Matricial Potentiation

> By Ezio Marchi*) and Martin Matens**)

Abstract
In this short note we introduce the potentiation of matrices of the same size. We study some simple properties and some example.
*) Emeritus Professor UNSL, San Luis Argentina. Founder and First Director of the IMASL, UNSL - CONICET.
${ }^{* *}$) UTN.
(ex.) Superior Researcher CONICET.

Introduction

We introduce the matrix potentiation. The problem was pose byGuametti.
Consider two matrices A, of sizemxnand $B, \quad m x n$. We wish to define the potentiation

$$
C=A^{B}
$$

For this purpose. We take the logarithm

$$
\ln \quad C=B \quad \ln \quad A
$$

This is valid if C and A are not singular. From now on we assome that when we take aln the argument is not singular. The $\ln C$ is well defined for the matrices A and B real or complex. In the second case we have that it is a multivalued funchon. This assuming that he $\ln \quad A$ is a converging sequence. Consider the matrix $D=A-I$ where I stands for the identity matrix. Then

$$
\ln A=\ln (D+I)=D-\frac{D^{2}}{2}+\frac{D^{3}}{3}-\frac{D^{4}}{4}+\frac{D^{5}}{5}+(-) \frac{{ }^{i+1} D^{i}}{i}
$$

From here, it is inmediated that if $m=n$

$$
C=e^{B} \quad \ln \quad A
$$

can be well defined. The only condition that is necessary the convergence of $\ln A$, or

$$
\begin{aligned}
& \ln \quad C=B \quad \ln \quad A=B \quad\left[(A-I)-\frac{(A-I)^{2}}{2}+\frac{(A-I)^{3}}{3} \ldots \ldots \ldots\right. \\
& =B\left[\sum_{i=1}^{\infty}(-)^{i+1}\left(\frac{A-I}{i}\right)^{i}\right]=B\left[\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i} \sum_{j=0}^{i}\binom{i}{j} A^{i}(-I)^{i-j}\right]
\end{aligned}
$$

If $A-I$ is diagonalizable then

$$
A-I=Q^{+1} \quad \Lambda \quad Q^{-1}
$$

where the matrix Λ is diagonal with all the eigenvalues in the main diagonal, and Q is formed by the ligenvectors.

Therefore

$$
\ln \quad C=B \quad \ln \quad A=B \quad Q \quad\left[\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i} \quad \Lambda^{i}\right] Q^{-1}
$$

or

$$
C=e^{B} \quad \ln \quad A=e^{B} \quad Q\left[\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i} \quad \Lambda^{i}\right] Q^{-1}=\sum_{t=0}^{\infty} \frac{1}{t!}\left[\begin{array}{lllll}
B & Q & K & \text { (A) } & Q^{-1}
\end{array}\right]^{t}
$$

where

$$
K \quad(A)=\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i} \Lambda^{i}
$$

We have

$$
\ln \quad A=\sum_{o=1}^{\infty} \frac{(-)^{i+1}}{i} \sum_{j=0}^{i}\binom{i}{j} \quad(-)^{i-j} \quad A^{j}
$$

and it easy to see that A is diagonalizable in the following way

$$
A=Q \quad(\Lambda+I) \quad Q^{-1}
$$

Therefore

$$
\left.\begin{array}{rl}
\ln \quad A=\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i} \sum_{j=0}^{i}(-)^{i-j} & \binom{i}{j} Q(\Lambda+I)^{j} \\
\hline & Q^{-1} \\
=\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i} \quad Q\left\{\sum_{j=0}^{i}(-)^{i-j}\right. & \binom{i}{j} \\
(\Lambda+I)^{j}
\end{array}\right\} Q^{-1} .
$$

