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Abstract

We describe the generators and prove a number of relations for the construction of a pla-
nar algebra from the restricted quantum group Uqg(sl2). This is a diagrammatic description
of Endgq(S[Z)(XQM), where X := X, is a two dimensional U, (sl2) module.

1 Introduction

The restricted quantum group, U,(sly), for ¢ = e%, 2 < p €N, is a finite dimensional quotient
of U,(slz) with non-semisimple representation theory, and was conjectured in [3] to have a rep-
resentation category equivalent to the representation category of the W, logarithmic conformal
field theory. An equivalence as abelian categories was proven in [15], however [8] showed that
Uq (sl2) has modules whose tensor product does not commute, and so the category is not braided.
This example does not appear in the subcategory generated by irreducible modules, which is the

focus of our construction.

Planar algebras are a type of diagrammatic algebra first introduced as an axiomatization of
the standard invariant of subfactors, and shown to have close relations to statistical mechan-
ics and knot theory. The standard example of a planar algebra is the Temperley-Lieb algebra,
which can be constructed from Uy (slz), as a description of Endy, (s1,)(X®"), where X is a two-
dimensional irreducible module [5, 10]. We aim to generalize this construction to the restricted
quantum group.

The U,(sl2) planar algebra is a diagrammatic description of Endg, (51,)(X®"), where X is a
two dimensional U, (sl2) module. It was shown in [6] that for n < 2p—1, this is isomorphic to the
Temperley-Lieb algebra with parameter ¢ + ¢—*, and for n > 2p — 1 contains extra generators,
a; and B;, 1 < i < n—2p+ 2. We define these generators explicitly in terms of the U,(sl2)
action which allow us to prove combinatorially a number of relations on them. The main focus of
the paper is the relations in theorem 3.1 and their proofs. We also conjecture a formula for the
dimensions of the planar algebra at the end of section 2. Some of these relations were previously
proven in [6], however we include proofs here for completeness. Other relations in theorem 3.1
generalize their results for p = 2.

It was conjectured in [6] that «; and §;, along with the Temperley-Lieb algebra, generate
Endy, (s1,)(X®"). We do not claim to have a proof of this, although we note that ;a1 and
B18p+1 give maps between the highest and lowest weight copies of 79;‘ appearing in the decom-
position of X®3P~1 which is where we would expect any new generators to appear, and so lends
evidence to support the conjecture. Further, we conjecture that the relations in theorem 3.1,
along with generalizations of relations 15 and 16, fully describe Endg, (41, (X®™). The generaliza-
tions of relations 15 and 16 are sums over all diagrams containing «; and f; in Endgq(slz)(X‘X’"),
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and will be described in more detail in a future paper [11]. The reasoning for this conjecture
comes from considering diagrammatic descriptions of morphisms between modules, which can be
considered as the reasoning behind many relations. Hence knowing the diagrammatic descrip-
tions of all such morphisms suggests that the possibility of there being any unknown relations is
less likely. These diagrammatic descriptions will be detailed in [11], and are also described in [12].

The paper is outlined as follows: In section 2, we review the definition of U,(sly), along
with the modules, fusion rules, and module homomorphisms relevant to our construction, as
well as giving details on the dimensions of the planar algebra. In section 3, we introduce the
planar algebra construction, and define the generators o and 3, along with a number of relations
on them. The proofs of the U,(sl) relations are given in section 4. We record a number of
combinatorial identities used in the proofs in the appendix. For more detailed proofs, see [12].

2 Uq(ﬁ[g)

For ¢ = e'™/? p > 2. and p € N, the restricted quantum group l_]q (slo) over a field K is the Hopf
algebra generated by E, F, K subject to the relations:

K—-K1!
KEK™'=¢E KFK™'=q°F EF —FE=——+
q—q
EP =0 F? =0 K =1
and coproduct A, counit €, and antipode S:
ArEwEQK+1®E FoFol+K'oF K KoK
e:E—0 F—0 K—1
S:E~— —EK! F— —KF K—K!

The modules for Uy (sly) were given in [1, 6, 8, 16, 19], and the modules relevant to our con-
struction consist of the following: 2p — 2 simple modules, X, 1 < s < p, two simple projective
modules XZ}L and 2p — 2 non-simple indecomposable projective modules PF. For the simple
modules Xsi, 1 < s < p, they can be given in terms of a basis as {V },—0,....s—1 With the action
of U, (sls) given by:

Kl/n —_ iquliznl/n
Ev, = £[n][s — nJvp_1

Fyv, = Un+1

where v_; = v =0 and [n] = q;’:qq:ln’ =q" ' 4+¢" 3 +...+¢> "4+ ¢ . The projective modules
PE, 1 < s < p, for a given choice of p, can be given in terms of the basis {a;”, b5 }o<i<s—1 U

{z3", 97" Yo<j<p-s—1. The action of U,(sl2) is given by:

Ka; = +q° %, Kby = +¢°~ 1%,

Kaj =3¢ ¥ Ky; = F¢"° 7172y,

Ea; = +[i][s — i]ai_1 Eb; = £[i][s — i]bi—1 + ai—1 Eby = xp_s1
Exj=F[jllp — s —jloj Ey; =F[jllp — s — jlyj— BEyo = as—1
Fa; = 41 Fb; = bi+1 Fbs_1 = yo
Frj=zjn Frp 1 =ao Fyj =y

where 1 =a_1 = as = yp—s = 0, [4].
The maps between indecomposable modules can be summarized as follows:
e dim (Hom(Xsi,Xti)) =0fors#torlfors=t, forl<s,t<p.

e Hom(XF, XF)=0for 1 <s,t<p.



dim (Hom(PSi,Xti)) =0fors#torlfors=t forl<s,t<p-—1.

