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Abstract

We apply the free product construction to various local algebras in algebraic quan-
tum field theory.

If we take the free product of infinitely many identical half-sided modular inclusions
with ergodic canonical endomorphism, we obtain a half-sided modular inclusion with
ergodic canonical endomorphism and trivial relative commutant. On the other hand,
if we take Möbius covariant nets with trace class property, we are able to construct
an inclusion of free product von Neumann algebras with large relative commutant,
by considering either a finite family of identical inclusions or an infinite family of in-
equivalent inclusions. In two dimensional spacetime, we construct Borchers triples
with trivial relative commutant by taking free products of infinitely many, identical
Borchers triples. Free products of finitely many Borchers triples are possibly associ-
ated with Haag-Kastler net having S-matrix which is nontrivial and non asymptotically
complete, yet the nontriviality of double cone algebras remains open.

1 Introduction

The whole model of quantum field theory (QFT), in the framework of algebraic QFT, can
be reconstructed from just a combination of few local algebras and the vacuum state. This
was a striking discovery by Wiesbrock and others [Wie93, GLW98, Wie98, KW01, AZ05]. In
particular, a half-sided modular inclusion (HSMI) of two half-line algebras coming from the
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(strongly additive) chiral component of a two-dimensional conformal field theory completely
remembers the structure of QFT on the lightray. It opened a hope to construct new models
of QFT which is in general very difficult, and since then, HSMIs have been used to construct
possibly new chiral components [Lon01, CLTW12] as well as to determine the structure of
massless two-dimensional QFT [Tan12b, Tan12a]. Actually, a HSMI is not equivalent to a
chiral component (Möbius covariant net), and in order to carry out the reconstruction, one
needs an additional condition: the relative commutant of the algebras must be also large.
The contrary case does happen, for example when one considers wedge inclusions of (two-
dimensional) fermionic QFT [BLM11] or bosonic interacting QFT [BT15, Tan14]. Yet, even
if the relative commutant is not large enough (the vacuum vector is not cyclic for it), if
it is just nontrivial, one can still construct a Möbius covariant net on a smaller subspace
[BLM11]. Constructing HSMIs and determining the relative commutant are not easy tasks,
and in all the known cases, the relative commutant have been nontrivial. In the present work,
we provide examples of HSMIs with trivial relative commutant, by exploiting the techniques
of free product von Neumann algebras.

The study of free products of (possibly type III) von Neumann algebras dates back to
the birth of free probability theory initiated by Voiculescu (see e.g. [VDN92]), and their
fundamental properties like central decomposition and type classification in the not neces-
sarily type II1 setting were recently established in full generality (see [Ued11a]). From a
family {(Mκ,Ωκ)}κ∈K of von Neumann algebras equipped with vector states, one constructs
(M,Ω) whereM is generated by the faithful images ofMκ and these images are freely inde-
pendent, or roughly speaking, they do not commute in the highest degree but still have some
“relations” provided by Ω. One can actually start with a family of inclusions (Nκ ⊂Mκ,Ωκ)
and obtains an inclusion N ⊂M of free product von Neumann algebras. We will prove that
if (Nκ ⊂ Mκ,Ωκ) is an infinite family of identical HSMIs, the resulting inclusion N ⊂ M
must have trivial relative commutant.

Before this work, no serious investigation of inclusions of free product von Neumann
algebras has been made without assuming the existence of faithful normal conditional ex-
pectations. We provide an illustrative example whereby the relative commutant is nontrivial
by exploiting the techniques of AQFT. This is quite an interesting phenomenon, because it
seems, at first sight, contrary to the highest degree of non-commutativity of the free product
construction. If {({Mκ(I)}I⊂S1 ,Ωκ)}κ∈K is a family of (local) Möbius covariant nets with
vacuum vectors, we can construct a family of von Neumann algebras satisfying the axioms
of Möbius covariant net except locality. Then, by taking K to be finite or considering an
appropriate family of local algebras with infinite K, we obtain inclusions N ⊂ M of free
product von Neumann algebras where N ′ ∩ M is a type III1 factor. The proof utilizes
the L2-nuclearity condition [BDL90], a physical condition saying that the state space with
small energy is not too large. Although the L2-nuclearity condition indeed guarantees the
nontriviality of the relative commutant, we do not find any explicit, nontrivial elements in it.

We also apply a similar construction to two-dimensional quantum field theory. A two-
dimensional Haag-Kastler net can be reconstructed from a single von Neumann algebra, a
vacuum state and a representation of translations (a Borchers triple). One can again consider
the free product of Borchers triples. Here, if the index set is infinite and all the given triples
are identical, we obtain a Borchers triple with trivial relative commutant. On the other hand,
if the index set is finite, we are not able to determine the relative commutant. Yet, one can
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define and compute the two-particle scattering S-matrix, and it turns out to be nontrivial
and not asymptotically complete. This case is of particular interest, because it might give
an example of Haag-Kastler net with minimal size, only above which the algebras of local
observables are nontrivial.

This paper is organized as follows. In Section 2 we review the fundamental concepts of
algebraic QFT, half-sided modular inclusions and free products of von Neumann algebras. In
Section 3, we construct a HSMI with trivial relative commutant by taking the free product of
infinitely many copies of a standard HSMI. Section 4 introduces the concept of free product
Möbius covariant nets, and this concept enables us to give an example of inclusion of free
product von Neumann algebras with large relative commutant. Finally, in Section 5 we
consider free products of two-dimensional Borchers triples. When the index set K is infinite
and the family consists of identical ones, the relative commutant is shown to be trivial. When
K is finite, it remains open, meaning that it might give a two-dimensional Haag-Kastler net
which should not have the wedge split property for small distance.

2 Preliminaries

2.1 Algebraic QFT

2.1.1 One-dimensional chiral components

Let S1 denote the unit circle and let I be the collection of proper intervals (i.e., open,
connected, non-empty, non-dense subsets) I ⊂ S1. For any I ∈ I, we denote by I ′ the
interior of the complement of I in S1. The Möbius group Möb := SL(2,R)/Z2

∼= PSU(1, 1)
acts on S1 by diffeomorphisms in a natural fashion. Let R : R/2πZ → Möb denote the
rotation subgroup. Let A = (A(I))I∈I be a Möbius covariant net (or a Möbius covariant
precosheaf) on S1 in the sense of [DLR01, Section 2]. Namely, all the A(I), I ∈ I, are von
Neumann algebras on a fixed Hilbert space H with the following properties:

1. Isotony: I1 ⊂ I2 ⇒ A(I1) ⊂ A(I2).

2. Möbius covariance: There exists a unitary representation U : G y H such that
U(g)A(I)U(g)∗ = A(gI) for every g ∈ G and I ∈ I.

3. Positivity of the energy: The generator L0 of the one parameter unitary group θ 7→
U(R(θ)) = eiθL0 , called the conformal Hamiltonian, is positive.

4. Existence of the vacuum: There exists a unique (up to a scalar) unit vector Ω ∈ H,
called the vacuum vector, such that U(g)Ω = Ω for all g ∈ Möb and that Ω is cyclic
for
∨
I∈I A(I) and separating for

∧
I∈I A(I).

A Möbius covariant net A is said to be local if the following property holds:

5. Locality: I1 ∩ I2 = ∅ ⇒ A(I1) ⊆ A(I2)′.

Algebras A(I) are of type III1, unless the Hilbert space is one-dimensional (we call this
case trivial) [DLR01, Proposition 2.4(ii)]. The Bisognano-Wichmann property ∆it

I :=
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∆it
A(I) = U(ΛI(−2πt)) holds, where ∆A(I) is the modular operator of A(I) with respect to Ω

and ΛI is the dilation associated with I, see [DLR01, Proposition 2.2(ii)]. In the following,
we always stress whether each statement holds with or without locality, so that no confusion
arises.

In a nice situation, the whole Möbius covariant net can be reconstructed from a pair of
von Neumann algebras. Let us consider another additional property.

6. Strong additivity: For I ∈ I and I1, I2 the two intervals obtained by removing one
point from I, it holds that A(I) = A(I1) ∨ A(I2).