As an example if A is diagonal: $A=\operatorname{diag}\left(x_{1}, x_{2}, \ldots \ldots, x_{m}\right)$ them $A^{j}=\operatorname{diag}\left(x_{1}, \quad x_{2}, \quad \ldots \ldots, x_{m}\right)$. replacing we see that $\ln A$ is also diagonal

$$
\begin{gathered}
\ln \quad A \quad(r, r)= \\
=\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i} \sum_{j=0}^{i}(-)^{i} \quad\binom{i}{j} \quad\left(\lambda_{r}+1\right)^{j}=\sum_{i=1}^{\infty}\left(\lambda_{r}\right)^{i} \frac{(-)^{i=1}}{i} \\
= \\
\sum_{i=1}^{\infty}\left(\lambda_{r}+\downarrow-1\right)^{i} \quad \frac{(-)^{i}}{i}=\operatorname{lm} \quad \lambda_{s} \\
\ln A \quad(r, s)=r \neq s
\end{gathered}
$$

them $\ln \quad A$ is diagonal and it is converging

$$
\ln \left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \lambda_{2} & \\
0 & & \lambda_{m}
\end{array}\right)=\left(\begin{array}{cccccc}
\ln & \lambda_{1} & & & 0 \\
& & \ln & \lambda_{2} & & \\
0 & & & \ln & \lambda_{m}
\end{array}\right)
$$

Next case, we have that A is diagonalizable

$$
A=P \quad \Lambda \quad P^{-1}
$$

Them the

$$
\begin{aligned}
& \ln \quad A=\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i} p^{+1} \Lambda^{i} p^{-1}=p^{+1} \sum_{i=1}^{\infty} \frac{(-)^{i=1}}{i}(\Lambda)^{i} p^{-1}=p^{-1}\left[\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i}(\Lambda)^{i}\right] p^{-1} \\
& \operatorname{But} Q=p^{1} \\
& Q \Lambda^{i}=\lambda_{1}^{i}\left[\begin{array}{l}
q_{11} \\
q_{21} \\
q_{m 1}
\end{array}\right]+\lambda_{2}^{i}\left[\begin{array}{c}
q_{12} \\
q_{22} \\
q_{m 2}
\end{array}\right]+\cdots=\sum_{r=1}^{n} \lambda_{r}^{i}\left[\begin{array}{c}
q_{1 r} \\
q_{2 r} \\
q_{n r}
\end{array}\right]
\end{aligned}
$$

therefore

$$
Q \Lambda \quad P \quad(r, s)=\sum_{k=1}^{n} \lambda_{k} q_{r k} p_{k s}
$$

and replacing into equation (1), it twins out that

$$
\left.\left.\begin{array}{rl}
(\ln \quad A
\end{array}\right) \quad \begin{array}{rl}
(r, s) & =\sum_{i=1}^{\infty} \frac{(-)^{i+1}}{i}\left(\sum_{k=1}^{n}\left(\lambda_{k}-1\right)\right)^{i} q_{r k} \quad p_{k s}
\end{array}\right) .
$$

As a conclusion we have for $A=p^{+1} \quad \Lambda \quad p^{-1}$ diagonalizable with the eigenvalues for Fubini0 $<\lambda_{r}<2$ cocient

$$
\ln \quad A=p^{+1} \quad(\ln \quad \Lambda) \quad p^{-1}
$$

and

$$
\ln \quad \Lambda=\left(\left(\begin{array}{ccccc}
\ln & \lambda_{1} & & c \\
& & \ddots & & \\
& 0 & & \ln & \lambda_{n}
\end{array}\right)\right)
$$

Then we have proved the following result.
Theorem: Given two diagonalizables matrices $m x n$: A and B, where $A-I$ has eigenvalues $x_{r}: 0<x_{r}$, then the matrix

$$
C=A^{B}
$$

is well defines and it has the form

$$
C=\sum_{t=0}^{\infty} \frac{(B \bar{A})^{t}}{t!}
$$

where

$$
\bar{A}=\ln \quad A
$$

This we have been successful in the definition of matrix potentiation.

