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Abstract

Efficient analysis and simulation of multiscale stochastic systems of chemical ki-
netics is an ongoing area for research, and is the source of many theoretical and
computational challenges. In this paper, we present a significant improvement
to the constrained approach, which is a method for computing effective dynam-
ics of slowly changing quantities in these systems, but which does not rely on
the quasi-steady-state assumption (QSSA). The QSSA can cause errors in the
estimation of effective dynamics for systems where the difference in timescales
between the “fast” and “slow” variables is not so pronounced.

This new application of the constrained approach allows us to compute the
effective generator of the slow variables, without the need for expensive stochas-
tic simulations. This is achieved by finding the null space of the generator of
the constrained system. For complex systems where this is not possible, or
where the constrained subsystem is itself multiscale, the constrained approach
can then be applied iteratively. This results in breaking the problem down into
finding the solutions to many small eigenvalue problems, which can be efficiently
solved using standard methods.

Since this methodology does not rely on the quasi steady-state assumption,
the effective dynamics that are approximated are highly accurate, and in the case
of systems with only monomolecular reactions, are exact. We will demonstrate
this with some numerics, and also use the effective generators to sample paths
of the slow variables which are conditioned on their endpoints, a task which
would be computationally intractable for the generator of the full system.
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1. Introduction1

Understanding of the biochemical reactions that govern cell function and2

regulation is key to a whole range of biomedical and biological applications and3

understanding mathematical modelling of gene regulatory networks has been an4

area of huge expansion over the last half century. Due to the low copy numbers5

of some chemical species within the cell, the random and sporadic nature of6

individual reactions can play a key part in the dynamics of the system, which7

cannot be well approximated by ODEs[13]. Methods for the simulation of such8

a system, such as Gillespie’s stochastic simulation algorithm (SSA)[18], (or the9

similar Bortz-Kalos-Lebowitz algorithm[5] specifically for Ising spin systems),10

have been around for some decades. Versions which are more computationally11

efficient have also been developed in the intermediate years[17, 7].12

Unfortunately, their application to many systems can be very computation-13

ally expensive, since the algorithms simulate every single reaction individually.14

If the system is multiscale, i.e. there are some reactions (fast reactions) which15

are happening many times on a timescale for which others (slow reactions) are16

unlikely to happen at all, then in order for us to understand the occurrences of17

the slow reactions, an unfeasible number of fast reactions must be simulated.18

This is the motivation for numerical methods which allow us to approximate19

the dynamics of the slowly changing quantities in the system, without the need20

for simulating all of the fast reactions.21

For systems which are assumed to be well-mixed, there are many different22

approaches and methods which have been developed. For example the τ -leap23

method[20] speeds up the simulation by timestepping by an increment within24

which several reactions may occur. This can lead to problems when the copy25

numbers of one or more of the species approaches zero, and a number of different26

methods for overcoming this have been presented[31, 2].27

Several other methods are based on the quasi steady-state assumption (QSSA).28

This is the assumption that the fast variables converge in distribution in a time29

which is negligible in comparison with the rate of change of the slow variable.30

Through this assumption, a simple analysis of the fast subsystem yields an ap-31

proximation of the dynamics of the slow variables. This fast subsystem can32

be analysed in several ways, either through analysis and approximation[6], or33

through direct simulation of the fast subsystem[11].34

Another approach is to approximate the system by a continuous state-space35

stochastic differential equation (SDE), through the chemical Langevin equation36

(CLE)[19]. This system can then be simulated using numerical methods for37

SDEs. An alternative approach is to approximate only the slow variables by an38

SDE. The SDE parameters can be found using bursts of stochastic simulation39

of the system, initialised at a particular point on the slow state space[15], the40

so-called “equation-free” approach. This was further developed into the con-41

strained multiscale algorithm (CMA)[9], which used a version of the SSA which42

also constrained the slow variables to a particular value. Using a similar ap-43

proach to [6], the CMA can similarly be adapted so that approximations of the44

invariant distribution of this constrained system can be made without the need45
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for expensive stochastic simulations[10]. However, depending on the system, as46

with the slow-scale SSA, these approximations may incur errors. Work on how47

to efficiently approximate the results of multiscale kinetic Monte Carlo problems48

is also being undertaken in many different applications such as Ising models and49

lattice gas models[24].50

Analysis of mathematical models of gene regulatory networks (GRNs) is51

important for a number of reasons. It can give us further insight into how im-52

portant biological processes within the cell, such as the circadian clock[33] or53

the cell cycle[23] work. In order for these models to be constructed, we need54

to observe how these systems work in the first place. Many of the observation55

techniques, such as the DNA microarray[27], are notoriously subject to a large56

amount of noise. Moreover, since the systems themselves are stochastic, the57

problem of identifying the structure of the network from this data is very diffi-58

cult. As such, the inverse problem of characterising a GRN from observations59

is a big challenge facing our community[21].60

One popular approach to dealing with inverse problems, is to use a Bayesian61

framework. The Bayesian approach allows us to combine prior knowledge about62

the system, complex models and the observations in a mathematically rigorous63

way[29]. In the context of GRNs, we only have noisy observations of the concen-64

trations of species at a set of discrete times. As such, we have a lot of missing65

information. This missing data can be added to the state space of quantities that66

we wish to infer from the data that we do have. This complex probability distri-67

bution on both the true trajectories of the chemical concentrations, and on the68

network itself, can be sampled from using Markov chain Monte Carlo (MCMC)69

methods, in particular a Gibb’s sampler[16]. Within this Gibb’s sampler, we70

need a method for sampling a continuous path for the chemical concentrations71

given a guess at the reaction parameters, and our noisy measurements. Exact72

methods for sampling paths conditioned on their endpoints have been developed73

[16, 25].74

In other applications, methods for path analysis and path sampling have75

been developed, for example discrete path sampling databases for discrete time76

Markov chains[32], or where the probability of paths, rather than that of trajec-77

tories of discrete Markov processes can be used to analyse behaviour[30]. In [12],78

a method for transition path sampling is presented for protein folding, where79

the Markov chain has absorbing states. Other approaches for coarse-graining80

transition path sampling in protein folding also exist[3]. Other methods also ex-81

ist for the simulation of rare events where we wish to sample paths transitioning82

from one stable region to another[4].83

The problems become even more difficult when, as is often the case, the84

systems in question are also multiscale. This means that these inverse problems85

require a degree of knowledge from a large number of areas of mathematics.86

Even though many of the approaches that are being developed are currently87

out of reach in terms of our current computational capacity, this capacity is88

continually improving. In this paper we aim to progress this methodology in a89

couple of areas.90
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[1] Define a dominating process to have transition rates given by the matrix
M = 1

ρG + I.

[2] This process has uniformly distributed reaction events on the time interval
[t0, t1]. The number r of such events is given by (1).

[3] Once r = r̂ has been sampled, the type of each event must be decided,
by sampling from the distribution (2), starting with the first event. An
event which corresponds to rate mi,i indicates that no reaction event has
occurred at this event.

[4] Once all event types have been sampled, we have formed a sample from
the conditioned path space.

Table 1: A summary of the methodology presented in [16], for sampling paths of Markov-
modulated Poisson processes, conditioned on their endpoints.

1.1. Conditioned path sampling methods91

We will briefly review the method presented in [16] for the exact sampling
of conditioned paths in stochastic chemical networks. Suppose that we have a
Markov jump process, possibly constructed from such a network, with a gener-
ator G. The generator of such a process is the operator G such that the master
equation of the system can be expressed as

dp

dt
= Gp,

where p is the (often infinite dimensional) vector of probabilities of being in92

a particular state in the system. We wish to sample a path, conditioned on93

X(t0) = x0 and X(t1) = x1. Such a path can be found by creating a domi-94

nating process (i.e. a process whose rate is greater than the fastest rate of any95

transitions of the original system) with a uniform rate.96

We define the rate to be greater than the fastest rate of the process with
generator G, so that

ρ > max
i
Gi,i.