Hom(PE, XF)=0for1<s,t<p-—1.

dim(Hom(PSi,Pti)) =0fors#tor2fors=t1<st<p-—1.

dim (Hom(PF,Pf)) =0fors#p—tor2fors=p—t for1<st<p-1
The non-zero, and non-identity parts of these maps can be given in terms of bases by:
PE 5 XE by
XESPFwi—a
PE 5 PE b = a
PE = PF b~ f17 + foli

x; = foa;

y; — fia;

where f1, fo € K, and we denote the elements of PJ with ~.

From now on, we denote the module X" by X. The fusion rules for U,(slz) modules were
given in [8, 17]. The fusion rules relevant to our planar algebra construction are:

QX XTI @X ~ XY, i jec{+ —}
X @ Pl ~Pl® X ~PJ
X@XF XXXt oxk,, 2<t<p-1
X@Xf~XFoX ~Ph
X@PE, ~PE @ X ~Ph,d2xF
X@PEf~PioX~PE oPLf, 2<u<p-2
X@P ~Pf X =Py @2X]
From this, it follows that X' first appears in the decomposition of X®(=1) P first appears in

the decomposition of X®Cr=t=1) x>~ in X®2=1) and P, in XOCr—v=D x- 1<v<p-—1,
does not appear at all in the decomposition of X®7,

Using these fusion rules, along with the maps between modules, we can describe the dimen-
sions of End(X®"), which we denote by D,,. We denote by M, ,, the multiplicity of X" in the
decomposition of X®", 1 <4 < p. Ms,_;, denotes the multiplicity of P;r, 1<ji<p—-1, My,
the multiplicity of X", and Mj,_;, the multiplicity of P;". For a given choice of p, we then
have:

D p—1
Dy =M, +> M, +> (2My;, +2M3, i+ 2My My yjn + 4My i Mspj )
i=1 j=1

By use of the fusion rules to give module multiplicities in the decomposition of X®”, the following
was proven in section 4.5 of [6]:

Proposition 2.1. For n < 2p — 1, D,, is equal to the Catalan number, C, := ﬁ < 2;; >,
and Doy_1 = Cgp_1 + 3.

Another proof is contained in section 4.3 of [12]. In general, the dimensions D,, can be cal-
culated from the Uy,(slz) fusion rules and homomorphisms, or by use of results in section 4.9 of
[6]. Alternatively, we have the following:

) (1)-(u21 )

onee a1 W b a7



Conjecture 2.1.

ﬁ
=3

]
Dp=Cpn+ ) (n+1)(n+3)Gpp—(jt2)p, for all n.

Jj=0

It can be verified numerically for small values of n that this agrees with the formula for p = 2
given in section 2.4.3 of [6].

The module X := X5 has basis {vg,v1}, with U,(sly) action:
K(vy) = quo E(v)=0 F(v) =11
K(Vl):q_lul E(rn) =1 F(r)=0

The action of U, (sl2) on X®" is given by use of the coproduct.

We denote by pi, .. ... the element of X®% with v; at positions iy, ...,4,, and 1 elsewhere.
We also occasionally omit the ® sign, and combine indices. For example, p135 =11 ®1p Q11 ®
Vg ® Vg = V10100 The elements of X®? can be described in terms of the K-action on them. For
r € X% with K(z) = Az, A € K, we call X the weight of z. Alternatively for basis elements
we can write this as K(p;, .. i, .2) = ¢*~ 2"z, and refer to n also as the weight. X®* will then
have the set of weights {¢%,¢*~2, ...,¢> %, ¢ *}. Denoting the set of elements of X ®* with weight
z
=" by X,, ., we have X®* = | Xi.». The weight spaces Xy . X, . both have a single element,
i=0

which we denote by g . := (10)®?, . 1= (v1)®” respectively, and occasionally drop the second
index if the context is clear. We have p;, . ;. > € Xp .. We record a number of combinatorial
relations involving U, (slz) and its action on X®* in the Appendix.

3 The U,(sly) Planar Algebra

For detailed introductions to planar algebras, see [7, 14]. Our construction of the U, (sl2) planar
algebra is a diagrammatic description of End (X®”), or more generally, Hom(X®" X®™) simi-
lar to the constructions of [2, 5, 9, 13]. It was shown in [6] that for n < 2p — 1, this is isomorphic
to the Temperley-Lieb algebra on n points with parameter § = ¢ + ¢~ ', and for n > 2p — 1,
End(X®") contains extra generators, «;, 3;, 1 <i <n — 2p+ 1, which are described in section
3.1. We then prove a number of relations on these generators.

Diagrammatically, Hom(X®™, X®™) is represented by a box with n points along the top,
and m points along the bottom, where zero points represent a map to/from Xfr ~ K. Each
point on the box is connected to a string, up to isotopy, with strings not allowed to intersect.
Removing a closed loop from a diagram corresponds to multiplying by § € K. Multiplication of
maps is given by adjoining a diagram below another diagram, and smoothing strings. Tensor
products are given by by adjoining diagrams side by side. The identity element in End(X®") is
given by n vertical strings. The identity map K — K is given by an empty box. We often use a
single thick string to represent multiple parallel strings.