Let H be a Hilbert space,M a von Neumann algebra on H, T a unitary representation of
R onH with positive spectrum and Ω a vector inH. We say (M, T,Ω) is a one-dimensional
Borchers triple on H if

• Ω is the unique (up to a scalar) invariant vector under T (a),

• AdT (a)(M) ⊂M for a ∈ R+,

• Ω is cyclic and separating for M.

This notion is related with the following: a half-sided modular inclusion (HSMI) 1 is an
inclusion N ⊂ M of von Neumann algebras and a vector Ω which is cyclic and separating
for both of N ,M such that σMt (N ) ⊂ N for t ≥ 0, where σMt is the modular automorphism
group of M with respect to Ω.

If (M, T,Ω) is a one-dimensional Borchers triple, then N = AdT (1)(M) ⊂ M is a
half-sided modular inclusion by the Borchers theorem [Bor92, Flo98]. The uniqueness of Ω
implies the ergodicity

⋂
t≥0 σ

M
t (N ) = C1. Conversely, if (N ⊂M,Ω) is a half-sided modular

inclusion, then one can construct a representation T (a) of R with positive spectrum such that
N = AdT (1)(M) and T (2) = JNJM, where JM and JM are the modular conjugations ofM
and N with respect to Ω, respectively [Wie93, AZ05]. Furthermore, T (a) together with the
modular group ∆it

M generates a representation of the translation-dilation group. We remark
that σMt is ergodic on N if and only if the canonical endomorphism Ad Γ is ergodic on N ,
where Γ = JNJM = T (2), and in this case, the uniqueness of Ω follows, giving rise to a
one-dimensional Borchers triple.

We say that a HSMI (N ⊂M,Ω) is standard if Ω is cyclic and separating for N ′ ∩M.
We also say that a one-dimensional Borchers triple is standard if so is the corresponding
half-sided modular inclusion. Let us identify S1 and the one-point compactification of R by
the stereographic projection. There is a one-to-one correspondence between standard half-
sided modular inclusions (N ⊂ M,Ω) and strongly additive local Möbius covariant nets A
by A((0,∞)) =M,A((1,∞)) = N [GLW98, Corollary 1.7].

Actually, even if (N ⊂ M,Ω) is not standard, one can still construct a local Möbius
covariant net on the subspace (N ′ ∩M)Ω: indeed, one should just defineA((0, 1)) := N ′∩M
and then A((0,∞)) by dilation covariance and closure. In this way, one obtains a standard
one-dimensional Borchers triple, hence a strongly additive local Möbius covariant net (c.f.
[BLM11, Lemma 5.1, Theorem 5.2]).

1The definition here is called +HSMI in [Wie98]. The other case, the inclusion for t ≤ 0, is called −HSMI
and can be treated in a completely parallel way.
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Therefore, it is an important problem to determine whether the relative commutant
N ′ ∩ M of a HSMI is nontrivial. Moreover, in all examples constructed so far, the rela-
tive commutant was either nontrivial or difficult to identify. One of the main results in this
work is to provide examples of half-sided modular inclusion with trivial relative commutant.

2.1.2 Two-dimensional nets

In (1+1)-dimensional Minkowski space, a (Poincaré-covariant) Haag-Kastler net is a family
{A(O)}O⊂R2 of von Neumann algebras on a fixed Hilbert space H parametrized by bounded
open regions in R2 satisfying the following properties:

1. Isotony: If O1 ⊂ O2, then A(O1) ⊂ A(O2).

2. Locality: If O1 and O2 are spacelike separated, then A(O1) and A(O2) commute.

3. Poincaré covariance: There is a unitary representation U of the proper orthochronous
Poincaré group P↑+ on H such that U(g)A(O)U(g)∗ = A(gO) for every g ∈ P↑+ and
open region O ⊂ R2.

4. Positivity of the energy: The restriction of U to the translation subgroup R2 has the
joint spectrum included in V + = {(t0, t1) ∈ R2 : t0 ≥ |t1|}.

5. Existence of the vacuum: There exists a unique (up to scalar) unit vector Ω ∈ H, called
the vacuum vector, such that U(g)Ω = Ω for all g ∈ P↑+ and that Ω is cyclic for A(O)
where O is sufficiently large.

Remark 2.1. Usually one assumes weak additivity and cyclicity of the vacuum for the global
algebra

⋃
O⊂R2 A(O), and proves the Reeh-Schlieder property A(O)Ω = H, where O is open.

Yet, the weak additivity is not necessarily a physical requirement, neither is it known whether
it follows from the Wightman axioms. In addition, we are also interested in Haag-Kastler
nets possibly with minimal size, namely, Ω is not cyclic for A(O) when O is small. Therefore,
we include the Reeh-Schlieder property for sufficiently large O to the axioms.

It is not an easy task to construct a Haag-Kastler net, especially the infinite family of von
Neumann algebras {A(O)}, but in some situations it can be reduced to a single von Neumann
algebra associated with the wedge WR = {(a0, a1) : a1 > |a0|}. By a two-dimensional
Borchers triple (M, T,Ω) we mean a triple of a von Neumann algebraM on H, a unitary
representation T of R2 with joint spectrum in V + and a vector Ω (called the vacuum vector)
such that

• Ω is the unique (up to scalar) invariant vector under T (a).

• AdT (a)M⊂M for a ∈ WR.

• Ω is cyclic and separating for M.

It is immediate that if (A, U,Ω) is a Poincaré covariant Haag-Kastler net, then the triple
(A(WR), U |R2 ,Ω) is a Borchers triple. Conversely, if (M, T,Ω) is a Borchers triple, one can
construct a net as follows. Any double cone in two-dimensional spacetime is the intersection
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of two-wedges (WR + a) ∩ (WL + b) =: Da,b, where WL is the reflected (left-)wedge. Then
one constructs the net first for double cones by A(Da,b) := AdT (a)(M) ∩ AdT (b)(M′),

and then for a general region O by A(O) :=
(⋃

Da,b⊂OA(Da,b)
)′′

. It is easy to show that

this family A(O) satisfies isotony and locality. Furthermore, the representation T can be
extended by the Tomita-Takesaki theory to a representation U of the Poincaré group such
that (A, U) is covariant and Ω is still its fixed vector. The requirement that Ω should be
cyclic for sufficiently large O needs to be checked in examples. See [Lec15, Section 2].

2.2 The split property and nuclearity conditions

We say that an inclusion N ⊂M of von Neumann algebras is split if there is an intermediate
type I factor R, i.e., N ⊂ R ⊂M. If N andM are type III algebras on a separable Hilbert
spaceH, the split property has an immediate consequence on the relative commutant: N ′∩M
is nontrivial. Indeed, by identifying the intermediate type I factor R with B(K1)⊗ C1, this
inclusion is unitarily equivalent to N⊗C ⊂ B(K1)⊗M, whereM and N are type III factors,
hence we obtain N ′ ∩M ∼= N ′ ⊗M.

There are several sufficient conditions for the split property in terms of the modular
theory. Let Ω be a common cyclic and separating vector for N and M and ∆M be the
modular operator for M with respect to Ω. We say that the inclusion (N ⊂M,Ω) satisfies
the modular nuclearity condition if the map

N 3 x 7−→ ∆
1
4
MxΩ

is nuclear. The modular nuclearity condition implies the split property for N ⊂M [BDL90,

Propositions 1.1, 2.3]. Furthermore, if ∆
1
4
M∆

− 1
4
N is nuclear, where ∆N is the modular operator

for N with respect to Ω, the inclusion N ⊂M is said to satisfy the L2-nuclearity condition.
The L2-nuclearity implies the modular nuclearity [BDL07, Proposition 5.3], hence also the
split property.

One-dimensional case. Let us turn to conformal nets (A, U,Ω). The half-sided modular
inclusion A((1,∞)) ⊂ A((0,∞)) is never split (see the argument of [Buc74, P.292(b)]). Yet,
one can consider inclusions A(I) ⊂ A(Ĩ) with I ⊂ Ĩ.