Properties

In this section we are going to for diagonalizable matrices some the first one, already proved is

$$
A^{B} \leftrightarrow \exp (B \quad \ln \quad A)
$$

Now we study

$$
\left(A^{B}\right)^{C}
$$

We have

$$
\left(A^{B}\right)^{C}=D^{C}=\exp \left(\begin{array}{lll}
C & \ln & D
\end{array}\right)=\exp \left(\begin{array}{lll}
C & \ln & A^{B}
\end{array}\right)=\exp \left(\begin{array}{llll}
C & B & \ln & A
\end{array}\right)=A^{C B}
$$

wher $D=A^{B}$.
On the other hand

$$
\begin{aligned}
& A^{B} A^{C}=\exp (B \quad \ln \quad A) \exp \left(\begin{array}{lll}
C & \ln & A
\end{array}\right)=\exp \left(\begin{array}{llll}
B & \ln & A+C & \ln
\end{array} \quad A\right) \\
& =\exp ((B+C) \quad \ln \quad A)=A^{B+C}
\end{aligned}
$$

We follow with

$$
\exp (\ln A)=A
$$

We know

$$
e^{x}=\sum_{k} \frac{x^{k}}{k^{1}}
$$

an if A_{h}^{k} diagonalizable we have

$$
\ln \quad A=P \quad \ln \quad \Lambda \quad p^{-1}
$$

where the diagonal matrix Λ is formed by the eigenvalues by the eigevector as columns. Then

$$
\left.\left.\begin{array}{rl}
\ln (\exp A)= & \ln \left(\sum_{k=0}^{\infty} \frac{P \quad \Lambda^{k}}{k!} p^{-1}\right. \\
k!
\end{array}\right)=\ln \left(P \sum_{k=0}^{\infty} \frac{\Lambda^{k}}{k!} P^{-1}\right), P_{k=1}^{\infty}\left(P^{-1} \quad \exp (\Lambda) \quad P\right)^{k}=\sum_{k=1}^{\infty} \frac{(-)^{k-1}}{k} \quad P^{-1} \quad(\exp \Lambda)^{k} \quad P\right)
$$

and in this way we have proved the property.
On the other hand, we have, another basic property, for diagonalizable matrices namely.
Others properties are

$$
\exp (A+B)=\exp A \exp B
$$

Consider

$$
e^{(A+B)}=\sum_{k=0}^{\infty} \frac{(A+B)^{k}}{k!}=\sum_{k=0}^{\infty} \sum_{t=0}^{k} \frac{\binom{k}{t} A^{t} \quad B^{k-t}}{k!}=\sum_{k=0}^{\infty} \sum_{t=0}^{k} \frac{A^{t} \quad B^{k-t}}{t!(k-t)!}
$$

And now by Fubini property and the standardamegament

$$
=\sum_{i=0}^{\infty} \sum_{k=t}^{\infty} \frac{A^{t} \quad B^{k-t}}{t!\quad(k-t)!}
$$

and by a variable change $k-t=j$ and $t=i$ the

$$
=\sum_{i=0}^{\infty} \sum_{k=t}^{\infty} \frac{A^{i} \quad B^{j}}{i!\quad j!}=\left(\sum_{i=0}^{\infty} \frac{A^{i}}{i}\right)\left(\sum_{j=0}^{\infty} \frac{B^{j}}{j!}\right)=\exp A
$$

and is this way the property is proved.
On the other hand, we now prove

$$
\ln (A B)=\ln A+\ln B
$$

always in the case that $A B=B A$, or they comments let

$$
\begin{gathered}
\ln \quad(A B)=C \\
\exp C=\exp (\ln \quad A B)=A B
\end{gathered}
$$

On the other hand if we call

$$
D=\ln A+\ln B
$$

then

$$
\exp D=\exp (\ln \quad A+\ln \quad B)=\exp (\ln \quad A) \cdot \exp (\ln \quad B)=A B
$$

then $C=D$.
Now we present

$$
A^{B} A^{C}=A^{B+C}
$$

Let

$$
\left.\begin{array}{rl}
A^{B} A^{C}=\exp (B \quad \ln \quad A) \cdot \exp (C & \ln \quad A
\end{array}\right)=\exp \left(\begin{array}{llll}
B & \ln & A+C & \ln \quad A
\end{array}\right)
$$

Next

$$
\left(A^{B}\right)^{C}=A^{B+C}
$$

consider the first term. Calling $D=A^{B}$ then

$$
\left(A^{B}\right)^{C}=D^{C}=\exp \left(\begin{array}{lll}
C & \ln & D
\end{array}\right)=\exp \left(\begin{array}{lll}
C & \ln & A^{B}
\end{array}\right)=\exp \left(\begin{array}{llll}
C & B & \ln & A
\end{array}\right)=A^{C B}
$$

