
EULER TOTIENT OF SUBFACTOR
PLANAR ALGEBRAS

SEBASTIEN PALCOUX

Abstract. We define a notion of Euler totient for any irreducible
subfactor planar algebra, using the Möbius function of the bipro-
jection lattice. We prove that if it is nonzero then there is a minimal
2-box projection generating the identity biprojection. We deduce a
bridge between combinatorics and representations in finite groups
theory. We also get an alternative result at depth 2.

1. Introduction

The usual Euler’s totient function ϕ(n) counts the number of positive
integers up to n that are relatively prime to n. For any finite group G,
let L(G) be its subgroup lattice and µ the Möbius function of L(G).
By Crosscut Theorem and inclusion-exclusion principle,

ϕ(G) :=
∑

H∈L(G)

µ(H,G)|H|

is the cardinal of {g ∈ G|〈g〉 = G}. Then ϕ(G) is nonzero iff G is cyclic,
and ϕ(Cn) = ϕ(n). This paper generalizes one way of this equivalence
to the irreducible subfactor planar algebras. Let P be an irreducible
subfactor planar algebra and µ the Möbius function of its biprojection
lattice [e1, id]. The Euler totient of P is

ϕ(P) :=
∑

b∈[e1,id]

µ(b, id)|b : e1|

Theorem 1.1. If ϕ(P) is nonzero then P is w-cylic (i.e. there is a
minimal 2-box projection generating the identity biprojection).

2010 Mathematics Subject Classification. 46L37 (Primary), 05E10, 05E15,
06B23 (Secondary).

Key words and phrases. von Neumann algebra; subfactor; planar algebra; bipro-
jection; lattice; Mobius function; Euler totient; boolean algebra.

1



2 SEBASTIEN PALCOUX

By applying the above theorem to P = P(RG ⊂ R) for any finite
group G, we get that if the “dual” Euler totient

ϕ̂(G) :=
∑

H∈L(G)

µ(1, H)|G : H|

is nonzero then G has a faithful irreducible complex representation. It
is a weak dual version of the initial group result. As a general appli-
cation, we get a non-trivial upper-bound for the minimal number of
minimal central projections generating the identity biprojection. By
applying this result to any finite group G, we deduce a non-trivial
upper-bound for the minimal number of irreducible complex represen-
tation generating (for ⊕ and ⊗) the left regular representation. It is
a bridge between combinatorics and representations in finite groups
theory. We finally prove an alternative equivalence for the irreducible
subfactor planar algebras of depth 2, involving the central biprojection
lattice, and so the normal subgroup lattice for the dual group case.

Because this paper is mainly intended to poeple in subfactors theory
we will start by some basics on lattice theory, and we just refer to [4]
for the basics on subfactor planar algebras.
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2. Basics on lattice theory

A lattice (L,∧,∨) is a poset L in which every two elements a, b have
a unique supremum (or join) a ∨ b and a unique infimum (or meet)
a ∧ b. Let G be a finite group. The set of subgroups K ⊆ G forms
a lattice, denoted by L(G), ordered by ⊆, with K1 ∨ K2 = 〈K1, K2〉
and K1 ∧K2 = K1 ∩K2. A sublattice of (L,∧,∨) is a subset L′ ⊆ L
such that (L′,∧,∨) is also a lattice. Let a, b ∈ L with a ≤ b, then the
interval [a, b] is the sublattice {c ∈ L | a ≤ c ≤ b}. Any finite lattice
admits a minimum and a maximum, denoted by 0̂ and 1̂. Atoms (resp.
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coatoms) are minimum (resp. maximum) elements in L \ {0̂} (resp.
L \ {1̂}). The top interval of a finite lattice L is the interval [t, 1̂] with
t the meet of all the coatoms. The height of a finite lattice L is the
greatest length of a (strict) chain. A lattice is distributive if the join
and meet operations distribute over each other. A distributive lattice
is called boolean if any element b admits a unique complement b{ (i.e.
b ∧ b{ = 0̂ and b ∨ b{ = 1̂). The subset lattice of {1, 2, . . . , n}, with
union and intersection, is called the boolean lattice Bn of rank n. Any
finite boolean lattice is isomorphic to some Bn.

Lemma 2.1. The top interval of a finite distributive lattice is boolean.