Let us focus on the generator of rotations L0. It has a discrete spectrum, as the 2π-
rotation is trivial. If Tr e−sL0 < ∞ for some s, then the distal split property holds: namely,
if I ⊂ Ĩ with “conformal distance” `(I, Ĩ) > s, A(I) ⊂ A(Ĩ) is split [BDL07, Corollary 6.4].

Actually, for most of the examples of local Möbius covariant nets, a stronger property
holds: dim ker(L0 − n) grows asymptotically as eαn

ν
where 0 < ν < 1. In such a case,

e−sn · eαnν tends rapidly to 0, hence Tr e−sL0 <∞ for any s > 0.

Two-dimensional case. Let (M, T,Ω) be a two-dimensional Borchers triple. There is a
sufficient condition for Ω to be cyclic for double cone algebras A(D0,a) =M∩AdT (a)(M′)
[BDL90]: let ∆M be the modular operator for M with respect to Ω. For a ∈ WR, consider
the map

M3 x 7−→ ∆
1
4
MU(a)xΩ.
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If this map from M to H is nuclear, we say that the Borchers triple (M, U,Ω) satisfies the
modular nuclearity (for a), and then there is a type I factor Ra such that AdU(a)(M) ⊂
Ra ⊂ M [BDL90, Proposition 2.4], [BDL07, Proposition 5.2]. If AdU(a)(M) ⊂ M is split
for a sufficiently large a, then Ω is cyclic for A(D0,a) [Lec08, Section 2] (this statement is
only implicit there).

2.3 Free product of von Neumann algebras

Here we recall the free product construction in von Neumann algebras. Nowadays, free
product von Neumann algebras are usually understood in quite an abstract fashion based on
free independence, but a more constructive way starting with the notion of free products of
Hilbert spaces is appropriate in the context of AQFT. Hence we summarize an older approach
to free product von Neumann algebras.

Let K be a possibly infinite index set and {Hκ}κ∈K a family of Hilbert spaces with
distinguished unit vectors Ωκ ∈ Hκ. With a one-dimensional subspace CΩ and a unit vector
Ω, the free product (H,Ω) of these (Hκ,Ωκ), κ ∈ K, is defined by

H = CΩ⊕
⊕
n≥1

⊕
κj 6=κj+1
1≤j≤n−1

H◦κ1 ⊗̄ · · · ⊗̄ H
◦
κn with H◦κ := Hκ 	 CΩκ. (1)

Let us denote by PCΩ and PH◦κ the orthogonal projections onto CΩ and H◦κ, respectively. For
any given family {Tκ}κ∈K of bounded operators on Hκ (linear or antilinear), with norm ‖Tκ‖
not greater than 1, such that TκH◦κ ⊂ H◦κ, we use the symbol

Fκ∈KTκ := TΩ ⊕
⊕
n≥1

⊕
κj 6=κj+1
1≤j≤n−1

T ◦κ1 ⊗ · · · ⊗ T
◦
κn ∈ B(H) with T ◦κ := Tκ �H◦κ ,

where TΩ = 1C if Tκ’s are linear and TΩ = JC (the complex conjugation) if Tκ’s are antilinear
(according to the direct sum decomposition (1)) following [Voi85, §1.8]. When TκΩκ = Ωκ

and T ∗κΩκ = Ωκ (a stronger assumption than TκH◦κ ⊂ H◦κ), the resulting Fκ∈KTκ restores Tκ
as its restriction to Hκ = CΩ⊕H◦k ⊂ H and hence it is a common extension of the given Tκ.
For each κ ∈ K we have two normal representations λκ : B(Hκ) y H and ρκ : B(Hκ) y H
acting from the left and the right, respectively, as in [Voi85, §1.2], and they enjoy the following
commutation relation [Voi85, §1.3]: For any κ, κ′ ∈ K and T ∈ B(Hκ) and T ′ ∈ B(Hκ′) we
have

[λκ(T ), ρκ′(T
′)] = δκ,κ′(PCΩ + PH◦κ)λκ([T, T

′]) = δκ,κ′ρκ([T, T
′])(PCΩ + PH◦κ).

Define the unitary involution Z : H → H by ZΩ = Ω and

Z(ξ1 ⊗ · · · ξn) = ξn ⊗ · · · ⊗ ξ1 (in reverse order)

for any ξ1 ⊗ · · · ⊗ ξn ∈ H◦κ1 ⊗̄ · · · ⊗̄ H
◦
κn ⊂ H. As remarked in [Voi85, §1.7],

Zλκ(T ) = ρκ(T )Z (2)
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holds for every T ∈ B(Hκ). We will keep this notation throughout this paper. Let Mκ ⊆
B(Hκ), κ ∈ K, be von Neumann algebras such that each Ωκ is cyclic for Mκ. Then, it is
known, see [Voi85, Proposition 1.9] due to Voiculescu, that( ∨

κ∈K

λκ(Mκ)

)′
=
∧
κ∈K

λκ(Mκ)
′ =

∨
κ∈K

ρκ(M′
κ) (3)

on H, where only the second equality is nontrivial. Here the symbols
∨

and
∧

denote the
operation of generation as von Neumann algebra and the intersection operation, respectively.
Remark that Ω is cyclic for

∨
κ∈K λκ(Mκ) by construction. Moreover, by the above commuta-

tion relation, we see that Ω is separating for
∨
κ∈K λκ(Mκ), too, when every Ωκ is separating

for Mκ. The von Neumann algebra M =
∨
κ∈K λκ(Mκ) is a concrete and standard realiza-

tion of the so-called free product von Neumann algebra of the (Mκ, ωκ), κ ∈ K, where
the vector state ωκ constructed from Ωκ for every κ ∈ K. The vector state ω constructed
from Ω is called the free product state.

Abstractly, the free product (M, ω) =Fκ∈K(Mκ, ωκ) can be formulated by the follow-
ing four conditions:

• There exist normal injective ∗-homomorphisms λκ : Mκ → M, κ ∈ K, whose ranges
generate M as von Neumann algebra.

• ω ◦ λκ = ωκ for every κ ∈ K.

• The λκ(Mκ), κ ∈ K, are freely independent in (M, ω), that is,

ω(λκ1(x1) · · ·λκn(xn)) = 0 (4)

whenever xj ∈ Ker(ωκj) ∩Mκj with κj 6= κj+1 (1 ≤ j ≤ n− 1) and n ≥ 1.

• The GNS representation of M associated with ω is faithful.

It is fundamental that the modular automorphism σtM associated with ω can be determined
by the modular condition (the KMS condition with inverse temperature −1) as

σtM ◦ λκ = λκ ◦ σtMκ
(5)

for every κ ∈ K, where σtMκ
is the modular automorphism of Mκ associated with ωκ, see

[Bar95, Lemma 1][Dyk94, Theorem 1] (n.b. the proof of the latter essentially uses Voiculescu’s
computation of the S-operator in [Voi85, Lemma 1.8]). This formula for the modular auto-
morphisms immediately implies that the modular operator ∆M and the modular conjugation
JM with respect to Ω are computed as

∆it
M =Fκ∈K∆it

Mκ
, JM = Z(Fκ∈KJMκ) = (Fκ∈KJMκ)Z, (6)

where ∆Mκ and JMκ denote the modular operator and the modular conjugation forMκ with
respect to Ωκ.
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3 Free products of Half-sided modular inclusions

Let Nκ ⊂Mκ, κ ∈ K, be a (possibly infinite) family of inclusions of nontrivial von Neumann
algebras on Hilbert spaces Hκ. Assume that each inclusion admits a common cyclic and
separating unit vector Ωκ ∈ Hκ. We denote by ωκ the vector state obtained from Ωκ.

Let (H,Ω) be the free product of the (Hκ,Ωκ), κ ∈ K. Consider the free products
(M, ω) = Fκ∈K(Mκ, ωκ) and (N , ω) = Fκ∈K(Nκ, ωκ). As explained in Section 2.3, these
pairs are explicitly constructed asM =

∨
κ∈K λκ(Mκ) ⊇ N =

∨
κ∈K λκ(Nκ) and ω = 〈Ω, ·Ω〉

on H and Ω is a common cyclic and separating unit vector for N ⊆M.

