝑠)

𝑛

𝑠=2

 

In order to see that this equality hold true consider the equality 

∏ 𝜀𝑛−1−𝑠
𝑝(𝑠)

𝑛−2

𝑠=1

= ∏ 𝜀𝑛−𝑠
𝑝(𝑠−1)

𝑛−1

𝑠=2

 

which is obtained just by a change of variables 𝑠 + 1 = �̅�. Using this last equality then since 

p(0) = 0 and p(1) + p(0) = p(2) then 

∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=1

∏ 𝜀𝑛−𝑠
𝑝(𝑠−1)

𝑛−1

𝑠=2

= ∏ 𝜀𝑛−𝑠
𝑝(𝑠+1)

𝑛−1

𝑠=2

𝜀𝑛−1
𝑝(1)

= ∏ 𝜀𝑛−𝑠
𝑝(𝑠+1)

𝑛−1

𝑠=2

𝜀𝑛−1
𝑝(2)

= ∏ 𝜀𝑛−𝑠
𝑝(𝑠+1)

𝑛−1

𝑠=1

 

Now with the change of variable 𝑠 − 1 = �̅� we have  

∏ 𝜀𝑛+1−𝑠
𝑝(𝑠)

𝑛

𝑠=2

= ∏ 𝜀𝑛−𝑠
𝑝(𝑠+1)

𝑛−1

𝑠=1

 

and therefore the equality (16) is valid. 

Now we will claim that 

ɤ𝑛 = ∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=1

 ɤ1
𝑝(𝑛)

ɤ0
𝑝(𝑛−1)

 

is the solution of the difference equation (13). 

We will prove it by induction. 

For n=2 we have 

ɤ2 = ∏ 𝜀2−𝑠
𝑝(𝑠)

1

𝑠=1

 ɤ1
𝑝(2)

ɤ0
𝑝(1)

= 𝜀1ɤ1ɤ0 

Now assume that the formula is true for 𝑗 ≤ 𝑛 − 1 then we have to prove that it is valid 

for 𝑛. This is equivalent to prove that the next equality is true 

ɤ𝑛 = ∏ 𝜀𝑛−𝑠
𝑝(𝑠)𝑛−1

𝑠=1  ɤ1
𝑝(𝑛)

ɤ0
𝑝(𝑛−1)

 

(17) 

(18) 

(19) 

(20) 

(21) 

(16) 

(22) 
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We remember that 

ɤ𝑛 = 𝜀𝑛−1 ɤ𝑛−1 ɤ𝑛−2 

∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=1

 ɤ1
𝑝(𝑛)

ɤ0
𝑝(𝑛−1)

= 𝜀𝑛−1 ∏ 𝜀𝑛−1−𝑠
𝑝(𝑠)

𝑛−2

𝑠=1

 ɤ1
𝑝(𝑛−1)

ɤ0
𝑝(𝑛−2)

∏ 𝜀𝑛−2−𝑠
𝑝(𝑠)

𝑛−3

𝑠=1

 ɤ1
𝑝(𝑛−2)

ɤ0
𝑝(𝑛−3)

 

or equivalently 

∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=1

= 𝜀𝑛−1 ∏ 𝜀𝑛−1−𝑠
𝑝(𝑠)

𝑛−2

𝑠=1

∏ 𝜀𝑛−2−𝑠
𝑝(𝑠)

𝑛−3

𝑠=1

 

Make the change of variable 𝑠 + 2 = �̅� in the first product of the right hand of (24) and 

𝑠 + 1 = �̅� in the second product of the same hand, we have 

∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=1

= 𝜀𝑛−1 ∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=2

∏ 𝜀𝑛−𝑠
𝑝(𝑠−2)

𝑛−1

𝑠=3

= 𝜀𝑛−1 𝜀𝑛−2
𝑝(1)

∏ 𝜀𝑛−𝑠
𝑝(𝑠−2)+𝑝(𝑠−1)

𝑛−1

𝑠=3

= 𝜀𝑛−1 𝜀𝑛−2
𝑝(1)

∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=3

 

and since 𝑝(1)  =  𝑝(2) 

= 𝜀𝑛−1
𝑝(1)

𝜀𝑛−2
𝑝(2)

∏ 𝜀𝑛−𝑠
𝑝(𝑠)

𝑛−1

𝑠=3

 

and this the equality given by (24) or (25) is true. 

Then applying the formula (22) to the recurrence equation (12)one gets the solution 

𝛼𝑛𝛽𝑛 = ∏ 𝛼𝑛−𝑠
−2𝑝(𝑠)

𝑛−1

𝑠=1

𝛼1
𝑝(𝑛)

𝛽1
𝑝(𝑛)

𝛼0
𝑝(𝑛−1)

𝛽0
𝑝(𝑛−1)

 

On the other hand the equation (4) has the solution 

𝛼𝑛 𝑐(𝑛) = ∏ 𝛼𝑛−𝑠
−𝑝(𝑠)

𝑛−1

𝑠=1

𝛼1
𝑝(𝑛)

𝑐1
𝑝(𝑛)

𝛼0
𝑝(𝑛−1)

𝑐0
𝑝(𝑛−1)

 

and equation (5) 

𝛽𝑛

𝑐(𝑛)
= ∏ 𝛼𝑛−𝑠

−𝑝(𝑠)

𝑛−1

𝑠=1

𝛽1
𝑝(𝑛)

𝛽0
𝑝(𝑛−1)

𝑐1
𝑝(𝑛)

𝑐0
𝑝(𝑛−1)

 

 

(23) 

(25) 

(24) 

(13) 

(27) 

(26) 

(28) 
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Thus the general solution (2) is given by  

𝑥𝑛 = ∏ 𝛼𝑛−𝑠
−𝑝(𝑠)

𝑛−1

𝑠=1

[𝛼1
𝑝(𝑛)

𝑐1
𝑝(𝑛)

𝛼0
𝑝(𝑛−1)

𝑐0
𝑝(𝑛−1)

+
𝛽1

𝑝(𝑛)
𝛽0

𝑝(𝑛−1)

𝑐1
𝑝(𝑛)

𝑐0
𝑝(𝑛−1)

] 

The equality (11) which is a restriction on the coefficients 𝛽𝑛
̅̅ ̅ can be expressed as 

�̅�𝑛 = −�̅�𝑛�̅�𝑛−1 ∏ 𝛼𝑛−𝑠
−2𝑝(𝑠)

𝑛−2

𝑠=1

𝛼1
𝑝(𝑛−1)

𝛽1
𝑝(𝑛−1)

𝛼0
𝑝(𝑛−2)

𝛽0
𝑝(𝑛−2)

 

This giving the values   𝛼1, 𝛼0, 𝛽0, 𝛽1 and 𝑐1, 𝑐0   we have solved in a suitable way the 

problem of finding a general solution for equation (1) by quadrature. 
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