Proof. See [6, items a-i p254-255] which uses Birkhoff’s representation
theorem (a finite lattice is distributive iff it embeds into some Bn). �

Remark 2.2. A finite lattice is boolean if and only if it is uniquely
atomistic, i.e. every element can be written uniquely as a join of atoms.
It follows that if [a, b] and [c, d] are intervals in a boolean lattice, then

[a, b] ∨ [c, d] := {k ∨ k′ | k ∈ [a, b], k′ ∈ [c, d]},
is the interval [a ∨ c, b ∨ d].

See [6] for more details on lattice basics.

3. Euler totient

We define a notion of Euler totient on the irreducible subfactor planar
algebras as an extension of the usual Euler’s totient function on the
natural numbers.

Definition 3.1. The Möbius function µ of a finite poset P is defined
inductively as follows. For a ≤ b

µ(a, b) =

{
1 if a = b,

−
∑

c∈(a,b] µ(c, b) otherwise.

The following result can be seen as a boolean representation for the
Möbius function of a finite lattice.

Theorem 3.2 (Crosscut Theorem). Let L be a finite lattice and
a1, . . . , an its coatoms. Consider the (order-reversing) map m : Bn → L

m(I) =

{
1̂ if I = ∅,∧
i∈I ai otherwise.

Then for any a ∈ L,

µ(a, 1̂) =
∑

I∈m−1({a})

(−1)|I|
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Proof. Immediate from [6, Corollary 3.9.4]. �

Definition 3.3. The Euler totient of an irreducible subfactor planar
algebra P, with biprojection lattice [e1, id] and Möbius function µ, is

ϕ(P) := ϕ(e1, id) :=
∑

b∈[e1,id]

µ(b, id)|b : e1|

Proposition 3.4. The Euler totient ϕ(P) is equal to

|t : e1| · ϕ(t, id)

with [t, id] the top interval of [e1, id].

Proof. If b 6∈ [t, id] then µ(b, id) = 0 by Crosscut Theorem 3.2 because
m−1({b}) = ∅. Finally, for b ∈ [t, id], |b : e1| = |b : t| · |t : e1|. �

Remark 3.5. For n =
∏

i p
ni
i then ϕ(P(R ⊆ Ro Cn)) is equal to∏

i

pni−1
i ·

∏
i

(pi − 1)

which is the usual Euler’s totient ϕ(n). Thus, we can see ϕ(P) as an
extension from the natural numbers to the subfactor planar algebras.

Lemma 3.6. The Euler totient of a finite group G,

ϕ(G) :=
∑

H∈L(G)

µ(H,G)|H| = ϕ(P(R ⊆ RoG)),

is the cardinal of {g ∈ G | 〈g〉 = G}.

Proof. By Crosscut Theorem 3.2 and inclusion-exclusion principle,
ϕ(G) = |G \

⋃
Mi|, with M1, . . . ,Mn the maximal subgroups of G. �

Corollary 3.7. A finite group G is cyclic iff ϕ(G) is nonzero.

We will generalize one way of this result to subfactor planar algebras,
and deduce a weak dual version involving irreducible representations.

4. Main result

In this section, we prove that an irreducible subfactor planar algebra
with a nonzero Euler totient is w-cyclic.

Definition 4.1 ([5]). A planar algebra P is weakly cyclic (or w-cyclic)
if it satisfies one of the following equivalent assertion:

• ∃u ∈ P2,+ minimal projection such that 〈u〉 = id,
• ∃p ∈ P2,+ minimal central projection such that 〈p〉 = id.

The notation 〈a〉 means the biprojection generating by a > 0.
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Theorem 4.2. Let P be an irreducible subfactor planar algebra. If the
Euler totient ϕ(P) is nonzero, then P is w-cyclic.

Proof. Let p1, . . . , pr be the minimal central projections of P2,+.
Consider the sum

S(i) :=
∑

b∈[e1,id]

µ(b, id)tr(bpi).