As in (5), the modular automorphisms σtM and σtN ofM and N , respectively, associated
with ω are written as

σtM ◦ λκ = λκ ◦ σtMκ
, σtN ◦ λκ = λκ ◦ σtNκ ,

where σtMκ
and σtNκ denotes the modular automorphisms of Mκ and Nκ, respectively, asso-

ciated with ωκ. This description of the modular automorphisms immediately gives the next
Lemma.

Lemma 3.1. If σtMκ
(Nκ) ⊂ Nκ for all t ≥ 0 for all κ ∈ K, then σtM(N ) ⊂ N for all t ≥ 0.

Hence, when all the (Nκ ⊂Mκ,Ωκ) are half-sided modular inclusions, so is (N ⊂M,Ω).

We call the triple (N ⊂M,Ω) the free product of the (given) half-sided modular
inclusions (Nκ ⊂Mκ,Ωκ), κ ∈ K, and write (N ⊂M,Ω) =Fκ∈K(Nκ ⊂Mκ,Ωκ).

The computation of the modular automorphism σtM also enables us to prove the following:

Lemma 3.2. If N =M, then Nκ =Mκ for all κ ∈ K.

Proof. Let us fix κ ∈ K. By the formula of the modular automorphism σtN explained above,
there exists a ω-preserving conditional expectation E from N onto λκ(Nκ). By assumption,
we have the restriction of E to λκ(Mκ) ⊂M = N , which gives a faithful normal conditional
expectation from λκ(Mκ) onto λκ(Nκ). Hence Eκ := λ−1

κ ◦ E ◦ λκ gives a faithful normal
conditional expectation from Mκ onto Nκ. Observe that ωκ(Eκ(x)) = ωκ(λ

−1
κ (E(λκ(x)))) =

ω(E(λκ(x))) = ω(λκ(x)) = ωκ(x) for all x ∈ Mκ. Hence xΩκ ∈ MκΩκ 7→ Eκ(x)Ω ∈ NκΩκ

extends a unique orthogonal projection from [MκΩκ] onto [NκΩκ]. Since Ωκ is cyclic for Nκ,
we conclude that xΩκ = Eκ(x)Ωκ holds for every x ∈ Mκ. Since Ωκ is separating for Mκ,
we get Eκ = id, that is, Nκ =Mκ.

The above lemma actually says that if Nκ $ Mκ for some κ ∈ K, then N $ M. We
also remark that if the centralizers (Mκ)ωκ = C1 for all κ ∈ K, then Mω = C1 thanks to
[Bar95, Lemma 7] (also see the proof of [Ued11b, Lemma 2.1]).

In what follows, we denote by JNκ and JMκ the modular conjugation operators for Nκ
and Mκ, respectively, with respect to Ωκ. We also denote by JN and JM the modular
conjugation operators for N and M, respectively, constructed by Ω. Set Γκ := JNκJMκ for
every κ ∈ K as well as Γ := JNJM. Furthermore, it holds that σ4πn

Mκ
(Nκ) = Ad Γnκ(Nκ) and

σ4πn
M (N ) = Ad Γn(N ), see [Wie93, Corollary 4]
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Proposition 3.3. If Γnκ → PCΩκ weakly as n→∞ for all κ ∈ K, then Γn → PCΩ weakly as
n→∞. In particular, if σtMκ

is ergodic on on Nκ for every κ ∈ K, then σtM is ergodic on N ,
or equivalently, the canonical endomorphism γ := AdΓ is ergodic, i.e.,

⋂
n≥1 γ

n(M) = C1.

Proof. By construction we observe that JNκΩκ = JMκΩκ = Ωκ, and thus ΓκΩκ = Ωκ. Write
Γ◦κ := Γκ �H◦κ (which is well-defined) and observe by assumption that (Γ◦κ)

n → 0 weakly as
n→∞. By the fact (6), we obtain that

Γ = (Fκ∈KJMκ)Z Z(Fκ∈KJNκ) =Fκ∈KΓκ = 1⊕
⊕
n≥1

⊕
κj 6=κj+1
1≤j≤n−1

Γ◦κ1 ⊗ · · · ⊗ Γ◦κn .

Since all the Γ◦κ are unitary operators, it is not hard to see that each (Γ◦κ1 ⊗ · · · ⊗ Γ◦κn)n =
(Γ◦κ1)

n ⊗ · · · ⊗ (Γ◦κn)n → 0 weakly as n→∞, and thus Γn → PCΩ weakly as n→∞.
The latter assertion follows from the former thanks to [Lon84, Proposition 2.1, Corollary

2.2] and [Lon87, Remark 5.2] and the fact that σ4πn
M (N ) = Ad Γn(N ) and Ad Γ(M) ⊂ N .

Let us remark that the fact that M is a factor follows from [Ued11a, Theorem 3.4],
without the assumption of ergodicity.

One can also take the free product of the corresponding one-dimensional Borchers triples.
There one obtains an explicit construction of T and the factoriality and the ergodicity follow
from the uniqueness of Ω. As we will present the free product of Möbius covariant nets in
Section 4 and the construction will be similar, we omit it here.

The next proposition is a general assertion on free products of infinitely many copies of a
fixed pair (M0, ω0) of von Neumann algebra and faithful normal state, and a nontrivial von
Neumann subalgebra N0 ⊂M0. We emphasize that we do not assume that N0 is the range
of a faithful normal conditional expectation from M0 (indeed, when M0 and N0 come from
a local Möbius covariant net, such a conditional expectation does not exist, see Appendix
A). One of the keys in the proof below is the explicit use of the conditional expectation EK1

for a subset K1 of K and also it is an important point in the proof below that the analytic
approximation b of a need not stay in N in comparison to [DM16, Theorem 5.2]. The proof
below is motivated by [DDM14, Theorem 3.3].

Proposition 3.4. Let M0 be a von Neumann algebra equipped with a faithful normal state
ω0 and N0 ⊂ M0 a nontrivial von Neumann subalgebra. Assume that all (Nκ ⊂ Mκ, ωκ),
κ ∈ K, are copies of (N0 ⊂ M0, ω0), and moreover that the index set K is infinite. We set
N :=

∨
κ∈K λκ(N0) ⊂M, where (M, ω) =Fκ∈K(Mκ, ωκ). Then N ′ ∩M = C1, that is, the

inclusion N ⊂M is irreducible.

Proof. For any x ∈ N ′ ∩M the new element x − ω(x)1 still stays in N ′ ∩M. Hence it
suffices to prove that any x ∈ N ′ ∩M with ω(x) = 0 must be zero.

For any subset K1 ⊂ K, we define MK1 is the von Neumann subalgebra generated by
{λκ(M0)}κ∈K1 . By the definition of reduced free products, it is easy to see that MK1 and
MK\K1 are freely independent in (M, ω) (see [VDN92, Propositions 2.5.5(ii) and 2.5.7]).
Clearly, σtM(MK1) = MK1 for all t ∈ R, and hence Takesaki’s criterion guarantees that
there exists a unique ω-preserving conditional expectation EK1 :M→MK1 .
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Let K1 ⊂ K be an arbitrary finite subset. Then we can find κ′1 ∈ K \K1 since K is an
infinite set. Since N0 is nontrivial, one can also find a non-zero a ∈ N0 in such a way that
ω0(a) = 0.

