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through the Pólya urn scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.18 Network for 2 markers in a criminal identification allowing for subpopulation

effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.19 Network module for a genotype accounting for subpopulation effect (adapted

with permission from Green and Mortera (2009).) . . . . . . . . . . . . . . . 24

3





List of Tables

1.1 Data for mixed trace with two contributors. The starred values are the sus-
pect’s alleles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5





Contents

1 Graphical Models for Forensic Analysis A. Philip Dawid, University of

Cambridge, UK Julia Mortera, Università Roma Tre, Italy 1
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1.1 Introduction

“Forensic” means pertaining to courts of law. Here we are concerned with systems to assist
in the evaluation of evidence presented in a criminal or civil court case. Such a case may have
a mixed mass of evidence of many kinds, all of it hedged about with uncertainty. We describe
how such a case can be helpfully represented by means of a Bayesian Network (BN), or
Probabilistic Expert System (Cowell et al. 1999): a directed graphical model describing the
various items of evidence and hypotheses, and the probabilistic relationships between them.
Such a representation displays clearly the relevance of the evidence to questions of interest,
and supports efficient routines to compute the impact of the evidence presented. In many
cases the BN can be constructed as an object-oriented Bayesian network (OOBN), a top-
down hierarchical structure which hides irrelevant detail and simplifies both construction
and interpretation.

In § 1.2 we describe by means of a fictitious example the way in which different elements
in a case (eye-witness, fibre and blood evidence) can be drawn together into a single co-
herent story structured as a Bayesian network. We use this example to explain how a BN
can be used to discover implicit relationships of relevance and irrelevance in the evidence,
which in turn can be used to simplify probabilistic calculations. § 1.3 describes the features
of an OOBN, and shows how simple reusable “idioms” can be constructed to represent com-
mon features and relationships such eyewitness testimony and identification. § 1.4 briefly
describes how a BN can be used to simplify the specification and manipulation of probabil-
ities, in particular the use of “evidence propagation” to compute conditional probabilities
taking the evidence into account.

The remainder of this Chapter focuses on DNA evidence (the Appendix gives a very
brief glossary of the relevant biological background and terminology). § 1.5 gives examples of
the use of OOBNs to handle cases of criminal identification, simple and complex disputed
paternity. These examples deal with cases where “clean” single source DNA profiles are
available, whereas § 1.6 shows how the methods can be extended to deal with more complex
cases, where (for example) a crime trace may contain a mixture of DNA from more than one
contributor, in varying proportions. Finally, § 1.7 relaxes some of the simplifying assump-
tions made so far, to account for such realistic complications as uncertainty about allele
frequencies and heterogeneity in the reference population. Network modules that account
for these additional features are introduced; these can then be integrated into the variety
of identification problems previously described.

1.2 Bayesian Networks for the Analysis of Evidence

In a legal case, we may have various items of evidence, both lay and scientific, with more
or less complex relationships. It can often be helpful to represent such relationships in
graphical form, as a Bayesian Network (BN). As described in Part I, Chapter 1 of this
Handbook, “Conditional independence concept and Markov properties for basic graphs” by
Milan Studený, a BN is a directed acyclic graph (DAG), with nodes representing relevant
variables in the problem, joined by arrows representing probabilistic dependence, and, for
each “child” node in the DAG, a specification of its conditional distribution, given the
states of its “parents”. This can then be used for further analysis, both qualitative and
quantitative. We start by considering purely qualitative properties.
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Example 1 (Robbery) We illustrate with a fictional crime story (reproduced with per-
mission from Dawid and Evett (1997).)

Eye witness evidence: An unknown number of offenders entered commercial premises
late at night through a hole which they cut in a metal grille. Inside, they were confronted
by a security guard who was able to set off an alarm before one of the intruders punched
him in the face, causing his nose to bleed. The security guard said that there were four
men but the light was too poor for him to describe them and he was confused because
of the blow he had received. About 10 minutes later the police found the suspect trying
to “hot wire” a car in an alley about a quarter of a mile from the incident. The suspect
denied having anything to do with it.

Fibre evidence: A tuft of red acrylic fibres was found on the jagged end of one of the
cut edges of the grille. The suspect’s jumper was red acrylic. The tuft was indistin-
guishable from the fibres of the jumper by eye, microspectrofluorimetry and thin layer
chromatography.

Blood evidence: A spray pattern of blood was found on the front and right sleeve of
the suspect’s jumper. The blood on the jumper was of a different type from that of the
suspect, but the same as that of the security guard.