Then we define the transition operator of the dominant process by:

M =
1

ρ
G + I.

We can then derive the number of reaction events NU of the dominating process97

in the time interval [t0, t1] by:98

P(NU = r) =
exp(−ρt)(ρt)r/r![Mr]x0,xt

[exp(Gt)]x0,xt

. (1)

Here the notation [·]a,b denotes the entry in the matrix with coordinates (a, b) ∈99

N2. A sample is taken from this distribution. The times {t∗1, t∗2, . . . t∗r} of all of100
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the r reaction events can then be sampled uniformly from the interval [t0, t1].101

The only thing that then remains is to ascertain which reaction has occurred at102

each reaction event. This can be found by computing, starting with X(t0) = x0,103

the probability distribution defined by:104

P(X(t∗j )) = x|X(t∗j−1) = x∗j−1, X(t1) = x1) =
[M]x∗

j−1,x
[Mr−j ]x,x1

[Mr−j+1]x∗
j−1,x1

. (2)

This method, summarised in Table 1, exactly samples from the desired distri-105

bution, but depending on the size and sparsity of the operator G, it can also106

be very expensive. In the context of multiscale systems with a large number of107

possible states of the variables, the method quickly becomes computationally108

intractable.109

1.2. Summary of Paper110

In Section 2, we introduce a version of the Constrained Multiscale Algorithm111

(CMA), which allows us to approximate the effective generator of the slow pro-112

cesses within a multiscale system. In particular, we explore how stochastic113

simulations are not required in order to compute a highly accurate effective114

generator. In Section 3, we consider the differences between the constrained ap-115

proach, and the more commonly used quasi-steady state assumption (QSSA).116

In Section 4, we describe how the constrained approach can be extended in an117

iterative nested structure for systems for whose constrained subsystem is itself118

a large intractable multiscale system. By applying the methodology in turn to119

the constrained systems arising from the constrained approach, we can make120

the analysis of highly complex and high dimensional systems computationally121

tractable. In Section 5, we present some analytical and numerical results, aimed122

at presenting the advantages of the CMA over other approaches. This includes123

some examples of conditioned path sampling using effective generators approx-124

imated using the CMA. Finally, we will summarise our findings in Section 6.125

2. The Constrained Multiscale Algorithm126

The Constrained Multiscale Algorithm was originally designed as a mul-127

tiscale method which allowed us to compute the effective drift and diffusion128

parameters of a diffusion approximation of the slow variables in a multiscale129

stochastic chemical network. The idea was simply to constrain the original dy-130

namics to a particular value of the slow variable. This can be done through a131

simple alteration of the original SSA by Gillespie[18]. First, a (not necessarily132

orthogonal) basis is found for the system in terms of “slow” and “fast” vari-133

ables, [S = [S1, S2, . . .],F = [F1, F2, . . .]]. Slow variables are not affected by the134

most frequently firing reactions in the system. Then, as shown in [9], the SSA135

is computed as normal, until one of the slow reactions (a reaction which alters136

the value of the slow variable(s)) occurs. After the reaction has occurred, the137

slow variable is then reset to its original value, in such a way that the fast vari-138

ables are not affected. This is equivalent to projecting the state of the system,139
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after each reaction, back to the desired value of the slow variable, whilst also140

preserving the value(s) of the fast variable(s). The constrained SSA is given in141

Table 2. Here the αi(X(t)) denote the propensity of the reaction Ri when the142

system is in state X(t) = [X1(t), X2(t), . . .], where ∆tαi(X(t) is the probability143

that this reaction will fire in the infinitesimally small time interval (t, t + ∆t)144

with 1� ∆t > 0. The stoichiometric vectors νi denote the change in the state145

vector X(t) due to reaction Ri firing.146

In order to describe the constrained approach, we first introduce some defi-147

nitions that will be helpful.148

Definition 2.1. Constrained Projector: Given a basis of the state space X =149

[X1, X2, . . . , XN ] with Nf fast variables F = [F1, F2, . . . , FNf
] and Ns slow vari-150

ables S = [S1, S2, . . . , SNs
], the constrained projector PS : NN0 → NN0 for a given151

value of S preserves the values of the fast variables, whilst mapping the values152

of the slow variables to S:153

PS([Ŝ, F̂]) = [S, F̂] ∀([Ŝ, F̂]) ∈ NN0 . (3)

Definition 2.2. Constrained Stoichiometric Projector: Given a basis of the154

state space X = [X1, X2, . . . , XN ] with Nf fast variables F = [F1, F2, . . . , FNf
]155

and Ns slow variables S = [S1, S2, . . . , SNs
], the constrained stoichiometric pro-156

jector P : NN0 → NN0 maps any non-zero elements of the slow coordinates to157

zero, whilst preserving the values of the fast coordinates:158

P([S,F]) = [0,F] ∀([S,F]) ∈ NN0 . (4)

159

Definition 2.3. Constrained Subsystem: Given a system with NR reactions160

R1, R2, . . . , RNR
with propensity functions αi(X) and stoichiometric vectors161

νi ∈ NN0 , the constrained subsystem is the system that arises from applying162

the constrained projector PS to the state vector after each reaction in the sys-163

tem. This is equivalent to applying the constrained stoichiometric projector P164

to each of the stoichiometric vectors in the system. This may leave some reac-165

tions with a null stoichiometric vector, and so these reactions can be removed166

from the system. This projection can lead to aphysical systems where one or167

more variables may become negative; in these cases we set the propensities of168

the offending reactions at states where a move to a negative rate is possible, to169

zero.170

Let us illustrate this using an example which we shall be using later in the171

paper.172

R1 : ∅ k1−→ X1,

R2 : X2
k2−→ ∅, (5)

R3 : X1
k3−→ X2,

R4 : X2
k4−→ X1.
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[1] Define a basis of the state space in terms of slow and fast variables.

[2] Initialise the value of the state, X(t0) = x.

[3] Calculate propensity functions at the current state αi(X(t)).

[4] Sample the waiting time to the next reaction in the system

τ = − log (u)

α0(X(t))
, where α0(X(t)) =

M∑
k=1

αk(X(t)), u ∼ U([0, 1]).

[5] Choose one j ∈ {1, . . . ,M}, with probability αj/α0, and perform reaction
Rj , with stoichiometry which has been projected using the constrained
stoichiometric projector:

X(t+ τ) = X(t) + P(νj).

[6] Repeat from step [3].

Table 2: The Constrained Stochastic Simulation Algorithm (CSSA) using the constrained
stoichiometric projector given in Definition 2.2. Simulation starts with S = s where s is a
given value of the slow variable.

In certain parameter regimes, this system is multiscale, with reactions R3 and173

R4 occurring many times on a time scale for which reactions R1 and R2 are174

unlikely to happen at all. The variable S = X1 + X2 is unaffected by these175

fast reactions, and as such is a good candidate for the slow variable which we176

wish to analyse. A discussion about how the fast and slow variables could be177

identified is given in Section 6. We have two choices for the fast variable, either178

F = X1 or F = X2, in order to form a basis of the state space along with the179

slow variable S. As detailed in [9], it is preferable (although not essential) to180

pick fast variables that are not involved in zeroth order reactions. Therefore,181

in this case, we choose F = X2. Following the projection of the stoichiometric182

vectors using the constrained projector, the constrained system can be written183

in the following way:184

C1 : X1 +X2 = S,

R2 : X2
k2−→ X1,

R3 : X1
k3−→ X2, (6)

R4 : X2
k4−→ X1.