We claim the following: for x and a as above, it holds that

λκ′1(a)EK1(x)Ω ⊥ EK1(x)λκ′1(a)Ω. (7)

Indeed, as remarked above, MK1 and MK\K1 are freely independent in (M, ω) (see (4)).
Remark that λκ′1(a) ∈ MK\K1 and ω(λκ′1(a)) = ω0(a) = 0. Observe that ω(EK1(x)) =
ω(x) = 0. Hence we have

〈λκ′1(a)EK1(x)Ω, EK1(x)λκ′1(a)Ω〉 = 〈Ω, EK1(x
∗)λκ′1(a

∗)EK1(x)λκ′1(a)Ω〉
= ω(EK1(x

∗)λκ′1(a
∗)EK1(x)λκ′1(a)) = 0

by free independence.
Let b ∈M0 be an arbitrary, σM0-analytic element. Then, as x ∈ N ′ ∩M, we have

0 = λκ′1(a)x− xλκ′1(a)

= λκ′1(a)(x− EK1(x)) + λκ′1(a)EK1(x)− (x− EK1(x))λκ′1(a)− EK1(x)λκ′1(a)

= λκ′1(a)(x− EK1(x)) + λκ′1(a)EK1(x)

− (x− EK1(x))λκ′1(a− b)− (x− EK1(x))λκ′1(b)− EK1(x)λκ′1(a)

and hence

EK1(x)λκ′1(a)Ω− λκ′1(a)EK1(x)Ω

= λκ′1(a)(x− EK1(x))Ω− (x− EK1(x))λκ′1(a− b)Ω− (x− EK1(x))λκ′1(b)Ω.

By (7), the vectors on the left-hand side are orthogonal. Thus we obtain that

‖λκ′1(a)EK1(x)Ω‖ ≤ ‖a‖ ‖(x− EK1(x))Ω‖+ 2‖x‖ ‖λκ′1(a− b)Ω‖+ ‖(x− EK1(x))λκ′1(b)Ω‖.

Since b is σM0-analytic, λκ′1(b) is also σM-analytic and

(x− EK1(x))λκ′1(b)Ω = JMλκ′1(σ
i/2
M0

(b)∗)JM(x− EK1(x))Ω.

Therefore, we get

‖λκ′1(a)EK1(x)Ω‖

≤ ‖a‖ ‖(x− EK1(x))Ω‖+ 2‖x‖ ‖λκ′1(a− b)Ω‖+ ‖σi/2
M0

(b)‖ ‖(x− EK1(x))Ω‖.

Observe that

‖λκ′1(a− b)Ω‖
2 = ω(λκ′1((a− b)

∗(a− b))) = ω0((a− b)∗(a− b)) = ‖(a− b)Ω0‖2

and that

‖λκ′1(a)EK1(x)Ω‖2 = ω(EK1(x)∗λκ′1(a
∗a)EK1(x))

= ω(λκ′1(a
∗a)) · ω(EK1(x)∗EK1(x)) (by free independence)

= ω0(a∗a) · ω(EK1(x)∗EK1(x))

= ‖aΩ0‖2 ‖EK1(x)Ω‖2.
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Consequently, we have obtained that

‖aΩ0‖ ‖EK1(x)Ω‖ ≤ ‖a‖ ‖(x− EK1(x))Ω‖+ 2‖x‖ ‖(a− b)Ω0‖+ ‖σi/2
M0

(b)‖ ‖(x− EK1(x))Ω‖.

Taking the limit as K1 ↗ K we get

‖aΩ0‖ ‖xΩ‖ ≤ 2‖x‖ ‖(a− b)Ω0‖, (8)

because the Jones projection eK1 associated with EK1 converges to the identity operator
thanks to MK1 ↗M as K1 ↗ K. One can easily see that the linear manifold of all bΩ0 of
σM0-analytic elements b ∈M0 is dense inH0. Hence the right-hand side of (8) can arbitrarily
be small, since b is arbitrary. Consequently, we get x = 0, since a is non-zero and also since
Ω0 and Ω are separating for M0 and M, respectively.

The next theorem is one of the main results of this paper, which is now a simple conse-
quence of Proposition 3.4.

Theorem 3.5. Let (N0 ⊂ M0,Ω0) be a half-sided modular inclusion with ergodic canonical
endomorphism. Then the free product (N ⊂ M,Ω) of infinitely many copies of (N0 ⊂
M0,Ω0) is a standard half-sided modular inclusion with ergodic canonical endomorphism
and trivial relative commutant.

Proof. This is a half-sided modular inclusion due to Lemma 3.1. By Proposition 3.3 the
canonical endomorphism of the resulting half-sided modular inclusion (N ⊂M,Ω) is ergodic.
Finally, Proposition 3.4 shows that N ′ ∩M = C1.

In this Theorem and Proposition 3.4, it is important that we take copies of the identical
inclusion N0 ⊂ M0. If we remove this condition, we find indeed an infinite family (Nκ ⊂
Mκ,Ωκ) whose free product has nontrivial relative commutant in Proposition 4.5. Such an
infinite family must be a little elaborated, and it is not enough that the relative commutants
N ′κ∩Mκ get larger as κ→∞. For example, if one just take a one-dimensional Borchers triple
(M0, T0,Ω0) and consider the shifted family (AdT0(aκ)(M0) ⊂M0,Ω0) where aκ →∞, all
such inclusions are actually unitarily equivalent to a fixed one (AdT0(1)(M0) ⊂ M0,Ω0)
(through unitaries ∆itκ

M0
with appropriate tκ, which preserve the vacuum Ω0) and their free

product has the trivial relative commutant by Theorem 3.5. The example in Proposition 4.5
avoids this problem by taking an explicitly non equivalent family. On the other hand, we do
not know whether there is a free product HSMI with nontrivial relative commutant, even if
the family is finite.

4 Free products of Möbius covariant nets

In this Section, we exploit the techniques in Möbius covariant nets in order to show that
inclusions of free product von Neumann algebras may have nontrivial relative commutant.

Let {(Aκ, Uκ,Ωκ)}κ∈K be a family of Möbius covariant nets, where K is an index set.
Thanks to the Reeh-Schlieder theorem [DLR01, Theorem 2.1(i)], the vacuum vector Ωκ is a
common cyclic and separating vector for all Aκ(I), I ∈ I. Let (H,Ω) = Fκ∈K(Hκ,Ωκ). As
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in Section 2.3, the free products (A(I), ω) = Fκ∈K(Aκ(I), ωκ), I ∈ I, are simultaneously
constructed as

A(I) :=
∨
κ∈K

λκ(Aκ(I)), ω = 〈Ω, ·Ω〉

in H. By construction, A := (A(I))I∈I satisfies the isotony. We remark that Ω is again
cyclic and separating for all A(I), I ∈ I, that is, Ω plays a role of the vacuum vector for the
family A. Let us consider U(g) := Fκ∈KUκ(g) for every g ∈ G, which is well-defined since
Uκ(g)Ωκ = Ωκ and Uκ is a unitary representation. It is not hard to see that g 7→ U(g) is a
unitary representation on H and fixes Ω. Here is an expected fact.

Proposition 4.1. The resulting (A = (A(I))I∈I , U,Ω) is a Möbius covariant net. It fails to
have locality if at least two of the nets Aκ are nontrivial. If all the given Aκ are local, then
A is twisted local: namely, the unitary involution Z in Section 2.3 commutes with U(g) and
satisfies ZA(I)Z = A(I ′)′.

Proof. A trivially satisfies the isotony. As remarked above, Ω plays a role of the vacuum
vector. If two of them are nontrivial, say κ1, κ2, then for nontrivial elements x1 ∈ Ak1(I1), x2 ∈
Aκ2(I2), λκ1(x1) and λκ2(x2) do not commute, therefore, locality is lost.

By the definition of the representations λκ and the construction of U(g), it is plain to see
that U(g)λκ(x)U(g)∗ = λκ(Uκ(g)xUκ(g)∗) for every x ∈ Mκ, κ ∈ K and g ∈ G. Hence we
obtain that

U(g)A(I)U(g)∗ =
∨
κ∈K

λκ(Uκ(g)Aκ(I)Uκ(g)∗) =
∨
κ∈K

λκ(Aκ(gI)) = A(gI)

for every g ∈ G and I ∈ I. Thus we have confirmed that A satisfies the Möbius covariance.
Since the representation Uκ fixes Ωκ, we have L0,κΩκ = 0 and thus may and do think of

L0,κ as a positive self-adjoint operator on H◦κ. By the construction of U(g) we see

lim
θ→0

1

iθ

(
U(R(θ))(ξ1 ⊗ · · · ⊗ ξn)− (ξ1 ⊗ · · · ⊗ ξn)

)
= (L0,κ1ξ1)⊗ ξ2 ⊗ · · · ⊗ ξn + ξ1 ⊗ (L0,κ2ξ2)⊗ · · · ⊗ ξn + · · ·

for every ξ1 ⊗ · · · ⊗ ξn ∈ H◦κ1 ⊗̄ · · · ⊗̄H
◦
κn ⊂ H with ξj ∈ D(L0,κj), the domain of L0,κj .