The directed acyclic graph of Figure 1.1 contains a number of nodes, corresponding to
random events or variables; here a square node corresponds to a variable that has been
observed, while a round node indicates an unobserved variable that is required to complete
the picture. The arrows leading into any node identify the variables on whose value it is
supposed to depend, probabilistically. For example, Y2, the measurement of the blood type

FIGURE 1.1: Directed acyclic graph representing robbery story (adapted with permission
from Dawid and Evett (1997).)

of the spray on the jumper is dependent on X1, the suspect’s blood type (because it might
be a self stain) and the guard’s blood type X2. But information is also provided by R,
describing the shape of the stain, because that sheds light on whether or not it might be
a self stain. In turn, the shape of the stain is influenced by the way in which the guard
was punched, G2, and B, the identity of the person who did it. B is in turn influenced by
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(b) Moralised ancestral graph

FIGURE 1.2: (B,R)⊥⊥ (G1, Y1) | (A,N) ? (adapted with permission from Dawid and Evett
(1997).)

variable C, whether or not the suspect was one of the offenders, and also by N , the number
of offenders.

This construction of the DAG utilises the concept of conditional independence (Dawid
1979). For example, were we to know N , the number of offenders, and C, whether or not
the suspect is one of them, our uncertainty about B, the identity of the person who struck
the guard, would (it is supposed) be unaffected by further information about both the
eye-witness variables, (G1, G2,W ), and the fibre variables, (A,X3, Y1). In conditional inde-
pendence notation (Dawid 1979): B⊥⊥ (G1, G2,W,A,X3, Y1) | (N,C). This is an example
of the general requirement that a variable be independent of its “non-descendants”, given
its “parents”. Similarly, once B is known, then G1, N , C and W become irrelevant to any
variables that are descendants of B in the graph, such as Y2: Y2⊥⊥ (G1, N,C,W ) | B. Note
that conditional independence, so interpreted, is a purely qualitative “irrelevance” property,
and does not require numerical assessment of any probabilities in the problem. (However,
it does impose relationships between these probabilities.)

Further, we have methods for examining a DAG to discover additional, implicit, con-
ditional independence properties. One such method is the “moralisation” criterion of Lau-
ritzen et al. (1990), which operates as follows. Let A, B, C be sets of nodes. To query the
conditional independence A⊥⊥B | C:

Ancestral graph Form the subgraph containing just the nodes in A, B and C and their
ancestors.

Moralisation “Marry” any unmarried parents of the same child; drop arrows.

Separation Look for a path from A to B avoiding C. If there is none such, deduce
A⊥⊥B | C.

For a description of other, equivalent, graphical criteria, refer again to Part I, Chapter 1 of
this Handbook.

As an example, suppose we wish to query the conditional independence property
(B,R)⊥⊥ (G1, Y1) | (A,N). Figure 1.2 shows the relevant ancestral graph and its morali-
sation. We note that, in the latter, every path from B or R to G1 or Y1 passes through
either A or N , and so deduce that this conditional independence does indeed hold.

Such properties can be helpful in simplifying algebraic manipulations on proba-
bilities. Thus we can express the posterior odds on guilt (C = c), given evidence
(G1, G2,W,R,X1, X2, X3, Y1, Y2) = (g1, g2, w, r, x1, x2, x3, y1, y2), as

Pr(c | g1, g2, w, r, x1, x2, x3, y1, y2)

Pr(c | g1, g2, w, r, x1, x2, x3, y1, y2)
=

Pr(r, x1, x2, x3, y1, y2 | c, g1, g2, w)

Pr(r, x1, x2, x3, y1, y2 | c, g1, g2, w)
× Pr(c | g1, g2, w)

Pr(c | g1, g2, w)
.
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The scientific evidence enters only into the first term on the right-hand side, which has
the form of a conditional likelihood ratio, given the eyewitness evidence. This term can be
simplified by applying the following conditional independence properties, all of which follow
from application of the moralisation criterion:

(X1, X2, X3) ⊥⊥ (C,G1, G2,W )

(R, Y1, Y2) ⊥⊥ W | (C,X1, X2, X3, G1, G2)

Y1 ⊥⊥ (R, Y2) | (C,X1, X2, X3, N,G2)

Y1 ⊥⊥ (X1, X2, G2) | (X3, C,N)

(R, Y2) ⊥⊥ X3 | (X1, X2, C,N,G2).