Next we consider a property about the determining namely

$$
\operatorname{det}(\ln \quad A)=\operatorname{det}(\ln \quad \Lambda)
$$

When $A=P^{-1} \quad \Lambda \quad P$ which is inmediate by the decomposition.
Consider the transperise of $A: A^{t}$, then

$$
\exp \left(A^{t}\right)=(\exp A)^{t}
$$

Let $A=P^{-1} \quad \Lambda \quad P$ then

$$
A^{t}=\left(\begin{array}{lll}
P^{-1} & \Lambda & P
\end{array}\right)^{t}=P^{t} \quad \Lambda \quad\left(P^{-1}\right)^{t}=P^{t} \quad \Lambda \quad\left(P^{t}\right)^{-1}
$$

On the other hand

$$
\exp \left(A^{t}\right)=\sum_{i=0}^{\infty} \frac{\left(A^{t}\right)^{-1}}{i!}=P^{t} \quad\left(\sum_{i=0}^{\infty} \frac{\Lambda^{i}}{i!}\right) \quad\left(p^{t}\right)^{-1}=\left(P^{-1} \sum_{i=0}^{\infty} \frac{\Lambda^{i}}{i!} P\right)^{t}=\left(e^{A}\right)^{t}
$$

Now we consider another property, namely

$$
\operatorname{det} \exp A=\exp \operatorname{tra} \Lambda
$$

Let

$$
\begin{aligned}
& e^{A}=P^{-1}\left(\sum_{k=0}^{\infty} \frac{\Lambda^{i}}{i!}\right) P \\
& \operatorname{det}\left(e^{A}\right)=\operatorname{det}\left(\sum_{i=0}^{\infty} \frac{\Lambda^{i}}{i!}\right)=\operatorname{det}\left(e^{\Lambda}\right)=\prod_{j=1}^{n} e^{\lambda i}=e^{\lambda_{1}} e^{\lambda_{2}} \ldots \ldots \ldots e^{\lambda_{n}}=e^{\lambda_{1}+\lambda_{2} \ldots \ldots+\lambda_{n}}=e^{\operatorname{tra} \Lambda} \\
&=e^{\operatorname{tra} A}
\end{aligned}
$$

where tra, indicate the trace of the matriz.
Now we consider an example.

$$
\left(\begin{array}{ll}
\sum_{i=1}^{\infty} \frac{(-)^{i-1}}{i} & \sum_{i=1}^{\infty} \frac{(-)^{i-1}}{i}\left(\frac{1}{2}\right)^{i} \\
2 \sum_{i=1}^{\infty} \frac{(-)^{i-1}}{i} & \sum_{i=1}^{\infty} \frac{(-)^{i-1}}{i}\left(\frac{1}{2}\right)^{i}
\end{array}\right)=\ln \quad C=\left(\begin{array}{lll}
0 & \ln & 1 / 2 \\
0 & \ln & 1 / 2
\end{array}\right)
$$

