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Abstract. The process of doing Science in condition of uncertainty is illustrated with a toyexperiment in which the inferential
and the forecasting aspects are both present. The fundamental aspects of probabilistic reasoning, also relevant in real life appli-
cations, arise quite naturally and the resulting discussion among non-ideologized, free-minded people offers an opportunity for
clarifications.

“I am a Bayesian in data analysis,
a frequentist in Physics”

(A PhD student in Rome, 2011)

“You see, a question has arisen,
about which we cannot come to an agreement,

probably because we have read too many books”
(Brecht’s Galileo)

“The theory of probabilities is basically
just common sense reduced to calculus”

(Laplace)

INTRODUCTION

Much has been said and written about probability. Therefore, instead of presenting the different views, or accounting
for its historical developments, I go straight to an example, which I like to present as an experiment, as indeed it is:
the boxes and the balls are real and they represent the ‘Physical World’ about which we ‘do Science,’ that is 1) we
try, somehow, to gain our knowledge about it by making observations; 2) wetry, somehow, to anticipate the results
of future observations. ‘Somehow’ because we usually startand often remain in conditions of uncertainty. So, instead
of starting by saying “probability is defined as such and such”, I introduce the toy experiment, explain the rules of
the ‘game,’ clarifying what can be directly observed and what can only be guessed, and then let the discussion go,
guiding it with proper questions and helping it by evaluating interactively numbers of interest (some lines of R code
are reported in the paper for the benefit of the reader). Later, I make the ‘players’ aware of the implications of their
answers and choices. And even though initially some of the numbers do not come out right – the example is simple
enough that rational people will finally agree on the numbersof interest – the main concepts do: subjective probability
as degree of belief; physical ‘probability’ as propensity of systems to behave in a given way; the fact that we can
be uncertain about the values of propensity, and then assignthem probabilities; and even that degrees of beliefs can
themselves be uncertain and often expressed in fuzzy terms like ‘low’, ’high’, ‘very high’ and so on – when this is the
case they need to be defuzzified before they can be properly used within probability theory, without the need to invent
something fancy in order to handle them. Other points touched in the paper are the myth that propensities are only
related to long-term relative frequencies and the questionof verifiability of events subject to probabilistic assessments.
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FIGURE 1. A sketch of the six boxes of the toy experiment. The index refers to the number of white balls.

WHICH BOX? WHICH BALL?

The ‘game’ begins by showing six boxes (Fig. 1), each containing five balls.1 One box has only black balls, another
four Black and one White, and so on. One box, hereafter ‘B?’, is taken at random out of the six and we start the
game. At each stage, we have to guess which box has been chosenand what color ball will be selected in a random
extraction. We then extract a ball, observe its color and replace it into the box [1].

From the point of view of measurements, the uncertain numberof white balls plays the role of the value of a
physical quantity; the two colors the possible empirical observations. The fact that we deal with a discrete and small
set of possibilities, both for the ‘measurand’ and the empirical ‘data’, only helps in clarifying the reasoning. Moreover,
one of the rules of the game is that we are forbidden to look inside the box, in the same way that we cannot open an
electron and read its mass and charge in a hypothetical labelinside it.

Initial situation

At the first stage the answers to the questions are prompt and unanimous: we consider all boxes equally likely, thus
assigning 1/6 probability to each of them; we consider Black and White equally likely too, with probabilities 1/2.
Not satisfied with these answers, I also encourage ‘players’to express their confidence on the hypotheses of interest
by means of a virtual lottery at zero entry cost.2 Specifically, I ask, if you are promised a large prize for making the
correct prediction, which box or ball color would you choose? More precisely, is there any reason to prefer a particular
color or a particular composition? Also, in this case there is a general consensus on the fact that any choice is equally
good, in the sense that there is no reason to be blamed if we finally miss the prize.

An intriguing dilemma: B ? Vs BE

At this point a new boxBE with equal number of black and white balls is shown to the audience. In contrast with B?,
everyone can now check its content (the box I actually use contains 5 White and 5 Black). In this case we are only
uncertain about the result of picking a ball, and, again, everyone considers Black and White equally probable.

Then a new virtual lottery is proposed, with a prize associated to the extraction ofWhitefrom either box. Is it
preferable to choose B? or BE? That is, is there any special reason to opt for either box? This time the answer is not
always unanimous and depends on the audience. Scientists, including PhD students,tend toconsider – but there are
practically always exceptions! – the outcomes equally probable and therefore they say there is no rational reason to
prefer either box. But in other contexts, including seminars to people who have jobs of high responsibility, there is a
sizable proportion, often the majority, of those who definitely prefer BE (and, by the way, they had already stated, or
accepted without objections, that Black and White were equally likely also from this box!)

The fun starts in case (practically always) when there are people in the audience having shown a strong preference
in favor of BE, and later I change the winning color. For example, I say, just for the sake of entertainment, that the prize
in case of White was supposed to be offered by the host of the seminar. But since I prefer black, as I am usually dressed
that way, Iwill pay for the prize, but attaching it toBlack. As you can guess, those who showed indifference between
B? and BE keep their opinion (and stare at me in a puzzled way). But, curiously, also those who had previously chosen
with full conviction BE stick to it. The behavior of the latter is quite irrational (Ican understand one can have strange
reasons to consider White more likely fromBE, but for the same reason he/she should consider Black more likely
from B?) but so common that it even has a name, theEllsberg paradox. (Fortunately the kind of people attending my

1Those who understand Italian might form an idea of a real session watching a video of a conference for the general public organized by the
University of Roma 3 in June 2016 (http://orientamento.matfis.uniroma3.it/fisincittastorico.php#dagostini) and available on
YouTube (https://www.youtube.com/watch?v=YrsP-h2uVU4).

2For this purpose this kind of lotteries are preferable to normal bets, although hypothetical and even those with small amount of money (value
and amount of money are well known for not being proportional),in order to allow people to freely choose what they consider more credible,
without incurring the so calledloss aversion bias.



seminars repent quite soon, because they are easily convinced – this is the simplest explanation – that, after all, the
initial situation withB? is absolutely equivalent to an extraction at random out of 15Black and 15 White, the fact that
the 30 balls are clustered in boxes being irrelevant.)

Changing our mind in the light of the observations

Putting aside box BE, from which there is little to learn for the moment, we proceed with our ‘measurements’ on
box B?. Imagine now that the first extraction givesWhite. There is little doubt that the observationhas to3 change
somehow our confidence on the box composition and on the colorthat will result from the next extraction.