The Temperley-Lieb Algebra, TL,(6), is the algebra generated by {1,e1,...,e,—_1}, ¢ € K, with
relations:
e? =de;
€i€i1+1€; =€;
ee; =eje;, |i—j[>1
The Jones-Wenzl Projections, [18], in the Temperley-Lieb algebra are defined inductively by:

fl =1
o [n]
1 :==fn ® 1 — [+ 1] frnenfn

The following proposition comes from section 4.4 of [6]:



Proposition 3.1. Endg, (1, (X®") ~TL,(q+q"), forn <2p—1.

Proof. The generators e; correspond toamape: X ® X - K — X ® X, e € End(X®"), acting
on the ith and (i + 1)th positions in X®". Explicitly, this is given by:

e:vyg®uy+— 0

e ®u—0

ey Ru = quy QU — 1 Q1

e Uy ¢l @y — vy @1
e; ~1%0" D @ e 1¥M—imD

This correspondence with the generators e; clearly extends to all elements of T'L,,, and so gives
an injective map from End(X®") to T'L,. (To see the injectivity, consider, for example, eje;
and ege; acting on vg11). From proposition 2.1, we have dim (End(X®")) = dim (T'L,). Hence
Endg, (41, (X®") =~ TLy,(q +q7"). O

The generator e can be split into two maps; U : X ® X — Xfr and N : Xf - X®X. In
terms of v;;, they are given as:

U(rvpo) =U (111) =0
U(vor) = — qv
U(r10) =v

N(v) =¢"'vio — v

where X, has basis {v}. These extend to maps U;, N;, acting on the ith and (i + 1)th points
such that N;U; ~ e;. Note that technically we need to add the condition that moving a cup or
cap rightwards multiplies it by —1 to ensure rigidity, however this is not required for our results.
The following corollary is a well known result:

Corollary 3.1.1. The projection X®™ — X,TH — X®" s given by the Jones- Wenzl projection,

fn .

_ 102 N\ - n
(kn 3 (k*—k) (j;%a)) ([n—k]!)
([n])

Expicitly, this projection is given by p;, .. i..n = @ Fkxo,n. This

can then be shown to satisfy the Jones-Wenzl recursion relation.

We saw in proposition 2.1 that dim (End(X®?P~1)) = Cy,_1 + 3, and so End(X®*P~1)) must
contain extra generators. Our main focus now is to describe these generators and their relations.

3.1 The Generators, o and S.

We define the following maps on X®(ZP—1:

k
(k2p-1) =3 (k) =( 3 i)

a(piy,...i2p—1) == ¢ ([FHEP~ ey,

(k2p—1)- 320~ 32 )
p2

Bpir.vin,2p-1) 7= ¢ ([2p =1 = K]NF*Paq

where we take E~! =0, F~! = 0. We often use a second, simplified definition; let z € X} 2,1,
and e, f, € K, such that E¥z = e g, F?P~17Fy = fexap—1. Then we have:

ax) :eg;Ep_k_lxgp,l

ﬁ('r) :fok_p-xO



These are equivalent to the generators defined in [6], up to a constant. In terms of weight spaces,
the generators act as:

o X op—1 — Xiypop—1
B Xpop—1 — Xk—p2p-1
Then « is zero for k > p and S is zero for k < p. Hence o = 32 = 0. From their action on weight

spaces, it is clear that o, 8 & T'Lop—1. Let v := (=1)P~!([p — 1]1)%. The following properties of
a and § were given in [6]:

Proposition 3.2.

End(X®PP~Y) ~ Ty, (¢4 ¢~ 1) ® Ka ® K3 @ Kaj
af + Ba = vfp-1
afa =y«
Bapf =P

v~ Yaf and v Ba give projections onto the two copies of X, appearing in the decomposition of
X®@r=1) o and B are then maps between these two modules.

See sections 4.1, 4.2, and 4.5 for proofs.

The maps « and 8 can be given diagrammatically as boxes with 2p — 1 points along the top and
bottom (or a single thick string to represent multiple strings). They then form the generators of
the U,(sl2) planar algebra.

We denote by «;, 3; the elements 120-1 @ o @ 1®(n—2p=i+2) 18(-1) @ g @ 1®0-20-i+2) ¢
End(X®m™).

Theorem 3.1. The generators, a; and B;, satisfy the following properties:

a?=p%=0 (1)
afa =y« (2)
paf =~p 3)

v= (=1 (p - 112
a0 = a0y = B8 =68, =0, [i—jl<p (4)
QiQigp = QigpQ (5)
BiBi+p = Bi+pBi (6)
o + B = iz @

Denote by Ry, the (clockwise) (n,n)-point annular rotation tangle. We then have:

OéﬁiZUiOé:,Br\liZUi,BZO, 1§i§2p—2

(
;1M = aiNigop_2 9

)

)

Bix1Ni = BiNitop—2 (10)

Uitip1 = Ujgop—o0ay; (11)

UiBit1 = Uiyap—28i (12)

Ryp_o(a) =« (13)

Ryp—2(B) =5 (14)
ap—1

> kiRi,(a®1) =0 (15)
o

> kRL(B®1)=0 (16)
i=0



where k; = (=1)"[i — 2]ky + (=1)%[i — 1]ka, for arbitrary ky, ke € K.