Note that reaction R1 has disappeared completely, since only involves changes185

to the slow variable, and as such after projection, the stoichiometric vector is186

null, and the reaction can be removed. The stoichiometry of reaction R2 has187

been altered as it involves a change in the slow variables. If this reaction occurs,188

the slow variable is reduced by one. We are not permitted to change the fast189

variable X2 in order to reset the slow variable to its original value, and therefore190
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we must increase X1 by one, giving us a new stoichiometry for this reaction.191

In the original CMA, statistics were taken regarding the frequency of the192

slow reactions, at each point of the slow domain, and were used to construct193

the effective drift and diffusion parameters of an effective diffusion[9, 8] process.194

However, this constrained approach can also be used to compute an effective195

generator for the discrete slow process, as we will now demonstrate. The CMA196

can be very costly, due to the large computational burden of the stochastic197

simulations of the constrained system. In this section, we will introduce a198

method for avoiding the need for these simulations, whilst also significantly199

improving accuracy.200

The constrained systems can often have a very small state space (which201

we will denote Γ(s)), since they are constrained to a single value of the slow202

variables. For example, for the constrained system (6), there are only
⌊
S
2

⌋
203

possible states. Such a system can easily be fully analysed. For example, the204

invariant distribution can be found by characterising the one-dimensional null205

space of the generator matrix of the constrained process. For small to medium-206

sized systems, this is far more efficient than exhaustive Monte Carlo simulations.207

For other systems with larger constrained state spaces, stochastic simulation208

may still be the best option, although in Section 4 we show how the constrained209

approach can be applied iteratively until the constrained subsystem is easily210

analysed.211

Suppose that we have a constrained system withNf fast variables, F1, F2, . . . , FNf
.

The generator for the constrained system with S = s is given by GF (s). Since the
system is ergodic, there is a one-dimensional null space for this generator. This
can be found by using standard methods for identifying eigenvectors, by search-
ing for the eigenvector corresponding to the eigenvalue equal to zero. Krylov
subspace methods allow us to find these eigenvectors with very few iterations.
Suppose we have found such a vector v = [v1, v2, . . .], such that

GF (s)v = 0.

Then our approximation to the invariant distribution of this system is given by
the discrete probability distribution represented by the vector

p(s) = [p1(s), p2(s), . . .] =
v∑
vi
.

Our aim is now to use this distribution to find the effective propensities of the212

slow reactions of the original system.213

Suppose that we have Ns slow reactions in the original system. Each has an214

associated propensity function α1(S, F ), α2(S, F ), . . . , αNs
(S, F ). We now sim-215

ply want to find the expectation of each of these propensity functions with216

respect to the probability distribution p(s):217

E(αi(S, ·)) =
∑
i

pi(s)αi(S, f). (7)
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[1] For each value of the slow variable S = s ∈ Ω, compute the generator Gs
of the constrained subsystem.

[2] Find the zero eigenvector v = [v1, v2, . . .] of Gs, and let p(s) = v∑
vi

.

[3] Approximate the effective propensities at each point s ∈ Ω using (7).

[4] Construct an effective generator G of the slow processes of the system
using these effective propensities.

Table 3: The CMA approach to approximating the effective generator G of the slow variables
on the (possibly truncated) domain S ∈ Ω, without the need for stochastic simulations.

Having computed this expectation for all of the slow propensities, over all re-218

quired values of the slow variable, then an effective generator for the slow vari-219

able can be constructed.220

3. Comparing the CMA and QSSA approaches221

A very common approach to approximating the dynamics of slowly changing222

quantities in multiscale systems, is to invoke the quasi steady-state assumption223

(QSSA). The assumption is that the fast and slow variables are operating on224

sufficiently different time scales that it can be assumed that the fast subsystem225

enters equilibrium instantaneously following a change in the slow variables, and226

therefore is unaffected by the slow reactions. This assumption means that if the227

fast subsystem’s invariant distribution can be found (or approximated), then228

the effective propensities of the slow reactions can be computed. However, as229

demonstrated in [8], this assumption incurs an error, and for systems which do230

not have a large difference in time scales between the fast and slow variables,231

this error can be significant.232

The CMA does not rely on the QSSA, and is able to take into account233

the effect that the slow reactions have on the invariant distribution of the fast234

variables, conditioned on a value of the slow variables. In a true fast-slow235

system, this will yield the same results as the QSSA, but for most systems of236

interest, the constrained approach will have a significant increase in accuracy.237

If we follow the approach outlined in Table 3, we don’t even need to conduct238

any stochastic simulations to approximate the effective dynamics.239

The assumptions for the CMA are weaker than the QSSA, namely that240

we assume that the dynamics of the slow variable(s) can be approximated by241

a Markov-modulated Poisson process, independently of the value of the fast242

variables. This means that we have made the assumption that the current value243

of the fast variables has no effect on the transition rates of the slow variables244

once a slow reaction has occurred. This is subtly weaker than the QSSA, and245

importantly the effect of the slow reactions on the invariant distribution of the246

fast variables is accounted for. Note that this may necessitate a slow variable247

which has more than one dimension, for example in oscillating systems for which248
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the effective dynamics cannot be approximated by a one dimensional Markov249

process. Consideration of such systems is an area for future work.250

4. The Nested CMA251

There will be many systems for which the constrained subsystem is itself a252

highly complex and multiscale system. In this event, it will not be feasible to find253

the null space of a sensibly truncated generator for the constrained subsystem.254

Therefore, we need to consider how we might go about approximating this.255

Fortunately, we already have the tools to do this, since we can iteratively apply256

the CMA methodology to this subsystem. This is analogous to the nested257

strategy proposed in the QSSA-based nested SSA[11].258

This nested approach allows us to reduce much more complex systems in259

an accurate, computationally tractable way. The problem of finding the null260

space of the first constrained subsystem is divided into finding the null space of261

many small generators, through further constraining. An example of this nested262

approach will be demonstrated in Section 5.3.263

5. Examples264

In this section we will present some analytical and numerical results produced265

using the CMA approach for three different examples. In order to give an266

indication of the computational cost of the algorithms, we include the runtime of267

certain operations. All numerics were performed using MATLAB on a mid-2014268

MacBook Pro. Disclaimer: the implementations used are not highly optimised,269

and these runtimes are purely given as an indication of the true costs of a well270

implemented version.271

5.1. A Simple Linear System272

First we consider a simple linear system, in order to demonstrate that the273

CMA approximation of the effective generator of the slow variable is exact in274

the case of systems with only monomolecular reactions, which is in contrast to275

the approximation found using a more standard QSSA-based approach. Let us276

illustrate this by returning to the example given by the linear system (5), first277

analysing it using the QSSA.278

R1 : ∅ k1−→ X1,

R2 : X2
k2−→ ∅,

R3 : X1
k3−→ X2,

R4 : X2
k4−→ X1.

We will consider this system in the following parameter setting:279

k1V = 20, k2 = 1, k3 = 5, k4 = 5. (8)

Here V denotes the volume of the well-mixed thermally-equilibrated reactor.280
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5.1.1. QSSA-based analysis281

The QSSA tells us that the fast subsystem (made up of reactions R3 and R4)282

reaches probabilistic equilibrium on a timescale which is negligible in comparison283

with the timescale on which the slow reactions are occurring. Therefore we may284

treat this subsystem in isolation with fixed S:285

X1

k3−→←−
k4

X2, S = X1 +X2.

This is a very simple autocatalytic reaction system, for which a great deal
of analytical results are available. For instance, we can compute the invariant
distribution for this system[22], which gives us that X2 is a binomial random
variable

X2 ∼ B
(
·, S, k3

k3 + k4

)
.

Therefore, we can compute the conditional expectation E(X2|S) = k3S
k3+k4

in this286

fast subsystem, and use this to approximate the effective rate of reaction R2.287

Therefore, the effective slow system is given by the reactions:288

∅ k̂1−→ S
k̂2−→ ∅, (9)

where289

k̂1 = k1, k̂2 =
k2E(X2)

S
=

k2k3

k3 + k4
.