Consequently, the conformal Hamiltonian L0, i.e., the generator of θ 7→ U(R(θ)), acts on the
dense subspace of H◦κ1 ⊗̄ · · · ⊗̄H

◦
κn (algebraically) spanned by simple tensors ξ1 ⊗ · · · ⊗ ξn

with ξj ∈ D(L0,κj) and becomes

L0,κ1 ⊗ 1⊗ · · · ⊗ 1 + 1⊗ L0,κ2 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · ·1⊗ L0,κn ,

which is an essentially self-adjoint positive operator on H◦κ1 ⊗̄ · · · ⊗̄H
◦
κn ⊂ H (see [RS80,

Corollary of Theorem V.III.33]). Then it immediately follows that L0 is positive. Therefore,
we have confirmed that A satisfies the positivity of the energy. From this expression of L0,
it is also clear that Ω is the unique (up to scalar) invariant vector under eiθL0 .

Finally, the existence of the vacuum is immediate by the commutation relation for free
products (3), since we have known that Ωκ is a common cyclic and separating vector for all
Aκ(I), I ∈ I. Hence we have proved the first part.
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Assume that all Aκ are local. We first remark that Z commutes with ∆it
I := ∆it

A(I) and

U(g) for all I ∈ I, t ∈ R and g ∈ G. Thus it suffices, for the twisted locality, to confirm that
A(I ′)′ = ZA(I)Z for all I ∈ I. By the locality of the Aκ, κ ∈ K, we have Aκ(I ′) = Aκ(I)′

on Hκ (Haag duality) for all κ ∈ K and I ∈ I, see e.g. [DLR01, Proposition 2.9]. Hence, by
the facts (2),(3) for free products, we obtain that

A(I ′)′ =
( ∨
κ∈K

λκ(Aκ(I ′))
)′

=
∨
κ∈K

ρκ(Aκ(I ′)′)

=
∨
κ∈K

ρκ(Aκ(I)) =
∨
κ∈K

Zλκ(Aκ(I))Z = ZA(I)Z.
(9)

Hence we are done.

We may write

(A, U,Ω) =Fκ∈K(Aκ, Uκ.Ωκ) or simply A =Fκ∈KAκ

and call it the free product Möbius covariant net of the given (Aκ, Uκ,Ωκ), κ ∈ K. The next
assertion is a simple application of [HU16, Corollary B].

Proposition 4.2. For every κ ∈ K such that Hκ is not one-dimensional, there is no local
subnet 2 of A with the split property which is larger than Aκ.

Proof. Assume that B = (B(I))I∈I is a subnet with the split property such that Aκ(I) ⊆
B(I) ⊆ A(I) for every I ∈ I. Thanks to e.g. [DLR01, Proposition 3.1], B(I) must be
hyperfinite by the split property and Aκ(I) is of type III1 by [DLR01, Proposition 2.4(ii)],
in particular diffuse, and there is a faithful normal conditional expectation from A(I) onto
B(I) by the Bisognano-Wichmann property (n.b. the Möbius covariance of B is provided by
the same U) and Takesaki’s theorem [Tak03a, Theorem IX.4.2]. Hence [HU16, Corollary B]
shows that B(I) must sit inside Aκ(I).

We conjecture that the above statement still holds under assuming only locality on sub-
nets.

Let us consider the dual Möbius covariant net Â = (Â(I))I∈I defined by Â(I) := A(I ′)′

in H, see [DLR01, §2]. If all the given Aκ, κ ∈ K are local, then

Â(I) = A(I ′)′ = ZA(I)Z =
∨
κ∈K

ρκ(Aκ(I)),

as in (9). It is known that the observable net C = (C(I))I∈I with C(I) := A(I) ∩ Â(I) is
local (see [DLR01, Remark 2.8]). However, the observable net turns out to be trivial under
a natural requirement.

Proposition 4.3. If all the Aκ are local and two of them are nontrivial, then C(I) = C1 for
all I ∈ I.

2A subnet B of (A, U,Ω) is a family of von Neumann subalgebras (B(I))I∈I with B(I) ⊂ A(I) satisfying
the isotony and the Möbius covariance with respect to the same U .
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Proof. As we assume the uniqueness of the vacuum, by e.g. [DLR01, Propositions 2.3(ii) and
2.5] there exist κ1 6= κ2 ∈ K such that both Aκj(I), j = 1, 2, are type III1 factors for every
I ∈ I. Let I ∈ I be arbitrarily fixed. Since Aκj(I ′) is a type III1 factor, we can choose an
isometry sj ∈ Aκj(I ′) such that snj (snj )∗ → 0 weakly as n→∞. For each j = 1, 2 we observe
that

[λκj(s
n
j )∗, ρκj(s

n
j )] = (PCΩ + PH◦κj )λκj(1− s

n
j (snj )∗)→ PCΩ + PH◦κj

weakly as n → ∞. Hence PCΩ + PH◦κj falls into A(I ′) ∨ Â(I ′) for every j = 1, 2. Therefore,

we have
PCΩ = (PCΩ + PH◦κ1 )(PCΩ + PH◦κ2 ) ∈ A(I ′) ∨ Â(I ′) = C(I)′,

from which C(I)′ must be B(H) since Ω is cyclic for it. Hence we are done.

Actually, we need only that there exist κ1 6= κ2 ∈ K such that both Aκj(I), j = 1, 2, are
properly infinite for every I ∈ I and the uniqueness of the vacuum (the factoriality of Aκ(I))
is not essential.

Now let us move to the existence of inclusions of free product von Neumann algebras
with nontrivial relative commutant, which is our second main result. We take finitely many
Möbius covariant nets {Aκ}κ∈K with trace class property for all s > 0 and make the free
productFκ∈KAκ of them, which we denote by A. We lose locality through free product, but
the trace class property for sufficiently large s survives.

Theorem 4.4. If K is finite, and if Möbius covariant nets Aκ satisfy the trace class property,
then the free product net A satisfies the distal split property. In particular, for a pair I ⊂ Ĩ
such that the split inclusion holds, the relative commutant of the inclusion A(I) ⊂ A(Ĩ) of
free product von Neumann algebras is nontrivial. Moreover, A(I)′ ∩A(Ĩ) must be a type III1

factor.

Proof. It is enough to show that Tr e−sL0 <∞ for some s. We take s such that Tr e−sL
◦
0,κ <

ε < 1
|K|−1

, where L◦0,κ is the restriction of L0,κ on H◦κ: note that L0,κ has the eigenvalue 0
with multiplicity 1 by the uniqueness of the vacuum, while the contributions from the other
eigenvalues can arbitrarily be small as s gets larger. And note that K is finite, hence for a
sufficiently large s this condition is satisfied for all κ ∈ K.

Recall that the free product Hilbert space is given by

H = CΩ⊕
⊕
n≥1

⊕
κj 6=κj+1
1≤j≤n−1

H◦κ1 ⊗̄ · · · ⊗̄ H
◦
κn with H◦κ := Hκ 	 CΩκ.

Note that, for a fixed n, the Hilbert space is a direct sum of |K| ·(|K|−1)n−1 tensor products.
Accordingly, we can estimate

Tr e−sL0 ≤ 1 +
∑
n

εn|K| · (|K| − 1)n−1 = 1 +
|K|
|K| − 1

∑
n

εn(|K| − 1)n <∞,

as we chose ε < 1
|K|−1

.