Diagrammatically, these relations are:
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Figure 1: Relation 1
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Figure 2: Relation 2 and 3
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Figure 3: Relation 4
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Figure 4: Relation 4
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Figure 9: Relation 9 and 11
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Figure 10: Relation 10 and 12
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Figure 11: Relation 13 and 14
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We also have the partial traces given by:

Figure 14: The partial trace of a and .

|

Q@ 15 «
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fp—l
I

Figure 15: The partial trace of a8 and Pa.

Relations between a and 8 and the Temperley-Lieb generators e; follow immediately from rela-
tions 8-12:

e =ae,=¢€3; =p6,=0, 0<i—j<2p—3 (17)
€i0it1 = €;€41...612p 3€;12p 20 (18)
0i+1€; = Q€ 42p_2€i42p—3...€11€; (19)
€iBit1 =eie;1...€12, 3€i12p 20; (20)
Bit1€i = Bi€irop—2€it2p—3.--€i11€; (21)

Relation 17 was given in section 4.7 of [6], and relations 18-21 generalize their results in Appendix
C for p =2 to all p.

4 Proofs of Relations.

The aim for the remainder of this paper is to give proofs of the relations in theorem 3.1. Relation
1 follows immediately from the action of o and 5 on the weight spaces.

4.1 Proof that End(X®®~1) ~TLy, 1(¢+q¢ ') ® Ka ® KB & Kag.
From proposition 2.1 we have that dim (End(X®®P~V)) = dim (T Lap—1(q + ¢~ ")) +3. From the

actions of «, #, and af in terms of weight spaces, we know that they are not in the Temperley-
Lieb algebra. Hence we only need to check that o, 8 € End(X®?P~1) which is straightforward.

Note that I'm(a) and I'm(3) are both p dimensional, with weights {¢??~%, ¢*?=3,..., ¢ =%}
={—¢*" ', —¢*73,...,—¢" 7}, and so Im(a) ~ Im(B) ~ X .

10



4.2 Relations 2 and 3, afa = va, faf = v03.

Let € Xy 25,1, and e, f; € K, such that EFg = ey, F2P~17F = fz®2p—1. Using equations
A4 and A.5, it follows that:

o (o= k=1 s
Fla@) =etimip — k51~ -1
o ep—k i — U e
BB@ =Lty —m— "

We can use these to apply « and 3 repeatedly, giving:

_o, PRI _
pate) e 2t W e, 0 <h<p-1
!
a(B(x)) :fzwml]wEQP_k_lxzp17 p<k<2p-1

(12p =k —1]N)([% + pl")
(KI)(lp = £ = 1])[p]?
([3p — k= 1])([K]")
([k = pI)([2p — k= 1]1)[p]
Simplifying the coefficients in terms of our choice of p, we have:
((2p — k= 1])([% + pl")
(KD (lp = & = 1H[p?
([3p — k — 1) ([k]") o 1\P=1(l 2 _
ok -pp @ psks
Let v := (=1)?~!([p — 1]!)2, then it follows that:
a(f(a(z))) =va(z)
Bla(B(x))) =1B(x)

Given that Im(a) ~ Im(B) ~ X,", it follows that v~ 'ap and v~ Ba are the projections onto
the two copies of X, in X®@p=1),

Ep_k_l-er—lv 0 S k S p—= 1

a(B(a(z))) =ea

Bla(B(x))) =fz SFM Py, p<k<2p—1

== p—-1)* 0<k<p-—1

4.3 Relation 4, o;a; = ajo; = B8, = B =0, |i —j| <p.

This follows from considering oyaq4%, a14xQ1, f181+k, and S14x51 acting on X®2p—1-k  We
give the proof for the case ayag . The other cases follow similar arguments.

Let x € X%, 0 < j <k, with Eig = €xTok, ¥ € Xiop—1-%, 0 <y < 2p—1—F, with
EYY = €yx0o,2p—1—k, and z € Xp, 1, 0 <m < k, with E™z = e,z . Consider a(a141(2@y®z2)).
By use of equation A.6, we have:

p—l—-m—1
= Ik i i p—l—m—1—i
al—i—k(x QY® Z) = Z €y€rq /\l,l+m)\i,p—l—m—1x oy (E x2p—1—k~,2p—1—k> & (K E xk‘,k)
i=0
where Ajjym, Nip—i1—m—1 € K. To act oy on this, we need E?P~17F acting on xap_1-k2p—1-
in the middle tensor term. However, as EP = 0, this will be zero if 2p — 1 — k > p, and hence
arayy =0ifk<p-—1.