With a further assumption G1 = N (the guard’s evidence of the number of offenders is
accurate), the above properties allow us to simplify the conditional likelihood ratio:1

Pr(r, x1, x2, x3, y1, y2 | c, g1, g2, w)

Pr(r, x1, x2, x3, y1, y2 | c, g1, g2, w)
=

Pr(y1 |x3, c, g1)

Pr(y1 |x3, c, g1)
× Pr(r, y2 | x1, x2, c, g1, g2)

Pr(r, y2 | x1, x2, c, g1, g2)
.

2

1.3 Object-oriented networks

Many problems have a hierarchical or repetitive structure that is not best represented by a
“flat” network such as that of Figure 1.1. An “object-oriented Bayesian network” (OOBN)
allows such additional structure to be taken into account, to simplify the construction,
display and interpretation of the network. In an OOBN, what looks like a single node in
a network can in fact be a network in its own right. This generalisation of a BN was first
proposed by Laskey and Mahoney (1997).

As an example, Figure 1.3 (created using the commercial software package Hugin) gives
a high-level view of the network of Figure 1.1, showing that, conditional on the unknown
identification nodes (N,C), the fibre evidence is independent of the blood and eyewitness
evidence—whereas the blood evidence remains dependent on the eyewitness evidence (in
fact, through the node G2).

FIGURE 1.3: OOBN for robbery

The internal structure of the individual submodules is shown in Figure 1.4. A thick grey
rim denotes an output node, which can be identified with an input node (dashed grey rim)
in another module. This is done as shown in Figure 1.5.

1Still further simplification is possible, using reasonable properties not all of which are represented in
the graph: see Dawid and Evett (1997) for details.
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(a) Identification (b) Eyewitness

(c) Fibre (d) Blood

FIGURE 1.4: Submodules for robbery OOBN

FIGURE 1.5: Expanded view of robbery OOBN
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1.3.1 Generic idioms

A particularly valuable application of OOBNs is to develop generic network fragments, or
“idioms”, that can be reused, both within and across numerous high-level networks (Neil
et al. 2000; Hepler et al. 2007; Fenton et al. 2013). We here term such a fragment a module,
and set it in a boldface font. An instance of a module, like any other node in a larger
network, will be set in teletype, while a value (state) of a node will by indicated by italic.

One recurrent idiom describes generic features of eyewitness testimony of an event
(Schum and Morris 2007). This is structured into three stages: observational sensitivity
(“sensation”), objectivity, and veracity, as represented in the network of Figure 1.6, which
builds on the submodules shown in Figure 1.7. “Observational sensitivity” refers to the

FIGURE 1.6: Testimony idiom (adapted with permission from Dawid et al. (2011).)

possibility of mistakes in the witness’s perception of the event, due either to his sensory
and general physical condition (leading to possible disagreement between the actual and
the perceived features of the event), or to the conditions under which the observation is
made. The latter aspect is termed “competence”. For example, if the witness was hiding
under the table, he would not have been competent to observe what was happening. These
two processes are incorporated into Figure 1.7a, which models agreement as an instance of
the generic filter module of Figure 1.7b, which allows a random “error” to affect whether
or not the output node reproduces the input. The subnetworks objectivity and veracity

in Figure 1.6 are likewise instances of the filter module: “Objectivity” means that the wit-
ness’s belief is a correct interpretation of the evidence of his senses, while “veracity” means
that he truthfully reports his belief.

Other recurrent evidential idioms include “identification” (as in Figure 1.9 below), “con-
tradiction”, “corroboration”, “conflict”, “convergence”, “explaining away”. See Hepler et al.
(2007) for details.

1.4 Quantitative analysis

Our discussion so far has largely concentrated on the qualitative aspects of a BN repre-
sentation. Such a representation also allows simplification of the tasks of assigning and
manipulating probability distributions for the variables. Rather than specify a very large
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(a) Sensation (b) Filter JM: Accuracy :end

FIGURE 1.7: Testimony modules (adapted with permission from Dawid et al. (2011).)

collection of joint probabilities for all the variables in the problem, it is enough (and generally
much easier) to specify, for each node, its conditional distribution, given the configuration
of states of its “parent” variables. It is then possible to extract, using elegant and efficient
computational algorithms, both exact and (for more complex problems) approximate, the
marginal distribution for any variable, or (“evidence propagation”) its conditional distribu-
tion, after taking into account observed values for certain other variables. For details, see
Part II, Chapters 1 and 2 of this Handbook. There exist a number of software systems that
conduct such computations, including Hugin2, GeNIe3, netica4, AgenaRisk5,gRain6,
Grappa7 and (for approximate inference) WinBUGS8. All networks shown in this Chapter
were created and analysed using Hugin.

