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Abstract  

In this short note we introduce the potentiation of matrices of the same size. We 

study some simple properties and some example. 
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Introduction 

We introduce the matrix potentiation. The problem was pose byGuametti. 

Consider two matrices𝐴 , of size𝑚𝑥𝑛and  𝐵, 𝑚𝑥𝑛. We wish to define the potentiation 

𝐶 = 𝐴𝐵 

For this purpose. We take the logarithm 

𝑙𝑛 𝐶 = 𝐵 𝑙𝑛 𝐴, 

This is valid if 𝐶and𝐴  are not singular. From now on we assome that when we take a𝑙𝑛   

the argument is not singular. The   𝑙𝑛 𝐶    is well defined for the matrices  𝐴and  𝐵  real or 

complex. In the second case we have that it is a multivalued funchon. This assuming that he  

𝑙𝑛 𝐴 is a converging sequence. Consider the matrix  𝐷 = 𝐴 − 𝐼   where 𝐼  stands for the identity 

matrix. Then 

𝑙𝑛 𝐴 = 𝑙𝑛 (𝐷 + 𝐼) = 𝐷 −
𝐷2

2
+
𝐷3

3
−
𝐷4

4
+
𝐷5

5
+ (−)

ⁱ⁺¹𝐷𝑖

𝑖
 

From here, it is inmediated that if  𝑚 = 𝑛 

𝐶 = 𝑒𝐵 𝑙𝑛 𝐴 

can be well defined. The only condition that is necessary the convergence of  𝑙𝑛 𝐴 , or 

𝑙𝑛 𝐶 = 𝐵 𝑙𝑛 𝐴 = 𝐵 [(𝐴 − 𝐼) −
(𝐴 − 𝐼)2

2
+
(𝐴 − 𝐼)3

3
………… 

=  𝐵 [∑(−)𝑖+1
∞

𝑖=1

(
𝐴 − 𝐼

𝑖
)
𝑖

] = 𝐵 [∑
(−)𝑖+1

𝑖

∞

𝑖=1

∑(
𝑖
𝑗
)

𝑖

𝑗=0

𝐴𝑖(−𝐼)𝑖−𝑗] 

 

If  𝐴 − 𝐼is diagonalizable then 

𝐴 − 𝐼 = 𝑄+1 𝛬 𝑄−1 

where the matrix  𝛬   is diagonal with all the eigenvalues in the main diagonal, and  𝑄  is formed by 

the ligenvectors. 

Therefore 

𝑙𝑛 𝐶 = 𝐵 𝑙𝑛 𝐴 = 𝐵 𝑄 [∑
(−)𝑖+1

𝑖

∞

𝑖=1

𝛬𝑖]𝑄−1 

or 



𝐶 = 𝑒𝐵 𝑙𝑛 𝐴 = 𝑒𝐵 𝑄 [∑
(−)𝑖+1

𝑖

∞

𝑖=1

𝛬𝑖]𝑄−1 =∑
1

𝑡!

∞

𝑡=0

[𝐵 𝑄 𝐾 (𝐴) 𝑄−1]𝑡 

where 

𝐾 (𝐴) =∑
(−)𝑖+1

𝑖

∞

𝑖=1

𝛬𝑖 

We have 

𝑙𝑛 𝐴 = ∑
(−)𝑖+1

𝑖

∞

𝑜=1

∑(
𝑖
𝑗
) (−)𝑖−𝑗 𝐴𝑗

𝑖

𝑗=0

 

and it easy to see that  𝐴  is diagonalizable in the following way 

𝐴 = 𝑄 (𝛬 + 𝐼) 𝑄−1 

Therefore  

𝑙𝑛 𝐴 =∑
(−)𝑖+1

𝑖

∞

𝑖=1

∑(−)𝑖−𝑗 (
𝑖
𝑗
) 𝑄 (𝛬 + 𝐼)𝑗 𝑄−1

𝑖

𝑗=0

=∑
(−)𝑖+1

𝑖
𝑄 {∑(−)𝑖−𝑗 (

𝑖
𝑗
) (𝛬 + 𝐼)𝑗

𝑖

𝑗=0

} 𝑄−1
∞

𝑖=1

 