As far as the box composition is concerned,B0 is ruled out, since “this box cannot give white balls,” or, asI
suggest, “this cause cannot produce the observed effect.” In other words, hypothesisB0 is ‘falsified,’ i.e. the probability
we assign to itdrops instantly to zero. But what happens to the others? The answer of the large majority of people,
with remarkable exceptions (typically senior scientists), is that the other compositions remain equally likely, with
probability values then rising from 1/6 to 1/5.

The qualitative answer to the second question is basically correct, in the sense that it goes into the right direction:
the extraction of Whitebecomesmore probable,4 “becauseB0 has been ruled out.” But, unfortunately, the quantitative
answer never comes out right, at least initially. In fact, atmost, people say that the probability of White rises to 15/25,
that is 3/5, or 60%, just from the arithmetic of the remaining balls after B0 has been removed from the space of
possibilities.

The answers “remaining compositions equally likely” and “3/5 probability of White” are bothwrong, but they
are at least consistent, the second being a logical consequence of the first, as can easily be shown. Therefore, we only
need to understand what is wrong with the first answer, and this can be done at a qualitative level, just with a bit of
hand waving.5 Imagine the hypothetical case of a long sequence of White, forexample 20, 50 or even 100 times (I
remind that extractions are followed by re-introduction).After many observations we start to be highly confident that
we are dealing with boxB5, and therefore the probability of White in a subsequent extraction approaches unity. In
other words, we would behighly surprisedto extract a black ball, already after 20 White in a row, not to speak after
50 or 100, although we do not consider such an event absolutely impossible. It is simply highly improbable.

It is self-evident that, if after many observations we reachsuch a situation ofpractical certainty, then every
extraction has to contribute a little bit. Or, differently stated, each observation has to provide a bit of evidence in favor
of the compositions with larger proportions of white balls.And, therefore, even the very first observation has to break
our symmetric state of uncertainty over the possible compositions. How? At this point of the discussion there is a kind
of general enlightenment in the audience: the probability has to be proportional to the number of white balls of each
hypothetical composition, because “boxes with a larger proportion of white balls tend to producemore easily White,”
and therefore “White comes easier from B5 than B4, and so on.”

UPDATING RULES

Updating rule for the “probabilities of the causes”

The heuristic rule resulting from the discussion is

P(B? = Bi |W, I ) ∝ πi , (1)

whereπi = i/N, with N the total number of balls in boxi, is the white ball proportion andI stands for all other
available information regarding the experiment. [In the sequel we shall use the shorter notationP(Bi |W, I ) in place of
P(B? = Bi |W, I ), keeping instead always explicit the ‘background’ condition I .] But, since the probabilityP(W | Bi , I )
of getting White from boxBi is trivially πi (we shall come back to the reason) we get

P(Bi |W, I ) ∝ P(W | Bi , I ) . (2)

3In this particular case it is clear that ‘it has to’, but in general ‘it might’. See for example footnote 9 and pay attention that conditional
probabilities might be not intuitive and a formal guidance is advised.

4Please compare this expression, “the extraction of Whitebecomesmore probable”, with “the probabilitywe assign to it”, used above. The
former should be, more correctly, “we assign higher probability to the extraction of White”, as it will be clear later. For sake of conciseness and
avoiding pedantry, in this paper I will often use imprecise expressions of this kind, as used in every day language.

5See e.g.https://www.youtube.com/watch?v=YrsP-h2uVU4 from 48:00 (in Italian).



This rule is obviously not general, but depends on the fact that we initially considered all boxes equally likely, or
P(Bi | I ) ∝ 1, a convenient notation in place of the customaryP(Bi | I ) = k, since common factors are irrelevant. So a
reasonableansatzfor the updating rule, consistent with the result of the discussion, is

P(Bi |W, I ) ∝ P(W | Bi , I ) · P(Bi | I ) . (3)

But if this is the proper updating rule, it has to hold after the second extraction too, i.e. whenP(Bi | I ) is replaced by
P(Bi |W, I ), which we rewrite asP(Bi |W(1), I ) to make it clear that such a probability dependsalsoon the observation
of White in the first extraction. We have then

P(Bi |W(1),W(2), I ) ∝ P(W(2) | Bi) · P(Bi |W(1), I ) , (4)

and so on. By symmetry, the updating rule in case Black (‘B’) were observed is

P(Bi |B, I ) ∝ P(B | Bi) · P(Bi | I ) , (5)

with P(B | Bi) = 1−πi . After a sequence ofn White we get thereforeP(Bi | ‘nW’ , I ) ∝ πi
n. For example after 20 White

we are – we must be! – 98.9% confident to have chosenB5 and 1.1%B4, with the remaining possibilities ‘practically’
ruled out.6

If we observe, continuing the extractions, a sequence ofx White and (n− x) Black we get7

P(Bi |n, x, I ) ∝ πx
i (1− πi)

n−x . (6)

But, since there is a one-to-one relation betweenBi andπi , we can write

P(πi |n, x, I ) ∝ πx
i (1− πi)

n−x , (7)

an apparently ‘innocent’ expression on which we shall comment later.

Laplace’s ‘Bayes rule’
As a matter of fact, the above updating rule can be shown to result from probability theory, and I find it magnificently
described in simple words by Laplace in what he calls “the fundamental principle of that branch of the analysis of
chance that consists of reasoninga posteriorifrom events to causes” [2]: 8

“The greater the probability of an observed event given any one of a number of causes to which that event may be
attributed, the greater the likelihood of that cause{given that event}. The probability of the existence of any one of
these causes{given the event} is thus a fraction whose numerator is the probability of the event given the cause, and
whose denominator is the sum of similar probabilities, summed over all causes. If the various causes are not equally
probablea priori, it is necessary, instead of the probability of the event given each cause, to use the product of this
probability and the possibility of the cause itself.” [2]

Thus, indicating byE the effect and byCi the i-th cause, and neglecting normalization, Laplace’sfundamental princi-
ple is as simple as

P(Ci |E, I ) ∝ P(E |Ci , I ) · P(Ci | I ) , (8)

from which we learn a simple rule that teaches us how to updatethe ratio of probabilities we assign to two generic
causesCi andC j (not necessarily mutually exclusive):

P(Ci |E, I )
P(C j |E, I )

=
P(E |Ci , I )
P(E |C j , I )

· P(Ci | I )
P(C j | I )

. (9)

6Here is the result with a single line of R code:
> N=5; n=20; i=0:N; pii=i/N; pii^n/sum(pii^n)

[1] 0.000000e+00 1.036587e-14 1.086940e-08 3.614356e-05 1.139740e-02 9.885665e-01

(And, by the way, this is a good example of the importance of a formal guidance in assessing probabilities: according to my experience, after a
sequence of 5-6 White, people are misguided by intuition and tend to believe boxB5 much more than they rationally should.)