4.4 Relations 5 and 6, QiQitp = Oy pQl, Biﬁi—i—p = 61'—&-]252"

We prove the case oy, = a14pa1 which generalizes to the above relation. The proof for
BiBi+p = Bi+pB; follows similarly. Using the same notation as section 4.3, we have
a(rRy®z)=
p—j—l-1
Z Aj,j-&-lexeyqﬂ(pH))‘i,p—j—l—l(Elxp,p) ® (KZEpijilﬂilxp—l,p—l) ¥z

1=

11



Then we have EItHH+m(Kipp—i—l=i=lp , )®z)=

Nttt jritipmesq 2 @I DF A= U ([ 1]1)2g 0,y

As EP =0, we only need to consider the terms where j + 1 47+ m < p — 1, which gives
i<p—j—1l—m—1. Hence we have a14p(a1(z @y ® 2)) =
p—j—l—-m—1
Z Njjteaeyq T PTIN i N i mes @
i=0
X ([p — 1]')(Elxp,p) X (Epilijiliiiml'gpflwgp,l)

p—j—l-m—1 (pljlim

= § : E €a€yCzNj jiNip—j—I—1Aj+i4ij+I+i+m]
=0 n=0

i(p—j—l—i—=1)+i(1—p)+p(F+l+17) o

(2ip—i—j—2ij—2il—2i%+pl) «

X Anp—1—j—i—i—m([p = ) (E'wp ) @ (B Tp_1p-1) ® (K"Ep_l_j_l_i_m_%p,p))

Next we have ay4p(z @y ® z) =

p—l—m—1

Z eye: P ALt mArp—t-m—12 @ (B @y 1p-1) @ (KTEPT 7y, )
r=0

Then we have:

BTN (2 @ (B 2po1,p-1)) =eajjrp-r—16’ "~V ([p — 1)z0.2p-1
Again as EP = 0, we only need consider the terms where j+p—r—1 < p— 1, which gives r > j.
Hence we have ag(a14,(z @y ® 2)) =

p—Il—m—1
> eyedPNiimArptomo1€2 N jipr1d P ([0 — 1)) %

r=j

X (ET?jfE?p—l,?p—l) ® (KTEpilimeilxpyp)

p—l—-m—1 ,r—j
= > (Z €aeyez N itmArp—t-m—1 N tp—r—1¢" P ([p = 1]1)x

r=j s=0

X Asr—j (BTpp) @ (KsET?jisxp—l,p—l) ® (KTEplmrlxp,p)>

Let t = r — j, then this becomes:

p—l-m—j—1 t
Ip+j(p—1
Z (Zezeyez)\l,ler)\H»j,plm1>\j,ptlq pHilp )(LP - 1]')><
t=0 s=0

X Ag t(Esxp,p) ® (KSEt_sxp—l,p—l) ® (Kt+jEp_l_m_j_t_1xp7p)>

)

w U w w
Using the summation identity > > @y, = >, D Ty, this becomes:

u=0v=0 v=0u=v

p—l—-m—j—1 ,p—l—-m—j—1
( lp+j(p—1)([p_ 1] x

Z Z eweyezAl,l-‘rm>‘t+j,p—l—m—1)\j,p—t—1q

s=0 t=s

X Ast (B°Tpp) @ (KSEt_Sxpflypfl) ® (KHjEp_l_m_j_t_lxp,p))
Let n =t — s, then we have:

> Yo eyl AitmAntstip—ti-m1Ajp-n—s—107 TPV ([p — 1) x

p—l—-m—j—1 (p—l—m—j—l—s
5=0 n=0

X Asnts(E°2pp) @ (KPE"2p 15 1) ® (KnJrHjEplmjnSlwp-,p))

12



Letting s = ¢ we have:

p—l—-m—j—1 <p—l—m—j—1—i

= > Yo eyl AirmAntitip—iom-1Ajp—n—i—1([p = 1]1)x
=0 n=0

Ip—i—2i%—3j—4ij—25% —2il—2jl—2im—2jm—2jn+2j
x (P j—4ij—2j J jm—2j JP)/\im_HX

X (Eixpyp) ® (E"Tp—1,p-1) ® (KnEplmjnilxp,p))

This is now the same summation as a14p,0, hence we want to show that the coefficients are
equal for both. We then want to show:

2ip—j—2ij—2il—2i%+pl
g2 PN i Nip— i 11 g i i mAnp—1—j—1—i—m

(jp—2il—2im—4ij—2i% —i—251—2jm—252 —2jn—2j

=q )>\l,l+m)\n+i+j,p—l—m—1)\j,p—n—i—l/\i,n+i

for0<i<p—Il-m—-j—land 0 <n<p—Il—m—j—1—1. For this we need to use equation
A 8. The coefficients then simplify to give:

G+ =3 — L= )+ L+ i+ m))(p— 1= —1—i—m])
(=3~ i— UG+ L+
e (L m(p == m = 1) (p—n— i = UY(n + il
(n+i+ M —n—i—1-3))

As [p — z] = [z], we have ([z])([p — 1 — z]!) = ([p — 1]!). Therefore it reduces to:
(=1 =q¢*"([p—1])

Hence the coefficients are equal, and so we have a1a14p = a14p0.

