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Abstract. We study w*-semicrossed products over actions of the free
semigroup and the free abelian semigroup on (possibly non-selfadjoint)
w*-closed algebras. We show that they are reflexive when the dynamics
are implemented by uniformly bounded families of invertible row oper-
ators. Combining with results of Helmer we derive that w*-semicrossed
products of factors (on a separable Hilbert space) are reflexive. Further-
more we show that w*-semicrossed products of automorphic actions on
maximal abelian selfadjoint algebras are reflexive. In all cases we prove
that the w*-semicrossed products have the bicommutant property if and
only if the ambient algebra of the dynamics does also.

1. Introduction

Reflexivity and the bicommutant property are closely related to invariant
subspaces problems. A w*-closed algebra A is reflexive if it coincides with
the algebra that leaves invariant the invariant subspaces of A. It is said
to have the bicommutant property if it coincides with its bicommutant A′′.
Von Neumann algebras are reflexive and have the bicommutant property,
however this seems to be too crude to be the prototype. Results are consid-
erably harder to get for nonselfadjoint algebras. For example A(∞) is always
reflexive but it may differ from (A(∞))′′, e.g. when A 6= A′′. Arveson [4]
also introduced a function β to measure reflexivity. An algebra A is hyper-
reflexive if β is equivalent to the distance function from A. A remarkable
result of Bercovici [7] asserts that every wot-closed algebra whose commu-
tant contains two isometries with orthogonal ranges is hyper-reflexive.

The reflexivity term is attributed to Halmos and it was first used by
Radjavi-Rosenthal [43]. It is considered as Noncommutative Spectral Syn-
thesis in conjunction with synthesis problems in commutative Harmonic
Analysis, and it offers a systematic way of reconstructing an algebra from a
set of invariant subspaces; see the excellent exposition of Arveson [5]. The
first result regarding reflexivity concerns the Hardy algebra of the disc and
it was proved by Sarason [45]. It inspired a great amount of subsequent
research, e.g. Radjavi-Rosenthal [44], including the seminal work of Arve-
son [3] on CSL algebras. Further examples include the important class of
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nest algebras [13], the Hp Hardy algebras examined by Peligrad [39], and
algebras of commuting isometries or tensor products with the Hardy alge-
bras studied by Ptak [42]. Algebras related to the free semigroup Fd+ were
examined in a number of papers by Arias and Popescu [2, 41], Davidson,
Katsoulis and Pitts [16, 18], Kennedy [32] and Fuller-Kennedy [19]. In far
more generality, free semigroupoid algebras were also tackled by Kribs-Power
[33]. Representations of the Heisenberg semigroup were recently studied by
Anoussis-Katavolos-Todorov [1].

Algebras related to dynamical systems (sometimes appearing as “analytic
crossed products” in older papers) were considered by McAsey-Muhly-Saito
[37], Katavolos-Power [31] and Kastis-Power [30]. One-variable systems
were further examined by the second author [24]. His work was extended
by Helmer [22] to the much broader context of Hardy algebras of W*-
correspondences in the sense of Muhly-Solel [38], and by Peligrad [40] to
flows on von Neumann algebras. Essential properties of the algebras of [24]
were explored by Hasegawa [21].

The term of “analytic crossed products” has now been replaced by that of
“semicrossed products”. In the last fifty years there has been a systematic
approach, especially for their norm-closed variants. The list of references is
substantially long to be included here and the reader may refer to [15]. We
follow the work of the second author with Peters [28] and with Davidson
and Fuller [14] and we interpret a semicrossed product as an algebra densely
spanned by generalized analytic polynomials subject to a set of covariance
relations. From the study in [14] it appears that semicrossed products over
Fd+ and Zd+ are the most tractable as the semigroups are finitely generated.
Therefore it is natural to examine their w*-closed variants, i.e. the w*-
semicrossed products in the sense of [24].

Additional motivation comes from the recent results of Helmer [22]. An
application of his results shows reflexivity of semicrossed products of Type
II or III factors over Fd+. With some modifications the arguments of [22]

apply for Type II or III factors over Zd+. Here we wish to conclude this pro-
gramme by considering endomorphisms of B(H). Thus we focus on actions
of Fd+ or Zd+ such that each generator is implemented by a Cuntz family.
However we do not restrict just on B(H). There exists a plethora of dynam-
ics implemented by Cuntz families appearing previously in the works of Laca
[35], Courtney-Muhly-Schmidt [10] and the second author with Peters [28].
They arise naturally and form generalizations of the Cuntz-Krieger odome-
ter (Examples 3.5).

We underline that our setting accommodates Zd+-actions where the gen-
erators αi are implemented by unitaries but those may not lift to a unitary
action of Zd+, i.e. the unitaries implementing the actions may not commute.
For example any two commuting automorphisms over B(H) are implemented
by two unitaries that satisfy a Weyl’s relation and may not commute (see
Example 3.10). By using results of Laca [35] we are able to determine when
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an automorphism of B(H) commutes with specific endomorphisms induced
by two Cuntz isometries (see Examples 3.12 and 3.13).

Our main results on reflexivity appear in Corollaries 5.3 and 5.12 and are
summarized in the following statement. If ni is the multiplicity of the Cuntz
family implementing the i-th generator of the action then we define

N :=
d∑
i=1

ni for Fd+-systems and M :=
d∏
i=1

ni for Zd+-systems

for the capacity of the systems.

Theorem 1.1 (Corollary 5.3, Corollary 5.12). Let α be an action of Fd+ or

Zd+ on A such that each generator of α is implemented by a Cuntz family. If
the capacity of the system is greater than 1 then the resulting w*-semicrossed
products are (hereditarily) hyper-reflexive. If the capacity of the system is 1
and A is reflexive then the resulting w*-semicrossed products are reflexive.

In fact we manage to tackle actions implemented by invertible row opera-
tors that satisfy a uniform bound hypothesis (Theorem 5.2, Theorem 5.11).
We term these as uniformly bounded spatial actions.

The strategy we follow for Fd+-systems is to realize the w*-semicrossed
product as a subspace of B(H)⊗LN (Theorem 5.1). Here LN denotes the
free semigroup algebra generated by the Fock representation for the capacity
N of the system. Notice that even when d = 1 we manage to pass to (a
subspace of) the tensor product B(H)⊗Ln1 . When N ≥ 2, B(H)⊗LN is
hyper-reflexive and has property A1(1) by [7, 17]. Hence by results of Kraus-
Larson [29] and Davidson [12] it follows that B(H)⊗LN is hereditarily
hyper-reflexive. When N = 1 then the result follows from [24]. For the
Zd+-cases we decompose the w*-semicrossed product along the directions
(Proposition 3.16) and apply similar arguments for the last factor of such a
decomposition.

The passage inside B(H)⊗LN relies on the strange phenomenon that
every system on B(H) given by a Cuntz family of multiplicity ni is equivalent
to the trivial action of Fni+ on B(H). This was first observed by the second
author with Katsoulis [26] and with Peters [28]. Surprisingly there is a
strong connection with the fact that module sums over the Cuntz algebra
do not attain a unique basis. Gipson [20] attacks this problem effectively
by introducing the notion of the invariant basis number.

In combination with [22] we encounter systems over any factor and auto-
morphic systems over maximal abelian selfadjoint algebras (Corollaries 5.4,
5.10, 5.14 and 5.17). It appears that the arguments of Helmer [22] treat a
wider class of dynamical systems. We include this information in Theorems
5.9 and 5.16. Alongside this we translate his reflexivity proof in our context.

We mention that our reflexivity results can be acquired without referring
to hyper-reflexivity, when A is reflexive. To this end we provide a straight-
forward proof of that B(H)⊗Ld is reflexive (Proposition 2.8). The line of
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reasoning resembles to [24, 33] and may find applications to other settings,
e.g. algebras over weighted graphs of Kribs-Levene-Power [34].

By applying [29, 12] we get that the hyper-reflexivity constant in The-
orems 5.2 and 5.11 is at most 7 · K4 when N,M ≥ 2 (where K is the
uniform bound for the invertible row operators). However it can be de-
creased further to 3 · K4. This follows by analyzing their commutant. In
each case we identify the commutant with a twisted w*-semicrossed product
over the commutant (Theorems 4.1 and 4.4). Such algebras were studied
in the norm context by the second author with Peters [27]. They form
the nonselfadjoint analogues of the twisted C*-crossed product introduced
earlier by Cuntz [11]. The method of twisting for w*-closed algebras was
explored for automorphic Z+-actions in [24] and applies also for Zd+-actions
here. Twisting twice brings us back to the w*-semicrossed product over
the bicommutant. Therefore we obtain Corollaries 4.2 and 4.5 that can be
summarized in the following statement.

Theorem 1.2 (Corollary 4.2, Corollary 4.5). Let α be an action of Fd+ or Zd+
on a w*-closed algebra A. Suppose that each generator of α is implemented
by a Cuntz family. Then A has the bicommutant property if and only if any
(and thus all) of the resulting w*-semicrossed products does so.

For our analysis we use a generalized Fejér Lemma; details are given in
Section 2. For directly showing the reflexivity of B(H)⊗Ld we use finite
dimensional cyclic modules. In Section 3 we define the algebras that play the
role of the w*-semicrossed products. However the important feature in Fd+ is
the separation between left and right lower triangular operators. Obviously
this separation is redundant for Zd+. The results about the commutant and
reflexivity appear in Sections 4 and 5, respectively.

We underline that Fd+ and Zd+ are tractable due to their simple struc-
ture. Another interesting class of algebras is formed by systems over the
Heisenberg semigroup [1]. We leave this class for a subsequent project.
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2. Preliminaries

For d ∈ Z+ ∪ {∞} we write [d] := {1, . . . , d} so that [∞] = Z+. We
highlight that d is always finite in Zd+, but d ∈ {1, 2, . . . ,∞} in Fd+. We will
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write fµ for a symbol f and a word µ = µm . . . µ1 ∈ Fd+ to denote

fµ = fµm · · · fµ1 .
To avoid any ambiguity as to what f∗µ means we use the notation (fµ)∗.

We use capital letters for operators acting on tensor product Hilbert
spaces and small letters for operators acting on their factors. This reduces
considerably the usage of parentheses (which we omit) when the operators
act on elementary tensor vectors.

Sums over an infinite family of operators are taken in the strong oper-
ator topology with respect to the net over finite subsets. For the algebras
A1 ⊆ B(H1) and A2 ⊆ B(H2) we write A1⊗A2 for the w*-closure of their
algebraic tensor product in B(H1 ⊗H2).

2.1. Free semigroup operators. We endow Fd+ with a (left) partial or-
dering given by

ν ≤l µ if there exists z ∈ Fd+ such that µ = zν.

We want to keep track of whether we concatenate on the left or on the right
and we also consider the right version

ν ≤r µ if there exists z ∈ Fd+ such that µ = νz.

For a word µ = µk . . . µ1 we write µ := µ1 . . . µk for the reversed word of µ.
We define the left and right creation operators on `2(Fd+) by

lµew = eµw and rνew = ewν .