It follows by [BDL07, Corollary 6.4] that A(I) ⊂ A(Ĩ) is split, hence its relative commu-
tant is again a nontrivial type III1 factor.
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Theorem 4.5. Let (A0, U0,Ω0) be a Möbius covariant net with the trace class property, let
K be a countably infinite set. We fix an interval Ĩ and take a sequence Iκ ⊂ Ĩ such that
the inner distances 3 satisfy `(Ĩ , Iκ) > sκ with

∑
κ(Tr e−sκL0,0 − 1) < 1, where L0,0 is the

conformal Hamiltonian for the net A0. Then the inclusion N ⊂ M of the free product von
Neumann algebras N = Fκ∈K(A0(Iκ),Ω0),M = Fκ∈K(A0(Ĩ),Ω0) has nontrivial relative
commutant.

Proof. This time we invoke the L2-nuclearity condition, namely, we are going to prove that

TM,N := ∆
1
4
M∆

− 1
4
N is of trace class, then the inclusion N ⊂M is split [BDL07, Propositions

5.2, 5.3].
Let ∆0,Ĩ ,∆0,Iκ be the modular operators of A0(Ĩ),A0(Iκ) with respect to Ω0, respectively.

As both ∆it
0,Ĩ
,∆it

0,Iκ
leave Ω0 invariant, we can naturally define ∆◦

0,Ĩ
,∆◦0,Iκ , their restriction

on H◦0. We know from [BDL07, Proposition 3.1] that ‖∆
1
4

0,Ĩ
∆
− 1

4
0,Iκ
‖1 = ‖e−sκL0,0‖1, where ‖ · ‖1

denotes the trace norm. Again, the eigenvalue 0 of L0,0 has multiplicity 1, and by assumption

1 >
∑

κ(‖e−sκL0,0‖1 − 1) =
∑

κ(Tr e−sκL0,0 − 1) =
∑

κ(‖(∆◦0,Ĩ)
1
4 (∆◦0,Iκ)−

1
4‖1) =: ε.

From their componentwise expressions, we know what TM,N looks like:

TM,N = ∆
1
4
M∆

− 1
4
N = 1⊕

⊕
n≥1

⊕
κj 6=κj+1
1≤j≤n−1

(∆◦
0,Ĩ

)
1
4 (∆◦0,Iκ1 )−

1
4 ⊗̄ · · · ⊗̄ (∆◦

0,Ĩ
)
1
4 (∆◦0,Iκn )−

1
4

Its trace norm can be estimated recursively in n: the contribution from n = 1 is exactly ε
above. The contribution from n+ 1 can be dominated by the contribution from n multiplied
by
∑

κ(∆
◦
0,Ĩ

)
1
4 (∆◦0,Iκ)−

1
4 , say, from the right (namely, any sequence κ1, · · ·κn+1 can be obtained

from a sequence κ1, · · ·κn by adding an element κn+1 to the right). Therefore, the total sum
is less than 1 +

∑
n ε

n = 1
1−ε <∞.

We emphasize that these Theorems contrast quite sharply with Proposition 3.4.

5 Free products of Borchers triples

As we recalled, to any two-dimensional Haag-Kastler net, one can associate a two-dimensional
Borchers triple. The simplest one is the so-called the free field net which we will review below,
but there are more important interacting nets ranging from the constructive QFT [GJ87] to
the recent operator-algebraic constructions [Lec08, Tan14, AL16]. Note also that there are
two-dimensional nets with trivial double cone algebras up to a given size [LL15], although
they are subnets of the free field net.

Given a family of Borchers triples, one can promote it to the free product. By argu-
ments parallel to those of Proposition 4.1 and Theorem 3.5, it is straightforward to show the
following.

3The inner distance `(Ĩ , Iκ) can arbitrarily be large if Iκ is sufficiently small, see [BDL07, Section 3.1] and
L0,0 has the eigenvalue 0 with multiplicity 1, hence such a sequence sκ exists.
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Proposition 5.1. Let {(Mκ, Tκ,Ωκ)}κ∈K be a family of two-dimensional Borchers triples on
Hilbert spaces {Hκ}κ∈K. Set

(H,Ω) :=Fκ∈K(Hκ,Ωκ), (M, ω) :=Fκ∈K(Mκ, ωκ) T (a) :=Fκ∈KTκ(a).

Then (M, T,Ω) is again a two-dimensional Borchers triple. Furthermore, if K is an in-
finite index set, and all these Borchers triples are identical, then the relative commutant
AdT (a)(M)′ ∩M is trivial for any a ∈ WR.

Yet, if the index set K is finite, or if (Mκ, Tκ,Ωκ)’s are not identical, AdT (a)(M)′ ∩M
might be nontrivial, and if so, one could construct a Haag-Kastler net.

Two-dimensional Borchers triples of the massive free field. In order to study closely
the (possible) physical properties of the resulting Borchers triple, we present explicitly the
simplest Borchers triple, coming from the free massive field. Our notations follow those of
[Lec03] (except for z(ψ), which is antilinear in ψ in our notation). The one-particle Hilbert
space with the mass m > 0 is given by H1 := L2(R, dθ) and the translation group acts by
(T1(a)ψ)(θ) = eipm(θ)·aψ(θ), where pm(θ) := (m cosh θ,m sinh θ), and for the Lorentz metric
we use the convention a · b = a0b0 − a1b1. We introduce the symmetrized Hilbert space
H :=

⊕
PnH⊗n1 , where Pn is the projection onto the symmetric subspace.

Let z† and z be the creation and annihilation operator, namely, (z†(ψ)Ψ)n =
√
nPn(ψ ⊗

Ψn−1) for vectors with finite particle number Ψ = (Ψn),Ψn ∈ PnH⊗n. The annihilation
operator is the adjoint z(ψ) = z†(ψ)∗. The (real) free field φ is defined by

φ(f) := z†(f+) + z(J1f
−), f±(θ) =

1

2π

∫
d2a f(a)e±ipm(θ)·a,

where f is a test function of the Schwartz class S (R2) and J1ψ(θ) = ψ(θ). Our von Neumann
algebra is

M := {eiφ(f) : supp f ⊂ WR}′′.
The translation on the full space is the second quantized representation T (a) := Γ(T1(a))
and there is the Fock vacuum vector Ω ∈ H. Then (M, T,Ω) is a Borchers triple and satisfies
the modular nuclearity condition for any a ∈ WR [BL04, Section 4].

Attempts towards the intersection. Let (Mκ, Tκ,Ωκ), κ = 1, 2 be two copies of the
free field Borchers triple. We will put the index κ to all the objects to distinguish these
copies. We saw in Section 4 that the trace class condition and the L2-nuclearity condition in
Möbius covariant nets are preserved under finite free products, at the cost of a finite distance.
Let us take two copies of the massive free field and consider their free product. Below are
some standard ways to prove the nontriviality of the intersection AdT (a)(M)′ ∩M, which
unfortunately do not work.

• The trace class property does not make sense in two dimensions.

• The L2-nuclearity condition amounts to compute the operator ∆
1
4
M∆

− 1
4
N , where N =

AdT (a)(M). In the two-dimensional situation this is a multiplication operator (of θ’s),
hence it cannot be nuclear.
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• At first sight, there could be two ways to attempt to prove modular nuclearity. One
is, by noting that the tensor product net satisfies the modular nuclearity condition, to
consider the map λκ1(x1)λκ2(x2) · · ·λκn(xn) 7−→ x1 ⊗ x2 ⊗ · · · ⊗ xn. We are unable to
carry this out because the map cannot be shown to be continuous in norm. The other
is to mimic the proof of [Lec08]. This is obstructed as there is no symmetry in, e.g.
vectors such as λκ1(z

†
1(f+))λκ2(z

†
2(g+))Ω considered as a two-variable function, and the

core analytic continuation cannot be obtained (c.f. [Lec08, Section 4]).

• Note thatM is full and hence not hyperfinite [Ued11a, Theorem 4.1]. Therefore, when
we consider the inclusions AdT (a)(M) ⊂M, the split property must fail for small a.