4.5 Relation 7, aff + fa = Yfop_1.

From section 4.2, we have:

M=

(k(2p—1)— 4 (K> k) —(
B(alpiy,....ix2p-1)) =4

) (2p = k= 1)
[Pl
(16(2;9—1)—%(k"‘—lc)—(é1 i) ([k]")

B(piy ... iv,2p—1)) =4 WE%"“‘lmgp,l, p<k<2p—1

FFeg, 0<k<p-—1

The Jones-Wenzl projection, fo,—1, is given by:

-

(keP-D)-3(R2-)~(X in) ([2p — k — 1]1)
f2p71<pi1,...7ik,2p71) =q ([([2])1]!)]Fk1'0

(K2p-D-3 =0~ 1) ([2p — & — 1]1)

kg
b

’7](2p71(pi1 ..... ik,2p71) =q

Hence B(a(psy,....ix,2p—1)) = Yf2p—1(Pis,...ix.2p—1), for 0 < k < p — 1. Note, that although we
F*
[p]
element of X®~1  which is non-zero. From equations A.11 and A.12, we have:

should consider this equal to zero for k > p, here we are only using to represent the relevant

([z = k)Y Frao . =([KNE* %z, .
It follows that a(B(ps,,....ix,2p—1)) = Yop—1(Pir,....ix,2p—1), for p < k < 2p — 1. Hence aff + fa =
Yip—1-
4.6 Relation 8, an;, =U,a = ﬁﬂl = Ulﬁ = O, 1 S ) S 2p — 2.

From proposition 3.2, we have that the image of a and 3 is &,. However, & is irreducible,
and does not appear in the decomposition of X®" until n = 2p — 1. Capping or cupping « or 3
gives a map between &, and X ®(2p=3)_ Hence this map must be zero.

13



4.7 Relations 9 and 10, ai+1ﬂi = Oéiﬂi_;,_gp_g, ,62'4_102‘ = Bimi+2p—2'

Given N(v) = ¢ 1v10 — 101, we can write relation 9 explicitly as:

g talpi,. . in,2p—2 @ V1) @ Vo — iy ... i 2p—2 @ V) @ V1

= 'v ® a(vo ® piy . in2p—2) — Vo @ (1 & piy,. in2p—2)
Using equation A.6, this simplifies to become:

-1 —n—2 —n—1
4" A1 (BP T 2 2op1,09p-1) @ Vo — ¢ (EPT" T xop_1.9p—1) ® 11

-1 —n-1 2p—2 —n—2
=q¢ 1 @ (B @op_1,2p—1) — @7 A 10 @ (BEPT" T 2 x9p_1,2p—1)

Using equation A.13 and A.14, both sides can be shown to equal ¢~ EP~" "'z, 5,. The proof
of relation 10 is similar, with both sides reducing to ¢~ ' FP~" "1z o,.

4.8 Relations 11, 12, 13, and 14, Uiai-i-l = U,-+2p_2az-, Uiﬂi—i-l = Ui+2p—2/8i9
R4p—2(04) = Q, R4p—2(/6) = f.

These can be proven diagrammatically from relations 9 and 10. We demonstrate the proof for
a, with 3 following similarly.

afalSfall

=1 | = (87

Hence « is rotation invariant. Continuing with this, we have:

and so we have the cupping relation.

4p—1 4p—1

4.9 Relations 15 and 16, ) kR (a®1) =0, > KRy (F®1)=0.
i=0 i=0

Let R,, denote the clockwise rotation tangle acting on n points.

L/
[LL

Figure 16: The rotation tangle Rsg.
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ap—1 ap—1
We want to show the relations Z kiRj,(a®1) =0, Z kiRj, (8 ®1) = 0. These in turn

allow the proof of a large number of other relations, and blmphﬁcatmn of diagrams containing
« and . The proof consists of two steps; first we show that the diagrams {R4pa}, {R4pﬁ} are
linearly dependent, so that the coefficients can be non-zero. We then give a general solution for
the coefficients.

We demonstrate the proof for o, with the proof for 5 following similarly. Diagrammatically,
4p—1
Z k; R4p(a® 1) = 0 is given by figure 12. From this, we see that there are 4p different diagrams,

each of which acts on weight spaces by Xy, 2p — Xpyp 2p. We want to show that the total number
of maps acting as Xy, 2p — Xj4p,2p is less than 4p. A list of module maps was given in section 2,
and from this we see that all module maps act as Xy, o, — Xj 2p, except for maps between Pj

and P,_ (As X, does not appear in the decomposition of X®2P). For example, for p = 3, the
maps not preserving weight spaces are:

P
&
X1,6 X2,6 X3,6 X4,6 Xs6

)

To r1 {a,b} Yo (1

Xos Xieg Xog Xze Xue Xse  Xeg
z {a()?bo}{alabl} {x7y} {aovbO}{a‘hbl} Y

W_/W_/

Py Py

Hence there are two maps acting as X 2p — Xpip.2p, and two acting as Xy 2p — Xi—p op.
Note that the maps between copies of P,_; are a composition of one of these maps with a map

preserving weight spaces. Denote the multiplicity of P;" in X®2? by M(P;"). From this, we see
that the total number of maps acting as Xy 2, + Xpip2p is 2M(P;7). By considering module
decompositions, we find that M(P;") = 2p — 2. Hence the diagrams {Rj a} are linearly depen-
dent.