1.5 Bayesian networks for forensic genetics

Forensic DNA evidence has special features, principally owing to its pattern of inheritance
from parent to child (a very brief introduction to the basic genetics is given in the Appendix.)
These make it possible to use it to address queries such as the following:

Criminal case: Did A leave the trace at the scene of the crime?

Disputed paternity: Is individual A the father of individual B?

Immigration: Is A the mother of B? How is A related to B?

Criminal case: mixed trace: Did A and B both contribute to a stain found at the scene
of the crime? Who contributed to the stain?

Disputed inheritance: Is A the daughter of deceased B? Is A the son of a contributor to
the mixture?

2http://www.hugin.com
3http://www.bayesfusion.com/genie-modeler
4https://www.norsys.com
5http://www.agenarisk.com/
6https://CRAN.R-project.org/package=gRain/
7https://people.maths.bris.ac.uk/~mapjg/Grappa//
8http://www.mrc-bsu.cam.ac.uk/software/bugs

http://www.hugin.com
http://www.bayesfusion.com/genie-modeler
https://www.norsys.com
http://www.agenarisk.com/
https://CRAN.R-project.org/package=gRain /
https://people.maths.bris.ac.uk/~mapjg/Grappa//
http://www.mrc-bsu.cam.ac.uk/software/bugs
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Disasters: Was A among the individuals involved in a disaster? Who were those involved?

In a simple criminal identification case we have evidence E that a suspect’s DNA profile
matches that found at the crime scene. The prosecution hypothesis Hp is that the suspect
left the DNA trace, while the alternative defence hypothesis, Hd, might be that another
individual randomly drawn from some reference population left the trace. In a simple dis-
puted paternity case, the evidence E will comprise DNA profiles from mother, child and
putative father. Hypothesis Hp is that the putative father is the true father, while hypoth-
esis Hd might be that the true father is some other individual randomly drawn from the
population. We can also entertain other hypotheses, such as that one of one or more other
identified individuals is the father, or that the true father is the putative father’s brother.

In a complex criminal case, we might find a stain at the scene of the crime having the
form of a mixed trace, containing DNA from more than one individual. DNA profiles are
also taken from the victim and a suspect. We can entertain various hypotheses as to just
who—victim?, suspect?, person or persons unknown?, contributed to the mixed stain.

When we are only comparing two hypotheses H0 and H1, the impact of the totality
of the DNA evidence E available, from all sources, is crystallised in the likelihood ratio,
LR = Pr(E |H1)/Pr(E |H0). If we wish to compare more than two hypotheses, we require
the full likelihood function, a function of the various hypotheses H being entertained (and
of course the evidence E):

lik(H) ∝ Pr(E |H). (1.1)

The proportionality sign in (1.1) indicates that we have omitted a factor that does not
depend on H, although it can depend on E. Such a factor is of no consequence and need
not be specified, since it disappears on forming ratios of likelihoods for different hypotheses
on the same evidence. Only such relative likelihoods are required, not absolute values.

We also now need to specify the prior probabilities, Pr(H), for the full range of hy-
potheses H. Then posterior probabilities in the light of the evidence are again obtained

from JM: Bayes’s or Bayes’ :end theorem, which can now be expressed as:

Pr(H |E) ∝ Pr(H)× lik(H). (1.2)

Again the omitted proportionality factor in (1.2) does not depend on H, although it might
depend on E. It can be recovered, if desired, as the unique such factor for which the law of
total probability,

∑
H Pr(H |E) = 1, is satisfied.

1.5.1 Bayesian networks for simple criminal cases

In a simple criminal DNA identification case, the evidence is that the suspect’s DNA profile

matches a trace found at the scene of the crime. We are interested in testing JM: –two

mutually exclusive and exhaustive hypotheses– :end the prosecution hypotheses Hp : the
crime trace belongs to the suspect s (loosely, ‘the suspect is guilty’); versus the defense
hypothesis Hd : the crime trace belongs to another actor, o, randomly drawn from the
population. Representation of such problems as Bayesian networks was introduced by Dawid
et al. (2002), and as object-oriented Bayesian networks by Dawid et al. (2007).