As an example if  𝐴  is diagonal:  𝐴 = 𝑑𝑖𝑎𝑔(𝑥1, 𝑥2, …… , 𝑥𝑚)  them 

𝐴𝑗 = 𝑑𝑖𝑎𝑔(𝑥1, 𝑥2, …… , 𝑥𝑚)  . replacing we see that  𝑙𝑛 𝐴  is also diagonal 

𝑙𝑛 𝐴 (𝑟, 𝑟) =∑
(−)𝑖+1

𝑖

∞

𝑖=1

∑(−)𝑖 (
𝑖
𝑗
) (𝜆𝑟 + 1)

𝑗

𝑖

𝑗=0

=∑(𝜆𝑟)
𝑖
(−)𝑖=1

𝑖

∞

𝑖=1

=∑(𝜆𝑟+↓ −1)
𝑖
(−)𝑖

𝑖

∞

𝑖=1

= 𝑙𝑚 𝜆𝑠 

𝑙𝑛 𝐴 (𝑟, 𝑠) = 𝑟 ≠ 𝑠 

them𝑙𝑛 𝐴  is diagonal and it is converging 

𝑙𝑛 (

𝜆1 0

𝜆2
0 𝜆𝑚

) = (

𝑙𝑛 𝜆1 0
𝑙𝑛 𝜆2

0 𝑙𝑛 𝜆𝑚

) 

Next case, we have that  𝐴  is diagonalizable 

𝐴 = 𝑃 𝛬 𝑃−1 



Them the 

𝑙𝑛 𝐴 =∑
(−)𝑖+1

𝑖

∞

𝑖=1

𝑝+1𝛬𝑖𝑝−1 = 𝑝+1∑
(−)𝑖=1

𝑖

∞

𝑖=1

(𝛬)𝑖𝑝−1 = 𝑝−1 [∑
(−)𝑖+1

𝑖
(𝛬)𝑖

∞

𝑖=1

] 𝑝−1 

But𝑄 = 𝑝1 

𝑄𝛬𝑖 = 𝜆1
𝑖 [

𝑞11
𝑞21
𝑞𝑚1

] + 𝜆2
𝑖 [

𝑞12
𝑞22
𝑞𝑚2

] + ⋯ =∑𝜆𝑟
𝑖

𝑛

𝑟=1

[

𝑞1𝑟
𝑞2𝑟
𝑞𝑛𝑟
] 

therefore 

𝑄𝛬 𝑃 (𝑟, 𝑠) = ∑𝜆𝑘

𝑛

𝑘=1

𝑞𝑟𝑘𝑝𝑘𝑠 

and replacing into equation (1),it twins out that 

(𝑙𝑛 𝐴) (𝑟, 𝑠) =∑
(−)𝑖+1

𝑖
(∑(𝜆𝑘 − 1)

𝑛

𝑘=1

)

𝑖

𝑞𝑟𝑘 𝑝𝑘𝑠)

∞

𝑖=1

=∑
(−)𝑖+1

𝑖
(∑(𝜆𝑘 − 1)

𝑖

𝑛

𝑘=1

) 𝑞𝑟𝑘 𝑝𝑘𝑠

∞

𝑖=1

=∑𝑞𝑟𝑘 [∑
(−)𝑖+1

𝑖
(𝜆𝑘 − 1)

𝑖

∞

𝑖=1

] 𝑝𝑘𝑠

𝑛

𝑘=1

=∑𝑞𝑟𝑘 (𝑙𝑛 𝜆𝑘) 𝑝𝑘𝑠

𝑛

𝑘=1

= [𝑝+1 (𝑙𝑛 𝛬) 𝑝−1] (𝑟, 𝑠) 

As a conclusion we have for 𝐴 = 𝑝+1 𝛬 𝑝−1 diagonalizable with the eigenvalues for 

Fubini0 < 𝜆𝑟 < 2  cocient 

𝑙𝑛 𝐴 = 𝑝+1 (𝑙𝑛 𝛬) 𝑝−1 

and 

𝑙𝑛 𝛬 = ((
𝑙𝑛 𝜆1 𝑐

⋱
0 𝑙𝑛 𝜆𝑛

)) 

 

Then we have proved the following result. 