4p—1
Consider applying Na,—1 to Z k; R4p(a ® 1) = 0. As capping off a gives zero, this reduces

to (k1 + 0kap + kap—1)onNop—1 = O 80 k1 + 0kyp + kap—1 = 0. Repeating this at every position,
we get the general condition k;_1 + d0k; + k;11 = 0. Using this, we can rewrite the coefficients as:

ki =(=1)"[i — 2]k + (=1)"[i — 1]ko, kivp =(—=1)PT'k;

4p—1 4p—1
W denote P, Z kiR, (a®1), P E kiRj,(8 ® 1). These generalize a large number of

relations. For example consider 62Pa[32, w1th k1 =1, ke = 0. This gives:

15
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RN

i
!

e E mE

Considering ;31 P,, with k; = 1, kg = 0, gives k; = (—1)[i — 2] and:
|

104 | Z

Y B == a|l-k| a| |- —kp| @
' |
«
I

LEhe

whereas oy 81 Py, with k; =0, kg = 1, gives k; = (—1)¢[i — 1] and:

|
a
SR
7_1 /8 = | « —ks| « —...—]{sz (87
= I I !
|

P, and Pj3 can also be used to reduce compositions of o and 8. For example, consider
B3(Pu, ® 1) with k1 = 1, kop—1 = 0, which gives ko = —071[3], k; = (=1)"1613][i — 1] +
(—1)%[i — 2] and:

\_/

|

a «
] ]
. r

—ky

_Q
—Q—

|

|

&

S
D

RS o
A

|

| | O
1

) C

|

|

<

S

Note that this can not be used to reduce diagrams of the form aqf8,41, Biap+1, etc. These
diagrams describe maps between copies of X% in X ®Ep-1),

4.10 Partial Traces

The partial trace of o and B can be derived easily from the cupping and capping relations
(relations 9 - 12), and shown to be zero. We demonstrate the case for alpha:
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The partial trace of a8 and B« is given in figure 15. Note that the left partial trace follows
from the right partial trace and the cupping and capping relations. We give the proof for SBa,
with the proof for a8 following similarly.

Consider X®?P~2 M. Its elements take the form G P in2p—2 @ V10 — Piy,..in2p—2 @ Vo1. We
want to apply (Ba® 1) to this. From section 4.2, we had that given € X 2,1, 0 <k <p—1,

(2p—k—1]!)
([E]")[p]

k
F 20 9p—1

B(O‘(x)) = €g
We then have:

(n(2p-1)~3(n?—n)~( 3 i) ([2p —n —2))
B(a(pi,...in2p—2 @ 1)) =4 B T

X ((F"+1$072p—2) ® vy +q" PP 4 1) (F w0 2p—2) ® Vl)

(n2p-1)=1(n*-m)~(E 1) ([2p — n — 1]!
Bla(piy,....in2p—2 ® 10)) =¢ - ([[ﬂ])x
< ((Fs032) © 00+ 4"l (P a2 01 )

Note that as pi, .. i, 2p—2 @ V1 € Xpy1,2p—1, and « is zero on Xy, 2,—1 for n > p, we will have to
treat the case n = p — 1 separately. For 0 < n < p — 2, we have:

(Ba @ 1)(q  piy i 2p—2 @ V10 — iy ..sin 2p—2 @ V01)

_ (er—geom=(Bi) - (2p—n—2]))
- P e )

X ((Fn+1x0,2p—2) ® voo + ¢" PP+ 1)(F"20,2p—2) ® V1o>

(n@p=D=3*=m)=(32 ) ([2p — n — 1]))

1 7]

<(F”$0,2p2) ® vor +¢" " ] (F" xo,2p-2) ® V“)

Applying 1¥2P=2 @ U, this simplifies to give zero. For the case n =p—1, as p;,,...i,_, 2p—2 @11 €
Xpop—1, we have

(Ba® 1)((]71/01‘1,...,1',)_1,2;;72 ® V10 = Piy,..yip_1,2p—2 @ Vo1)

p—1
(r-1)Ep-D- -1 -2-(X i) ([p]!
=—q ’ = ([fj) ((F”_lﬂfozpz) ®@vor+q Plp — 1 (FP %20,2p2) ® Vll)

Applying 1%2P=2 ® U to this, we get:

(0-Dep-D+1-2-D-2-(S i)

q [p— 1]!)Fp71$072p,2

We now want to give an explicit formula for the following diagram:
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fp—l
I

..... in+1-pp—1- Ap-

Given Pit,.e yim it serin,2p—2, W€ CAN TEWIItE 1t &S P4y i p—1 @ Piyy 1 +1—p

plying f,—1 ® 1¥P~1 to this we get:
(mp-D=3m*=m)=(3 i) ([p — 1 — m]!)
j=1 m _ ' B i o
q (lp—1]) ( Zo,p 1) @ Pipy1+1=p,..yin+1-p,p—1

mp=( 3 i5)—(3 kD) ([p — 1 — m]))([m]!)
i= =1 [ (] Pkiyeciskimp—1 @ Pipyy1+1—p,..sin+1—p,p—1

(mp—(%,
Zq (p—1])

k1,.

Given U(ryg) = v, U(vpr) =

get zero if n #£ p—1 or if {kq, ...
{k1, sk} N {2p — 1 —tipy1, .., 2p — 1 — i} = 0, then we have:

o (mptprem— (3 i) —(E k) ([p—1—=m])([m]")
_1\p—1-m i=1 =1 v
2, (U 1)

—qv, U(rge) = U(r11) = 0, applying cups repeatedly to this, we
Emt {20 =1 —dpmy1, o 2p—1—in} #0. Tn=p—1and

ki, km
— Z (_1)1)—1q(p717m7(j§1ij)i(zgl kl))y
ki,.oikm

Note that for each choice of 4,11, ..., i,, there is a unique choice of k1, ..., k,, satisfying the above
Jkm, 20— 1 —dmg1, .20 — 1 — iy} = {1,...,p — 1}, and so we have that:

conditions, i.e. {ki,...
n

> ki :i(p2 —p)—@2p—Dn-m)+ Y i
=1 r=m-41
Using this, we can simplify to get:
(p—1-m—(32 i)—(3 k)
1 =1