7Here is the R code for the example of 20 extractions resulting in 5 White:
> N=5; n=20; i=0:N; pii=i/N; x=5; pii^x * (1-pii)^(n-x) / sum( pii^x * (1-pii)^(n-x) )

[1] 0.000000e+00 6.968411e-01 2.979907e-01 5.167614e-03 6.645594e-07 0.000000e+00

(Note how using this code we can focus on the essence of what itis going on, instead of being ‘distracted’ by the math of the normalization.)
8In the light of Brecht’s quote by Galileo you might be surprised to find quite some quotes in this paper. But there are books andbooks.



Equation (8) is a convenient way to express the so-calledBayes rule(or ‘theorem’), while the last one shows explicitly
how the ratio of the probabilities of two causes is updated bythe piece of evidenceE via the so calledBayes factor(or
Bayes-Turing factor[3]). Note the important implication of Equation (8): we cannot update the probability of a cause,
unless it becomesstrictly falsified, if we not consider at least another fully specifiedcause [4, 5].

Updating the probability of the next observation

Coming to the probability of White in the second extraction, it is now clear why 15/25 = 3/5 = 60% is wrong: it
assumed the remaining five boxes equally likely,9 while they are not. Also in this case maieutics helps: it becomes
suddenly clear that we have to assign a higher ‘weight’ to thecompositions we consider more likely. That is, in general
and remembering that the weightsP(Bi | I ) sum up to unity,

P(W | I ) =
∑

i

P(W | Bi , I ) · P(Bi | I ) . (10)

After the observation of White in the first extraction we then get10

P(W(2) |W(1), I ) =
∑

i

P(W(2) | Bi ,W
(1), I ) · P(Bi |W(1), I )

=
∑

i

P(W | Bi , I ) · P(Bi |W(1), I ) , (11)

whereP(W(2) | Bi ,W(1), I ) has been rewritten asP(W | Bi , I ) since, assuming a particular composition, the probability
of White is the same in every extraction. Moreover, sinceπi = P(W | Bi), we can rewrite Equation (11), in analogy
with Equation (7), i.e. replacingBi by πi , as

P(W(2) |W(1), I ) =
∑

i

πi · P(πi |W(1), I ) , (12)

which will deserve comments later.

WHERE IS PROBABILITY?

The most important outcome of the discussion related to the toy experiment is in my opinion that, although people do
not immediately get the correct numbers, they find it quite natural that relevant changes of the available information
have to modify somehow the probability of the box composition and of the color resulting in a future extraction,
althoughthe box remains the same, i.e. nothing changes inside it.11 Therefore the crucial, rhetorical question follows:
Where is the probability?Certainly not in the box!

At this point, as a corollary, it follows that, if someone just enters the room and does not know the result of the
extraction, he/she will reply to our initial questions exactly as we initially did. In other words, there is no doubt that
the probability has to depend on thesubjectwho evaluates it, or

“Since the knowledge may be different with different persons or with the same person at different times, they may
anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to
the same event.” [6]

If follows that probability is always conditional probability, in the sense that

9 This would have been the correct answer to a different question: probability of White from a box taken at random among boxesB1−5, that is
B(1−5)

? . Ruling outB0 by hand at the very beginning is quite different from ruling it out as a consequence of the described experiment. The status of
information is different in the two cases and also the resulting probabilities will usually be different! [Please note that a different state of information
mightchange probability, but not necessarily it does. For exampleP(W(1) | I ) = P(W(11) | 5B,5W, I ) just by symmetry. Conditioning is subtle!]

10 Here is the numerical result obtained with R:
> N=5; i=0:N; pii=i/N; ( PBi = pii/sum(pii) ); sum( pii * PBi )

[1] 0.00000000 0.06666667 0.13333333 0.20000000 0.26666667 0.33333333

[1] 0.7333333
11Curiously, for strict frequentists the probability thatB? containsi white balls makes no sense because, they say, either it does orit doesn’t.



“Thus whenever we speak loosely of ‘the probability of an event,’ it is always to be understood: probability with
regard to a certain given state of knowledge.” [6]

So, more precisely,p = P(E) should always be understood asp = P(E | IS(t)), whereIS(t) stands for the information
available to the subjectS who evaluatespat timet.12 It is disappointing that many confuse ‘subjective’ with ‘arbitrary’,
and they are usually the same who make use of arbitrary formulae not based on probability theory, that is thelogic of
uncertainty, but because they are supported by the Authority Principle,pretending they are ‘objective’.13

WHAT IS PROBABILITY?

A third quote by Schr̈odinger summarizes the first two and clarifies what we are talking about:

“Given the state of our knowledge about everything that could possibly have any bearing on the coming true. . . the
numerical probabilityp of this event is to be a real number by the indication of which we try in some cases to setup a
quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event
comes true [6]

Probabilityis notjust “a number between 0 and 1 that satisfies some basic rules”(‘the axioms’), as we sometimes hear
and read, because such a ‘definition’ says nothing about whatwe are talking about. If we can understand probability
statements it is because we are able, so to say, to map them in some ‘categories’ of our mind, as we do with space and
time (although for values far from those we can feel directlywith our senses we need some means of comparison, as
when we say “30 times the mass of the sun”, and rely on numbers).

Think for example of two generic eventsE1 andE2 such thatp1 = P(E1 | I ) andp2 = P(E2 | I ). Imagine also that
we have our reasons – either we have evaluated the numbers, orwe trust somebody’s else evaluations – to believe that
p1 is muchlarger thatp2,14 where ‘much’ is added in order to make ourfeelingstronger. It is then a matter of fact
that: “the strength of our conjecture” strongly favorsE1; we expect (“anticipate”)E1 much more thanE2; we will be
highly surprised ifE2 occurs, instead ofE1.15 Or, in simpler words,we believe E1 to occur much more than E2.

Ideas, beliefs and probability

In other terms, finally calling things with their name, we aretalking aboutdegree of belief, and references to the deep
and thorough analysis of David Hume are deserved. The reasonwe can communicate with each other our degrees of
belief (“I believe this more than that”) is that our mind understands what we are talking about, although16

“This operation of the mind, which forms the belief of any matter of fact, seems hitherto to have been one of the
greatest mysteries of philosophy
. . .
When I would explain{it}, I scarce find any word that fully answers the case, but am obliged to have recourse to
every one’s feeling, in order to give him a perfect notion of this operation of the mind.” [8].