Theorem: Given two diagonalizables matrices  𝑚𝑥𝑛: 𝐴  and  𝐵  , where  𝐴 − 𝐼  has 

eigenvalues𝑥𝑟: 0 < 𝑥𝑟  , then the matrix 

𝐶 = 𝐴𝐵 



is well defines and it has the form 

𝐶 =∑
(𝐵�̅�)𝑡

𝑡!

∞

𝑡=0

 

where 

�̅� = 𝑙𝑛 𝐴 

This we have been successful in the definition of matrix potentiation. 

Properties 

In this section we are going to for diagonalizable matrices some the first one, already  

proved is 

𝐴𝐵 ↔ 𝑒𝑥𝑝(𝐵 𝑙𝑛 𝐴) 

Now we study 

(𝐴𝐵)𝐶  

We have 

(𝐴𝐵)𝐶 = 𝐷𝐶 = 𝑒𝑥𝑝(𝐶 𝑙𝑛 𝐷) = 𝑒𝑥𝑝(𝐶 𝑙𝑛 𝐴𝐵) = 𝑒𝑥𝑝(𝐶     𝐵 𝑙𝑛 𝐴) = 𝐴𝐶𝐵 

wher𝐷 = 𝐴𝐵. 

On the other hand 

𝐴𝐵𝐴𝐶 = 𝑒𝑥𝑝(𝐵 𝑙𝑛 𝐴)𝑒𝑥𝑝(𝐶 𝑙𝑛 𝐴) = 𝑒𝑥𝑝(𝐵 𝑙𝑛 𝐴 + 𝐶 𝑙𝑛 𝐴)

= 𝑒𝑥𝑝((𝐵 + 𝐶) 𝑙𝑛 𝐴) = 𝐴𝐵+𝐶  

We follow with 

𝑒𝑥𝑝(𝑙𝑛 𝐴) = 𝐴 

We know 

𝑒𝑥 =∑
𝑥𝑘

𝑘1
𝑘

 

an if  𝐴ℎ
𝑘   diagonalizable we have 

𝑙𝑛 𝐴 = 𝑃 𝑙𝑛 𝛬 𝑝−1 

where the diagonal matrix  𝛬  is formed by the eigenvalues by the eigevector as columns. Then 



𝑙𝑛 (exp𝐴) = 𝑙𝑛 (∑
𝑃 𝛬𝑘 𝑝−1

𝑘!

∞

𝑘=0

) = 𝑙𝑛 (𝑃 ∑
𝛬𝑘

𝑘!

∞

𝑘=0

𝑃−1)

= ∑
(−)𝑘−1

𝑘

∞

𝑘=1

(𝑃−1 𝑒𝑥𝑝(𝛬) 𝑃)𝑘 =∑
(−)𝑘−1

𝑘
𝑃−1 (𝑒𝑥𝑝𝛬)𝑘 𝑃

∞

𝑘=1

= 𝑃−1 (∑
(−)𝑘−1

𝑘
(𝑒𝑥𝑝𝛬)𝑘

∞

𝑘=1

)𝑃 = 𝑃−1 𝛬 𝑃 = 𝐴 

 

and in this way we have proved the property. 

On the other hand, we have, another basic property, for diagonalizable matrices namely. 

Others properties are 

𝑒𝑥𝑝(𝐴 + 𝐵) = exp𝐴 exp𝐵 

Consider 

𝑒(𝐴+𝐵) =∑
(𝐴 + 𝐵)𝑘

𝑘!

∞

𝑘=0

=∑∑
(
𝑘
𝑡
) 𝐴𝑡 𝐵𝑘−𝑡

𝑘!

𝑘

𝑡=0

∞

𝑘=0

=∑∑
𝐴𝑡 𝐵𝑘−𝑡

𝑡! (𝑘 − 𝑡)!

𝑘

𝑡=0

∞

𝑘=0

 

And now by Fubini property and the standardamegament 

=∑∑
𝐴𝑡 𝐵𝑘−𝑡

𝑡! (𝑘 − 𝑡)!

∞

𝑘=𝑡

∞

𝑖=0

 

and by a variable change  𝑘 − 𝑡 = 𝑗  and  𝑡 = 𝑖  the 

=∑∑
𝐴𝑖 𝐵𝑗

𝑖! 𝑗!