Notice here that rν is the product rν|ν| · · · rν1 and it is the reverse notation

of what is used in [18]. We write

Ld := alg
wot{lµ | µ ∈ Fd+} and Rd := alg

wot{rµ | µ ∈ Fd+}.
Fejér’s Lemma (that follows) implies that there is no difference in considering
the w*-topology instead, i.e.

Ld = alg
w*{lµ | µ ∈ Fd+} and Rd = alg

w*{rµ | µ ∈ Fd+}.
The Fourier co-efficients in the w*- and the wot-setting coincide.

Definition 2.1. For n ∈ Z+ ∪ {∞} we say that a row operator u =
[u1 . . . un . . . ] ∈ B(H ⊗ `2(n),H) is invertible if there exists a column op-
erator v = [v1 . . . vn . . . ]

t ∈ B(H,H⊗ `2(n)) such that

vu = IH⊗`2(n) and
∑
i∈[n]

uivi = IH.

In particular we have that viuj = δi,jIH and that ‖
∑

i∈F uivi‖ ≤ 1 for any
finite F ⊆ [n]. Indeed if PF is the projection on HF := span{ξ ⊗ ei | i ∈ F}
then

‖
∑
i∈F

uivih‖ = ‖
∑
i∈[n]

uiviPFh‖ = ‖PFh‖ = ‖h‖
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for all h ∈ HF . We will consider actions implemented by invertible row
operators subject to a uniform bound.

Definition 2.2. Let {ui}i∈[d] be a family of invertible row operators such
that ui = [ui,ji ]ji∈[ni]. We say that {ui}i∈[d] is uniformly bounded if the
operators

ûµm...µ1 = uµm · (uµm−1 ⊗ I[nµm ]) · · · (uµ1 ⊗ I[nµm ···nµ2 ])

and their inverses

v̂µ1...µm = (vµ1 ⊗ I[nµm ···nµ2 ]) · · · (vµm−1 ⊗ I[nµm ]) · vµm

are uniformly bounded with respect to µm . . . µ1 ∈ Fd+.

Notice that if ni = 1 for all i ∈ [d] then ûµm...µ1 = uµm . . . uµ1 = uµ. In
fact ûµm...µ1 is the row operator of all possible products of the uµi,jνi . Let
us exhibit this construction with an example for finite multiplicities.

Example 2.3. Let the row operators u1 and u2 with n1 = 2 and n2 = 3.
Then the operator û12 is given by

û12 = u1 · (u2 ⊗ In1) = [u1,1 u1,2] ·
[
[u2,1 u2,2 u2,3]

[u2,1 u2,2 u2,3]

]
= [u1,1u2,1 u1,1u2,2 u1,1u2,3 u1,2u2,1 u1,2u2,2 u1,2u2,3].

Similar remarks hold for Zd+. Following the notation of [14] we write i

for the elements in the canonical basis of Zd+ and

n = (n1, . . . , nd) =

d∑
i=1

nii

for the elements in Zd+. We use the same notation for elements in Rd.
The positive cone Zd+ induces a partial order in Zd in the sense that

n ≤ m if there exists z ∈ Zd+ such that m = z + n.

Due to commutativity there is no distinction between a left and a right
version. We define the creation operators in `2(Zd+) by lmew = em+w and
we write

H∞(Zd+) := alg
wot{lm | m ∈ Zd+}.

Fejér’s Lemma (that follows) for H∞(Zd+) implies that there is no difference
in considering the w*-topology instead of the weak operator topology.

2.2. Lower triangular operators. We fix a Hilbert space H and consider
H ⊗ `2(Fd+). Then B(H ⊗ `2(Fd+)) admits a point-w*-continuous action in-
duced by the unitaries

Usξ ⊗ ew = ei|w|sξ ⊗ ew for all ξ ⊗ ew,
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with s ∈ [−π, π]. For T ∈ B(H ⊗ `2(Fd+)) and m ∈ Z+ the m-th Fourier
coefficient is then given by

Gm(T ) :=
1

2π

∫ π

−π
UsTU

∗
s e
−imsds

where the integral is considered in the w*-topology of B(H⊗ `2(Fd+)) for the
Riemann sums. An application of Fejér’s Lemma implies that the Cesaro
sums

σn+1(T ) :=
n∑

k=−n
(1− |k|

n+ 1
)Gk(T )

converge to T in the w*-topology. For T ∈ B(H ⊗ `2(Fd+)) we write Tµ,ν ∈
B(H) for the (µ, ν)-entry given by

〈Tµ,νξ, η〉 = 〈Tξ ⊗ eν , η ⊗ eµ〉 for all ξ, η ∈ H.

Definition 2.4. An operator T ∈ B(H ⊗ `2(Fd+)) is a left lower triangular

operator if Tµ,ν = 0 whenever ν 6<l µ. In a dual way T ∈ B(H ⊗ `2(Fd+)) is
a right lower triangular operator if Tµ,ν = 0 whenever ν 6<r µ.

The next proposition shows that the Fourier co-efficients induce a graded
structure on lower triangular operators. For µ, ν ∈ Fd+ we write

Lµ := IH ⊗ lµ and Rν := IH ⊗ rν .

From now on we write pw for the projection of `2(Fd+) to ew.

Proposition 2.5. If T is a left lower triangular operator in B(H⊗ `2(Fd+))
then

Gm(T ) =

{∑
|µ|=m

∑
w∈Fd+

Lµ(Tµw,w ⊗ pw) if m ≥ 0,

0 if m < 0.

In a dual way if T is a right lower triangular operator in B(H ⊗ `2(Fd+))
then

Gm(T ) =

{∑
|µ|=m

∑
w∈Fd+

Rµ(Twµ,w ⊗ pw) if m ≥ 0,

0 if m < 0.

Proof. We will consider just the left case. The right case is proven in a
similar way. Fix ν, ν ′ ∈ Fd+ and ξ, η ∈ H. Then we have that

〈Gm(T )ξ ⊗ eν , η ⊗ eν′〉 =
1

2π

∫ π

−π
〈Tξ ⊗ eν , η ⊗ eν′〉 ei(−m−|ν|+|ν

′|)sds

= δ|ν′|,m+|ν|
〈
Tν′,νξ, η

〉
for all T ∈ B(H ⊗ `2(Fd+)). Hence 〈Gm(T )ξ ⊗ eν , η ⊗ eν′〉 = 0 when |ν ′| 6=
m+ |ν|. Suppose that T is in addition a left lower triangular operator.

First consider the case where m < 0. If |ν ′| = m + |ν| then |ν ′| < |ν|
and thus ν 6<l ν ′. But then we get that

〈
Tν′,νξ, η

〉
= 0 since T is left lower

triangular. Hence Gm(T ) = 0 when m < 0.
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Secondly for m ≥ 0 we have that
〈
Tν′,νξ, η

〉
= 0 whenever ν 6<l ν ′.

Consequently we obtain

〈Gm(T )ξ ⊗ eν , η ⊗ eν′〉 =

{〈
Tν′,νξ, η

〉
if ν ≤l ν ′ and |ν ′| − |ν| = m,

0 otherwise.

On the other hand we compute∑
|µ|=m

∑
w∈Fd+

〈Lµ(Tµw,w ⊗ pw)ξ ⊗ eν , η ⊗ eν′〉 =
∑
|µ|=m

δµν,ν′ 〈Tµν,νξ, η〉 =

=

{〈
Tν′,νξ, η

〉
if ν ≤l ν ′ and |ν ′| − |ν| = m,

0 otherwise,

and the proof is complete.

Similar conclusions hold for B(H⊗ `2(Zd+)) by considering the unitaries

Usξ ⊗ ew = ei
∑d
i=1 wisiξ ⊗ ew for all ξ ⊗ ew

for s ∈ [−π, π]d, and the induced Fourier transform on T ∈ B(H ⊗ `2(Zd+))
given by

Gm(T ) :=
1

(2π)d

∫
[−π,π]d

UsTU
∗
s e
−i

∑d
i=1misids for m ∈ Zd.

This follows by extending the arguments concerning the Fourier transform
on B(H⊗ `2) to the multi-dimensional case. Alternatively one may see Gm
as the composition of appropriate inflations of Gmi along the directions of
`2(Zd+). For T ∈ B(H ⊗ `2(Zd+)) we write Tm,n ∈ B(H) for the operator
given by 〈

Tm,nξ, η
〉

=
〈
Tξ ⊗ en, η ⊗ em

〉
.

Definition 2.6. An operator T ∈ B(H ⊗ `2(Zd+)) is a lower triangular
operator if Tm,n = 0 whenever n 6< m.

In analogy to Fd+ we write Lm = IH ⊗ lm which is used for the graded
structure induced by the Fourier co-efficients. Now we write pw for the

projection of `2(Zd+) to ew.

Proposition 2.7. If T is a lower triangular operator in B(H⊗`2(Zd+)) then

Gm(T ) =

{∑
w∈Zd+

Lm(Tm+w,w ⊗ pw) if m ∈ Zd+,
0 otherwise.
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Proof. Let T be a lower triangular operator. Then for n, n′ ∈ Zd+ and
ξ, η ∈ H we obtain〈

Gm(T )ξ ⊗ en, η ⊗ en′
〉

=

=
1

(2π)d

∫
[−π,π]d

〈
Tξ ⊗ en, η ⊗ en′

〉
e−i

∑d
i=1(mi+ni−n′i)sids

= δn′,m+n

〈
Tn′,nξ, η

〉
.

If n′ = m+n for m /∈ Zd+ then there exists an i = 1, . . . , d such that n′i < ni.
In this case n 6< n′ hence Tn′,n = 0 and thus Gm(T ) = 0. On the other hand

if m ∈ Zd+ then a straightforward computation gives∑
w∈Zd+

〈
Lm(Tm+w ⊗ pw)ξ ⊗ en, η ⊗ en′

〉
=
〈
Tm+n,nξ ⊗ em+n, η ⊗ en′

〉
= δn′,m+n

〈
Tm+n,nξ, η

〉
and the proof is complete.

2.3. Reflexivity and the A1-property. The reader is addressed to [9] for
full details. In short, let A be a unital subalgebra of B(H). It will be called
reflexive if it coincides with

Alg Lat(A) := {T ∈ B(H) | (1− P )TP = 0 for all P ∈ Lat(A)}.

Since A is unital we get that the Alg Lat(A) coincides with the reflexive
cover of A in the sense of Loginov-Shulman [36], i.e. with

Ref(A) := {T ∈ B(H) | Tξ ∈ Aξ for all ξ ∈ H}.

The algebra A is called hereditarily reflexive if every w*-closed subalgebra
of A is reflexive. It is immediate that (hereditary) reflexivity is preserved
under similarities.

A w*-closed algebra A ⊆ B(H) is said to have the A1 property if every
w*-continuous linear functional on A is given by a rank one functional. It
follows by [36] that a w*-closed algebra A is hereditarily reflexive if and
only if it is reflexive and has the A1 property. In particular A is said to
have the A1(1) property if for every ε > 0 and every w*-continuous linear
functional φ on A there are vectors h, g ∈ H such that φ(a) = 〈ah, g〉 and
‖h‖ ‖g‖ ≤ (1 + ε) ‖φ‖. The origins of the A1(1) property can be traced to
the work of Brown [8].