The OOBN for the case is shown in Figure 1.8, together with its expanded version.
Nodes s and o are each instances of a founder network module, with nodes paternal gene
pg, maternal gene mg, and genotype gt. Each of the (input) nodes pg and mg is identified
with the single (output) node gene of an instance of a simple module gene; while the
(output) node gt is constructed as the unordered combination of pg and mg. Node trace is
an instance of the query network module shown in Figure 1.9 whereby trace is modelled
as equal to sgt or ogt, according as S guilty? is true or false, respectively.
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Each genetic marker m is analysed separately. Node gene in module gene is assigned
a distribution corresponding to the allele frequencies for that marker, and S guilty? is
assigned probability 0.5 for true. The observed genotype is entered as evidence at gt in s,
and again at crgt in trace, and propagated through the network. The resulting odds on
true at S guilty? can then be interpreted as the likelihood ratio in favour of Hp, based on
the evidence of a match at marker m. Finally, multiplying these values across all markers
delivers the overall likelihood ratio based on the full match.

(a) OOBN, showing actors s and o,
crime trace and hypotheses

(b) Expanded network, revealing variables within
each block node

FIGURE 1.8: Network for criminal identification (adapted with permission from Green and
Mortera (2009).)

FIGURE 1.9: query module: trace is identical to sgt or ogt according as S guilty? is
true or false

1.5.2 Bayesian network for simple paternity cases

In a simple case of disputed paternity, a man is alleged to be the father of a child, but
disputes this. DNA profiles are obtained from the mother m, the child c, and the putative
father pf. On the basis of these data, we wish to assess the likelihood ratio for the hy-
pothesis of paternity : Hp: tf = pf, the true father is the putative father; as against that of
non-paternity : Hd: tf = af—where af denotes an unspecified alternative father, treated as
unrelated to pf and randomly drawn from the population.

The disputed pedigree can be represented by the OOBN of Figure 1.10. Nodes m, pf and
af are instances of the network module founder as in § 1.5.1, while node tf is an instance of
query—its output is a genotype copied from that of pf or af, according as tf = pf? is true
(Hp) or false (Hd). Node c is an instance of a network module child, containing two copies
(one for each parent) of the module mendel, shown in Figure 1.11, whereby, according to
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Mendel’s law, the child c inherits its parental gene cg by a random draw (represented as
a fair coin flip fcoin) from the maternal and paternal genes, mg and pg, of the relevant
parent.

FIGURE 1.10: Pedigree for simple disputed paternity (adapted with permission from Green
and Mortera (2009).)

FIGURE 1.11: Module representing Mendelian inheritance

As in § 1.5.1, we analyse the markers one at a time. For each, we assign the relevant allele
frequency distribution at each founder gene, enter the observed evidence at m, pf and c, and
propagate. This yields a likelihood ratio based on that marker data, and we multiply all
these together to obtain the overall likelihood ratio based on the full collection of markers.
This can then be combined with the prior odds of paternity, based on external background
evidence B, to obtain the posterior odds on paternity.

1.5.3 Bayesian networks for complex cases

A major advantage of OOBN representations is that they make it easy to elaborate the
network with additional features (Dawid et al. 2007). For example, in the presence of possible
mutation, we can modify the network of Figure 1.11 to allow either mg or pg to mutate,
before being possibly selected for transmission to cg. Various different mutation models
can be constructed and incorporated. Other possible modifications include, for example,
allowance for alleles that are not picked up by the instrumentation—a property that can be
either inherited (a “silent” allele) or sporadic (a “missed” allele.) Such modifications can
typically be confined to low-level networks; the other modules, and the overall high-level
structure, are unchanged.

Another advantage is the ability to reuse existing network modules in new combinations,
to tell different stories. For example, Figure 1.12 puts together instances of founder (at
gf, gm, m1, m2 amd af), of child (at pf, b1, b2, c1, c2) and of query (at tf), to analyse
a case where it was impossible to collect DNA from pf, the putative father of the child c1

of mother m1, but DNA is available from his two full brothers b1 and b2 (all children of
grandfather gf and grandmother gm) and his undisputed child c2 by a different mother m2,
as well as from m1, m2 and c1.
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FIGURE 1.12: Disputed paternity with absent putative father

Moreover, the building blocks used in such constructions can themselves be modified, as
described above, to incorporate additional features such as mutation.

1.6 Bayesian networks for DNA mixtures

When several actors have contributed to a DNA trace found at a crime scene we will
have a mixed DNA profile. The presence of 3 or more alleles on any marker indicates
that the trace is a mixture from more than one contributor. One might be interested in
testing whether the victim and suspect contributed to the mixture, Hp: v& s, against the
hypothesis that the victim and an unknown individual contributed to the mixture, Hd:
v&u. One might alternatively consider an additional unknown individual u2 instead of the
victim, with hypotheses H ′

p: u2 & s versus H ′
d: u2 &u1.