∞

𝑘=𝑡

∞

𝑖=0

= (∑
𝐴𝑖

𝑖

∞

𝑖=0

) (∑
𝐵𝑗

𝑗!

∞

𝑗=0

) =
exp𝐴
exp𝐵

 

and is this way the property is proved. 

On the other hand, we now prove 

𝑙𝑛 (𝐴𝐵) = 𝑙𝑛 𝐴 + 𝑙𝑛 𝐵 

always in the case that  𝐴𝐵 = 𝐵𝐴, or they comments let 

𝑙𝑛 (𝐴𝐵) = 𝐶 

exp𝐶 = exp(𝑙𝑛 𝐴𝐵) = 𝐴𝐵 

On the other hand if we call 



𝐷 = 𝑙𝑛 𝐴 + 𝑙𝑛 𝐵 

then 

exp𝐷 = exp(𝑙𝑛 𝐴 + 𝑙𝑛 𝐵) = exp(𝑙𝑛 𝐴) . exp(𝑙𝑛 𝐵) = 𝐴𝐵 

then 𝐶 = 𝐷. 

Now we present 

𝐴𝐵𝐴𝐶 = 𝐴𝐵+𝐶  

Let 

𝐴𝐵𝐴𝐶 = exp(𝐵 𝑙𝑛 𝐴) . exp(𝐶 𝑙𝑛 𝐴) = exp(𝐵 𝑙𝑛 𝐴 + 𝐶 𝑙𝑛 𝐴)

= exp((𝐵 + 𝐶) 𝑙𝑛 𝐴)) = exp 𝑙𝑛 (𝐴)𝐵+𝐶 = 𝐴𝐵+𝐶  

Next 

(𝐴𝐵)𝐶 = 𝐴𝐵+𝐶 

consider the first term. Calling  𝐷 = 𝐴𝐵then 

(𝐴𝐵)𝐶 = 𝐷𝐶 = exp(𝐶 𝑙𝑛 𝐷) = exp(𝐶 𝑙𝑛 𝐴𝐵) = exp(𝐶 𝐵 𝑙𝑛 𝐴) = 𝐴𝐶𝐵 

Next we consider a property about the determining namely 

det(𝑙𝑛 𝐴) = det(𝑙𝑛 𝛬) 

When 𝐴 = 𝑃−1 𝛬 𝑃  which is inmediate by the decomposition. 

Consider the transperise of  𝐴 ∶  𝐴𝑡 , then 

exp(𝐴𝑡) = (exp𝐴)𝑡 

Let  𝐴 = 𝑃−1 𝛬 𝑃  then 

𝐴𝑡 = (𝑃−1 𝛬 𝑃)𝑡 = 𝑃𝑡 𝛬 (𝑃−1)𝑡 = 𝑃𝑡 𝛬 (𝑃𝑡)−1 

On the other hand  

exp(𝐴𝑡) =∑
(𝐴𝑡)−1

𝑖!

∞

𝑖=0

= 𝑃𝑡 (∑
𝛬𝑖

𝑖!

∞

𝑖=0

) (𝑝𝑡)−1 = (𝑃−1 ∑
𝛬𝑖

𝑖!

∞

𝑖=0

𝑃)

𝑡

= (𝑒𝐴)𝑡 

Now we consider another property, namely 

det exp𝐴 = exp tra 𝛬 

Let 



𝑒𝐴 = 𝑃−1 (∑
𝛬𝑖

𝑖!

∞

𝑘=0

) 𝑃 

det(𝑒𝐴) = det (∑
𝛬𝑖

𝑖!

∞

𝑖=0

) = det(𝑒𝛬) =∏𝑒𝜆𝑖
𝑛

𝑗=1

= 𝑒𝜆1𝑒𝜆2 ………𝑒𝜆𝑛 = 𝑒𝜆1+𝜆2……+𝜆𝑛 = 𝑒tra𝛬

= 𝑒tra𝐴 

where tra, indicate the trace of the matriz. 

Now we consider an example. 