Davidson-Pitts [17] show that the wot-closure of the algebraic tensor
product of B(H) with Ld satisfies the A1(1) property, when d ≥ 2. Their
arguments depend on the existence of two isometries with orthogonal ranges
in the commutant; thus they also apply for the tensor product of B(H) with
Rd. It follows that the tensor products with respect to the weak operator
topology coincide with those taken in the weak*-topology.

Arias and Popescu [2] first showed that the algebras B(H)⊗Ld and
B(H)⊗Rd are reflexive. In fact they satisfy much stronger properties as
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we will soon present. Their results concern the wot-versions and d < ∞.
Let us give here a direct proof that treats the d =∞ case as well.

We require the following notation. For λ ∈ Bd and w = wm . . . w1 ∈ Fd+
we write

w(λ) = λwm · · ·λw1 .

In [2, Example 8] and [18, Theorem 2.6] it has been observed that the
eigenvectors of L∗d are of the form

νλ = (1− ‖λ‖2)1/2
∑
w∈Fd+

w(λ)ew for λ ∈ Bd.

Proposition 2.8. [2] The algebras B(H)⊗Ld and B(H)⊗Rd are reflexive.

Proof. We just show that B(H)⊗Ld is reflexive. Since the gauge action of
B(H ⊗ `2(Fd+)) restricts to a gauge action of B(H)⊗Ld, it suffices to show
that every Gm(T ) is in B(H)⊗Ld whenever T is in Ref(B(H)⊗Ld).

For ξ, η ∈ H and ν, µ ∈ Fd+ there is a sequence Xn ∈ B(H)⊗Ld such that

〈Tµ,νξ, η〉 = 〈Tξ ⊗ eν , η ⊗ eµ〉 = lim
n
〈Xnξ ⊗ eν , η ⊗ eµ〉 = lim

n
〈[Xn]µ,νξ, η〉

Taking ν 6<l µ gives that T is left lower triangular as every Xn is so. There-
fore it suffices to show that Tµz,z = Tµ,∅ for all z ∈ Fd+. Indeed, when this
holds, we can write

Gm(T ) =

{∑
|µ|=m Lµ(Tµ,∅ ⊗ I) if m ≥ 0,

0 if m < 0,

and thus Gm(T ) ∈ B(H)⊗Ld. For convenience we use the notation

T(µ) := L∗µGm(T ) =
∑
w∈Fd+

Tµw,w ⊗ pw.

We treat the cases m = 0 and m ≥ 1 separately.

• The case m = 0. Let z ∈ Fd+ and assume that {z1, . . . , z|z|} ⊆ [d′] for
some finite d′. If d <∞ then take d′ = d. Let λ ∈ Bd′ ⊆ Bd such that λi 6= 0
for every i ∈ [d′], and consider the vector

g =
∑
w∈Fd′+

w(λ)ew.

As g is an eigenvector for L∗d we have that (Lµ(x⊗ I))∗ξ⊗g is in the closure
of {yξ ⊗ g | y ∈ B(H)}. Therefore for ξ ∈ H there exists a sequence (xn) in
B(H) such that

(2.1) G0(T )∗ξ ⊗ g = lim
n
x∗nξ ⊗ g.
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Hence for η ∈ H we get

w(λ) 〈ξ, Tw,wη〉 = 〈ξ, Tw,wη〉 〈g, ew〉 = 〈G0(T )∗ξ ⊗ g, η ⊗ ew〉
(2.1)
= lim

n
〈x∗nξ ⊗ g, η ⊗ ew〉 = lim

n
〈ξ, xnη〉 〈g, ew〉

= w(λ) lim
n
〈ξ, xnη〉 .

Applying for w = ∅ and w = z we have that Tz,z = T∅,∅ as z(λ) 6= 0. Since
z was arbitrary we have that G0(T ) = T∅,∅ ⊗ I.

• The case m ≥ 1. We have to show that Tµz,z = Tµ,∅ for all z ∈ Fd+ and
|µ| = m. Notice that every µ of length m can be written as µ = qiω for some
i ∈ [d] and ω ≥ 1. By symmetry it suffices to treat the case where i = 1.

Hence in what follows we fix a word µ = q1ω of length m = |q|+ ω with

ω ≥ 1 and q = q|q| . . . q1 with q1 6= 1 or q = ∅.

We will use induction on |z|. To this end fix an r ∈ (0, 1). For w =
w|w| . . . w1 ∈ Fd+ we write

w(t) = wt . . . w1 for t = 1, . . . , |w|.

- For |z| = 1: First suppose that q 6= ∅. Let the vectors

v := e∅ +
∞∑
k=1

rke1k and lq(t)v = eq(t) +
∞∑
k=1

rkeq(t)1k for t = 1, . . . , |q|

and fix ξ ∈ H. As v is an eigenvector for L∗d we get that X∗ξ ⊗ lqv is in the
closure of

{xξ ⊗ v +

|q|∑
t=1

xtξ ⊗ lq(t)v | x, xt ∈ B(H), t = 1, . . . , |q|}

for all X ∈ B(H)⊗Ld. Hence there are sequences (xn) and (xt,n) in B(H)
such that

(2.2) Gm(T )∗ξ ⊗ lqv = lim
n
x∗nξ ⊗ v +

|q|∑
t=1

x∗t,nξ ⊗ lq(t)v.

Furthermore for |µ′| = m we have that (lµ′)
∗lqv = δµ′,µr

ωv. Now for all

η ∈ H and z ∈ Fd+ we get that

〈Gm(T )∗ξ ⊗ lqv, η ⊗ ez〉 = rω 〈ξ, Tq1ωz,zη〉 〈v, ez〉 .

Every lq(t)v is supported on q(t)1k with |q(t)1k| ≥ t ≥ 1 and so
〈
lq(t)v, e∅

〉
=

0 for all t. By taking the inner product with η⊗ e∅ in equation (2.2) we get

rω
〈
ξ, Tq1ω ,∅η

〉
= lim

n
〈ξ, xnη〉 .

On the other hand the only vector of length 1 in the support of lq(t)v is
achieved when t = 1 and k = 0, in which case it is q(1) 6= 1 by assumption.
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Therefore by taking inner product with η ⊗ e1 in equation (2.2) we obtain

rω+1 〈ξ, Tq1ω1,1η〉 = lim
n
r 〈ξ, xnη〉 .

Therefore 〈ξ, Tq1ω1,1η〉 = limn r
−ω 〈ξ, xnη〉 =

〈
ξ, Tq1ω ,∅η

〉
which implies that

Tq1ω1,1 = Tq1ω ,∅ when q 6= ∅.
On the other hand if q = ∅ then we repeat the above argument by substi-

tuting lq(t)v with zeroes to get again that T1ω1,1 = T1ω ,∅. In every case we
have that Tµ1,1 = Tµ,∅.

Next we show that Tµ2,2 = Tµ,∅. To this end let the vectors

w = e∅ +
∞∑
k=1

rke2k and lµ(s)w = eµ(s) +
∞∑
k=1

rkeµ(s)2k for s = 1, . . . ,m.

As above, for ξ ∈ H there are sequences (yn) and (ys,n) in B(H) such that

(2.3) Gm(T )∗ξ ⊗ lµw = lim
n
y∗nξ ⊗ w +

m∑
s=1

y∗s,nξ ⊗ lµ(s)w

since w is an eigenvector of L∗d. Notice here that (lµ′)
∗lµw = δµ′,µw when

|µ′| = m. Now for η ∈ H and z ∈ Fd+ we get

〈Gm(T )∗ξ ⊗ lµw, η ⊗ ez〉 = 〈ξ, Tµz,zη〉 〈w, ez〉 .

For z = ∅ we have that
〈
lµ(s)w, e∅

〉
= 0 for all s ∈ [m] and therefore equation

(2.3) gives 〈
ξ, Tµ,∅η

〉
= lim

n
〈ξ, ynη〉 .

For z = 2 we have that
〈
lµ(1)w, e2

〉
= 〈l1w, e2〉 = 0. Moreover we have that〈

lµ(s)w, e2

〉
= 0 when s ≥ 2. Therefore equation (2.3) gives

r 〈ξ, Tq1ω2,2e2〉 = lim
n
r 〈ξ, ynη〉 .

As a consequence we have 〈ξ, Tµ2,2e2〉 =
〈
ξ, Tµ,∅η

〉
and thus Tµ2,2 = Tµ,∅.

Applying for i ∈ {3, . . . , d} yields Tµi,i = Tµ,∅ for all i ∈ [d].

- Inductive hypothesis: Assume that Tq1ωz,z = Tq1ω ,∅ when |z| ≤ N . We will
show that the same is true for words of length N + 1.

Consider first the word 1z with |z| = N . Suppose that q 6= ∅ so that
q(1) 6= 1. We apply the same arguments for the vectors rzv and rzlq(t)v
with t = 1, . . . , |q|. Since rz commutes with every lν we get that

rz(rz)
∗(lν)∗rzv = rz(lν)∗v and rz(rz)

∗(lν)∗rzlq(t)v = rz(lν)∗lq(t)v.

As every Rz(Rz)
∗ commutes with every x ⊗ I for x ∈ B(H), we have that

for a fixed ξ ∈ H there are sequences (xn) and (xt,n) in B(H) such that

(2.4) Rz(Rz)
∗Gm(T )∗ξ ⊗ rzlqv = lim

n
x∗nξ ⊗ rzv +

|q|∑
t=1

x∗t,nξ ⊗ rzlq(t)v.

Arguing as above for η⊗ ez and η⊗ e1z yields 〈ξ, Tq1ω1z,1zη〉 = 〈ξ, Tq1ωz,zη〉.
Consequently Tq1ω1z,1z = Tq1ωz,z which is Tq1ω ,∅ by the inductive hypothesis.



FREE MULTIVARIATE W*-SEMICROSSED PRODUCTS 13

On the other hand if q = ∅ then we repeat the above arguments by
substituting the lq(t)v with zeroes. Therefore in any case we have that
Tµ1z,1z = Tµ,∅.

For 2z with |z| = N we take the vectors rzw and rzlµ(s)w for s ∈ [m].
Then for a fixed ξ ∈ H there are sequences (yn) and (ys,n) in B(H) such
that

(2.5) Rz(Rz)
∗Gm(T )∗ξ ⊗ rzlµw = lim

n
y∗nξ ⊗ rzw +

m∑
s=1

y∗s,nξ ⊗ rzlµ(s)w.

Taking inner product with η ⊗ ez and η ⊗ e2z gives that 〈ξ, Tµ2z,2zη〉 =
〈ξ, Tµz,zη〉. As η and ξ are arbitrary we then derive that Tµ2z,2z = Tµz,z
which is Tµ,∅ by the inductive hypothesis. Applying for i ∈ {3, . . . , d} in
place of 2 gives the same conclusion, thus Tµiz,iz = Tµ,∅ for all i ∈ [d] and

|z| = N . Induction then shows that Tµz,z = Tµ,∅ for all z ∈ Fd+.