We can compute the invariant distribution for this effective system[22], which290

in this instance is a Poisson distribution:291

S ∼ P
(
k1V (k3 + k4)

k2k3

)
. (10)

We can quantify the error we have made in using the quasi-steady state as-292

sumption by, for example, comparing this distribution with the true invariant293

distribution. Once again, using the results of [22], we can compute the invariant294

distribution of the system (5), which is a multivariate Poisson distribution:295

[X1, X2] ∼ P(λ̄1, λ̄2),

where λ̄1 = k1V (k2+k4)
k2k3

, and λ̄2 = k1V
k2

. Trivially one can compute the marginal296

distribution on the slow variable S:297

P(S = s) =

s∑
n=0

λ̄n1
n!

λ̄s−n2

(s− n)!
exp(−(λ̄1 + λ̄2)),

=
(λ̄1 + λ̄2)s

s!
exp(−(λ̄1 + λ̄2)).

Therefore S is also a Poisson variable with intensity λ = λ̄1+λ̄2 = k1V (k2+k3+k4)
k2k3

,298

which differs from the intensity approximated invariant density (10) by k1V
k3

.299
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Note that k3 is one of the fast rates, and k1V is one of the slow rates, and300

therefore as the difference in timescales of the fast and slow reactions increases,301

this error decreases to zero, so that the QSSA gives us an asymptotically exact302

approximation of the slow dynamics. For systems with a finite timescale gap,303

the QSSA approximation will incur error over and above the error incurred in304

any approximation of the marginalised slow process by a Markov process.305

5.1.2. CMA analysis306

For comparison, let us compute approximations of the effective slow rates307

by using the CMA. The CMA for this system tells us that we need to analyse308

the constrained system (6).309

C1 : X1 +X2 = S,

R2 : X2
k2−→ X1,

R3 : X1
k3−→ X2,

R4 : X2
k4−→ X1.

The constrained system in this example only contains monomolecular reactions,
and as such can be analysed using the results of [22]. The invariant distribution
for this system is a binomial, such that

X2 ∼ B
(
·, S, k3

k2 + k3 + k4

)
.

Using this, we can compute the effective propensity of reaction R2,

ᾱ2(S) = k2E(X2|S) =
k2k3S

k2 + k3 + k4
,

giving us the effective rate k̄2 = k2k3
k2+k3+k4

. The invariant distribution of (9)

with this effective rate for k̄2 is once again a Poisson distribution with intensity

λ =
k1V (k2 + k3 + k4)

k2k3
,

which is identical to the intensity of the true distribution on the slow vari-310

ables. In other words, for this example, the CMA produces an approximation311

of the effective dynamics of the slow variables for this system, whose invari-312

ant distribution is identical to the marginal invariant distribution of the slow313

variables in the full system. The constrained approach corrects for the effect314

of the slow reactions on the invariant distribution of the fast variables. In this315

and other examples of systems with monomolecular reactions, the constrained316

approach gives us a system whose invariant distribution is exactly equal to the317

marginal distribution on the slow variables for the full system. Another example318

is presented in Section 5.3, for which the constrained system is itself too large to319

easily compute expectations directly through its generator, and requires another320

iteration of the CMA to be applied.321
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For this example, we did not even need to compute the invariant distri-322

butions of the constrained systems numerically. In Section 5.2, we will come323

across a system for which it is necessary to numerically compute the invariant324

distribution of the constrained system.325

5.1.3. Comparison of approximation of invariant densities326

S = X1 + X2
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Figure 1: Approximations of the invariant distribution of the slow variable S = X1 + X2 of
system (5) with parameters (8) through marginalisation of the distribution of the full system
(histogram), of the effective generator computed using the CMA (solid line) and computed
using the QSSA (dashed line).

Figure 1 shows the invariant distributions of the slow variables S = X1 +X2327

in the parameter regime (8), computed by marginalising the invariant distribu-328

tion of the full system, and from the CMA and QSSA as outlined above. The329

CMA exactly matches the true distribution, as both are Poisson distributions330

with rate λ = 44. The QSSA incorrectly approximates the effective rate of R4,331

and as such is a Poisson distribution with rate λ = 40. The relative error of the332

CMA for this problem is zero, and for the QSSA is 4.322× 10−1.333

5.1.4. Conditioned path sampling using effective generators334

The approaches described in Section 1.1 hit problems when the system for335

which we are trying to generate a conditioned path is multiscale. In a multiscale336

system, the rate ρ of the dominating process will be very large, and as such337

the number of reaction events will be large, even if the path we are trying to338

sample is short. Therefore Mr is likely to be a full matrix, and the number of339

calculations of (2) will be large. Moreover, the size of M is also likely to be340

large, since for each value S = s of the slow variable, there are many states,341

one for each possible value of the fast variable. All of these factors make the342

problem of computing a conditioned path in such a scenario computationally343

intractable.344
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Considering once more the system (5), naturally we cannot store the actual345

generator of this system, since the system is open and as such the generator346

is an infinite dimensional operator. However, the state space can be truncated347

carefully in such a way that the vast majority of the states with non-negligible in-348

variant density are included, but an infinite number of highly unlikely states are349

presumed to have probability zero. Note that this means that we are effectively350

sampling paths satisfying S(t0) = s1, S(t1) = s2 conditioned on S(t) ∈ Ω ∀t.351

However, even with careful truncation the number of states can be prohibitively352

large.353

Suppose that we truncate the domain for this system to

Ω = {[X1, X2]|X1, X2 ∈ {0, 1, . . . , 200} .

This truncated system has 2012 = 40401 different states, and therefore the gen-354

erator G ∈ R40401×40401. Although this matrix is sparse, the matrix exponential355

required in (1) is full, as is Mr for moderate r ∈ N. A full matrix of this size356

stored at double precision would require over 13GB of memory. So even for this357

system, the most simple multiscale system that one could consider, the problem358

of sampling conditioned paths is computationally intractable.359

In comparison, suppose that we use a multiscale method such as the CMA to360

approximate the effective rates of the slow reactions. Then, for the same Ω, we361

only have 401 possible states of the slow variable, a reduction of 99.25%. The362

effective generator G ∈ R401×401 would then only require 1.29MB to be stored363

as a full matrix in double precision. The dominating process for this system364

must now have rate ρ > 201.4, instead of ρ > 1220, which is over 6 times bigger.365

This means far fewer calculations of (2). What is more, as we saw in Section366

5.1.2, for some systems the CMA exactly computes the effective dynamics of367

the slow variables, with no errors.368

The system (5), in order to highlight more effectively the differences between369

the CMA and a QSSA-based approach, is in a parameter range (8), for which370

the difference in time scales between the “fast” and “slow” variables is relatively371

small, and of course for systems with larger timescale difference, the difference372

in ρ between the full and effective generators would be far larger.373

Naturally, this approach only allows us to sample the paths of the slow374

variables. However, the fast variables, if required, can easily be sampled after375

the fact, using an adapted Gillespie approach which samples the fast variables376

given a trajectory of the slow variables.377

As we have just demonstrated in the previous section, the CMA can be used378

to compute an effective generator for the slow variable S = X1+X2 in the system379

(5), with parameters (8), whose invariant distribution is exactly that of the slow380

variable in the full system without the multiscale reduction. Moreover, this can381

be achieved with no Monte Carlo simulations, since the constrained subsystem382

contains only monomolecular reactions, and as such its invariant distribution383

can be exactly computed[22].384

At this juncture, we simply need to apply the method of Fearnhead and385

Sherlock[16] to the computed effective generator in order to be able sample paths386
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conditioned on their endpoints. Suppose we wish to sample paths conditioned387

on S(t0 = 0) = 44 = S(t1 = 10). The invariant distribution of this system,388

as shown previously in this paper, is a Poisson distribution with mean λ =389

k1V (k2+k3+k4)
k2k3

= 44. Therefore, we are attempting to sample paths which start390

and finish at the the mean of the invariant distribution, which in itself is not a391

particularly interesting thing to do, but it will allow us to highlight again the392

advantages of using the CMA over QSSA-based approaches.393

Since the system is open, we are required to truncate the domain in order
to be able to store and manipulate the effective generator. We truncate the
domain to Ω = {[X1, X2]|S = X1 + X2 ≤ 400}. Therefore we aim to sample
paths

{S(t), t ∈ [0, 10] |S(0) = 44 = S(10), S(t) ∈ Ω ∀t ∈ [0, 10]}.