1.6.1 Qualitative data

We first describe Bayesian networks for analysing purely qualitative data, describing simply
which alleles are observed in the trace. Figure 1.13 shows a top-level network which can
be used for analysing a mixture with two contributors, p1 and p2, and a marker in the
trace having three alleles A, B and C (the network can be simply modified to account for
different numbers of alleles). Nodes sgt, vgt, u1gt and u2gt are instances of the network
class founder, and represent the suspect’s, the victim’s and two unknown individuals’
genotypes. Node p1gt, the genotype of p1, is an instance of query, which selects between
the two genotypes sgt or u1gt according to the true/false state of the Boolean node p1=s?,
representing the hypothesis that contributor p1 is the suspect s. A similar relationship holds
between nodes p2gt, vgt, u1gt and p1=v?. The target node is the logical combination of
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the two Boolean nodes p1=s? and p2=v? and represents the four different hypotheses
described above. Node Ainmix? determines whether allele A is in the mixture: this will be
so if at least one A allele is present in either p1gt or p2gt. Similarly for Binmix?, Cinmix?
and Dinmix? (where D refers to all the alleles that are not observed).

For each marker the gene nodes are populated with the relevant allele frequency distribu-
tion, and nodes p1=s?, p1=v? are modelled as coin-flips. Any available genotype information
on the suspect and the victim is entered into nodes sgt and vgt, true is entered at Ainmix?
and Binmix?, and Cinmix?, and false at Dinmix?. This evidence is propagated, after which
the probability distribution over the four hypotheses at target can be interpreted as a
likelihood function, based on the data for that marker. Again, an overall likelihood function
is obtained on multiplying these across markers.

FIGURE 1.13: Bayesian network for DNA mixture from two contributors.

The modular structure of Bayesian networks supports easy extension to mixtures with
more contributors by simple modification of the network, so long as the total number of con-

tributors can be assumed known. JM: Possibly rewrite this sentence Or, if it can be agreed
to limit attention to some maximum total number of potential contributors (Lauritzen and
Mortera 2002), cases where the number of unknown contributors is itself uncertain can be
addressed using a Bayesian network, now including nodes for the number of unknown con-

tributors and the total number of contributors (Mortera et al. 2003). :end This can be used
for computing the posterior distribution of the total number of contributors to the mixture,
as well as likelihood ratios for comparing all plausible hypotheses. The modular structure
of the Bayesian networks can be used to handle still further complex mixture problems.
For example, we can consider together missing individuals, silent alleles and a mixed crime
trace simply by piecing together the appropriate modules.

1.6.2 Quantitative data

The networks above only use the qualitative information as to which allele values are present
in the mixture and the other profiles. A more sensitive analysis additionally uses measured
continuous “peak heights”, which give quantitative information on the amounts of DNA
involved. This requires much more detailed modelling, but again this can be effected by

means of a Bayesian network (Cowell et al. 2007b). JM: Expand a bit more on the next

part :end Because the mixture proportion frac of DNA contributed by one of the parties is
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a quantity common across all markers, we must now handle the markers all simultaneously
within one “super-network”. Figure 1.14 shows the top level network for two contributors,
involving six markers (D8, vwa, D21, D18, FGA, Tho1), each an instance of a lower level
network marker as shown in Figure 1.15. This network is an extended version of the one
shown in Figure 1.13, incorporating additional structure to model the quantitative peak
height information. In particular, the nodes Aweight etc. in marker are instances of a
module that models the quantitative information on the peak height.

FIGURE 1.14: 6-marker OOBN for mixture using peak areas, 2 contributors (reproduced
from Cowell et al. (2004)).

FIGURE 1.15: Network marker with four observed allele peaks (reproduced from Cowell
et al. (2004)).

Cowell et al. (2007a); Cowell et al. (2007b) analyse the data shown in Table 1.1, taken
from Evett et al. (1998), involving a 6-marker mixed profile with between 2 and 4 distinct
observed alleles and corresponding peak areas per marker, and a suspect whose profile is
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contained in these. It is assumed that this profile is a mixture either of the suspect and
one other unobserved contributor, or of two unknown contributors. Using only the alleles as
data, the likelihood ratio for the suspect being a contributor to the mixture is calculated to
be around 25,000. On taking account of the peak areas also, this rises 6,800-fold, to about
170,000,000.