Remark 2.9. Reflexivity of B(H)⊗H∞(Zd+) can be proven along the same
lines of reasoning by using the co-invariant subspaces [xξ ⊗ gi | x ∈ B(H)]
for the vectors

gi =
∑
k∈Z+

rkeki with r ∈ (0, 1) and i = 1, . . . , d.

In fact one can show that T is in B(H)⊗H∞(Zd+) if and only if T is lower

triangular and Gm = Lm(xm ⊗ I) for some xm ∈ B(H) whenever m ∈ Zd+.

The same holds for the tensor product of B(H) with H∞(Zd+) in the weak
operator topology, inducing just one type of spatial tensor product.

2.4. Hyper-reflexivity. Arveson [4] introduced a measurement for reflex-
ivity. For A ⊆ B(H) let the function β : B(H)→ R be given by

β(T,A) = sup{‖(1− P )TP‖ | P ∈ Lat(A)}.
A w*-closed algebra A ⊆ B(H) is called hyper-reflexive with distance con-
stant at most C if it satisfies

dist(T,A) ≤ Cβ(T,A) for all T ∈ B(H).

Therefore hyper-reflexive algebras are reflexive. Notice that β(T,A) ≤
dist(T,A) always holds.

It follows that hyper-reflexivity can also be a hereditary property. Kraus-
Larson [29] and Davidson [12] have shown that if A has the A1(1) property
and is hyper-reflexive with distance constant at most C then every w*-closed
subspace of A is hyper-reflexive with distance constant at most 2C + 1.

There is an alternative characterization of hyper-reflexivity through A⊥:
A is hyper-reflexive1 if and only if for every φ ∈ A⊥ there are rank one
functionals φn ∈ A⊥ such that φ =

∑
n φn and

∑
n ‖φn‖ < ∞; e.g. [5,

Theorem 7.4]. The hyper-reflexivity constant is at most K when we achieve

1 Reflexivity is equivalent to A⊥ just being the closed linear span of its rank one
functionals, e.g. [5, Theorem 7.1].
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n ‖φn‖ ≤ K · ‖φ‖ for φ =

∑
n φn ∈ A⊥ as in the representation above.

From this characterization it is readily verified that (hereditary) hyper-
reflexivity is preserved under similarities. Therefore if a similarity is given
by an invertible u then the hyper-reflexivity constant can change as much
as ‖u‖2 · ‖u−1‖2.

A remarkable result of Bercovici [7] asserts that a wot-closed algebra
is hyper-reflexive with distance constant at most 3 when its commutant
contains two isometries with orthogonal ranges. Consequently every w*-
closed subalgebra of B(H)⊗Ld is hyper-reflexive with distance constant at
most 3, when d ≥ 2, as its commutant contains IH⊗Rd.

3. Dynamical systems

We give the basic definitions of the w*-semicrossed products we will con-
sider. Henceforth we fix a w*-closed subalgebra A of B(H). Since we are
working towards reflexivity and the bicommutant property we will assume
that A is unital. We write End(A) for the unital w*-continuous completely
bounded endomorphisms of A, i.e. every α ∈ End(A) satisfies

‖α‖cb := sup{‖α⊗ idn‖ | n ∈ Z+} <∞.

3.1. Dynamical systems over Fd+. A (unital) w*-dynamical system de-
noted by (A, {αi}i∈[d]) consists of d (unital) αi ∈ End(A) such that

sup{‖αµ‖ | µ ∈ Fd+} <∞.
Given a w*-dynamical system (A, {αi}i∈[d]), we define two representations

π and π of A acting on K = H⊗ `2(Fd+) by

π(a)ξ ⊗ eµ = αµ(a)ξ ⊗ eµ and π(a)ξ ⊗ eµ = αµ(a)ξ ⊗ eµ.
We need this distinction as the αi induce both a homomorphism and an
anti-homomorphism of Fd+ in End(A). Note that π(a) and π(a) are indeed
in B(K) as the αµ are uniformly bounded.

Definition 3.1. Let (A, {αi}i∈[d]) be a w*-dynamical system. We define
the w*-semicrossed products

A×α Ld := spanw*{Lµπ(a) | a ∈ A, µ ∈ Fd+}
and

A×αRd := spanw*{Rµπ(a) | a ∈ A, µ ∈ Fd+}.

The pairs (π, {Li}di=1) and (π, {Ri}di=1) satisfy the covariance relations

π(a)Li = Liπαi(a) and π(a)Ri = Riπαi(a)

for all a ∈ A and i ∈ [d]. Indeed for every w ∈ Fd+ we have that

π(a)Liξ ⊗ ew = αiw(a)ξ ⊗ eiw = αwαi(a)ξ ⊗ eiw = Liπαi(a)ξ ⊗ ew
and similarly for the right version. Consequently A×α Ld and A×αRd are
(unital) algebras.
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The unitaries Us ∈ B(K) for s ∈ [−π, π] induce a gauge action on A×α Ld
since

Usπ(a)U∗s = π(a) and UsLµU
∗
s = ei|µ|sLµ.

Therefore Fejér’s Lemma implies that T ∈ A×α Ld if and only if Gm(T ) ∈
A×α Ld for all m ∈ Z. The same is true for A×αRd.
Proposition 3.2. Let (A, {αi}i∈[d]) be a unital w*-dynamical system. Then

an operator T ∈ B(K) is in A×α Ld if and only if it is left lower triangular
and

Gm(T ) =
∑
|µ|=m

Lµπ(aµ) for aµ ∈ A

for all m ∈ Z+. Similarly an operator T ∈ B(K) is in A×αRd if and only
if it is right lower triangular and

Gm(T ) =
∑
|µ|=m

Rµπ(aµ) for aµ ∈ A

for all m ∈ Z+.

Proof. We will just show the left case. First notice that if T = Lzπ(a)
with |z| = m then

∑
w∈Fd+

Tzw,w ⊗ pw = π(a). Moreover T is a left lower

triangular operator; indeed if ν 6≤l µ then

〈Lzπ(a)ξ ⊗ eν , η ⊗ eµ〉 = δzν,µ 〈αν(a)ξ, η〉 = 0.

Hence Gm(T ) =
∑
|µ|=m Lµπ(aµ) where az = a and aµ = 0 for µ 6= z.

Conversely suppose that T satisfies these conditions. Then for every finite
subset Fm of words of length m we can verify that

‖
∑
µ∈Fm

Lµπ(aµ)‖ = ‖
∑
µ∈Fm

Lµ(Lµ)∗Gm(T )‖ ≤ ‖Gm(T )‖

since the Lµ(Lµ)∗ are pairwise orthogonal projections. Therefore the net
(
∑

µ∈Fm Lµπ(aµ)){Fm:finite} is bounded and thus the sum is the w*-limit of

elements in A×α Ld. Hence every Gm(T ) is in A×α Ld and Fejér’s Lemma
completes the proof.

We turn our attention to dynamical systems (A, {αi}i∈[d]) where each
αi ∈ End(A) is induced by an invertible row operator ui, i.e.

(3.1) αi(a) =
∑
ji∈[ni]

ui,ji a vi,ji for all a ∈ A,

where vi is the inverse of ui.

Definition 3.3. We say that {αi}i∈[d] is a uniformly bounded spatial action
on a w*-closed algebra A of B(H) if every αi is implemented by an invertible
row operator ui and {ui}i∈[d] is uniformly bounded.

Proposition 3.4. If {αi}i∈[d] is a uniformly bounded spatial action on a
w*-closed algebra A of B(H) then (A, {αi}i∈[d]) is a unital w*-dynamical
system.
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Proof. Let µ = µm . . . µ1 be a word in Fd+. Referring to Definition 2.2 we
verify that

αµ(a) = αµm · · ·αµ1(a)

=
∑

jm∈[µm]

· · ·
∑

j1∈[µ1]

uµm,jm · · ·uµ1,j1avµ1,j1 · · · vµm,jm

= ûµm...µ1av̂µ1...µm

for all a ∈ A. Therefore ‖αµ‖cb ≤ ‖ûµ‖ · ‖v̂µ‖ so that αµ ∈ End(A). As

{ui}i∈[d] and {vi}i∈[d] are uniformly bounded by K we derive that ‖αµ‖ ≤ K2

for all µ, hence {αµ}µ∈Fd+ is uniformly bounded.

The prototypical examples of uniformly bounded actions are systems im-
plemented by Cuntz families.

Examples 3.5. Every (unital) endomorphism of B(H) is implemented by
a countable Cuntz family when H is separable. A proof can be found in
[6, Proposition 2.1]. However the Cuntz family is not uniquely defined as
shown by Laca [35].

Examples of endomorphisms of maximal abelian selfadjoint algebras im-
plemented by a Cuntz family have been considered by the second author
and Peters [28]. In particular let ϕ : X → X be an onto map on a mea-
sure space (X,m) such that: (i) ϕ and ϕ−1 preserve the null sets; and (ii)
there are d Borel cross-sections ψ1, . . . , ψd of ϕ with ψi(X) ∩ ψj(X) = ∅
such that ∪di=1ψi(X) is almost equal to X. Then it is shown in [28, Propo-
sition 2.2] that the endomorphism α : L∞(X) → L∞(X) induced by ϕ is
realized through a Cuntz family. Such cases arise in the context of d-to-1
local homeomorphisms for which an appropriate decomposition of X into
disjoint sets can be obtained [28, Lemma 3.1]. As long as the boundaries
of the components are null sets then the requirements of [28, Proposition
2.2] are satisfied. The prototypical example is the Cuntz-Krieger odometer,
where

X =
∏
k

{1, . . . , d} and m =
∏
k

m′

for the averaging measure m′, and the backward shift ϕ [28, Example 3.3].
The results of [28] follow the inspiring work of Courtney-Muhly-Schmidt

[10] on endomorphisms α of the Hardy algebra induced by a Blaschke prod-
uct b. In particular it is shown in [10, Corollary 3.5] that there is a Cuntz
family implementing α if and only if there is a specific orthonormal basis
{v1, . . . , vd} for H2(T) 	 b · H2(T). An important part of the theory in
[10] is the existence of a master isometry Cb, and the reformulation of the
problem in terms of W*-correspondences when combined with [35]. These
elements pass on to the context of [28] where further necessary and sufficient
conditions are given for a Cuntz family to implement an endomorphism of
L∞(X).
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Uniformly bounded actions extend to the entire B(H) and we will use the
same notation for their extensions. By applying ui,ji and vi,ji on each side
of equation (3.1) we also get

(3.2) αi(x)ui,ji = ui,jix and vi,jiαi(x) = xvi,ji

for every x ∈ B(H). The following proposition will be essential for our
analysis of the bicommutant.

Proposition 3.6. Let α be an endomorphism of B(H) induced by an in-
vertible row operator u = [ui]i∈[n] for some n ∈ Z+ ∪ {∞}. Then for any
x, y ∈ B(H) we have that

α(x)y = yα(x) if and only if x · vjyuk = vjyuk · x for all j, k ∈ [n]

where v = [vi]i∈[n] is the inverse of u.