As the number of possible states of the slow variable is relatively small, it394

was possible to compute and store full matrices for Mr as required in (1) and395

(2) for r ∈ 1, 2, . . . , 2369. r has an upper bound of 2369 as the cumulative mass396

function for the probability distribution (1) is within machine precision of one397

at r = 2369. Storing all powers of the matrices is clearly not the most efficient398

way to implement this algorithm, but for this example was possible without any399

intensive computations, and with minimal numerical error. We will present a400

more efficient approach in the next section.401
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Figure 2: (a) 10 trajectories of the slow variable conditioned on S(0) = 44 = S(10), sam-
pled using the CMA approximate effective generator. (b) Mean and standard deviation of
1000 trajectories of the slow variable conditioned on S(0) = 44 = S(10), sampled using the
approximate effective generator from both the QSSA (blue plots) and CMA (red plots).

Figure 5.1.4 (a) shows 10 example trajectories sampled using the the condi-402

tioned path sampling algorithm with the CMA approximation of the effective403

generator of the slow variable. We also implemented exactly the same approach404

using the QSSA approximation of the effective generator. The mean and stan-405

dard deviation of 1000 paths sampled using both methods is plotted in Figure406

5.1.4 (b). Since the paths are conditioned to start and finish at the mean of407
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the system’s monomodal invariant distribution, we would expect the mean to408

converge to a constant S = 44 as we sample more paths.409

This appears to be the case for the paths sampled using the CMA effective410

generator, which is what we would hope since this generator preserves the true411

mean of the slow variables, as demonstrated in the previous section.412

The QSSA, as has also been demonstrated in Section 5.1.1, does not correctly413

preserve the invariant distribution of the slow variables, and underestimates the414

mean value of the invariant distribution. This can be seen in 5.1.4 (right), where415

the mean value of the path dips in the middle of the trajectory as it reverts to the416

mean of the invariant distribution of the QSSA approximation, before increasing417

towards the end of the trajectory in order to satisfy the condition S = 44.418

This demonstrates that the accuracy of the approximation of the effective419

dynamics has a knock-on impact, as one would expect, to the accuracy of the420

conditioned path sampling. It would be preferable, naturally, if we could com-421

pare path statistics of the multiscale approaches to that of conditioned paths422

statistics of the full system. However, this is simply not feasible, due to the423

size of the matrices, even for the truncated domain Ω. Instead, this does suc-424

ceed in demonstrating that these methods make conditional path sampling of425

the slow variables a possibility, where it was computationally intractable pre-426

viously. Since the rates could be explicitly calculated for this simple example,427

the effective generators could be produced in the order of 10−3 seconds for the428

domain S ∈ {0, 1, . . . , 400}. The set up process for the path sampling, involving429

finding the probabilities in (1) and computing the required powers of M took430

around 90 seconds. After this, each path took a third of a second to sample.431

5.2. A Bistable Example432

Sampling of paths conditioned on their endpoints is an integral part of some433

approaches to Bayesian inversion of biochemical data. A Gibb’s sampler can be434

used to alternately update the network structure and system parameters, and435

the missing data (i.e. the full trajectory), sampled for example using the method436

found in [16]. However, efficient methods to sample paths of multiscale systems437

may also be useful in other areas. For instance, it may allow us to sample paths438

which make rare excursions, or large deviations from mean behaviour. This439

forms part of the motivation for considering the next example.440

Let us consider the following chemical system, which in certain parameter441

regimes exhibits bistable behaviour.442

R1, R2 : X2

k1−→←−
k2

X1 +X2,

R3, R4 : ∅
k3−→←−
k4

X1, (11)

R5, R6 : X1 +X1

k5−→←−
k6

X2,

R7 : X2
k7−→ ∅.
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In particular, we consider parameter regimes where the occurrence of reactions
R5 and R6 are on a relatively faster timescale than the other reactions. The
following is just such a parameter regime:

k1 = 142,
k2

V
= 1, k3V = 880, (12)

k4 = 92.8,
k5

V
= 10, k6 = 500, k7 = 6.

As before, V denotes the volume of the well-mixed thermally-equilibrated reac-443

tor.444

(a) (b)

Figure 3: (a) A log plot of an approximation πΩ of the invariant distribution on the slow
variable S = X1+2X2 of system (11) with parameters (5.2), demonstrating the bistable nature
of the system. Approximation was computed by finding the null space of the full generator of
the system on the truncated domain {0, 1, . . . , 800}× {0, 1, . . . , 1200}. (b) Proportion of total
propensity PR5,R6 (X1, X2) attributed to the fast reactions R5 and R6, given by (13).

That said, this parameter regime is one in which the use of the QSSA will445

create significant errors, since the timescale gap is not very large in all parts of446

the domain as demonstrated in Figure 3. Figure 3 (a) shows a highly accurate447

approximation of the invariant distribution of the full system, found by com-448

puting the null space of the full generator for the system truncated to the finite449

domain Ω = {(x1, x2) ∈ {0, 1, . . . , 800} × {0, 1, . . . , 1200}. The zero eigenvec-450

tor of this truncated generator was found using standard eigenproblem solvers,451

then normalised. Since this system has 2nd order reactions, its invariant den-452

sity cannot in general be written in closed form, and as such, we could use this453

approximation on the truncated domain in order to quantify the accuracy of the454

multiscale approaches. This plot demonstrates the bistable nature of this sys-455

tem, which can take a long time to switch between the two favourable regions.456

This example has been chosen in order that such an approximation can still be457

computed in order to check the accuracy of the approach.458

Figure 3 (b) shows the proportion of the total propensity for each state which459
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is attributed to the fast reactions, R5 and R5, given by:460

PR5,R6(X1, X2) =
α5(X1, X2) + α6(X1, X2)

α0(X1, X2)
=
α5(X1, X2) + α6(X1, X2)∑M

i=1 αi(X1, X2)
.

(13)
This proportion, which is a measure of the gap in timescales between the “fast”
reactions R5 and R6, and the rest of the reactions, varies across the domain.
We can approximate the expected proportion of propensity attributed to the
fast reactions:

E(PR5,R6
) =

∑
(X1,X2)∈Ω

PR5,R6
(X1, X2)πΩ(X1, X2),

where πΩ is the approximate invariant density of the full generator on the trun-461

cated domain Ω. In this system with parameters (5.2), E(PR5,R6) = 0.6941, i.e.462

the expected proportion of all reactions which are either of type R5 or R6 is463

69.41%. As such, although reactions R5 and R6 are occurring more frequently464

than other reactions, there is not a stark difference in timescales, as we might465

expect in a system for which the QSSA yields a good approximation. The “fast”466

reactions in this example are reactions R5 and R6, and as such, S = X1 + 2X2467

is a good choice of slow variable, since this quantity is invariant to these fast468

reactions.469

5.2.1. The QSSA Approach470

By applying the QSSA to the system (11), we can approximate the effective471

rates of the slow variables by considering the fast reactions in isolation. The472

fast subsystem is given by the reactions R5 and R6:473

C1 : X1 + 2X2 = S, (14)

R5, R6 : X1 +X1

k5−→←−
k6

X2.

