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In this study we will analyze the properties of a geometric form of rational numbers 

representation. 

We will see that there is a bi- univocal correspondence between each rational and its 

representative figure. 

We will divide the set of rational numbers in four subsets one of them is reducible to some 

of the remaining subsets, which are different each other by a fundamental property of the shape 

of the terminal point. 

We will also study other characteristics of this representation geometric system which we 

would be enhanced when they are necessary. 

Given an orthogonal Cartesian axis system, and a non null arbitrary segment 𝑆𝑢, we define 

the rational number 
𝑛𝑖

𝑑𝑖
 in the following way. 

Take 𝑛𝑖 in the ordinate and in the abscissa 𝑑𝑖  consecutive times of 𝑆𝑢, name the extremes 

with 𝐵 and 𝐴, and with 𝑦1, 𝑦2, … , 𝑦𝑖  and 𝑥1, 𝑥2, … , 𝑥𝑖, the determined points over each axis 

respectively. We will refer to the last ones as cuts and we will symbolize them as 𝐶𝑟. 

From 𝐴, 𝐵 and  𝐶𝑟, we will trace the normals which will form a net. That net will be 

composed by 𝑚𝑖 𝑥 𝑑𝑖  elemental squares. The normals in 𝐵 and 𝐴 have the intersection in the point 

𝐶. 

We will name 𝐸(corners) to the points 𝐴, 𝐵, 𝐶 and 𝐶𝑟(crosses) to the intersections of the 

remaining normals. 

The square diagonal divides the angles, in which it has their extremes, into equal parts that 

have a measure of  
𝜋 

4 
 radians each. 

If we based us on this property and trace a line with an angle of  
𝜋 

4 
  radians from the 

origin0, this will pass for the elemental squares which belong to the quadrant bisectrix, and it will 

effect 𝐵𝐶̅̅ ̅̅ , 𝐴𝐶̅̅ ̅̅   or  𝐶, according to 𝑛𝑖 < 𝑑𝑖 ,   𝑛𝑖 > 𝑑𝑖,   𝑛𝑖 = 𝑑𝑖 respectively. 

In the last case, the line will finish in 𝐶 and will be the geometric representation of  
  𝑛𝑖

 𝑑𝑖
= 𝑙. 
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In the remaining cases, every time the line find a 𝐶 we will apply the reflection or mirror 

law, the times that were necessary to reach consequently an 𝐸. Then it will be formed a figure that 

will be defined as a geometric representation of this rational number. 

One particularity of the shape of this figure is that it has been formed as follows: 

Theorem 1: Every  
  𝑛𝑖

 𝑑𝑖
  rational number which has been traced from 0, finished in one  𝐸. 

Proof: Since the proof is clean by considering geometric arguments we will not give the 

analytical one. 

The following consequence is derived from the previous theorem: 

The line cannot pass through a crossing with the same slope twice. 

A question appears now: Is any number able to have more than one representation? 

We find the answer as follows: 

Theorem 2: Every rational number has only one figure. 

Proof: Given that the first diagonal is unique, we obtain only one direction after𝐶1 by the 

mirror law. If we repeat this procedure many times as it is necessary in a net that is unique by 

construction, we will obtain only one shape because all of their consecutive elements are unique. 

Consider two rational numbers at random that are not equal between them, so they have 

different nets and then their representative shapes will be different too. In this way, it is proved 

the following result: 

Theorem 3: Two unequal rational numbers have different shapes. 

Caution: All of non equal equivalent rational numbers have a shape with the same form 

but with different dimensions. 

We are ready to state the: 

Theorem 4: One figure can be the geometric representation of only one couple of values 

  𝑛𝑖and  𝑑𝑖. 
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Proof: Suppose that a shape represent two different rational numbers. Different traces 

correspond to that numbers, as we proved in the previous theorem. We are in front of an absurd 

which proceed from a false assumption. 

Because of the analysis we have made, we can say that there is bi- univocal 

correspondence between the rational numbers and their representation.  