Proof. Suppose first that α(x)y = yα(x). Then it follows that

xvjyuk = vjα(x)yuk = vjyα(x)uk = vjyukx

for all j, k ∈ [n]. Conversely if xvjyuk = vjyukx for all j, k ∈ [n] then
equation (3.2) yields

vjα(x)yuk = xvjyuk = vjyukx = vjyα(x)uk.

Therefore we obtain

α(x)y =
∑
j∈[n]

∑
k∈[n]

uj(vjα(x)yuk)vk =
∑
j∈[n]

∑
k∈[n]

uj(vjyα(x)uk)vk = yα(x)

and the proof is complete.

Remark 3.7. If α ∈ End(A) is induced by an invertible row operator u
then α extends to an endomorphism of A′′. Indeed by Proposition 3.6 we
have that vjyuk ∈ A′ for all y ∈ A′ since A′ ⊆ α(A)′. Hence if z ∈ A′′
then zvjyuk = vjyukz for all y ∈ A′. Applying Proposition 3.6 again yields
α(z) ∈ A′′.

Therefore given a w*-dynamical system (A, {αi}i∈[d]) where each αi is
implemented by an invertible row operator ui then we automatically have
the induced systems (B(H), {αi}i∈[d]) and (A′′, {αi}i∈[d]). Hence the w*-
semicrossed products

A×α Ld , A×αRd , B(H)×α Ld , B(H)×αRd , A′′×α Ld , A′′×αRd
are all well defined.

There are also two more algebras linked to our analysis. Suppose that
{αi}i∈[d] are endomorphisms of B(H) and each αi is induced by an invertible

row operator ui. Then we can form the free semigroup FN+ for N = n1 +
· · ·+ nd. Since we want to keep track of the generators we write

FN+ = 〈(i, j) | i ∈ [d], j ∈ [ni]〉 = ∗i∈[d]Fni+ .

We fix the operators

Vi,j = ui,j ⊗ li and Wi,j = ui,j ⊗ ri for all (i, j) ∈ ([d], [ni])
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and the representation ρ : B(H)→ B(H⊗ `2(Fd+)) with ρ(x) = x⊗ I.

Definition 3.8. With the aforementioned notation, we define the spaces

A′×u Ld := spanw*{Vi,jρ(y) | (i, j) ∈ ([d], [ni]), y ∈ A′}

and

A′×uRd := spanw*{Wi,jρ(y) | (i, j) ∈ ([d], [ni]), y ∈ A′}.

Notice here that for a word w = (µk, jµk) . . . (µ1, jµ1) ∈ FN+ we have

Vw = Lµkρ(uµk,jµk ) · · ·Lµ1ρ(uµ1,jµ1 ) = Lµk...µ1ρ(uw).

The generators satisfy a set of covariance relations which we will use to show
that the above spaces are algebras.

Proposition 3.9. Let (A, {αi}i∈[d]) be a w*-dynamical system such that
each αi is implemented by an invertible row operator ui. Then

A′×u Ld = alg
w*{Vwρ(y) | w ∈ FN+ , y ∈ A′}

and

A′×uRd = alg
w*{Wwρ(y) | w ∈ FN+ , y ∈ A′}

where FN+ = 〈(i, j) | i ∈ [d], j ∈ [ni]〉.

Proof. We prove the left version. The right version follows by similar argu-
ments. It suffices to show that ρ(y)Liρ(ui,j) is in A′×u Ld for all y ∈ A′ and
(i, j) ∈ ([d], [ni]). Suppose that vi = [vi,ji ]ji∈[ni] is the inverse of ui. Then
we can write

y =
∑
k∈[ni]

∑
l∈[ni]

ui,kvi,kyui,lvi,l =
∑
k∈[ni]

∑
l∈[ni]

ui,kyi,k,lvi,l

where yi,k,l := vi,kyui,l. Proposition 3.6 yields that yi,k,l is in A′ since y ∈
A′ ⊆ αi(A)′. Therefore we have that

yui,j =
∑
k∈[ni]

∑
l∈[ni]

ui,kyi,k,lvi,lui,j =
∑
k∈[ni]

ui,kyi,k,j

which gives that

ρ(y)Liρ(ui,j) = Liρ(y)ρ(ui,j) =
∑
k∈[ni]

Liρ(ui,kyi,k,j) =
∑
k∈[ni]

Vi,kρ(yi,k,j).

Recall that ‖
∑

k∈F ui,kvi,k‖ ≤ 1 for every finite subset F of [ni], hence

‖
∑
k∈F

ui,kyi,k,j‖ = ‖
∑
k∈F

ui,kvi,kyui,j‖ ≤ ‖y‖ ‖ui,j‖ .

Thus the net
(∑

k∈F ui,kyi,k,j
)
{F :finite} is bounded and the sum above con-

verges in the w*-topology. Hence the element ρ(y)Liρ(ui,j) is inA′×u Ld.
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3.2. Dynamical systems over Zd+. Similarly we define a (unital) w*-

dynamical system (A,α,Zd+) to consist of a semigroup action α : Zd+ →
End(A) such that

sup{
∥∥αn∥∥ | n ∈ Zd+} <∞.

Since the action is generated by d commuting endomorphisms αi it suffices to
have that sup{‖αni ‖ | n ∈ Z+} <∞ for all i ∈ [d]. Consequently commuting
spatial actions αi that are uniformly bounded in the sense of Definition 3.3
induce unital w*-dynamical systems.

Examples are given by actions implemented by a unitarizable semigroup
homomorphism of Zd+ in B(H). However our setting accommodates cases
where each αi may be implemented by an invertible element separately. This
gives us the opportunity to tackle more commuting actions. Let us illustrate
this with an example.

Example 3.10. Every pair of unitaries U, V that satisfy Weyl’s relation
UV = λV U for λ ∈ T obviously implements two commuting actions α1 =
adU and α2 = adV on B(H). In fact it is not difficult to show that every
action α : Z2

+ → Aut(B(H)) is indeed of this form: α1 and α2 will be im-
plemented by unitaries that commute modulo a λ ∈ T. This follows in the
same way as in [23, Theorem 9.3.3].

Remark 3.11. Results of Laca [35] give a general criterion for commuting
normal ∗-endomorphisms of B(H). Suppose that α, β ∈ End(B(H)) com-
mute and are given by

α(x) =
∑
i∈[n]

sixs
∗
i and β(x) =

∑
j∈[m]

tjxt
∗
j

for the Cuntz families {si}i∈[n] and {tj}j∈[m]. Therefore∑
i∈[n]

∑
j∈[m]

sitjxt
∗
js
∗
i =

∑
j∈[m]

∑
i∈[n]

tjsixs
∗
i t
∗
j .

Notice that on each side we sum up orthogonal representations of B(H) and
thus we can take the limits so that∑

(i,j)∈[n]×[m]

sitjxt
∗
js
∗
i =

∑
(i,j)∈[n]×[m]

tjsixs
∗
i t
∗
j .

We may see the families {sitj}(i,j)∈[n]×[m] and {tjsi}(i,j)×[n]×[m] as represen-
tations of the Cuntz algebra On·m. Applying [35, Proposition 2.2] gives a
unitary operator W = [w(k,l),(i,j)] in Mnm(C) such that

tjsi =
∑

(k,l)∈[n]×[m]

w(k,l),(i,j)sktl.

This criterion can be used to research the class of endomorphisms α that
commute with a fixed β. We show how this can be done in the next two
examples.
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Example 3.12. For this example fix H = `2(Z+) and let the Cuntz family

S1en = e2n and S2en = e2n+1.

Let U ∈ B(H) be a unitary and fix the induced actions

α(x) = UxU∗ and β(x) = S1xS
∗
1 + S2xS

∗
2 .

We will show that α and β commute if and only if

(3.3) U = λdiag{µφ(n) | n ∈ Z+} for λ, µ ∈ T,

where φ(n) is the sequence of the binary weights of n, i.e.

φ(n) = # of 1’s appearing in the binary expansion of n.

First suppose that α commutes with β. By Remark 3.11 there exists a
unitary

W =

[
a c
b d

]
∈M2(C)

such that

US1 = aS1U + bS2U and US2 = cS1U + dS2U.

Below we write

Uek =
∑
n

λ(k)
n en for all k ∈ Z+.

Since S1e0 = e0 we have∑
n

λ(0)
n en = Ue0 = US1e0

= aS1Ue0 + bS2Ue0

=
∑
n

aλ(0)
n e2n + bλ(0)

n e2n+1.

We thus obtain

(3.4) λ
(0)
0 = aλ

(0)
0 and λ

(0)
2n = aλ(0)

n , λ
(0)
2n+1 = bλ(0)

n for all n ≥ 1.

Therefore if λ
(0)
0 = 0 then Ue0 = 0 which is a contradiction to U being a

unitary. Hence a = 1 from the first equation and thus b = c = 0 and |d| = 1,
since W is a unitary. Thus we obtain

US1 = S1U and US2 = dS2U.

Consequently we get

U = US1S
∗
1 + US2S

∗
2 = S1US

∗
1 + dS2US

∗
2 .
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In addition, applying b = 0 in equality (3.4) gives that

λ
(0)
1 = bλ

(0)
0 = 0,

λ
(0)
2 = aλ

(0)
1 = 0,

λ
(0)
3 = bλ

(0)
2 = 0,

λ
(0)
4 = aλ

(0)
2 = 0,

...

and inductively we have that λ
(0)
n = 0 for all n ≥ 1. Hence Ue0 = λ

(0)
0 e0. In

particular we get that |λ(0)
0 | = 1 and therefore

U =

[
λ

(0)
0 0
0 ∗

]
when decomposing H = 〈e0〉 ⊕ 〈e0〉⊥. Now we apply for e1 to obtain

Ue1 = dS2US
∗
2e1 = dS2Ue0 = λ

(0)
0 de1

from which we get

λ
(1)
1 = λ

(0)
0 d and λ(1)

n = 0 for n 6= 1.

As λ
(1)
1 has modulus 1 we then get that

U =

λ(0)
0 0 0

0 λ
(0)
0 d 0

0 0 ∗


Now applying for e2 we get

Ue2 = S1US
∗
1e2 = S1Ue1 = λ

(0)
0 de2

and therefore

U =


λ

(0)
0 0 0 0

0 λ
(0)
0 d 0 0

0 0 λ
(0)
0 d 0

0 0 0 ∗

 .
Hence we have verified equation (3.3) for n = 0, 1, 2 with

λ = λ
(0)
0 and µ = d.

Now suppose that Uen = λµφ(n)en holds for every n < 2k with k 6= 0; then

Ue2k = S1US
∗
1e2k = S1Uek = λµφ(k)e2k

as φ(2k) = φ(k). On the other hand if Uen = λµφ(n)en holds for every
n < 2k + 1 then

Ue2k+1 = µS2US
∗
2e2k+1 = µS2Uek = λµφ(k)+1e2k+1

since
φ(2k + 1) = φ(2k) + 1 = φ(k) + 1.