• Even though each (Mκ, Tκ,Ωκ) has the split property, namely there are type I factors
Rκ,a such that AdTκ(a)(Mκ) ⊂ Rκ,a ⊂M, one cannot directly obtain an intermediate
type I factor from those Rκ,a, c.f. [Tan14, Section 4.2], since no type I free product
factors can arise (see [Ued11a, Theorem 4.1]).

Two-particle S-matrix Although we do not know whether there is a corresponding Haag-
Kastler net, it is still possible to define the two-particle S-matrix of a Borchers triple. We
follow the approach of [BBS01, Section 3][Lec03, Section 4]. For simplicity, we take again
two copies of the free field Borchers triple (Mκ, Tκ,Ωκ), κ = 1, 2. As the free product von
Neumann algebra is generated by the components Mκ = {eiφκ(f) : supp f ⊂ WR}′′, we can
construct the asymptotic fields using unbounded fields φκ as follows.

For a test function f , its velocity support is defined by Γ(f) := {(1, p1/ω(p)) ∈ R2 : p ∈
supp f̃}, where f̃(p) := 1

2π

∫
d2a eip·af(a) and ω(p) =

√
p2

1 +m2. We say Γ(g) ≺ Γ(f) if
Γ(f) − Γ(g) ⊂ WR. If Γ(g) ≺ Γ(f), then it follows that supp f+ − supp g+ ⊂ R+. We also
introduce a family of time-depending functions

ft(a) :=
1

2π

∫
d2p f̃(p)ei(p0−ω(p)t−p·a).

Let us denote f+
κ = φκ(f)Ω, by identifying Hκ as subspaces CΩ⊕H◦κ of H and φ′κ(g) :=

Zφκ(g)Z. These operators can act on H naturally, by extending the actions λκ and ρκ′ to
unbounded operators. It holds that φκ(f)Ω = f+

κ = f+
κ,t = φκ(ft)Ω and φ′κ(g)Ω = g+

κ =
g+
κ,t = φκ(gt)Ω.

Let f and g be test functions as above and we assume further that their Fourier transforms
f̃ , g̃ are supported in some neighborhoods of the mass shell {(ω(p1), p1) ∈ R2}. Now we can
define the outgoing two-particle states by

(g+
κ′ × f

+
κ )out := lim

t→∞
φ′κ′(gt)φκ(ft)Ω,

(f+
κ × g+

κ′)out := lim
t→∞

φκ(ft)φ
′
κ′(gt)Ω.

As Γ(g) ≺ Γ(f), φκ(f) and φ′κ′(g) almost commute as t → ∞ (see [BBS01, Section 3] for
the precise statement) and we get the bosonic statistics (g+

κ′ × f+
κ )out = (f+

κ × g+
κ′)out. The

incoming two-particle states are similar: by exchanging the roles of φ• and φ′• and by noting
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that φ′κ(f) and φκ′(g) almost commute as t→ −∞:

(g+
κ′ × f

+
κ )in := lim

t→−∞
φκ′(gt)φ

′
κ(ft)Ω,

(f+
κ × g+

κ′)in := lim
t→−∞

φ′κ(ft)φκ′(gt)Ω,

and the two-particle S-matrix is defined by 4

S(g+
κ′ × f

+
κ )out = (g+

κ′ × f
+
κ )in.

It is easy to explicitly compute S. Indeed, when κ = κ′, the operators act on Hκ and Z
has no effect, therefore, the field operators are just the free field and we obtain (g+

κ ×f+
κ )out =

(g+
κ × f+

κ )in.
The case κ = 1, κ′ = 2 is more interesting. In the definition of (g+

κ′ × f+
κ )out above, the

right-hand side is the product of operators φκ(f), φ′κ′(g), acting from the left and the right,
respectively. Note also that 〈Ωκ, φκ(f)Ωκ〉 = 0 = 〈Ωκ′ , φκ′(g)Ωκ′〉. Therefore, we simply get

(g+
κ′ × f

+
κ )out = φ′κ′(g)φκ(f)Ω = f+ ⊗ g+ ∈ Hκ,1 ⊗Hκ′,1 ⊂ H◦κ ⊗H◦κ′ ,

where Hκ,1,Hκ′,1 are the one-particle Hilbert spaces. Note that supp f+ − supp g+ ⊂ R+,
and as Hk,1 = Hκ′,1 = L2(R), hence they can be regarded as a two-variable function ψ(θ1, θ2)
with suppψ ⊂ {(θ1, θ2) ∈ R2 : θ1 ≥ θ2}. It is also immediate that any L2-function with such
support can be obtained as the limit of linear combinations of scattering states. As for the
incoming state, we exchange the roles of φ• and φ′•, and

(g+
κ′ × f

+
κ )in = lim

t→−∞
φκ′(gt)φ

′
κ(ft)Ω = g+ ⊗ f+ ∈ Hκ′,1 ⊗Hκ,1,

again with supp f+− supp g+ ⊂ R+. Such two-particle scattering states span the subspace of
two-variable functions ψ(θ1, θ2), suppψ ⊂ {(θ1, θ2) ∈ R2 : θ1 ≤ θ2}. The action of S is then
simply the extension of S(g+ ⊗ f+) = f+ ⊗ g+.

To summarize,

Sκ,κ = 1 on Hκ,2 ⊂ H◦κ, κ = 1, 2,

Sκ,κ′ : Hκ,1 ⊗Hκ′,1 3 ψ(θ1, θ2) 7−→ ψ(θ2, θ1) ∈ Hκ′,1 ⊗Hκ,1,

where suppψ(θ1, θ2) ⊂ {(θ1, θ2) ∈ R2 : θ1 ≥ θ2}, κ 6= κ′.

Especially, the S-matrix is nontrivial and not asymptotically complete, i.e. not defined on
the whole two-particle space H1,2 ⊕H2,2 ⊕Hκ,1 ⊗Hκ′,1 ⊕Hκ′,1 ⊗Hκ,1, but only on a proper
subspace of it.
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A Absence of conditional expectation between local al-

gebras in Möbius covariant nets

Let (A, U,Ω) be a local Möbius covariant net on S1. It follows that A(I)’s are factors (from
the uniqueness of the vacuum). Let I1 ( I2 be an inclusion of intervals on S1. We show that
there is no normal faithful conditional expectation from A(I2) onto A(I1).

To show this by contradiction, let E be such a conditional expectation. Take a faithful
normal state ψ on A(I2) which is invariant under E (one can take a faithful normal state on
A(I1) and extend it to A(I2) by E). We may assume that it is a vector state represented by
a cyclic and separating vector Ψ thanks to the fact that every representation of a type III
factor is standard.

Now, by Takesaki’s theorem [Tak03a, Theorem IX.4.2], K := A(I1)Ψ is a proper subspace.
As A(I1) is a factor, and since A(I1) ∨ (A(I1)′ ∩ A(I2)) = A(I2) (conormality, [GLW98,
Theorem 1.6]), A(I1) and A(I1)′∩A(I2) are in a position of tensor product: this follows from
the fact that E(A(I1)′∩A(I2)) = C1 by factoriality, and that A(I1)∨(A(I1)′∩A(I2)) = A(I2)
spans the whole Hilbert space from Ψ. This is impossible, because A(I1)′ ∩ A(I2) contains
another local algebra A(I3) where I3 is an interval which has a boundary point in common
with I1 (I1 and I2 can have either one or no point of boundary in common, and either case one
can find I3). On the other hand, it is well known (e.g. [Buc74, P292, footnote]) that A(I1)
and A(I3) are not in the position of tensor product (split), hence we got a contradiction.

Even in higher dimensions, if one assumes the split property and that local algebras are
of type III1, which are quite generic (see e.g. [BDF87]), the following argument excludes the
possibility that there is a conditional expectation from A(O2) onto A(O1) for all local regions
O1 ⊂ O2. Indeed, by composing two such expectations, we may assume that O1 b O2,
and now there is an intermediate type I factor R such that A(O1) ⊂ R ⊂ A(O2). Now
the expectation restricts to R, which is impossible by a similar argument as above, since
R = A(O1) ∨ (R∩A(O1)′) because R is a type I factor, while A(O1) is of type III1.
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