In fact, since“nothing is more free than the imagination of man”[9], we can conceive all sorts of ideas, just combining
others. But we do not consider them all believable, or equally believable:“An idea assented tofeelsdifferent from
a fictitious idea, that the fancy alone presents to us: And this different feeling I endeavour to explain by calling it a
superiorforce, or vivacity, or solidity, or firmness, or steadiness.”[8] (italics original.)

An easy evaluation is when we have a set ofequiprobablecases, a proportion of which leads to the event of
interest (neglect for a moment the first sentence of the quote):

12 The notation used above is consistent with this statement, inthe sense that the conditions appearing inP(Bi | I ), P(Bi |W(1), I ) and
P(Bi |W(1),W(2), I ) can be seen seen asIS(t) evolving with time.

13It is curious to remark that there are, or at least there were, also Bayesians ‘afraid’ of subjective probability [7].
14 Note also this very last statement, to which we shall return atthe end of the paper.
15 As a real example, in my talk at MaxEnt 2016 I analyzed the football match France-Portugal, played right on the first day of the workshop,

so that everybody (interested in football) had fresh in their minds the reaction of fans of the two teams, as shown on TV, and also that of people in
pubs in Ghent (slides are available athttp://www.roma1.infn.it/~dagos/prob+stat.html#MaxEnt16_2).

16What Hume says about probability reminds me of the famous reflection by Augustine of Hippo about time:“Quid est ergo tempus? Si nemo
ex me quaerat, scio; si quaerenti explicare velim, nescio.“ – “What then is time? If no one asks me, I know what it is. If I wish to explain it to him
who asks, I do not know.”(https://en.wikiquote.org/wiki/Augustine_of_Hippo.) Indeed, as a creature living in a hypothetical Flatland
has no intuition of how a 3D world would be, so a hypothetical intelligent humanoid ‘determinoid,’ living in a (very boring)world in which all
phenomena happen with extreme regularity, would have not developed the concept of probability.



[“Though there be no such thing asChancein the world; our ignorance of the real cause of any event has the same
influence on the understanding, and begets a like species of belief or opinion.”]
“There is certainly a probability, which arises from a superiority of chances on any side; and according as this
superiority encreases, and surpasses the opposite chances, the probability receives a proportionable encrease, and
begets still a higher degree of belief or assent to that side, in which we discover the superiority. If a dye were marked
with one figure or number of spots on four sides, and with another figureor number of spots on the two remaining
sides, it would be more probable, that the former would turn up than the latter.” [9] .

This is the reasoning we use to assert that the probability ofWhite from boxBi is proportional toi, viz. P(W | Bi , I ) =
πi . Instead, the precise reasoning which allows us to evaluatethe probability of White fromB? in the light of the
previous extraction was not discussed by Hume (for that we have to wait until Bayes [10], and Laplace for a thorough
analysis [11]), but the concept of probability still holds.For example, after four consecutive white balls the probability
of White in a fifth extraction becomes about 90%. That is, assuming the calculation has been done correctly, we are
essentially so confident to extract White fromB? as we would from a box containing 9 white balls and 1 black.17

PHYSICAL PROBABILITY?

Going back to the previous quote by Hume, an interesting, long debated issue is whether there is“such a thing
as Chance in the world”, or if, instead, probability arisesonly because of“our ignorance of the real cause of any
event.”18 This is a great question which I like to tackle in a very pragmatic way, re-wording the first sentence of the
quote: whatever your opinion might be,“the influence on the understanding”is the same. If you assign 64% probability
to eventE1 and 21% probability toE2 (and 15% that something else will occur) you simply believe (and hence your
mind “anticipates”)E1 much more thatE2, no matter whatE1 and ofE2 refer to, provided you areconfident on the
probability values(please take note of this last expression).

For example, the events could be White and Black from a box containing 100 balls, 64 of which White, 21 Black,
and the remaining of other colors. ButE1 could as well be the decay of the ‘sub-nuclear’ particle K+ into amuonand
aneutrino, andE2 the decay of the same particle into twopions(one charged and one neutral).19 Thus, as we consider
the 64% probability of the K+ to produce a muon and a neutrino a physical property of the particle, similarly it can
be convenientto consider the 64% probability of the box to produce white balls a physical property of that box, in
addition to its mass and dimensions. (It is interesting to pay attention to the long chain of somebody else’s beliefs,
implicit when e.g. a physicist uses a published branching ratio to form his/her own belief on the decay of a particle.20

And something similar occurs for other quantities and in other domains of science and in any other human activity.)

17 The exact number ofP(W(5) | 4W, I ) is 90.4%, as it can be easily checked with R:
> N=5; n=4; i=0:N; pii=i/N; ( PBi=pii^n/sum(pii^n) ); sum(pii * PBi)

[1] 0.00000000 0.00102145 0.01634321 0.08273749 0.26149132 0.63840654

[1] 0.9039837
18The second position, popularized by Einstein’s “God does not play dice”, is related to the so-called Laplace Demon, “An intellect which at a

certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and
those of the tiniest atom; for such an intellect nothing wouldbe uncertain and the future just like the past would be present before its eyes.” [2]

19Thebranching ratiosof K+ into the two ‘channels’ are BR(K+ → µ+νµ) = (63.56± 0.11)% and BR(K+ → π+π0) = (20.67± 0.08)% [12].
By the way, I do not think that Quantum Mechanics needs special rules of probability. There the mysteries are related to theweird properties
of the wave functionψ(x, t). Once you apply the rules – “shut up and calculate!” has beenfor long time the pragmatic imperative – and get
‘probabilities’ (in this case ‘propensities’, as we shall see) all the rest is the same as when you calculate ‘physical probabilities’ in other systems.
Take for example the brain-teasing single photon double slitexperiment (see e.g.https://www.youtube.com/watch?v=GzbKb59my3U). From
a purely probabilistic point of view the situation is quite simple. Applying the rules of Quantum Mechanics, if we open only slit A we get the pdf
fA(x |A, I ); if we open onlyB we get fB(x | B, I ); if we open both slits we getfA& B(x |A& B, I ). Why shouldfA& B(x |A& B, I ) be just a superposition
of fA(x |A, I ) and fB(x | B, I )? In fact within probability theory there is no rule which relates them. We need a model to evaluate each of them and the
best we have are the rules of Quantum Mechanics. Once we have got the above pdf’s all the rest follows as with other common pdf’s. In particular,
if we get e.g. thatfA(x1 |A, I ) >> fA& B(x1 |A& B, I ) we believe that a photon will be detected ‘around’x1, if we open only slitA, much more than if
we open both slits. And, similarly, if we plan to repeat the experiment a large number of times, we expect to detect ‘many more’ photons ‘around’
x1 if only slit A is open than if both are. That’s all. A different story is to get an intuition of the rules of Quantum Mechanics.