22 R. T. BICKERTON AND E.T.A. KAKARIADIS

By using strong induction we have that U satisfies equation (3.3).
Conversely suppose that U is as in equation (3.3). We will show that the

induced actions α and β commute. First we consider x = ei ⊗ e∗j , the rank
one operator sending ej to ei. A direct computation shows that

αβ(x)en =

{
dφ(2i)−φ(2k)e2i 〈ek, ej〉 if n = 2k,

dφ(2i+1)−φ(2k+1)e2i+1 〈ek, ej〉 if n = 2k + 1.

On the other hand we have that

βα(x)en =

{
dφ(i)−φ(k)e2i 〈ek, ej〉 if n = 2k,

dφ(i)−φ(k)e2i+1 〈ek, ej〉 if n = 2k + 1.

Since

φ(2k)− φ(2i) = φ(k)− φ(i)

and

φ(2k + 1)− φ(2i+ 1) = φ(2k) + 1− φ(2i)− 1 = φ(k)− φ(i)

we obtain that αβ(x) = βα(x). Since α, β are sot-continuous (being imple-
mented by operators), passing to sot-limits yields that α and β commute.

Example 3.13. For this example we let H = `2(Z) and the Cuntz family

S1en = e2n and S2en = e2n+1.

Let U ∈ B(H) be a unitary and write `2(Z) = H1 ⊕H2 for

H1 = 〈en | n ≥ 0〉 and H2 = 〈en | n ≤ −1〉 .

We claim that the actions induced by U and {S1, S2} commute if and only
if U attains one of the forms

(3.5) U = λIH1 ⊕ µIH2 or U =

[
0 µw∗

λw 0

]
where λ, µ ∈ T and w ∈ B(H1, H2) is the unitary with wen = e−n−1.

If the actions commute then by Remark 3.11 there exists a unitary

W =

[
a c
b d

]
∈M2(C)

such that

US1 = aS1U + bS2U and US2 = cS1U + dS2U.

Below we write

Uek =
∑
n

λ(k)
n en for all k ∈ Z.
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Since S1e0 = e0 we obtain∑
n

λ(0)
n en = Ue0 = US1e0

= (aS1 + bS2)Ue0

=
∑
n

aλ(0)
n e2n + bλ(0)

n e2n+1.

Consequently

λ
(0)
2k = aλ

(0)
k and λ

(0)
2k+1 = bλ

(0)
k for all k ∈ Z.

If a = 1 then b = 0 as |a|2 + |b|2 = 1. Now, if a 6= 1 then λ
(0)
0 = 0 and

thus λ
(0)
n = 0 for all n ≥ 0. If, in addition, a 6= 0 then also b 6= 1 and so

λ
(0)
−1 = 0 which implies that λ

(0)
n = 0 for all n ≤ 0. This contradicts that U

is a unitary. Therefore if a 6= 1 then it must be that a = 0 in which case we
get that |b| = 1. However a symmetrical argument shows that if a = 0 and
b 6= 1 then Ue0 = 0 which is a contradiction. Therefore if a 6= 1 then a = 0
and b = 1. Consequently we have the following cases:

(i) a = 1, b = 0 or (ii) a = 0, b = 1.

• Case (i). When a = 1 and b = 0 then c = 0 and d ∈ T and therefore

US1 = S1U and US2 = dS2U

which we can rewrite as

U = S1US
∗
1 + dS2US

∗
2 .

Applying for e−1 we obtain∑
n

λ(−1)
n en = Ue−1 = dS2US

∗
2e−1 =

∑
n

dλ(−1)
n e2n+1.

Hence we get that

λ
(−1)
0 = 0

λ
(−1)
1 = dλ

(−1)
0 = 0

λ
(−1)
2 = 0

λ
(−1)
3 = dλ

(−1)
1 = 0

...

and



λ
(−1)
−1 = dλ

(−1)
−1

λ
(−1)
−2 = 0

λ
(−1)
−3 = dλ

(−1)
−1

λ
(−1)
−4 = 0
...

It follows that d = 1 otherwise Ue−1 = 0 which is a contradiction. Therefore
we derive that

U = S1US
∗
1 + S2US

∗
2 .

Hence we have that Ue0 = λe0 for λ = λ
(0)
0 and so Uen = λen when n ≥ 0

as in Example 3.12. On the other hand Ue−1 = µe−1 for µ = λ
(−1)
−1 and so

Uen = µen when n < 0 by similar computations. Thus it follows that

U = λIH1 ⊕ µIH2 for λ, µ ∈ T.
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• Case (ii). When a = 0 and b = 1 then c ∈ T and d = 0 in which case we
have

US1 = S2U and US2 = cS1U

or equivalently

U = S2US
∗
1 + cS1US

∗
2 .

By applying on e−1 we get
λ

(−1)
0 = cλ

(−1)
0 ,

λ
(−1)
1 = λ

(−1)
3 = · · · = 0,

λ
(−1)
2 = cλ

(−1)
1 = 0,

λ
(−1)
4 = λ

(−1)
6 = · · · = 0,

and


λ

(−1)
−1 = λ

(−1)
−3 = · · · = 0,

λ
(−1)
−2 = cλ

(−1)
−1 = 0,

λ
(−1)
−4 = λ

(−1)
−6 = · · · = 0.

If c 6= 1 then we would get that Ue−1 = 0 which is a contradiction. Therefore
we obtain that c = 1 and thus

(3.6) U = S2US
∗
1 + S1US

∗
2 .

In this case we have that

Ue0 = λe−1 and Ue−1 = µe0

for λ, µ ∈ T. We claim that

U =

[
0 µw∗

λw 0

]
for `2(Z) = H1 ⊕H2 and the unitary w ∈ B(H1, H2) with wen = e−n−1, i.e.

Uen =

{
λe−n−1 if n ≥ 0,

µe−n−1 if n ≤ −1.

Indeed this holds for n = 0,−1. Let n ≥ 0 and suppose it holds for every
0 ≤ k < n. If n = 2k then by the inductive hypothesis and equation (3.6)
we get

Uen = S2US
∗
1e2k = S2Uek = λS2e−k−1 = λe−2k−1 = λe−n−1

whereas if n = 2k + 1 we get

Uen = S1US
∗
2e2k+1 = S1Uek = λS1e−k−1 = λe−2k−2 = λe−n−1.

A similar computation holds for n ≤ −1. Strong induction then completes
the proof of the claim.

Conversely if a unitary U satisfies equation (3.5) then adU either fixes or
interchanges S1 and S2. In either case we get

US1U
∗yUS∗1U

∗ + US2U
∗yUS∗2U

∗ = S1yS
∗
1 + S2yS

∗
2

for all y ∈ B(H). Applying for y = UxU∗ yields that the actions induced by
U and {S1, S2} commute.
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Now we return to the definition of the semicrossed product for actions of
Zd+. On H ⊗ `2(Zd+) we define the representation π : A → B(H ⊗ `2(Zd+))

and the creation operators L : Zd+ → B(H⊗ `2(Zd+)) by

π(a)ξ ⊗ en = αn(a)ξ ⊗ en and Liξ ⊗ en = ξ ⊗ ei+n.

Notice here that due to commutativity of Zd+ we make no distinction between
right and left versions.

Definition 3.14. Let (A, α,Zd+) be a unital w*-dynamical system. We
define the w*-semicrossed product

A×α Zd+ := spanw*{Lnπ(a) | a ∈ A, n ∈ Zd+}.

Again we can directly verify the covariance relations by applying on the
elementary tensors. In analogy to Proposition 3.2 we have the following
proposition. For its proof we may again invoke a Fejér-type argument for
the appropriate Fourier co-efficients induced by {Us} with s ∈ [−π, π]d.

Proposition 3.15. Let (A, α,Zd+) be a unital w*-dynamical system. Then

an operator T ∈ B(H ⊗ `2(Zd+)) is in A×α Zd+ if and only if it is lower
triangular and

Gm(T ) = Lmπ(am) for am ∈ A
for all m ∈ Zd+.

Moreover we can proceed to a decomposition into subsequent one-dimen-
sional w*-semicrossed products.

Proposition 3.16. Let (A, α,Zd+) be a unital w*-dynamical system. Then

A×α Zd+ is unitarily equivalent to

(· · · ((A×α1 Z+)×α̂2
Z+) · · · )×α̂d

Z+

where α̂i = αi ⊗(i−1) id for i = 2, . . . , d.

Proof. We show how this decomposition works when d = 2; the general
case follows by iterating. Fix α1 and α2 commuting endomorphisms of A.
Then A×α1 Z+ acts on H⊗ `2 by

π(a)ξ ⊗ en = α(n,0)(a)ξ ⊗ en and L1ξ ⊗ en = ξ ⊗ en+1.

Now we define the w*-dynamical system (A×α1 Z+, α̂2,Z+) by setting

α̂2(π(a)) = πα2(a) and α̂2(L1) = L1.

To see that α̂2 defines a w*-continuous completely bounded endomorphism
on A×α1 Z+ first note that A×α1 Z+ is a w*-closed subalgebra of A⊗B(`2).
Since α2 is w*-continuous and completely bounded, for X ∈ A⊗B(`2) we
can obtain α2 ⊗ id(X) as the limit of

α2 ⊗ idn(PH⊗`2(n)X|H⊗`2(n)) ∈ A⊗Mn(C).

Hence α2⊗ id defines a w*-completely bounded endomorphism of A⊗B(`2)
and α̂2 is its restriction to the A×α1 Z+. The unitary U given by Uξ ⊗
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e(n,m) = ξ ⊗ en ⊗ em then defines the required unitary equivalence between

A×α Z2
+ and (A×α1 Z+)×α̂2

Z+.

4. The bicommutant property

4.1. Semicrossed products over Fd+. The duality between the left and
the right w*-semicrossed products is reflected in the bicommutant property.

Theorem 4.1. Let (A, {αi}i∈[d]) be a w*-dynamical system of a uniformly
bounded spatial action implemented by {ui}i∈[d]. Then we have that

(A×α Ld)′ = A′×uRd and (A′×u Ld)′ = A′′×αRd
and that

(A×αRd)′ = A′×u Ld and (A′×uRd)′ = A′′×α Ld.

Proof. Direct computations show that A′×uRd is in the commutant of
A×α Ld. For the reverse inclusion let T be in the commutant of A×α Ld.
As the Fourier transform respects the commutant it suffices to show that
Gm(T ) is in A′×uRd for all m ∈ Z+, and it is zero for all m < 0.

For µ, ν ∈ Fd+ and by using the commutant property we get that

〈Tµ,νξ, η〉 = 〈TLνξ ⊗ e∅, η ⊗ eµ〉
= 〈LνTξ ⊗ e∅, η ⊗ eµ〉 = 〈Tξ ⊗ e∅, η ⊗ l∗νeµ〉 .