Let b1, . . . , bn be the coatoms of [e1, id], by Crosscut Theorem 3.2

S(i) =
∑

b∈[e1,id]

∑
β∈m−1({b})

(−1)|β|tr(bpi) =
∑
β∈Bn

(−1)|β|tr(m(β)pi)

Recall that the map m (defined in Theorem 3.2) is order-reversing and
the image of the atoms of Bn are the coatoms of [e1, id]. Let Ai be the
set of atoms α of Bn satisfying pi ≤ m(α), and Bi the set of atoms not
in Ai. Let αi (resp. βi) be the join of all the elements of Ai (resp. Bi).
Claim: For α ∈ Bn, pi ≤ m(α)⇔ α ∈ [αi, 1̂].
Proof: Just observe that pi ≤

∧
j∈α bj if and only if ∀j ∈ α, pi ≤ bj. �

Now by Remark 2.2, we have

Bn = [∅, αi] ∨ [∅, βi] =
⊔

α∈[∅,αi]

α ∨ [∅, βi],

Let the following sum

T (i) :=
∑

β∈[∅,βi]

(−1)|β|tr(m(β)pi)

For any α ∈ [∅, αi] and β ∈ [∅, βi], then (−1)|α∨β| = (−1)|α|(−1)|β| and
m(α ∨ β)pi = m(α)pi ∧m(β)pi = m(β)pi. So we get that

S(i) =
∑

α∈[∅,αi]

(−1)|α|T (i) = T (i) · (1− 1)|Ai|.

Claim: P is w-cyclic if and only if ∃i with |Ai| = 0.
Proof: First if ∃i such that |Ai| = 0, then pi 6≤ b (and so 〈pi〉 6≤ b) for
any coatom b of [e1, id], hence 〈pi〉 = id. Next if P is w-cyclic, ∃i such
that 〈pi〉 = id, then for any coatom b of [e1, id], b 6≥ pi, so |Ai| = 0. �
If P is not w-cyclic, then ∀i |Ai| 6= 0, so S(i) = 0; but |b : e1| =
tr(b)/tr(e1), tr(b) =

∑
i tr(bpi) and tr(e1) = δ−2, so ϕ(e1, id) =

δ2
∑r

i=1 S(i) = 0; the result follows. �

It is an extended generalization of [1, Theorem 3.21] and a purely
combinatorial criterion for a subfactor planar algebra to be w-cyclic.



6 SEBASTIEN PALCOUX

Remark 4.3. The converse is false. For G = M2(4) the modular
maximal-cyclic group (of order 16), the planar algebra P = P(RG ⊂ R)
is w-cyclic, whereas ϕ(P) = 0. This is not surprising because according
to Proposition 3.4, ϕ(e1, id) 6= 0 iff ϕ(t, id) 6= 0 with [t, id] the top
interval of [e1, id]; and the bottom interval of [1,M2(4)] is [1, C2

2 ]. Even
if we assume that t = e1, then the converse is still false: there are
exactly two counter-examples of the form P(RG ⊂ R) and index ≤ 100,
given by G = D8 o C2

2 or D8 o S3 (of order 64 and 96 respectively).

Proposition 4.4. Assume all the biprojections to be central. Then

ϕ(P) = δ2
∑
〈pi〉=id

tr(pi)

with p1, . . . , pr be the minimal central projections of P2,+. It follows
that the converse of Theorem 4.2 is obviously true in this case.

Proof. By Crosscut Theorem 3.2 and inclusion-exclusion principle. �

By [5, Theorem 4.24], if all the biprojection are central and form a
distributive lattice, then P is w-cyclic, so by Proposition 4.4, ϕ(P) is
nonzero. We believe that the central assumption is unnecessary:

Conjecture 4.5. If [e1, id] is distributive, then ϕ(P) 6= 0.

This conjecture reduces to the boolean case, and we expect more:

Question 4.6. Assume [e1, id] to be boolean of rank n+ 1.
Is it true that ϕ(P) ≥ φn (with φ the golden ratio)?

If this lower bound is correct, then it is optimal because it is realized
by T LJ (

√
2)⊗ T LJ (φ)⊗n.

5. Applications

As for [5], we give many group theoretic translations of Theorem 4.2,
and a non-trivial upper-bound, giving a bridge between combinatorics
and representations in finite groups theory.

Definition 5.1. The Euler totient of an interval of finite groups is

ϕ(H,G) :=
∑

K∈[H,G]

µ(K,G)|K : H| = ϕ(P(RoH ⊆ RoG)).

Corollary 5.2. There is g ∈ G with 〈Hg〉 = G iff ϕ(H,G) is nonzero.

Proof. By Proposition 4.4, or directly by observing that ϕ(H,G)|H| =
|G \

⋃
Mi|, with M1, . . . ,Mn the coatoms of [H,G], so that ϕ(H,G) is

the cardinal of {Hg | g ∈ G and 〈Hg〉 = G}. �
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Corollary 5.3. The minimal cardinal for a generating set of a finite
group G, is the minimal length ` for an ordered chain of subgroups

{e} = H0 < H1 < · · · < H` = G

such that ϕ(Hi, Hi+1) is nonzero.