Lines denoted by Ci in this and what follows denotes a constraint. It is impor-474

tant to keep a track of these constraints, since each one reduces the dimension475

of the state space by one.476

For a fixed value of S = X1 + 2X2 ∈ {0, 1, . . . , Smax}, we wish to find the477

generator for the process X2 (or equivalently X1 = S − 2X2) within this fast478

subsystem. The generator can be found by considering the master equation for479

each state X2 = i:480

dpi
dt

= −(α5(S − 2i, i) + α6(S − 2i, i))pi + α5(S − 2(i− 1), i− 1)pi−1

+ α6(S − 2(i+ 1), i)pi+1,

where pi(t) is the probability of X2(t) = i. Putting this set of differential
equations into vector form gives us:

dP

dt
= GP,
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where G is the generator of the fast subsystem (14). Note that since we are481

restricted to states such that X1 + X2 = S for some value of S, there are only482 ⌊
S
2

⌋
possible different states, and as such G ∈ Rb

S
2 c×bS

2 c. Even for moderately483

large values of S, the one-dimensional null space of such a sparse matrix is not484

computationally expensive to find, and when normalised gives us the invariant485

density of X2 (and therefore X1 if required). This invariant density can then486

be used to compute the expectation of the propensities of the slow reactions of487

the system for the state S as in (7), and in turn be entered into the (truncated)488

effective generator for the slow variable.489

5.2.2. The Constrained Approach490

When using the CMA, the methodology is largely the same as was described491

for the QSSA-based approach in the last section. The only real difference lies in492

the subsystem which is analysed in order to compute the invariant distribution493

of the fast variables conditioned on the value of the slow variable. As we have494

done previously, we will consider each of the reactions in the system in turn,495

constraining the value of the slow variable to a particular value, whilst being496

sure not to change the value of the fast variables. There are two choices for497

the fast variable, in order to form a basis of the state space along with the slow498

variable S, but as explained in detail in [9], F = X2 is the best choice, since499

there is a zeroth order reaction involving X1, which can lead to an unphysical500

constrained subsystem, if this is chosen as the fast variable.501

With this choice of fast variables, the first four reactions all disappear in502

the constrained subsystem. This is because none of these reactions alter the503

fast variable, and as such the constrained stoichiometric projector maps their504

stoichiometric vectors to zero, and therefore reactions R1, R2, R3, R4 have no505

net effect on the constrained subsystem.506

Reaction R7 differs in that it causes a change in the fast variable X2. The507

projector in this case maps the stoichiometric vector to [−2, 1]T and therefore508

the net effect of reaction R7 is equivalent to X2
k7−→ X1 + X1. This leads to509

the following constrained system:510

C1 : X1 + 2X2 = S,

R5, R6 : X1 +X1

k5−→←−
k6

X2,

R7 : X2
k7−→ X1 +X1.

Note that since reactions R6 and R7 have the same stoichiometry, this system511

can be simplified by removing R7 and adding its rate to R6:512

C1 : X1 + 2X2 = S,

R5, R6 : X1 +X1

k5−→←−
k6+k7

X2. (15)

For every fixed value of S ∈ {0, 1, . . . , Smax}, the generator for (15) can be513

found following the same approach as in the previous section, the only difference514
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QSSA CMA πΩ

Relative l2 difference 6.347× 10−1 1.796× 10−2 -
LH peak position 20 20 20
LH peak height 5.378× 10−3 1.591× 10−2 1.582× 10−2

RH peak position 309 295 295
RH peak height 6.192× 10−2 4.060× 10−3 4.006× 10−3

Table 4: Differences in the accuracy of the QSSA and CMA approximations of the invariant
density of S, with respect to the approximation πΩ.

being the altered rate for reaction R6. Following this methodology, an effective515

generator G can be computed.516

5.2.3. Comparison of approximation of invariant densities517

S = X1 + 2X2
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Figure 4: Approximations of the invariant distribution of the slow variable S = X1 + 2X2

of system (11) with parameters (5.2), through computing the null space of the truncated
generator of the full system (histogram), of the effective generator computed using the CMA
(solid line) and computed using the QSSA (dashed line).

One approach to quantifying the accuracy of these two methods of approx-518

imating effective generators of the slow variable, is to compare the invariant519

distributions of the two systems with that of the marginalised density of the520

slow variable in the full system. We consider the approximation πΩ of the in-521

variant density of the full system, truncated to the region Ω = {(x1, x2) ∈522

{0, 1, . . . , 800} × {0, 1, . . . , 1200}, as shown in Figure 3 (a). We can marginalise523

this density to find an approximation of the invariant density of the slow vari-524

able, as is shown by the histogram in Figure 4.525

The CMA approximation of the invariant density of the slow variable is526

indistinguishable by eye from the highly accurate approximation computed in527

this manner, as shown in Figure 4. The QSSA approximation, on the other528

hand, incorrectly approximates both the placement and balance of probability529
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mass of the two peaks in the distribution. The difference in the quality of these530

approximations is stark. This example is an extreme one, as the parameters531

have been chosen to demonstrate how far apart these two approximations can532

be, but since the CMA has no additional costs associated with it, the advantages533

of this approach are significant. The relative l2 errors of these two approaches,534

when compared with the approximate density πΩ, are given in Table 4, along535

with the position and heights of the two local maxima in the densities.536

The CMA computed the generator on the domain S ∈ [0, 2000] in around537

55 seconds, and the eigensolver took less than a tenth of a second to find the538

null space to approximate the invariant density. This is negligible in comparison539

with the cost of exhaustive stochastic simulation of the full system.540

5.2.4. Conditioned path sampling using effective generators541

Given an approximation of the effective generator of the slow variables, com-542

puted using the CMA or the QSSA, we can now employ the methodology of [16],543

as summarised in Section 1.1, to sample paths conditioned on their endpoints.544

This time, a full eigenvalue decomposition of the matrix M = 1
ρG + I was545

computed, so that matrices V and D could be found with V unitary and D546

diagonal, with M = V −1DV . Then rows of Mr = V −1DrV can be efficiently547

and accurately computed, as required in (1) and (2).548
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Figure 5: (a) 8 trajectories of the slow variable S = X1 + 2X2 sampled conditioned on
S(0) = 20, S(10) = 195, S(t) ∈ Ω = {0, 1, . . . , 500}∀t ∈ [0, 5] for the system (11) with
parameters (5.2), using the CMA approximation of the effective generator. (b) The means
and standard deviations of 100 paths sampled using the QSSA (blue plots) and CMA (red
plots).

Figure 5 presents results using this approach. An effective generator for the549

system (11) was computed for the domain X1 + 2X2 = S ∈ Ω = {0, 1, . . . , 500},550

using both the QSSA and CMA, and then fed into the conditioned path sampling551

algorithm. Figure 5 (a) shows 8 samples of conditioned paths approximated552

using the CMA. Notice that as the transition time between the two favourable553

regions is relatively short compared with the length of the simulation, the time554
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of the transition varies greatly between the different trajectories. This indicates555

that we are producing trajectories with a fair reflection of what happens in a556

transition between these regions. Figure 5 (b) shows the means and standard557

deviations of 100 paths sampled for both methods of computing the effective558

generator. The QSSA, which overestimates the value of the second peak in the559

invariant density, has a higher mean than the CMA. This demonstrates again560

that errors in approximating the effective generator has a knock-on affect to561

applications such as conditioned path sampling.562

The effective generator was computed on the domain S ∈ [0, 500] for the563

path sampling, which took the CMA close to 5 seconds to approximate. The564

calculation of the probabilities in (1), and the full eigenvalue decomposition of565

the generator matrix on this domain, took around 50 seconds. After this, each566

path took around 350 seconds to sample.567

5.3. An Example of the Nested CMA Approach568

In this section, we will illustrate how the nested approach outlined in Section569

4 can be applied. We will consider an example for which we know the invariant570

distribution of the slow variables. This gives us a way of quantifying any errors571

that we incur by applying the nested CMA and QSSA approaches.572

R1 : ∅ k1−→ X1,

R2 : X3
k2−→ ∅,

R3 : X1
κ−→ X2, (16)

R4 : X2
κ−→ X1,

R5 : X2
γ−→ X3,

R6 : X3
γ−→ X2.