However we have that (lν)∗eµ = 0 whenever ν 6≤r µ. Therefore T is right
lower triangular and thus

Gm(T ) =

{∑
|µ|=mRµT(µ) if m ≥ 0,

0 if m < 0,

for T(µ) =
∑

w∈Fd+
Twµ,w ⊗ pw = R∗µGm(T ). Moreover we have that∑

|µ|=m

Twµ,wξ ⊗ ewµ = Gm(T )Lwξ ⊗ e∅

= LwGm(T )ξ ⊗ e∅ =
∑
|µ|=m

Tµ,∅ξ ⊗ ewµ

which shows that T(µ) = ρ(Tµ,∅) for all µ of length m. Furthermore we have
that ∑

|µ|=m

Tµ,∅aξ ⊗ eµ = Gm(T )π(a)ξ ⊗ e∅

= π(a)Gm(T )ξ ⊗ e∅ =
∑
|µ|=m

αµ(a)Tµ,∅ξ ⊗ eµ

and therefore Tµ,∅a = αµ(a)Tµ,∅ for all a ∈ A. Let vi be the inverse of ui.
For µ = µm . . . µ1 and ji ∈ [nµi ] we set

yµ,j1,...,jm := vµ1,j1 · · · vµm,jmTµ,∅.
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Then yµ,j1,...,jm is in A′ since

a · vµ1,j1 · · · vµm,jmTµ,∅ = vµ1,j1 · · · vµm,jmαµm · · ·αµ1(a)Tµ,∅

= vµ1,j1 · · · vµm,jmαµ(a)Tµ,∅

= vµ1,j1 · · · vµm,jmTµ,∅ · a

for all a ∈ A. Now we can write

RµT(µ) =
∑

jm∈[nµm ]

· · ·
∑

j1∈[nµ1 ]

Rµρ(uµm,jm · · ·uµ1,j1)ρ(yµ,j1,...,jm)

=
∑

jm∈[nµm ]

· · ·
∑

j1∈[nµ1 ]

Wµm,jm · · ·Wµ1,j1ρ(yµ,j1,...,jm).

If F is a finite set of [nµm ] then

‖
∑
j1∈F

Wµm,jm · · ·Wµ1,j1ρ(yµ,j1,...,jm)‖ =

= ‖
∑
j1∈F

uµm,jm · · ·uµ1,j1vµ1,j1 · · · vµm,jmTµ,∅‖

≤ ‖uµm,jm · · ·uµ2,j2‖ ‖
∑
j1∈F

uµ1,j1vµ1,j1‖ ‖vµ2,j2 · · · vµm,jm‖
∥∥Tµ,∅∥∥

≤ K2
∥∥Tµ,∅∥∥

where K is the uniform bound for {ûµ}µ and {v̂µ}µ. Inductively we have
that the sums in the above form of RµT(µ) converge in the w*-topology and

therefore each RµT(µ) is in A′×uRd. As in Proposition 2.5 an application

of Fejér’s Lemma induces that T is in A′×uRd.
Next we show that (A′×u Ld)′ = A′′×αRd. Again it is immediate that

A′′×αRd is in the commutant of A′×u Ld. For the reverse inclusion let T
be in the commutant. Then T commutes with all Liρ(ui,ji). First let ν 6≤r µ
with ν = νk . . . ν1; then

〈Tµ,νuνk,jk . . . uν1,j1ξ, η〉 = 〈Tρ(uνk,jk . . . uν1,j1)ξ ⊗ eν , η ⊗ eµ〉
= 〈TLνρ(uνk,jk . . . uν1,j1)ξ ⊗ e∅, η ⊗ eµ〉
= 〈Lνρ(uνk,jk . . . uν1,j1)Tξ ⊗ e∅, η ⊗ eµ〉
= 〈ρ(uνk,jk . . . uν1,j1)Tξ ⊗ e∅, (Lν)∗η ⊗ eµ〉 = 0.

Therefore by summing over the ji we obtain

Tµ,ν =
∑

jk∈[nνk ]

· · ·
∑

j1∈[nν1 ]

Tµ,νuνk,jk . . . uν1,j1vν1,j1 . . . vνk,jk = 0

so that T is right lower triangular. We thus check the non-negative Fourier
co-efficients. Form = 0 we have that T(0) commutes with ρ(A′) and therefore
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every Tw,w is in A′′. Moreover for w ∈ Fd+ with w = wk . . . w1 we have that

Tw,wuwk,jk · · ·uw1,j1ξ ⊗ ew = G0(T )Lwρ(uwk,jk) · · · ρ(uw1,j1)ξ ⊗ e∅
= Lwρ(uwk,jk) · · · ρ(uw1,j1)G0(T )ξ ⊗ e∅
= uwk,jk · · ·uw1,j1T∅,∅ξ ⊗ ew.

Consequently we obtain

αw(T∅,∅) = αwk · · ·αw1(T∅,∅)

=
∑

jk∈[nwk ]

· · ·
∑

j1∈[nw1 ]

uwk,jk · · ·uw1,j1T∅,∅vw1,j1 · · · vwk,jk

= Tw,w
∑

jk∈[nwk ]

· · ·
∑

j1∈[nw1 ]

uwk,jk · · ·uw1,j1vw1,j1 · · · vwk,jk = Tw,w.

Thus we have that G0(T ) = π(T∅,∅). Now let m > 0 and use that Gm(T )
commutes with Liρ(ui,ji) to deduce that

T(µ)Liρ(ui,ji) = R∗µGm(T )Liρ(ui,ji) = R∗µLiρ(ui,ji)Gm(T ).

However for ξ ⊗ eν ∈ K we have that

(Rµ)∗Liρ(ui,ji)Gm(T )ξ ⊗ eν = ui,jiTνµ,νξ ⊗ (rµ)∗eiνµ = Liρ(ui,ji)T(µ)ξ ⊗ eν
which yields that T (µ) commutes with every Liρ(ui,ji). Furthermore for
y ∈ A′ we get that

T(µ)ρ(y) = (Rµ)∗Gm(T )ρ(y) = (Rµ)∗ρ(y)Gm(T )

= ρ(y)(Rµ)∗Gm(T ) = ρ(y)T(µ).

Therefore T(µ) is a diagonal operator in (A′×α Ld)′ and thus T(µ) = π(Tµ,∅)
by what we have shown for the zero Fourier co-efficients. This shows that
Gm(T ) is in A′′×αRd for all m ∈ Z+.

The other equalities follow in a similar way and are left to the reader.

Recall that A is inverse closed if A−1 ⊆ A. It is well known that every
commutant is automatically inverse closed.

Corollary 4.2. Let (A, {αi}i∈[d]) be a w*-dynamical system of a uniformly
bounded spatial action. Then the following are equivalent

(i) A has the bicommutant property;
(ii) A×α Ld has the bicommutant property;
(iii) A×αRd has the bicommutant property;
(iv) A⊗Ld has the bicommutant property;
(v) A⊗Rd has the bicommutant property.

If any of the items above hold then all algebras are inverse closed.

Proof. We just comment that the equivalence between items (i) and (ii)
follows by using (A×α Ld)′′ = A′′×α Ld from Theorem 4.1 and applying
the compression to the (∅, ∅)-entry.
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Corollary 4.3. (i) Let {αi}i∈[d] be a uniformly bounded spatial action on

B(H). Then the w*-semicrossed products B(H)×α Ld and B(H)×αRd are
inverse closed.

(ii) Let (A, {αi}i∈[d]) be an automorphic system over a maximal abelian

selfadjoint algebra (m.a.s.a.) A. Then the w*-semicrossed products A×α Ld
and A×αRd are inverse closed.

Proof. Notice that in both cases A = B′ for a suitable B and that B×u Ld
and B×uRd are well defined. The proof then follows by writing A×α Ld =
(B×uRd)′ and the symmetrical A×αRd = (B×u Ld)′.

4.2. Semicrossed products over Zd+. Recall the decomposition in Propo-
sition 3.16. By applying Theorem 4.1 recursively we obtain the following
theorem.

Theorem 4.4. Let (A, α,Zd+) be a unital w*-dynamical system. Suppose
that each αi is implemented by a uniformly bounded row operator ui. Then

(A×α Zd+)′ '
(
· · ·
(
(A′×u1 Z+)×û2Z+

)
· · ·
)
×ûdZ+

where ûi = ui ⊗(i−1) I`2 for i = 2, . . . , d.

Consequently we obtain the following corollaries. Their proofs follow as
in the free semigroup case and are omitted.

Corollary 4.5. Let (A, α,Zd+) be a unital w*-dynamical system. Suppose
that each αi is implemented by a uniformly bounded row operator ui. Then
the following are equivalent

(i) A has the bicommutant property;
(ii) A×α Zd+ has the bicommutant property;

(iii) A⊗H∞(Zd+) has the bicommutant property.

If any of the items above hold then all algebras are inverse closed.

Corollary 4.6. (i) Let (B(H), α,Zd+) be a w*-dynamical system such that
each αi is implemented by a uniformly bounded row operator ui. Then the
w*-semicrossed product B(H)×α Zd+ is inverse closed.

(ii) Let (A, α,Zd+) be an automorphic system over a maximal abelian self-

adjoint algebra (m.a.s.a) A. Then the w*-semicrossed product A×α Zd+ is
inverse closed.

5. Reflexivity

5.1. Semicrossed products over Fd+. Let (B(H), {αi}i∈[d]) be a unital
w*-dynamical system of a uniformly bounded spatial action such that each
αi is implemented by

ui = [ui,ji ]ji∈[ni].

We aim to show that B(H)×α Ld is similar to B(H)⊗LN for N =
∑

i ni.
Recall that we write

{(i, ji) | ji ∈ [ni], i ∈ [d]}
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for the generators of FN+ , i.e. we see FN+ as the free product ∗i∈[d]Fni+ . To
this end we define the operator

U : H⊗ `2(FN+ )→ H⊗ `2(Fd+)

by Uξ ⊗ e∅ = ξ ⊗ e∅ and

Uξ ⊗ e(µk,jk)...(µ1,j1) = uµ1,j1 · · ·uµk,jkξ ⊗ eµk...µ1 .

For words of length k we define the spaces

Kk := span{ξ ⊗ e(µk,jk)...(µ1,j1) | ξ ∈ H, (µi, ji) ∈ ([d], [nµi ])}.

The ranges of Kk under U are orthogonal and thus

‖U |Kk‖ = sup
|µ|=k

‖uµ1 · (uµ2 ⊗ I[nµ1 ]) · · · (uµk ⊗ I[nµ1 ···nµk−1
])‖ = sup

|µ|=k
‖ûµ‖

which is bounded (by the uniform bound for {ui}i∈[d]). As U = ⊕kU |Kk we
derive that U is bounded. In particular the operator U is invertible with

U−1 : H⊗ `2(Fd+)→ H⊗ `2(FN+ )

given by U−1ξ ⊗ e∅ = ξ ⊗ e∅ and

U−1ξ ⊗ eµk...µ1 =
∑

j1∈[nµ1 ]

· · ·
∑

jk∈[nµk ]

vµk,jk · · · vµ1,j1ξ ⊗ e(µk,jk)...(µ1,j1)

where vi is the inverse of ui. Notice that if K is the uniform bound for {ûµ}µ
and {v̂µ}µ then max{‖U‖ ,

∥∥U−1
∥∥} = K.