Ej. 2

$$
\begin{gathered}
I+\frac{\ln \quad C}{1!}+\frac{(\ln \quad C)^{2}}{2!}+\frac{(\ln \quad C)^{3}}{3!} \\
\left(\begin{array}{lll}
0 & \ln & 1 / 2 \\
0 & \ln & 1 / 2
\end{array}\right)\left(\begin{array}{lll}
0 & \ln & 1 / 2 \\
0 & \ln & 1 / 2
\end{array}\right)=\left(\begin{array}{ll}
0 & \left(\begin{array}{ll}
\ln & 1 / 2)^{2} \\
0 & (\ln \\
\hline & 1 / 2)^{2}
\end{array}\right) \\
\left(\begin{array}{ll}
\ln & C
\end{array}\right)^{n}=\left(\begin{array}{ll}
0 & (\ln \\
1 / 2)^{n} \\
0 & \left(\begin{array}{ll}
\ln & 1 / 2)^{n}
\end{array}\right)\left(\begin{array}{ll}
0 & (\ln \\
1 / 2
\end{array}\right)^{n} \\
0 & (\ln \\
1 / 2)^{n}
\end{array}\right)\left(\begin{array}{lll}
0 & \ln & 1 / 2 \\
0 & \ln & 1 / 2
\end{array}\right) \\
=\left(\begin{array}{ll}
0 & (\ln \\
1 / 2)^{n H} \\
0 & (\ln \\
1 / 2)^{n H}
\end{array}\right) \\
C=e^{\ln } \quad C=I+\left(\begin{array}{lll}
0 & \ln & 1 / 2 \\
0 & \ln & 1 / 2
\end{array}\right)+\left(\begin{array}{ll}
0 & (\ln \\
0 & 1 / 2)^{2} \\
0 & (\ln \\
1 / 2)^{2}
\end{array}\right)
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & \sum_{n=1}^{\infty} \frac{(\ln 1 / 2)^{n}}{n^{1}} \\
0 & \sum_{n=1}^{\infty} \frac{(\ln 1 / 2)^{n}}{n^{1}}
\end{array}\right) & =\left(\begin{array}{cc}
1 & e^{\ln 1 / 2 \overline{-1}} \\
0 & 1 / 2
\end{array}\right) \\
1+\sum=e^{\ln 1 / 2} & =\left(\begin{array}{cc}
1 & -1 / 2 \\
0 & 1 / 2
\end{array}\right)
\end{aligned}
$$

Example

We wish to comput

$$
C=A^{B}
$$

Consider as example

$$
A=\left(\begin{array}{cc}
1 & 2 \\
0 & 1 / 2
\end{array}\right) \operatorname{and} B=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right)
$$

knouing

$$
\ln \quad C=B \quad \ln \quad A=B \quad \ln \quad \mathrm{P} \quad \Lambda \quad P^{-1}=B \quad P \quad \ln \quad \Lambda \quad P^{-1}
$$

them

$$
\ln \Lambda=\left(\begin{array}{ccc}
\ln & 1 & 0 \\
0 & & \ln \\
1 / 2
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & \\
0 & -\ln & 2
\end{array}\right)
$$

and where

$$
P=\left(\begin{array}{cc}
1 & -4 \\
0 & 1
\end{array}\right)
$$

Therefore

$$
\ln \quad A=P \quad \ln \quad \Lambda \quad P^{-1}=\left(\begin{array}{ccc}
0 & \ln & 16 \\
0 & -\ln & 2
\end{array}\right)
$$

hence

$$
\ln \quad C=B \quad \ln \quad A=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & \ln & 16 \\
0 & -\ln & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & \ln & 16 \\
0 & \ln & 64
\end{array}\right)
$$

from here

$$
\begin{aligned}
& C=e^{B} \quad \ln A=\sum_{I=0}^{\infty} \frac{\left(\begin{array}{lll}
B & \ln & A
\end{array}\right)^{i}}{i!}=\sum_{i}^{\infty} \frac{1}{i!}\left(\begin{array}{ccccc}
0 & 2^{i+i} & 3^{i-1} & \ln & 2 \\
0 & & 3^{i} & \ln & 2
\end{array}\right) \\
& =\ln 2\left(\begin{array}{ll}
0 & \sum_{i}^{\infty} \frac{2}{2 i} 2^{i} 3^{i} 3^{-1} \\
0 & \\
\sum_{i}^{\infty} \frac{3^{i}}{i 1}
\end{array}\right) \\
& C=\left(\begin{array}{cccc}
0 & 2 / 3 & e^{6} \ln & 2 \\
0 & e^{3} & \ln & 2
\end{array}\right)
\end{aligned}
$$

Bibliografía

Burden R.L. and J. DougasFaires: AnálisisNumérico. Congage 2001.
Poole D: Algebra lineal. Thompson 2004.
Wayne L. Winson: Investigación de Operaciones 4ta Ed. Thompson 2004.

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme 'Discrete Analysis' when work on this paper was undertaken. This work was supported by EPSRC Grant Number EP/K032208/1