20I like, as historian Peter Galison puts it:“Experiments begin and end in a matrix of beliefs. . . . Beliefs in instrument type, in programs of
experiment enquiry, in the trained, individual judgments about every local behavior of pieces of apparatus.”[13] Then beliefs are propagated within
the scientific community and then outside. But, as recognized,methods from ‘standard statistics’ (first at all the infamous p-values) tend to confuse
even experts and spread unfounded beliefs through the scientific community as well as among the general public [4, 5], that inthe meanwhile is
developing ‘antibodies’ and is beginning to mistrust striking scientific results and, I am afraid, sooner or later also scientists and Science in general.



Propensity vs probability

Back to our toy experiment, I then see no problem saying that box Bi hasprobabilityπi to produce white balls, meaning
that such a ‘probability’ is a physical property of the box, something that measures itspropensity(or bent, tendency,
preference)21 to produce white balls.

It is a matter of fact that, if we have full confidence that aphysical22 system has propensityπ to produce eventE,
then we shall useπ to form the“strength of our conjecture or anticipation”of its occurrence, that isP(E | π, I ) = π.23

But it is often the case in real life that, even if we hypothesize that such a propensity does exist, we are not certain
about its value, as it happens with boxB?. In this case we have to take into account all possible valuesof propensity.
This is the meaning of Equation (12), which we can rewrite in more general terms as

P(E | I ) =
∑

i

πi · P(πi | I ) . (13)

We can extend the reasoning to a continuous set ofπ, indicated byp for its clear meaning of the parameter of a
Bernoulli process, to which we associate then a probabilitydensity function (pdf), indicated byf (p | I ):24

P(E | I ) =

∫ 1

0
p f(p | I ) dp (14)

The special case in which ourprobability, meant asdegree of belief, coincides with a particular value ofpropensity,
is whenP(πi | I ) is 1 for a particulari, or f (p | I ) is a Dirac delta-function. This is the difference between boxesB?

andBE. In BE our degree of belief of 1/2 on White or Black is directly related to its assumed propensity to give balls
of either colors. InB? a numerically identical degree of belief arises from averaging all possible propensity values
(initially equally likely). And therefore the“strength of our conjecture or anticipation”[6] is the same in the two
cases. Instead, if we had at the very beginning only the boxeswith at least one white ball, the probability of White
from B(1−5)

? becomes, applying the above formula,
∑5

i=1(i/5)× (1/5) = 3/5.
We are clearly talking aboutprobabilities of propensities, as when we are interested in detectorefficiencies, or in

branching ratiosof unstable particles (or in the proportion of the population in a country that shares a given character
or opinion, or the many other cases in which we use a binomial distribution, whose parameterp has, or might be
given, the meaning of propensity). But there are other casesin which probability has no propensity interpretation, as
in the case of the probability of a box composition, or, more generally, when we makeinferenceon theparameter of
a model. This occurs for instance in our toy experiment when we were talking aboutP(Bi | I ), a concept to which no
serious scientist objects, as well as he/she has nothing against talking e.g. of 90% probability thatthe mass of a black
hole lies within a given interval of values (with the exception of a minority of highly ideologized guys).

Probability, propensity and (relative) frequency

A curious myth is that physical probability, or propensity,has “only a frequentist interpretation” (and therefore “physi-
cists must be frequentist”, as ingenuously stated by the Roman PhD student quoted on the first page). But it seems to

21I have no strong preference on the name, and my propensity in favor of ‘propensity’ is because it is less used in ordinary language (and despite
the fact that this noun is usually associated to Karl Popper,an author I consider quite over-evaluated).

22Note the extended meaning of ‘physical’, not strictly related to Physics, but to ‘matters of fact’ of all kinds, including for example biological,
sociological or economic systemsbelievedto have propensities to behave in different ways.

23I had heard that this apparent obvious statement goes under the name of Lewis’Principal Principle (see e.g.http://plato.stanford.
edu/entries/probability-interpret/). Only at the late stage of writing this paper I bothered to investigate a little more about that ‘curious
principle’ and found out Lewis’Subjectivist’s Guide to Objective Chance[14], in which his very basic concepts, outlined in a couple of dozen of
lines at the beginning of the article, are amazingly in tune with several of the positions I maintain here.

24It becomes now clear the meaning of Equation (7), which we can rewrite as

f (p | n, x, I ) ∝ px (1− p)n−x ,

having assumed a continuity of propensity values, and havingstarted our inference from a uniformprior, that is f (p | I ) = 1.
The normalized version of the above equation is

f (p | n, x, I ) =
(n+ 1)!

x! (n− x)!
px (1− p)n−x .



me to be more a question of education, based on the dominant school of statistics in the past century (and presently),25

rather than a real logical necessity.
It is a matter of fact that (relative) frequency and probability are somehow connected within probability theory,

without the need for identifying the two concepts.

• A future frequency fn in n independent‘situations’ (not necessarily ‘trials’),26 to each of which we assign
probability p, has expected valuep and ‘standard uncertainty’ decreasing with increasingn as 1/

√
n, though

all values 0, 1/n, 2/n, . . . , 1 arepossible(!). This a simple result of probability theory, directly related to the
binomial distribution, that goes under the name of Bernoulli’s theorem, often misunderstood with a ‘limit’, in
the calculus’s sense. Indeedfn does not“tend to” p, but it is simplyhighly improbableto observefn far from p,
for large values ofn.27 In particular, under the assumption that a system has a constant propensityp in a large
number of trials, we shall consider very “unlikely to observe fn far from p.”28 Reversing the reasoning, if we
observe a givenfn in a large number of trials, common sense suggests that the ‘true p’ should lie not too far
from it, and therefore our degree of belief in the occurrenceof a future event of that kind should be aboutfn.