Marker D8 D18 D21

Alleles 10∗ 11 14∗ 13∗ 16 17 59 65 67∗ 70∗

Peak area 6416 383 5659 38985 1914 1991 1226 1434 8816 8894

Marker FGA THO1 VWA

Alleles 21∗ 22∗ 23 8∗ 9.3∗ 16∗ 17 18∗ 19

Peak area 16099 10538 1014 17441 22368 4669 931 4724 188

TABLE 1.1: Data for mixed trace with two contributors. The starred values are the suspect’s
alleles.

1.6.3 Further developments on DNA mixtures

Cowell et al. (2007a); Cowell et al. (2011); Cowell et al. (2015) JM: further extend the
statistical model in § 1.6.2 for the quantitative peak information obtained from an electro-

pherogram of a forensic DNA sample. :end A gamma model is used for the peak heights
and the model further develops the modelling of various artefacts that can occur in the
DNA amplification process. Thus dropout of an allele occurs when its associated peak fails
to exceed the detection threshold. Another common artefact is stutter , whereby an allele at
repeat number a that is present in the sample is mis-copied, and appears as a peak at repeat
number a−1. Yet another artefact is dropin, referring to the occurrence of small unexpected
peaks in the DNA amplification: this can, for example, be due to sporadic contamination of
a sample, either at source or in the forensic laboratory. Current technology allows for the
amplification of very small amounts of DNA, even as little as contained within one cell; in
such a case many of these artefacts can occur. These artefacts are simply represented in a
coherent way in this model.

The model can both find likelihood ratios for evidential calculations, and deconvolve a
DNA mixture for the purpose of finding likely profiles of one or more unknown contributors
to the mixture. Computation from this model rely on an efficient implementation of Bayesian
network techniques. This allows for readily extension to simultaneous analysis of more than
one mixture trace. This modelling of peak height information provides for a very efficient
mixture analysis.

Recently Mortera et al. (2016) applied this model to analyse a complex disputed pater-
nity case, where the DNA of the putative father was extracted from his corpse, which had
been inhumed for over 20 years. This DNA was contaminated and appeared to be a mixture
of at least two individuals. This case was further analysed in Green and Mortera (2016),
which presents general methods for inference about relationships between contributors to
a DNA mixture and other individuals of known genotype. The model for relationship in-
ference builds on the approach in Cowell et al. (2015), but makes more explicit use of the
Bayesian networks in the modelling.
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1.7 Analysis of sensitivity to assumptions on founder genes

Many forensic genetics problems, as we have shown, can be handled using structured systems
of variables, for which Bayesian networks offer an appealing practical modelling framework,
and allow inferences to be computed by probability propagation methods. However, when
standard assumptions are violated—for example when allele frequencies are unknown, there
is identity by descent or the population is heterogeneous – dependence is generated among
founding genes, that makes exact calculation of conditional probabilities by propagation
methods less straightforward. The standard assumptions that the allele frequencies are
fixed and known, that the individuals actors in the model are independent and that the
allele frequency database is homogeneous can all be questioned (Green and Mortera 2009).
We now illustrate a couple of these issues.

1.7.1 Uncertainty in allele frequencies

In reality, the allele frequencies assumed when conducting probabilistic forensic inference
are not known probabilities, but estimates based on empirical frequencies in a database.

For the criminal case of § 1.5.1, the joint distribution of the founding genes is∏
m

{p(spgm)p(smgm)p(opgm)p(omgm)} , (1.3)

and all questions about sensitivity can be expressed through modifications to (1.3). Some
generate dependence between founding genes.

Following Green and Mortera (2009), assuming the idealisation of a Dirichlet
prior and multinomial sampling, the posterior distribution of a set of probabilities is
Dirichlet(Mρ(1),Mρ(2), . . . ,Mρ(k)), where M is the (posterior) sample size and the ρ’s
are essentially the database allele frequencies (posterior means). The founding genes (spg,
smg, opg, omg) are drawn from this distribution, (conditionally) independently and identi-
cally across alleles. This corresponds to the standard set-up for a Dirichlet process model
which, by marginalising over the Dirichlet distribution, can be represented in a BN using
a Pólya urn scheme. This is represented by the network module shown in Figure 1.16: for
further details see Green and Mortera (2009). For efficiency of the probability propagation,
in order to create smaller clique tables this network is set up so that all choices are binary,
following the “divorcing” procedure (Jensen 1996), whereby auxiliary nodes are introduced
in order to reduce the number of incoming edges of a selected node. This module can then
be incorporated as a building block in a higher level network that computes inference, for
example, about a criminal identification case, a simple or complex paternity testing or a
DNA mixture problem. Thus Figure 1.17 shows a network for criminal identification that
integrates the network of Figure 1.8a with that of Figure 1.16. Similarly the module in
Figure 1.16, representing uncertain allele frequencies, can be integrated into the networks
described in § 1.5.2, § 1.5.3, § 1.6. In this way, we can introduce uncertain allele frequencies
for the reference population into forensic identification problems.