We will consider this system in the following parameter regime:573

k1V = 20, k2 = 1, κ = 100, γ = 10. (17)

As before, V denotes the volume of the well-mixed thermally-equilibrated reac-574

tor. In this regime, there are multiple different time scales on which the reactions575

are occurring. This is demonstrated in Figure 6, where there is a clear gap in576

the frequency of reactions R1 and R2 (the slowest), R5 and R6 (fast reactions)577

and R3 and R4 (fastest reactions).578

This system was chosen as we are able to, using the results in [22], find the
exact invariant distribution of the slow variable S1 = X1 + X2 + X3. In this
instance, it is a Poisson distribution with mean parameter

λ =
k1V

k2γκ
(γk2 + 3γκ+ 2k2κ) = 64.2.

22



Total number of reactions
100 102 104 106

N
um

be
r o

f r
ea

ct
io

ns

100

101

102

103

104

105

106

R1
R2
R3
R4
R5
R6

Figure 6: Relative occurrences of the reactions R1-R6, for the system (16) with parameters
(17). The most frequent reactions are reactions R3 and R4, reactions R5 and R6 are the next
most frequent, with reactions R1 and R2 being the least frequent.

5.3.1. QSSA-based analysis579

One method to analyse such a system would be a nested QSSA-based analy-580

sis, similar to that which is suggested in [11]. In this paper the authors consider581

systems with reactions occurring on multiple timescales. If at first we consider582

all reactions R3-R6 to be fast reactions, then by applying the QSSA we are583

interested in finding the invariant distribution of the following fast subsystem:584

C1 : X1 +X2 +X3 = S1,

R3 : X1
κ−→ X2,

R4 : X2
κ−→ X1, (18)

R5 : X2
γ−→ X3,

R6 : X3
γ−→ X2.

Note that the quantity S1 = X1 + X2 + X3 is a conserved quantity with585

respect to these reactions, and as such is the slow variable in this system. This586

is in itself also a system with more than one timescale, and as such, we may587

want to iterate again and apply a second QSSA assumption, based on the fact588

that reactions R3 and R4 are fast reactions in comparison with reactions R5589

and R6. This leads to a second fast subsystem:590

C1 : X1 +X2 +X3 = S1,

C2 : X1 +X2 = S2,

R3 : X1
κ−→ X2,

R4 : X2
κ−→ X1.
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Note that the quantity S2 = X1 +X2 = S1−X3 is a conserved quantity with591

respect to these reactions, and as such is the slow variable in this system. At this592

point in [11], the authors simulate the system using the Gillespie SSA. We could593

adopt the approach that we used in Section 5.2, in which we find the invariant594

distribution of the system by constructing its generator and then finding the595

normalised eigenvector corresponding to the null space of that operator. This596

would not be expensive since there are only S2 different states. However, as597

in Section 5.1, as this system only contains monomolecular reactions, we can598

exactly find its invariant distribution. In this case, X1 and X2 follow a binomial599

distribution with mean X̄1, X̄2 = S2

2 . This can then be used to compute the600

effective rate of reaction R5 in the first subsystem (18), α5(X1, X2) ≈ γX̄2 =601

γ
2S. This fast subsystem is then reduced to the following:602

C1 : X1 +X2 +X3 = S1 = S2 +X3,

C2 : X1 +X2 = S2,

R5 : S2
γ/2−→ X3,

R6 : X3
γ−→ S2.

Note that we have completely eliminated the fast variables X1 and X2, and603

instead consider the slower variable S2 = X1 + X2, with effective rate for R5604

given by the analysis above. This system is exactly solvable, and its invariant605

distribution is a gamma distribution with means given by X̄3 = S1

3 and S̄2 =606

2S1

3 , found by computing the steady states of the mean field ODEs[22]. This607

in turn can be used to compute the effective rate of reaction R2 in the full608

system, where we now lose all of the fast variables X1, X2, X3 and instead wish609

to understand the dynamics of the slow variable S1 = X1 + X2 + X3, which is610

only altered by reactions R1 and R2. This system is given by the following:611

R1 : ∅ k1−→ S1,

R2 : S1
k2/3−→ ∅.

Here the effective rate for R2 has been found by using the approximation of the612

effective rate α2(S1) = k2X̄3 = k2
3 S.613

5.3.2. CMA-based analysis614

We will now go through the same procedure, but this time using the con-615

strained subsystems instead of the fast subsystems as used in the previous sec-616

tion. There are 3 choices for the fast reactions, each involving two out of X1,617

X2 and X3. Since X1 is the product of a zeroth order reaction, it is preferable618

not to include this as one of the fast variables, and so we pick F1 = [X2, X3].619

We then construct the constrained subsystem for this choice of slow and fast620
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variables:621

C1 : X1 +X2 +X3 = S1,

R2 : X3
k2−→ X1,

R3 : X1
κ−→ X2,

R4 : X2
κ−→ X1, (19)

R5 : X2
γ−→ X3,

R6 : X3
γ−→ X2.

Note that R1 is removed, since it does not change the fast variables. R2 is the622

only other reaction which has changes to its stoichiometry due the constrained623

stoichiometric projector. We have reduced the dimension of the system (due624

to the constraint X1 + X2 + X3 = σ for some σ ∈ N), but we are still left625

with a multiscale system, which in theory could be computationally intractable626

for us to find the invariant distribution for, through funding the null space of627

its generator. Therefore, we can apply another iteration of the CMA to this628

constrained system.629

Reactions R3 and R4 are the fastest reactions in the system, and therefore630

we pick our next slow variable that we wish to constrain to be S2 = X1 + X2,631

which is invariant with respect to these reactions. Due to the previous constraint632

S1 = X1 + X2 + X3, we are only required to define one fast variable for this633

system. Both choices F2 = X1, X2, are essentially equivalent, and so we pick634

F2 = X1. These choices lead us to the following second constrained system:635

C1 : X1 +X2 +X3 = S1,

C2 : X1 +X2 = S2,

R2 : α2(X) =

{
k2X3, if X2 > 0,

0 otherwise,
(20)

ν2 = [1,−1, 0]T ,

R3 : X1
κ−→ X2,

R4 : X2
κ−→ X1.

Here νi denotes the stoichiometric vector associated with reaction Ri, i.e. the636

vector which is added to the state X(t) if reaction Ri fires at time t. Notice637

that we now have two separate constraints, and as such reactions R5 and R6638

now have zero stoichiometric vectors. Moreover, these constraints lead us to639

a somewhat unphysical reaction for R2. The reactant for this reaction is X3,640

but only X2 and X1 are affected by this altered reaction. In system (19) when641

reaction R2 fires, we lose one X3, and gain X1. Therefore, both constraints642

within (20) have been violated. In order to reset these constraints, without643

changing the fast variable F = X3, we arrive at the stoichiometry presented644

in (20). Note that we add the condition that this reaction can only happen if645

X2 > 0, as we cannot have negative numbers of any species.646
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This is a closed system, with a very limited number of different states. There-647

fore, it is computationally cheap to construct its generator, and to find that648

generator’s null space. Our aim with this system, is to find the invariant distri-649

bution of the fast variable given particular values for the constraints C1 and C2.650

This distribution will then allow us to compute the expectation of the reaction651

R4 within the constrained system (6), which is the only reaction which is depen-652

dent on the results of the second constrained system (since X3 = S1−S2). Once653

the invariant distribution has been found, this can be used to find the effective654

propensity of reaction R5 given values of S1 = X1 +X2 +X3 and S2 = X1 +X2.655

In turn, the constrained system (19) can then be solved to find the invariant656

distribution on X3 given a value of S1. Finally, this leads us to the construction657

of an effective generator for the slow variable S1.658

Since this final constrained subsystem is aphysical, we cannot use the results659

of [22] to find the invariant distribution, and as such we must approximate them660

through finding the null space of the generator, as we did in Section 5.2661

5.3.3. Comparison of approximation of invariant densities662

S = X1 + X2 + X3
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Figure 7: Approximations of the invariant distribution of the slow variable S = X1 +X2 +X3

of system (16) with parameters (17), through marginalisation of the invariant distribution of
the full system (histogram), of the effective generator computed using the CMA (solid line)
and computed using the QSSA (dashed line).