If we number the consecutive 𝑆𝑢 over each axis, we obtain the 𝑆𝑥𝑖and 𝑆𝑦𝑖 that will give the 

position for all the 𝐶𝑐. 

Then it will result the types 𝑆𝑝and 𝑆𝑙, according to the sums of the values 𝑆𝑥𝑖 +  𝑆𝑦𝑖of 

each 𝐶𝑒, even or odd respectively. 

It is obvious that if two 𝐶𝑐 have a common side, they belong to different types, and if they 

have only one vertex in common so they belong to the same type. 

We will see a useful property of the exposed types in the: 

Theorem 5: In the  𝐶𝑒 the type 𝑆𝑝, the diagonal slope which passes through them is 

positive, and in the  𝑆𝑙 is negative. 

Proof: Take a net as in the shape, the representation of any rational, by definition, starts in 

0 and the first trace will be the quadantbisectrix and will belong to the type 𝑆𝑝, and we already 

know that the slope of the line is positive. When we reach one side of the net, we can see that the 

line changes from the 𝑆𝑝 to the   𝑆𝑙 because it passes through two  𝐶𝑒 which has one side in 

common, in that point the line slope also changes by the mirror law. 

We have seen the change of the slope is accomplished by the type change of the  𝐶𝑒. If we 

apply two consecutive times, the change we will come back to the slope and type of previous  𝐶𝑒. 

As in the 𝑆𝑝 the slope is positive, because comes always from the first trace, in the 𝑆𝑙 the 

slope will be lower than zero. 

Then the theorem is demonstrated. 



5 
 

We called nodes and designate with 𝑁 to the 0 set, the 𝐶𝑖, the 𝐶𝑟 and the 𝐸. Subdivide the 

last one in 𝑁𝑝 and 𝑁𝑙  types, according to the sum of the coordinates values, for each one, result 

even or odd. 

We will define as vertices the following points: of origin, of change of slope and the line 

terminal corner.  

We will see that property have the 𝑉 which is exposed in the: 

Theorem 6: The 𝑉 of any shape belong to 𝑁𝑝type. 

Proof:It is evident that following a normal to any of the axis, we will find 𝑁𝑝 and 

𝑁𝑙alternatively.  

If, on the other hand, we will follow a diagonal and apply in each 𝐶𝑙 the mirror law, we will 

find only  𝑁𝑝and 𝑁𝑙. 

As the starts in 0, that is a  𝑁𝑝, then all of 𝑉 will result  𝑁𝑝. 

 A consequence of the theorem is that the shape does not pass for any 𝑁𝑙. 

We will divide the rational numbers set in to three subsets, according to the values of
  𝑛𝑖

 𝑑𝑖
 

are for: 

𝛼: 𝑜𝑑𝑑 𝑒𝑣𝑒𝑛⁄  

𝛽: 𝑒𝑣𝑒𝑛 𝑜𝑑𝑑⁄  

𝛾: 𝑜𝑑𝑑 𝑒𝑣𝑒𝑛⁄  

Eliminate the fourth even/ even set because this is always reducible to some of the 

previous ones. 

It is easy to see the only 𝐸 which belongs to the  𝑁𝑝 in 𝛼is 𝐴; in 𝛽 is 𝐵; and in 𝛾 is 𝐶. This is, 

as we said, due to the type of each 𝑁 is given by the even or odd quality of their co-ordinates sum. 

Theorem 7:The final point of the rational number geometric representation which belong 

to 𝛼 subset 𝐴. 
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Proof:We have just seen that all the 𝑁 which belong to a shape are 𝑁𝑝, and as the only 𝐸 

of this type which is in this subset is the 𝐴, the line have to conclude necessarily at this point. 

In the same way, the following theorems are proved. 

Theorem 8:The determination of the shape to one 𝛽subset rational number is 𝐵. 

Theorem 9:The terminal corner of every 𝛾subset representation is 𝐶. 

The three previous theorems have implicit the symmetry form which differentiate them. 

𝛼subset has, as we demonstrated, its final point in the 𝐴 corner and we can anticipate 

without a strictnees demonstration, that these shapes will have their symmetry axis in the middle 

of the 𝑂𝐴̅̅ ̅̅  segment and it will be parallel to the ordinate. 