• More precisely, the probability of a future event can be mathematically related, under suitable assumptions, to
the frequency ofanalogous29 eventsE(i) that occurred in the past.30 For example, assuming that a system has
propensityp, afterx occurrences (‘successes’) inn trials we assign different beliefs to the different values ofp
according to a probability density functionf (p |x,n, I ), whose expression has been reported in Footnote 24. In
order to take into account all possible values ofp we have to use Equation (14), in whose r.h.s. we recognize

25Here is, for example, what David Lewis (see Footnote 23) writes in Ref. [14] (italics original):“Carnap did well to distinguish two concepts
of probability, insisting that both were legitimate and useful and that neither was at fault because it was not the other. Ido not think Carnap chose
quite the right two concepts, however. In place of his ‘degree of confirmation’, I would putcredenceor degree of belief; in place of his ‘relative
frequency in the long run’, I would putchanceor propension, understood as making sense in the single case.”More or less what I concluded when
I tried to read Carnap about twenty years ago: his first choicemeans nothing (or at least it has little to do with probability); the second does not
hold, as I am arguing here.

26To make it clear, what is important to is thatp is (about) the same, and that our assessments are independent. It does not matter if, instead, the
events have a different meaning, like e.g. tails tossing a coin, odd number rolling a die, and so on. The emphasized ‘about’ is becausep itself could
be uncertain, as we shall see later. In this case we need to evaluate the expectation offn taking into account the uncertainty aboutp.

27Related to this there is the usual confusion between a probability distribution and a distribution of frequencies. Takefor example a quantity that
can come in many possibilities, like in a binomial distributionwith n = 10 andp = 1/2. We can think of repeating the trials a large number of times
and then, applying Bernoulli’s theorem to each of the elevenpossibilities, we consider it very unlikely to observe values of relative frequencies in
each ‘bin’ different from the probabilities evaluated from the binomial distribution. This is why we highly expect – and we shall be highly surprised
at the contrary! – a frequency distribution (‘histograms’) very similar in shape to the probability distribution, as you can easily ‘check’ playing with
n=10000; x=rbinom(n, 10, 0.5); barplot(table(x)/n, col=’cyan’)

barplot(dbinom(0:10,10,0.5), col=rgb(1,0,0,alpha=0.3), add=TRUE)

That’s all! Nothing to do with the “frequency interpretation of probability”, or with the “empirical law of Chance” (see Footnote 28).
28Obviously, if you make an experiment of this kind, tossing regular coins or dice a large number of times, you will easily find relative frequencies

of a given face around 1/2 or 1/6, respectively as simulated with this line of R:
p=1/2; n=10^5; sum( rbinom(n, 1, p) ) / n

But it is just because, in the Gaussian large number approximation, P(| fn − 1/2| > 1/
√

n) = 4.6%, and thereforefn will usuallyoccur around
1/2 [although all (n+ 1) values between 0 and 1 are possible, with probabilitiesP( fn = x/n) = 2−nn! (x!(n− x)!)−1]. Not because there is a kind
of ‘law of nature’ – “legge empirica del caso”, in Italian books, i.e. “empirical law of Chance” – ‘commanding’ thatfrequency has to tend to
probability, thus supporting the popular lore of late numbers at lotto hurrying up in order to obey it. In the scientific literature and in text books,
not to speak about popularization books and article, it should be strictly forbidden to call ‘laws’ the results of asymptotic theorems, because they
can be easily misunderstood. [For example we read (visited 11/11/2016) inhttps://it.wikipedia.org/wiki/Legge_dei_grandi_numeri
that “the law of large numbers, also called empirical law of chance or Bernoulli’s theorem [. . . ] describes . . . ” (total confusion! – see alsohttps:
//en.wikipedia.org/wiki/Law_of_large_numbers andhttps://en.wikipedia.org/wiki/Empirical_statistical_laws).]

Moreover, it should be avoided to teach that e.g. probability 1/3 means that something will occur to 1/3 of the elements of a ‘reference class’,i)
first because a false sense of regularity can be easily induced in simple minds, which will then complain that the “the probabilities were wrong” if
no event of that kind occurred in 9 times;ii ) second because such ‘reference classes’ might not exist, and people should be trained in understanding
degrees of belief referred to individual events.

29E(1) is the success in the first trial,E(2) the success in the second trial, and so on. Speaking about “the realization of the same event” is quite
incorrect, because eventsE(i) are different. They can be at most analogous. We indicate here, instead, by E the generic future event of the kind of
E(1)-E(n), i.e. for exampleE = E(n+1).

30 It is a matter of fact that, because of evolution or whatever mechanism you might think about, the human mind always looks for regularities.
This is how Hume puts it (italics original):“Where different effects have been found to follow from causes, which are toappearanceexactly
similar, all these various effects must occur to the mind in transferring the past to the future, and enter into our consideration, when we determine
the probability of the event. Though we give the preference to that which has been found most usual, and believe that this effect will exist, we must
not overlook the other effects, but must assign to each of them a particular weight and authority, in proportion as we have found it to be more or
less frequent.”[9]



theexpected valueof p. We get then the famous Laplacerule of succession(and its limit for largen andx),

P(E | x,n, I ) = E[p | x,n, I ] =
∫ 1

0
p

(n+ 1)!
x! (n− x)!

px (1− p)n−x dp =
x+ 1
n+ 2

−→ x
n
= fn , (15)

which can be interpreted as follows. If wei) consider the propensity of the system constant;ii ) consider all
values ofp a priori equally likely (or the weaker condition of all values between 0 and 1 possible, ifn is
‘extraordinary large’);iii ) perform a ‘large’ number of independent trials, then the degree of belief we should
assign to a future event is basically the observed past frequency. Equation (15) can then be seen as a mathe-
matical proof that what the human mind does by intuition and “custom” (in Hume’s sense) is quite reasonable.
But the formal guidance of probability theory makes clear the assumptions, as well as the limitations of the
result. For example, going back to our six box example, if after n extractions we obtainedx White, one could
be tempted to evaluate the probability of the next White from the observed frequencyfn = x/n, instead of, as
probability theory teaches, firstly evaluating the probabilities of the various compositions from Equation (6) and
then the probability of White from (10). The results will not be the same and the latter is amazingly ‘better’31[1].

There is another argument against the myth that physical probability is ‘defined’ via the long-term frequency behavior.
If propensityp can be seen as a parameter of a physical system, like a mass or the radius of the sphere associated with
the shape of an object, then, as other parameters, it might change with time too, i.e. in general we deal withp(t). It
is then self-evident that different observations will refer to propensities at different times, and there is no way to get a
long-term frequency at a given time. At most we can make sparse measurements at different times, which could still
be useful, if we have a model of how the propensity might change with time.32

ABRUPT END OF THE GAME – DO WE NEED VERIFIABILITY?