Proof. Immediate from Corollary 5.2 and 〈Hg〉 = 〈H, g〉. �

We generalize to planar algebras by a non-trivial upper-bound:

Theorem 5.4. The minimal number r of minimal projections gener-
ating the identity biprojection (i.e. 〈u1, . . . , ur〉 = id) is less than the
minimal length ` for an ordered chain of biprojections

e1 = b0 < b1 < · · · < b` = id

such that ϕ(bi, bi+1) is nonzero.

Proof. Immediate from Theorem 4.2 and [5, Lemma 6.1]. �

We deduce (weak) dual versions of Corollaries 5.2 and 5.3, giving the
bridge between combinatorics and representations theory:

Definition 5.5. The dual Euler totient of the interval [H,G] is

ϕ̂(H,G) :=
∑

K∈[H,G]

µ(H,K)|G : K| = ϕ(P(RG ⊆ RH)).

Corollary 5.6. For an interval of finite groups [H,G], if the dual
Euler totient ϕ̂(H,G) is nonzero then there is an irreducible complex
representation of G such that G(V H) = H.

Proof. It is the group theoretic reformulation of Theorem 4.2 for
P(RG ⊆ RH), using [5, Theorem 6.10]. �

In particular, if H = 1 and for ϕ̂(G) := ϕ̂(1, G), we have:

Corollary 5.7. A finite group G admits a faithful irreducible complex
representation if its dual Euler totient ϕ̂(G) is nonzero.

Corollary 5.8. The minimal number of irreducible complex represen-
tations of G generating (with ⊕ and ⊗) the left regular representation,
is less than the minimal length ` for an ordered chain of subgroups

{e} = H0 < H1 < · · · < H` = G

such that ϕ̂(Hi, Hi+1) is nonzero.

Proof. By Theorem 5.4 and ϕ̂(H,G) = ϕ(P(RG ⊆ RH)). �
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6. Alternative result for the depth 2

We will prove an alternative equivalence in the irreducible depth 2
case, involving the central biprojection lattice.

Theorem 6.1 (Splitting, [2] p39). Let P be an irreducible depth 2
subfactor planar algebra. Any element x ∈ P2,+ splits as follows:

x = x(1) x(2) and x = x(1) x(2)

Note that ∆(x) = x(1) ⊗ x(2) is the sumless Sweedler notation for the
comultiplication of the corresponding Kac algebra.

Corollary 6.2. If a, b ∈ P2,+ are central, then so is the coproduct a∗b.
Proof. This diagrammatic proof by splitting is due to Vijay Kodiyalam.

(a ∗ b) · x =
x

a b

=
a b

x(1) x(2)

=
x(1) x(2)

a b

=
x

a b

= x · (a ∗ b) �

Corollary 6.3. The set of central biprojections is a sublattice of the
biprojection lattice.

Proof. Let b1 and b2 be central biprojections. Then, b1∧ b2 is obviously
central. Next, b1∨b2 is the range projection of (b1∗b2)∗k for k sufficiently
large, so is central by Corollary 6.2. �

Let C be the central biprojection lattice and µC its Möbius function.
Let the central Euler totient be

ϕC(P) :=
∑
b∈C

µC(b, id)|b : e1|.

By Crosscut Theorem 3.2 and inclusion-exclusion principle:

ϕC(P) = δ2
∑
〈pi〉=id

tr(pi)

with p1, . . . , pr be the minimal central projections of P2,+.

Corollary 6.4. Let P be an irreducible subfactor planar algebra of
depth 2. Then P is w-cyclic if and only if ϕC(P) is nonzero.

Let G be a finite group, N (G) its normal subgroup lattice and µN
the Möbius function of N (G). Let the dual normal Euler totient be

ϕ̂N (G) =
∑

H∈N (G)

µN (1, H)|G : H|



EULER TOTIENT OF SUBFACTOR PLANAR ALGEBRAS 9

Let V1, . . . , Vr be equivalent class representatives of the irreducible com-
plex representations of G. As a group theoretic reformulation of the
above paragraph, we recover a formula extracted from [3, p97].

ϕ̂N (G) =
∑

Vi faithful

dim(Vi)
2.

Corollary 6.5. A finite group G has a faithful irreducible complex
representation if and only if ϕ̂N (G) is nonzero.
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