1.7.2 Heterogeneous reference population

The assumption that the DNA reference population is homogeneous is questionable. The
population is typically a mixture of subgroups.

Population heterogeneity raises two kinds of issues in the modelling. First, since unob-
served actors are assumed to have genes drawn from a population, results can depend on
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FIGURE 1.16: Sub-network UGF in Figure 1.17 for the Pólya urn scheme (adapted with
permission from Green and Mortera (2009).)

FIGURE 1.17: Network for criminal case with uncertain allele frequencies represented
through the Pólya urn scheme
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which population (and corresponding allele frequency database) is used. Secondly, when
there is uncertainty about which population is relevant, this can induce dependence be-
tween actors, observed or not. Additionally, when uncertainty about subpopulation relates
to untyped actors, dependence between markers is induced.

The upper level network for sensitivity of inferences to population structure for criminal
identification, based on a synthetic population that is a mixture of Afro-Caribbean, Hispanic
and Caucasian subpopulations is shown in Figure 1.18.

FIGURE 1.18: Network for 2 markers in a criminal identification allowing for subpopulation
effect.

Such problems are easily set up as Bayesian networks with the sub-network structure
shown in Figure 1.19. The variable S identifies the subpopulation, which may be dependent
or independent between actors depending on the scenario of interest. Crucially, for each ac-
tor, S is the same for both genes for all markers, so that mixing across subpopulations is not
the same as averaging the allele frequencies and assuming an undivided subpopulation. Note
that conditional on subpopulation S, every gene at every marker is drawn independently
from the appropriate subpopulation gene pool.

FIGURE 1.19: Network module for a genotype accounting for subpopulation effect (adapted
with permission from Green and Mortera (2009).)
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1.8 Conclusions

We hope we have stimulated the reader’s interest in the application of Bayesian networks
for modelling problems in forensic science.

JM: Maybe state that BNs and OOBNs can be usefully used in many branches of

forensic analysis beyond those illustrated here. :end
We have also aimed to show the usefulness of Bayesian networks for representing and

solving a wide variety of complex forensic problems. Both genetic and non-genetic informa-
tion can be represented in the same network. A particularly valuable feature is the modular
structure of Bayesian networks, which allows a complex problem to be broken down into
simpler structures that can then be pieced back together in many ways, so allowing us
to address a wide range of forensic queries. In particular, using object-oriented Bayesian
networks we can construct a flexible computational toolkit, and use it to analyse com-
plex cases of DNA profile evidence, accounting appropriately for such features as missing
individuals, mutation, silent alleles and mixed DNA traces, accounting for uncertainty in
allele frequencies, heterogeneous populations and also inference about relatedness in DNA
mixtures (Green and Mortera 2016).

Appendix. Genetic background

We will introduce some basic facts about DNA profiles; for a more detailed explanation see
Butler (2005).

A gene is a particular sequence of the four bases, represented by the letters A, C, G and
T. A specific position on a chromosome is called a locus (hence there are two genes at any
locus of a chromosome pair). A DNA profile consists of measurements on the genotype at a
number of forensic markers, which are specially selected loci on different chromosomes.

Current technology uses around 17–23 short tandem repeat (STR) markers. At each
marker, each gene has a finite number (up to around 20) of possible values, or alleles,
generally positive integers. For example, an allele value of 5 indicates that a certain word
(e.g. CAGGTG) in the four letter alphabet is repeated exactly 5 times in the DNA sequence
at that locus. In statistical terms, a gene is represented by a random variable, whose realised
state is an allele.

In a particular forensic context, we will refer to the various human individuals involved in
the case as ‘actors’. Each genotype consists of an unordered pair of genes, one inherited from
the father and one from the mother (though one cannot distinguish which is which). When
both alleles are identical the actor is homozygous at that marker, and only a single allele
value is observed; otherwise the actor is heterozygous. An actor’s DNA profile comprises a
collection of genotypes, one for each marker.

Assuming Mendelian segregation, at each marker a parent passes a copy of just one of
his two genes, randomly chosen, to his or her child, independently of the other parent and
independently for each child.

In standard forensic identification problems it is customary to assume the HardyWeinberg
equilibrium, and that loci are unlinked, which corresponds to assuming independence within
and across markers. Databases have been gathered from which allele frequency distributions,
for various populations, can be estimated for each forensic marker.
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