(

 
 
 
 
∑
(−)𝑖−1

𝑖

∞

𝑖=1

∑
(−)𝑖−1

𝑖
(
1

2
)
𝑖

∞

𝑖=1

2∑
(−)𝑖−1

𝑖

∞

𝑖=1

∑
(−)𝑖−1

𝑖
(
1

2
)
𝑖

∞

𝑖=1 )

 
 
 
 

= 𝑙𝑛 𝐶 = (

0 𝑙𝑛 1
2⁄

0 𝑙𝑛 1
2⁄

) 

Ej. 2 

𝐼 +
𝑙𝑛 𝐶

1!
+
(𝑙𝑛 𝐶)2

2!
+
(𝑙𝑛 𝐶)3

3!
 

(

0 𝑙𝑛 1
2⁄

0 𝑙𝑛 1
2⁄

)(

0 𝑙𝑛 1
2⁄

0 𝑙𝑛 1
2⁄

) = (

0 (𝑙𝑛 1
2⁄ )
2

0 (𝑙𝑛 1
2⁄ )
2
) 

(𝑙𝑛 𝐶)𝑛 = (

0 (𝑙𝑛 1
2⁄ )
𝑛

0 (𝑙𝑛 1
2⁄ )
𝑛
)(

0 (𝑙𝑛 1
2⁄ )
𝑛

0 (𝑙𝑛 1
2⁄ )
𝑛
)(

0 𝑙𝑛 1
2⁄

0 𝑙𝑛 1
2⁄

)

= (

0 (𝑙𝑛 1
2⁄ )
𝑛𝐻

0 (𝑙𝑛 1
2⁄ )
𝑛𝐻
) 

𝐶 = 𝑒𝑙𝑛 𝐶 = 𝐼 + (

0 𝑙𝑛 1
2⁄

0 𝑙𝑛 1
2⁄

) + (

0 (𝑙𝑛 1
2⁄ )
2

0 (𝑙𝑛 1
2⁄ )
2
) 



(

 
 
 
 
1 ∑

(𝑙𝑛 1
2⁄ )
𝑛

𝑛1

∞

𝑛=1

0 ∑
(𝑙𝑛 1

2⁄ )
𝑛

𝑛1

∞

𝑛=1 )

 
 
 
 

= (
1 𝑒𝑙𝑛

1
2⁄ −1̅̅ ̅̅

0 1
2⁄

) 

1 +∑ =𝑒𝑙𝑛
1
2⁄                   = (

1 −1 2⁄

0 1
2⁄

) 

Example 

We wish to comput 

𝐶 = 𝐴𝐵 

Consider as example  

𝐴 = (
1 2

0 1
2⁄
)and𝐵 = (

1 0
2 2

) 

knouing 

𝑙𝑛 𝐶 = 𝐵 𝑙𝑛 𝐴 = 𝐵 𝑙𝑛 P Λ 𝑃−1 = 𝐵 𝑃 𝑙𝑛 Λ 𝑃−1 

them 

𝑙𝑛 Λ = (

𝑙𝑛 1 0

0 𝑙𝑛 1
2⁄
) = (

0 0

0 −𝑙𝑛 2

) 

and where 

𝑃 = (
1 −4
0 1

) 

Therefore 

𝑙𝑛 𝐴 = 𝑃 𝑙𝑛 Λ 𝑃−1 = (
0 𝑙𝑛 16

0 −𝑙𝑛 2

) 

hence 

𝑙𝑛 𝐶 = 𝐵 𝑙𝑛 𝐴 = (
1 0
2 2

)(
0 𝑙𝑛 16

0 −𝑙𝑛 2

) = (
0 𝑙𝑛 16

0 𝑙𝑛 64

) 



from here 

𝐶 = 𝑒𝐵 𝑙𝑛 𝐴 =∑
(𝐵 𝑙𝑛 𝐴)𝑖

𝑖!

∞

𝐼=0

=∑
1

𝑖!

∞

𝑖

(
0 2𝑖+𝑖 3𝑖−1 𝑙𝑛 2
0 3𝑖 𝑙𝑛 2

)

= 𝑙𝑛 2

(

 
 
 
0 ∑

2 2𝑖 3𝑖 3−1

𝑖1

∞

𝑖

0 ∑
3𝑖

𝑖1

∞

𝑖 )

 
 
 

 

𝐶 = (
0 2

3⁄ 𝑒6𝑙𝑛 2

0 𝑒3 𝑙𝑛 2
) 
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