Figure 7 shows the invariant distributions of the slow variables S = X1 +663

X2+X3 computed by marginalising the invariant distribution of the full system,664

and from the CMA and QSSA as outlined above. The distribution computed665

using the CMA is indistinguishable by eye from the true distribution, and has666

a relative error of 5.936 × 10−12, which can be largely attributed to rounding667

errors and error tolerances in the eigenproblem solvers. The QSSA approxima-668

tion, on the other hand, has a significant relative error of 3.739 × 10−1. This669

demonstrates again the substantial improvements in accuracy that we gain in670

using the constrained approach rather than one based on the QSSA. This is671
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delivered at no substantial additional computational effort. As in the previous672

two examples, the highly accurate effective generator approximated using the673

CMA can be used in a host of applications where the full generator could not,674

such as conditioned path sampling.675

The CMA is more expensive in this example than the previous ones, as there676

are a very large number of small eigenvalue problems to solve. This is due to the677

fact that there are reactions of three species occurring on three different time678

scales. The generation of the CMA approximation of the effective generator679

took around 1240 seconds, and the subsequent approximation of the invariant680

distribution of the slow variables took just over half a second. This still pales into681

comparison with the cost of exhaustive stochastic simulation of the system. The682

savings would be even more pronounced in systems with multimodal invariant683

distributions where switches between the modes are rare.684

6. Conclusions685

In this paper, we presented a significant improvement and extension to the686

original constrained multiscale algorithm (CMA). Through constructing and687

finding the null space of the generator of the constrained process, we can find688

its invariant distribution without the need for expensive stochastic simulations.689

The CMA in this format can also be used not just to approximate the param-690

eters of an approximate diffusion, but to approximate the rates in an effective691

generator for the slow variables.692

In this paper we have not discussed how the slow and fast variables in these693

systems can be identified. In the simple examples presented, this is relatively694

straightforward. However in general, this is far from the case. If the high695

probability regions in the statespace are known a priori, or possibly identified696

through short simulations of the full system, then it is possible to identify which697

are the fast reactions in the system, and therefore what good candidates for698

the slow variable(s) could be. Other more sophisticated approaches exist, for699

example methods for automated analysis to identify the slow manifold[14, 28,700

26]. One relatively ad hoc approach might be to briefly simulate the full system701

using the Gillespie SSA, which can give a good indication as to which the fast702

reactions are. Good candidates for slow variables are often linear combinations703

of the species who are invariant to the stoichiometry of the fast reactions, as we704

have seen in this paper. If the regions which the system is highly likely to spend705

the majority of its time are known, then looking at the relative values of the706

propensity functions, as we did in Figure 3 (b), can lead to an understanding of707

which reactions are fast and which are slow.708

Through iterative nesting, the CMA can be applied to much more complex709

systems, as it can be applied repeatedly if the resulting constrained system is710

itself multiscale. This makes it a viable approach for a bigger family of (possibly711

biologically relevant) systems. This nested approach breaks up the original task712

of solving an eigenvalue problem for one large matrix per row of the effective713

generator, down into many eigenvalue solves for significantly smaller generators714
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for smaller dimensional problems, making the overall problem computationally715

tractable.716

In the first example, we demonstrated that the CMA produces an approx-717

imation of the dynamics of the marginalised slow process in the system which718

is exact, at least by the measures that we have applied thus far, in the case of719

systems of monomolecular reactions. Since such systems are well understood,720

we were also able to compare this with the accuracy of the equivalent QSSA-721

based method, which incurred significant errors. We then applied the method722

of Fearnhead and Sherlock[16] to the approximate effective generators of the723

two approaches, in order to approximately sample conditioned paths of the slow724

variables. This task would be computationally intractable to attempt with the725

full generator for this system. This also demonstrated how the accuracies of the726

two approximations can impact the accuracy of any application for which they727

may be used.728

In the second example, a more complex bistable system was also analysed729

using the CMA, and the invariant distribution of the computed effective gen-730

erator was shown to be very close to the best approximation that we could731

make of the invariant distribution of the slow variables, using the null space732

of the original generator with as little truncation as we could sensibly manage733

with our computational resources. This was in stark contrast with the poor ap-734

proximation which was computed using the equivalent QSSA-based approach.735

This highlighted again the improvement, at no or little extra cost, of using the736

constrained approach as opposed to the QSSA.737

In the final example, we demonstrated how the constrained approach might738

be applied to a more complex example with multiple timescales. The algo-739

rithm can be applied iteratively in order to reduce the constrained subsystems740

themselves into a collection of easily solved one-dimensional problems. When741

comparing the invariant distributions of the approximate processes computed742

using the two approaches, the QSSA once again was incorrectly approximating743

the distribution of the fast variables conditioned on the slow variables, and so744

incurred significant errors. In contrast, the CMA produced an approximation745

to the invariant measure which was accurate up to 12 digits.746

We showed how these effective generators can be used in the sampling of747

paths conditioned on their endpoints. Such an approach could be employed as748

a method to sample missing data within a Gibb’s sampler when attempting to749

find the structure of a network that was observed[16]. This approach could also750

be used simply to simulate trajectories of the slow variables, in the same vein as751

[6] or [11]. In this instance, it would only be necessary to compute the column of752

the effective generator corresponding to the current value of the slow variables.753

The constrained approach consistently significantly outperforms approxima-754

tions computed using the more standard QSSA-based approach, and at negligi-755

ble additional cost. Furthermore, in the limit of large separation of timescales,756

the constrained approach asymptotically approaches the QSSA approximation.757

The computational savings that we make in using the CMA depends on the758

application with which we wish to use the effective generators. Similarly, if we759

wish to approximate the invariant distribution of the slow variables, then the760
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CMA will always be less costly than exhaustive stochastic simulation. This is761

because we are able to directly compute the invariant distribution, whereas in762

the simulation setting, to obtain the same statistics we would be required to763

compute a very long simulations.764

If, on the other hand, we simply wish to use the CMA to compute a tra-765

jectory of the slow variables, then the savings will vary, based on the size of766

the chosen domain, and the relative differences in propensity of the fast and767

slow reactions in the relevant regions. If our aim is only to produce one rel-768

atively short trajectory, then it is possible that stochastic simulation will be769

more efficient than using the CMA. However this is such a trivial task, that any770

modeller wishing to do so what not consider invoking any approximations such771

as the QSSA or CMA.772

There are many avenues for future work in this direction, not least its appli-773

cation to more complex biologically relevant systems. In particular, the treat-774

ment of systems where the effective behaviour of the slow variable(s) cannot be775

well approximated by a one-dimensional Markov process need to considered, for776

example systems which exhibit oscillations. Automated detection of appropriate777

fast and slow variables, and statistical tests for the validity of the approxima-778

tion for different systems would be hugely beneficial. In the case of constrained779

systems which are deficiency zero and weakly reversible, using the results of [1]780

we can find the invariant distributions without even constructing the generator,781

and this could be a good direction to investigate.782
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