There is another interesting lesson that we can learn from our six box toy experiment.33 After some time the game
has to come to an end, and the audience expects that I finally show the composition of boxB?. Instead, I take it, put it
back together with the others and shuffle all them well. As you might imagine, the reaction to this unexpected end is
surprise and disappointment. Disappointment because it ishuman to seek the ‘truth’. Surprise because they didn’t pay
attention, or perhaps didn’t take me seriously, when I said at the very beginning that “we are forbidden to look inside
the box, as we cannot open an electron and read its mass and charge in a hypothetical label.”

The reason for this unexpected ending of the game is twofold.First, because scientists (especially students) have
to learn, or to remember, that when we make measurements we remain in most cases in a condition of uncertainty.34

And not only in physics. Think, for example, of forensics. How many times judges and jurors will finally know with
Certainty if the defendant was really guilty or innocent?35 (We know by experience that we have to distrust even
so-called confessed criminals!)

The second reason is related to the question of theverifiability of the events about which we make probabilistic
assessments. Imagine, that during our toy experiment we made 6 extractions, getting White twice, as for example in
the following simulation in R. (Note that if you run the linesof code as they are, deletingri immediately after it is

31To get an idea, repeat several times the following lines of R code which simulaten extractions with re-introduction from boxri, calculate the
number of White, infer the probability of the box compositions,and finally evaluate the probability of a next White and compareit with the relative
frequency. There is no miracle in the result, it is just thatthe probabilistic formulae are using all available information in the best possible way:
N=5; i=0:N; pii=i/N; ri=1; n=100; s=rbinom(n,1,pii[ri+1]); ( x=sum(s) )

( PBi = pii^x * (1-pii)^(n-x) / sum( pii^x * (1-pii)^(n-x) ) )

cat(sprintf("P(W|sequence) = %.10f; x/n = %.4f \n", sum( pii * PBi ), x/n))
32I would like to make a related comment on another myth concerning the scientific method, according to which “replication is the cornerstone

of Science”. This implies that, if we take this principle literally, much of what we nowadays consider Science is in realitynon-scientific (can we
repeat measurements concerning a particular supernova, or two particular black holes merging with emission of gravitational waves?). And if you
ask, they will tell you that this principle goes back to none other than Galileo, who instead wrote[15] that“The knowledge of a single effect acquired
by its causes opens our mind to understand and ensure us of other effects without the need of doing experiments”(“La cognizione d’un solo effetto
acquistata per le sue cause ci apre l’intelletto a ’ntendereed assicurarci d’altri effetti senza bisogno di ricorrere alle esperienze”). Doing Science is
not just collecting (large amounts of) data, but properly framing them in a causal model of Knowledge.

33What is nice in this practical session, instead of abstract speculations, is that the people participating in the discussion have developed their
degrees of beliefs, and therefore, when the box is taken away, they cannot say that what they were thinking (and feeling!)is not valid anymore.

34See e.g. Feynman’s quote at the end of the paper.
35If you worry about these issues, then you might be interested in the Innocence Project,http://www.innocenceproject.org/.



used in the second line, you will never know the true composition! If you want to get exactly the probability numbers
of the last two outputs shown below, without having to wait togetx equal 2, as it resulted here, then just force its
value.)

> N=5; i=0:N; pii=i/N; n=6

> ri = sample(i, 1)

> ( s=rbinom(n,1,pii[ri+1]) ); rm(ri)

[1] 0 0 1 1 0 0

> ( x=sum(s) ) # nr of White

[1] 2

( PBi = pii^x * (1-pii)^(n-x) / sum( pii^x * (1-pii)^(n-x) ) )

[1] 0.00000000 0.34594595 0.43783784 0.19459459 0.02162162 0.00000000

> sum( pii * PBi )

[1] 0.3783784

At this point we have 44% belief to have pickedB2 and only 2.2%B4; and 38% belief to get White in a further
extraction. And these degrees of belief should be maintained, even if, afterwards, we lose track of the box.36 This is
like when we say that a planewasat a given instant in a given cube of airspace with a given probability. Or, more
practically [16], imagine you are in a boat on the sea or on a lake, not too far from the shore, so that you are able,
e.g. using Whatsapp on your smartphone, to send to a friend your GPS position, including its accuracy. The location
is a point, whose accuracy is defined by a radius such that “there is a 68% probability that the true location is inside
the circle.”37 This is a statement that normal people, including experienced scientists, understand and accept without
problems and which our mind uses to form a consequent degree of belief, the same as when thinking of the probability
of a white ball being extracted blindly from a box that contains 68 white and 32 black balls. And practically nobody
has concerns about the fact thatsuch an event cannot be verified. Exceptions are, to my knowledge, strict frequentists
and strict definettians (but I strongly doubt that they do notform in their mind a similar degree of belief, although
they cannot ‘professionally’ admit it.) In fact, for different reasons, it is forbidden to scholars and practitioners of both
schools to talk about probability of hypotheses in the most general case, including probability that true values are in
a given interval. For example neither of them could talk of the probability that the mass of Saturn is within a given
interval, as instead it was done by Laplace, to whom was perfectly clear the hypothetical character of the so called
coherent bet.38 As they would not accept talking about the most probable orbit (“orbitam maxime probabilitatem”),
or the probability that a planet is at given point in the sky, as instead did Gauss when he derived his way the normal
distribution from the conditions (among others) thati) all points werea priori equally likely (“ante illas observationes
[. . . ] aeque probabilia fuisse”); ii ) the maximum of theposterior(“post illas observationes”) had to be equal to the
arithmetic average of the observations [17].

PROBABILITY OF PROBABILITIES (AND OF ODDS AND OF BAYES FACTORS)

The issue of ‘probability of probability’ has already been discussed above, but in the particular case in which the
second ‘probability’ of the expression was indeed a propensity [and I would like to insist on the fact that whoever is
interested in probability distributions of the Bernoulli parameterp, that is in something of the kindf (p | I ), is referring,
explicitly or implicitly, to probabilities of propensities]. I would like now to move to the more general case, i.e. when
we refer to uncertainty about our degree of belief. And, again, I like to approach the question in a pragmatic way,
beginning with some considerations.