In the subconjunct𝛽, which has ending in 𝐵, the symmetry axis is parallel to the abscissa 

and cuts to 𝑂𝐵̅̅ ̅̅  by the middle. 

In the remaining 𝛾, as 0 and 𝐶 are symmetry respect to the net geometric centre, the 

subset shapes will not have an axis but a symmetry centre, which will coincide with the net centre. 

Now we will see the relationship of some net and shape components. 

Call  𝑉𝑥 to the vertices of the sides  𝑂𝐴̅̅ ̅̅   and  𝐵𝐶̅̅ ̅̅  , and 0 to the origin point; and 𝑉𝑦 to the 

conjunct of the sides 𝑂𝐵̅̅ ̅̅ and 𝐴𝐶̅̅ ̅̅ , and to the shape terminal point, we will have that: 

𝑁 − 𝐶𝑟 = 2(𝑛𝑖 + 𝑑𝑖) = 2𝑛𝑖 + 2𝑑𝑖 

From that, it results: 

𝑉𝑥 = 𝑑𝑖  

𝑉𝑦 = 𝑛𝑖 

only if we consider from the two remaining 𝐸 that one belongs to 𝑛𝑖 and the other to 𝑑𝑖. 

Besides, as 𝑉 = 𝑉𝑥 + 𝑉𝑦result 𝑉 = 𝑛𝑖 + 𝑑𝑖, which does not need demonstration because it 

is evident. 

From the previous one, we obtain: 
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𝐶 = 𝑁 − 2𝑣 

and as 𝑁 = (𝑛𝑖 + 1): (𝑑𝑖 + 1)we will have 

𝐶 = (𝑛𝑖 + 1): (𝑑𝑖 + 1) − 2(𝑛𝑖 + 𝑑𝑖) 

𝐶 = (𝑛𝑖 + 1): (𝑑𝑖 − 1) 

And if we name 𝑋 = (𝑛𝑖 − 1), 𝑌 = (𝑑𝑖 − 1)we have 

𝐶 = 𝑋: 𝑌 

That is to say, the cross is equal to the numerator minus one, which is multiplied by the 

denominator, minus the unit. 

If we define 𝑍as the shape’s external right angles (all of the scheme), we can divide them 

into the 𝑍𝑦 with the opposite side parallel to the ordinate, the 𝑍𝑥which are opposite to that axis 

and its parallel. 

We see that 𝑍𝑦 = 𝑛 − 1, and 𝑍𝑥 = 𝑑 − 1; then 

𝑍 = 𝑛𝑖 + 𝑑𝑖 − 2 

and being 𝑉 = 𝑛𝑖 + 𝑑𝑖  it results 

𝑍 = 𝑉 − 2 

Designate 𝐶′ to the points where the line is cut itself, and 𝐴′ to the square that form the 

same shape inside them and will observe that: 

𝐴′ = 𝐶′ 

Because of they are mutually corresponded, although what was said does not implicate a 

demonstration. 

As 𝐶′ corresponds to the 𝐶 even class, it will maintain the relation that was stated before. 

𝐶′ =
𝐶𝑟

2
= 𝐴′ 
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We could go away in the relations of the entities that we worked with, but we will not do 

it because they are arithmetic relations which are out of the work object. 

All that has been exposed previously is acceptable to the negative rational numbers if it is 

worked in the second and fourth quadrant. 

Also this study is realizable for a different angle of  


 4
 radians, f the unitary segments which 

are located in the two axis are different; but considering the angle tangent as the relation between 

the different unitary segments, the whole theory will continue valid. It is possible to generalize 

what was transcribed. Instead of to use the reflection law, it could be employed another law 

where the incidence angle and the reflection angle are leagued by any function. 

 

Acknowledgement: 

The author would like to thank the Isaac Newton Institute for Mathematical Sciences for support 

and hospitality during the programme ‘Discrete Analysis’ when work on this paper was 

undertaken. This work was supported by 

EPSRC Grant Number EP/K032208/1 

 

 