> (1) =

-

v

r=m-+41 v

(p=1-m=(E i) =30+ Er-Dm-m)=( > i)

=(=1)""'q 7

L2V (S° i
:(_1)p71q( 07 p (3 m)y
Given py, ...z, let 71,...,7,_y be the positions of the zeros. As N(v) = g 'vip — vo1, we have

that the z-fold cap is given by:

z
) ( ) (—1)2_"q_"0r1,...,rn,2z+1fzn,...,zzﬂﬁzz:)

n=0 “7ri,...,rpn
Taking z = p — 1, this becomes:
p—1

p—1-n_—n N 5
E ( E (=1 q Pn,...,rmp—l—rp_l_n,..,,2p—1—r1,2p—2>

n=0 “ri,...,rp
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Applying f,—1 ® 1¥P71 to this we get:

p—l n(p—2)—%(n?—n)— 3 T
Z( 5 (_1)p_1_nq( (=)= F(n? )3, n)x

n=0 “ri,...,rn

—-1-n]h, .
% ([p([p_l]l)])(F I'O,p—l) ® pp—iz’—l—""”’p_ﬁl’p_l)

(np-D—(3 r)—(3 )

S(X 5 capEE,

X ([p — 1]‘) Ps1,...,50,p—1 ® prpln,,“,p,:hp1>
As Y i+ > = %(p2 — p), this becomes:

(n(pfn—%(p )+ =3 sn)

(T % e =

n=0 Tp—1—m S1,--:8n

(Ip — = n]H([n]")

([p _ 1]') pSl,--7Sn72P—1—Fp—1—n7~»-»2p—1—7:172P—2>

X

= 1 (== -p - ) (- 1-m) (T 1))
Z (=1)? q = Dbyt 1,2p—2
t

n=0 Tyeees tp—1
L (1-p- 1@ -p)~(S )
= < Z G ’ =1 ptl,...,tpl,Qp—Q)
n=0 t1,tp—1
L (- r-p-(T W)
= Z ( 1)1) lq ’ ! Pty p—1,2p—2
b1ty

Where we have taken t1 1= s1,....t5 = Sp, tpq1 =20 — 1 — Fp_1_p, e tp_1 = 2p — 1 — 71
Combining this with the first part we get:

(1= =300~ i) (—1)%~2
(Ip —1]1)

1
q L

Multiplying by —+, this becomes:

(1-p* -3 @*-p)=(3 i)
(—1)Pq = (o= YN FP g 5ps

which is equal to the partial trace of Sa.

This map is also the second (non-identity) endomorphism on P;". Details of this endomorphism
for all Pii, as well as homomorphisms between indecomposable modules, will be discussed in a
future paper [11].

Appendix A. Combinatorial Relations.

There are a number of generalized relations for U,(sl2) and its action on X®", which we record
here. The quantum group Uy (slz) and its relations can be used to give the following generalized
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conditions:

AF(K) = K&+ (A1)
k
AME)=> (1)@ E® (K¥*) (A.2)
i=0
k . .
AFF) =D (KTH®) @ Fe (19¢+) (A.3)
=0
EF* = FFE + P _[k;_l)(ql_kF’“_lK S A A (G (A.4)
k
FEF = EFF + (7_[ ;—1)(q1kEk1K1 —¢"'E"'K) (A.5)
k
AEF = Z NipE'® K'EF (A.6)
=0
k
AFF = Z NipgK'FFi @ Fi (A.7)
=0
o k]!
Nk = q“ —“’ﬂ& (A.8)

(L[ = 4]!)

The U,(slz) action on the basis elements satisfies the following:

(ra 2= =53 i)

E"0i. . inz2=4q ([n])zo.2 (A.9)

P e g e (A.10)

Frag.= Y q(%(kzw_(-’éij)) kD) i i (A.11)
1<i;<z

Bo.= 3 q(%<2"“><z-’“+l>-<?§f”)) )i s (A.12)
1<i,<z

A.13
Al4
A.15
A.16

Ekxz+1,z+1 = [k](Ekilxz,z) Qv + qik(Ekzz,z) @
=" kv ® (Ekilxz,z) +11 ® (Ekxz,z)
Fk$012+1 = (Fkl'()’z) & Vg + qkizil[k](Fkil.’Eo,z) (21

(
(
(
= q_kl/o & (Fkxo’z) + [k}l/l ® (Fk_lx(),z) (

)
)
)
)

These come from considering all contributions to the coefficient as different orderings of the
integers i1, ...,i,, where each ordering describes the order in which the zeroes appeared. For

the standard ordering with i; < iy < ... < 1i,, its contribution to the coefficient is just
_ . C (enzt )
g FThgTA e g7 = ¢ 5=t~ Interchanging two integers in the ordering multiplies this

by ¢*2, and the coefficient comes from considering all possible permutations.

For integers 1 <41 <13 < ... < i, < 2, we have:

72(,% i;) o ([2])
b,z 1= g =g (A.17)
1§ZS ([n])([z = n]!)
&n,z :q72Z§n—1,z—1 +&nz-1 (A.18)

where the recurrence relation comes from considering the two cases in &, ., when i, = z and
when i,, # z.
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