The first is that we are often in situations in which we are reluctant to assign a precise value to our degree of
belief, because “we don’t know” (this expression is commonly heard). But if you ask “is it then 10%?”, the answer
can be “oh, not that low!”, or “not so high!” depending on the event of interest. In fact it rarely occurs that we know

36Note that many statements concerning scientific and historical ‘facts’ are of this kind.
37See e.g.https://developer.android.com/reference/android/location/Location.html#getAccuracy()
38Here is how Laplace reported his uncertainty on value of the mass of Saturn got by Alexis Bouvart:“His [Bouvard] calculations give him the

mass of Saturn as 3,512th part of that of the sun. Applying my probabilistic formulae to these observations, I find that the odds are 11,000 to 1 that
the error in this result is not a hundredth of its value.”[2] That isP(3477≤ MS un/MS at ≤ 3547| I (Laplace))= 99.99%. Note how the expression
“the odds are,” indicates he was talking of a fair bet, viz. a coherent bet. Moreover it is self evident that such a bet cannot be, strictly speaking,
settled, but it rather had anhypothetical, normativemeaning. (And Laplace was also well aware of the non linearitybetween quantity of money
and its ‘moral’ value, so that a bet with such high odds could never be agreed in practice and it was just a strong way to state aprobability.)



absolutely nothing about the fact,39 and in such a case we are not even interested in evaluating probabilities (why
should we assign probabilities if we don’t even know what we are talking about?).

The second is that the probability of probability, in the most general sense, is already included in the following,
very familiar formula of probability theory, valid ifHi are all the elements of a complete class of hypotheses,

P(A | I ) =
∑

i

P(A |Hi , I ) · P(Hi | I ) . (16)

We only need the courage to read it with an open mind: Equation(16) is simply an average of conditional probabilities,
with weights equal to probabilities of each contribution. But in order to read it this way at leastP(Hi | I ) must have the
meaning of degree of belief, whileP(A |Hi , I ) can represent propensities or also degrees of belief.

Probability of probabilities could refer to evaluations ofsomebody’s else probabilities,40 as e.g. in game theory,
but they are also important in all those important cases of real life in which direct assessments are done by experts or
whensensitivity analysisleads to a spectrum of possibilities. For example, one mightevaluate his/her degree of belief
around 80%, but it could be as well, perhaps with some reluctance, 75% or 85%, or even ‘pushed’ down to 70% or
up to 90%. With suitable questions41 it is possible then to have an idea of the range of possibilities, in most cases
with the different values not equally likely (sharp edges are never reasonable). For example, in this case it could be a
triangular distribution peaked at 80%. This way of modelingthe uncertainties on degrees of belief is similar to that
recommended by the ISO’s GUM (Guide to the expression of uncertainty in measurement[19]) to model uncertainties
due to systematic effects. After we have modeled uncertain probabilities we can use the formal rules of the theory to
‘integrate over’ the possibilities, analytically or by Monte Carlo (and after some experience you might find out that, if
you have several uncertain contributions, the details of the models are not really crucial, as long as mean and variance
of the distributions are ‘reasonable’). The only importantremark is to be careful with probabilities approaching 0 or 1.
This can be done using log scale forintensities of belief, for the details of which I refer to [20] [in particular Sections
2.4, 3.1, 3.3 and 3.4 (especially Footnote 22), and AppendixE] and references therein.

Once we have broken the taboo offreelyspeaking (because in reality we already somehow do it) of probabilities
of probabilities, it is obvious that there is no problem to extend this treatment of uncertainty to related quantities,
like odds and Bayes factor,i) as a simple propagation from uncertain probabilities;ii ) in direct assessments by ex-
perts. For example, direct assessments of odds are currently performed for many real-life events. Direct (‘subjective’)
assessments of Bayes factors were indeed envisaged in Ref. [20].

CONCLUSIONS

Probability, in its etymological sense, is by nature doublysubjective. First, because its essence is rooted in a “feeling”
of the “human understanding” [8]. Second, because its valuedepends on the information available at a given moment
on a given subject. Many evaluations are based on the assumedproperties of ‘things’ to behave in some ways rather
than in others, relying on symmetry judgments or on regularities observed in the past and extended to the future (at
our own risk, hoping not to end up like theinductivist turkey). The question of whether there is “such a thing as
Chancein the world”[9] (does God play dice?) is not easily settled,but whatever the answer is, “our ignorance of the
real cause of any event has the same influence on [our] understanding.” [9] So, at least for pragmatic convenience, we
can assign to ‘things’propensities, seen as parameters of our models of reality, just like physics quantities. And they
might change with time, as other parameters do. Furthermore, it is a matter of fact that, besides text book stereotyped
cases, propensities are usually uncertain and we have to learn about them by doing experiments and framing the
observations in a (probabilistic)causal model. The key tool to perform the so-called probabilistic inversion is Bayes
rule and such models of reality go under the name ofBayesian networks, in which probabilities are attached to all
uncertain quantities (possible observations, parametersand hyper-parameters, which might have different meanings,
including that of propensity and of degree of belief, as whenwe model the degree of reliability of a witness in

39“If we were not ignorant there would be no probability, therecould only be certainty. But our ignorance cannot be absolute, for then there
would be no longer any probability at all. Thus the problems ofprobability may be classed according to the greater or less depth of our ignorance.”
[18]

40Italians might be pleased to remember Dante’s “Cred’io ch’ei credette ch’io credesse che . . . ” (Inf. XIII, 25), expressing beliefs of beliefs
of beliefs (“I believe he believed that I believed that. . . ”), roughly rendered in verses as “He, as it seem’d, believ’d, that I had thought [that]. . . ”
(https://www.gutenberg.org/files/8789/8789-h/8789-h.htm#link13).

41For example we can ask the range of virtual coherent bets one could accept in either direction, or ‘calibrate’ probabilistic judgements against
boxes with balls of different colors (or other mechanical or graphical tools).



Forensic Science applications). Predictions are then madeby averaging values of propensities with weights equal to
the probabilities we assign to each of them.

In this paper I have outlined this (in my opinion) natural wayof reasoning, which was that of the founding fathers
of probability theory, with a toy experiment. Then, once we have mustered up the courage to talk about probabilities
of probabilities, as shyly done nowadays by many, we extend them to related concepts, like odds and Bayes factors.

I would like to end reminding de Finetti’s“Probability does not exist”(in the things), adding that“propensity
might, but it is in most cases uncertain and it can change withtime.”

“To make progress in understanding,
we must remain modest and allow that we do not know.

Nothing is certain or proved beyond all doubt.
. . .

The statements of science are not of what is true and what is not true,
but statements of what is known to different degrees of certainty.”

(Richard Feynman)
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