Theorem 5.1. Let (B(H), {αi}i∈[d]) be a w*-dynamical system of a uni-
formly bounded spatial action. Suppose that every αi is given by an in-
vertible row operator ui = [ui,ji ]ji∈[ni] and set N =

∑
i∈[d] ni. Then the

w*-semicrossed product B(H)×α Ld is similar to B(H)⊗LN .

Proof. We will show that the constructed U yields the required similarity.
To this end we apply for x ∈ B(H) to obtain

π(x)Uξ ⊗ e(µk,jk)...(µ1,j1) = αµ1 · · ·αµk(x)uµ1,j1 · · ·uµk,jkξ ⊗ eµk...µ1
= uµ1,j1 · · ·uµk,jkxξ ⊗ eµk...µ1
= Uρ(x)ξ ⊗ e(µk,jk)...(µ1,j1)

where we used that αµi(x)uµi,ji = uµi,jix. On the other hand we have that

LiUξ ⊗ e(µk,jk)...(µ1,j1) = Liuµ1,j1 · · ·uµk,jkξ ⊗ eµk...µ1
= uµ1,j1 · · ·uµk,jkξ ⊗ eiµk...µ1
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whereas

U
∑
ji∈[ni]

Li,jiρ(vi,ji)ξ ⊗ e(µk,jk)...(µ1,j1) =

= U
∑
ji∈[ni]

vi,jiξ ⊗ e(i,ji)(µk,jk)...(µ1,j1)

=
∑
ji∈[ni]

uµ1,j1 . . . uµk,jkui,jivi,jiξ ⊗ eiµk...µ1

= uµ1,j1 . . . uµk,jkξ ⊗ eiµk...µ1
since

∑
ji∈[ni]

ui,jivi,ji = I. Hence we obtain that

U−1LiU =
∑
ji∈[ni]

Li,jiρ(vi,ji) for all i ∈ [d].

Therefore the generators of B(H)×α Ld are mapped into B(H)⊗FN+ . We
need to show that the elements ρ(x) and U−1LiU also generate the elements

Li,ji for all (i, ji) ∈ ([d], [ni]).

Since every ui,ji is in B(H) we have that

U−1LiUρ(ui,ji) =
∑
ji∈[ni]

Li,jiρ(vi,ji)ρ(ui,ji) = Li,ji

and the proof is complete.

Theorem 5.2. Let (A, {αi}i∈[d]) be a w*-dynamical system of a uniformly
bounded spatial action. Suppose that every αi is given by an invertible row
operator ui = [ui,ji ]ji∈[ni] and set N =

∑
i∈[d] ni.

(i) If N ≥ 2 then every w*-closed subspace of A×α Ld or A×αRd is
hyper-reflexive. If K is the uniform bound related to {ui} then the hyper-
reflexivity constant is at most 3 ·K4.

(ii) If N = 1 and A is reflexive then A×α Ld = A×αRd = A×α Z+ is
reflexive.

Proof. If every αi is implemented by an invertible row operator ui then
(A, {αi}i∈[d]) extends to (B(H), {αi}i∈[d]) so that

A×α Ld ⊆ B(H)×α Ld ' B(H)⊗LN
by Theorem 5.1. If N ≥ 2 then every w*-closed subspace of B(H)⊗LN is
hyper-reflexive with distance constant at most 3 by [7]. As hyper-reflexivity
is preserved under taking similarities the proof of item (i) is complete. Item
(ii) follows by [24, Theorem 2.9].

Corollary 5.3. Let (A, {αi}i∈[d]) be a w*-dynamical system so that every
αi is given by a Cuntz family [si,ji ]ji∈[ni]. If N =

∑
i∈[d] ni ≥ 2 then every

w*-closed subspace of A×α Ld or A×αRd is hyper-reflexive with distance
constant at most 3.
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Corollary 5.4. Let (A, {αi}i∈[d]) be a system of w*-continuous automor-

phisms on a maximal abelian selfadjoint algebra A. Then A×α Ld and
A×αRd are reflexive.

Remark 5.5. When A is reflexive, we can have an independent proof of
reflexivity of A×α Ld that does not go through hyper-reflexivity. First note
that if an operator T is in Ref(A×α Ld) then T is left lower triangular and
Tµw,w ∈ Ref(A) for every µ,w ∈ Fd+. Indeed for ξ, η ∈ H and ν, ν ′ ∈ Fd+
there is a sequence Fn ∈ A×α Ld such that〈

Tν′,νξ, η
〉

= 〈Tξ ⊗ eν , η ⊗ eν′〉
= lim

n
〈Fnξ ⊗ eν , η ⊗ eν′〉 = lim

n

〈
[Fn]ν′,νξ, η

〉
.

Taking ν 6<l ν ′ gives that T is left lower triangular as all Fn are so. Taking
ν ′ = µν yields [Fn]µν,ν ∈ A and thus Tµν,ν ∈ Ref(A). Now if {αi}i∈[d] is a

uniformly bounded spatial action then T ∈ B(H)×α Ld. Therefore T is left
lower triangular and for m ∈ Z+ we have that Gm(T ) =

∑
|µ|=m Lµπ(Tµ,∅)

with Tµ,∅ ∈ Ref(A) = A.

Remark 5.6. Even though reflexivity of A directly implies reflexivity of
the w*-semicrossed products the converse does not hold.

For example suppose that each αi is implemented by a single invertible
ui. Then we can extend (A, {αi}i∈[d]) to the system (Ref(A), {αi}i∈[d]). If

d ≥ 2 then both A×α Ld and Ref(A)×α Ld are reflexive and

A×α Ld ⊆ Ref(A)×α Ld.
This inclusion is proper when A is not reflexive, e.g. for A = {aI + bE21 |
a, b ∈ C} in M2(C). In fact by taking the compression to the (∅, ∅)-entry
we see that A×α Ld = Ref(A)×α Ld if and only if A = Ref(A).

The reflexivity results extend to systems over any factor. This can be
achieved by following the ingenious arguments of Helmer [22]. Even though
these are originally presented in [22] for Type II or III factors they apply
as long as two basic properties are satisfied. We isolate these below.

Definition 5.7. An algebra A ⊆ B(H) is injectively reducible if there is a
non-trivial reducing subspace M of A such that the representations

a 7→ a|M and a 7→ a|M⊥
are both injective.

Definition 5.8. A w*-dynamical system (A, {αi}i∈[d]) is injectively reflexive
if: (i) A is reflexive; (ii) A is injectively reducible by some M ; and (iii) βν(A)
is reflexive for all ν ∈ Fd+ with

βν(a) =

[
a|M 0

0 αν(a)|M⊥

]
.

It is immediate that dynamical systems over Type II or Type III factors
are injectively reflexive.
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Theorem 5.9. [22, Theorem 3.18] If (A, {αi}i∈[d]) is an injectively reflexive

unital w*-dynamical system then A×α Ld and A×αRd are reflexive.

Proof. The left version is [22, Theorem 3.18] after translating from the
W*-correspondences terminology. To exhibit this we will show how the
right case can be shown in our context.

Fix T ∈ Ref(A×αRd). If m < 0 then Gm(T ) = 0 by Remark 5.5. If
m ≥ 0 then Tµ,∅ ∈ A by the same remark. Thus it suffices to show that

Tνµ,ν = αν(Tµ,∅) for every ν ∈ Fd+. By assumption let M be the subspace

that injectively reduces A. We henceforth fix a word ν ∈ Fd+ and we define
the subspaces of K

K0 := span{ξ ⊗ ew | ξ ∈M,w ∈ Fd+}

and

Kν := span{η ⊗ eνw | η ∈M⊥, w ∈ Fd+}.

Both K0 and Kν are invariant subspaces of A×αRd. If p is the projection
on K0⊕Kν then we have that Gm(T )p ∈ Ref((A×αRd)p). We will use the
unitary

U : pK → K : ξ ⊗ ew + η ⊗ eνw 7→ (ξ + η)⊗ ew.

A straightforward computation shows that

Uπ(a)pU∗ =
∑
w∈Fd+

(αw(a)|M + ανw(a)|M⊥)⊗ pw

and that URipU
∗ = Ri. In particular p is reducing for Ri and we get

UGm(T )pU∗ =
∑
|µ|=m

∑
w∈Fd+

Rµ(Twµ,w|M + Tνwµ,νw|M⊥)⊗ pw.

By taking compressions we thus have that the (µ, ∅)-entry of the opera-
tor UGm(T )pU∗ is in the reflexive cover of the (µ, ∅)-block of the algebra
Ref(U(A×αRd)pU∗). However the latter coincides with (the reflexive cover
of, and hence with) βν(A) defined above. Hence there is an a ∈ A such that

Tµ,∅|M + Tνµ,ν |M⊥ = a|M + αν(a)|M⊥ .

Since the restrictions to M and M⊥ are injective we derive that Tµ,∅ = a
and Tνµ,ν = αν(a) = αν(Tµ,∅), which completes the proof.

By combining Theorem 5.2 with Theorem 5.9 we get the next corollary.

Corollary 5.10. Let (A, {αi}i∈[d]) be a unital w*-dynamical system on a

factor A ⊆ B(H) for a separable Hilbert space H. Then A×α Ld and
A×αRd are reflexive.
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5.2. Semicrossed products over Zd+. We now pass to the examination of

Zd+. When every αi is given by an invertible row operator ui = [ui,ji ]ji∈[ni]

then we write M =
∏
i∈[d] ni for the capacity of the system. Note that

M ≥ 2 if and only if there is at least one i such that ni ≥ 2.

Theorem 5.11. Let (A, α,Zd+) be a unital w*-dynamical system. Suppose
that every αi is uniformly bounded spatial, given by an invertible row operator
ui = [ui,ji ]ji∈[ni], and set M =

∏
i∈[d] ni.

(i) If M ≥ 2 then every w*-closed subspace of A×α Zd+ is hyper-reflexive.
If Ki is the uniform bound associated to ui (and its inverse) then the hyper-
reflexivity constant is at most 3 ·K4 for K = min{Ki | ni ≥ 2}.

(ii) If M = 1 and A is reflexive then A×α Zd+ is reflexive.

Proof. For item (i), suppose without loss of generality that nd ≥ 2 with
Kd = min{Ki | ni ≥ 2}. Then we can write A×α Zd+ ' B×α̂d

Z+ for an
appropriate w*-closed algebra B by Proposition 3.16. Hence we can apply
Theorem 5.2 for the system (B, α̂d,Z+), as its capacity is greater than 2.
For item (ii) we can write A×α Zd+ as successive w*-semicrossed products
and apply recursively [24, Theorem 2.9], i.e. Theorem 5.2(ii).

Corollary 5.12. Let (A, α,Zd+) be a unital w*-dynamical system. Suppose
that at least one αi is implemented by a Cuntz family [si,ji ]ji∈[ni] with ni ≥ 2.

Then every w*-closed subspace of A×α Zd+ is hyper-reflexive with distance
constant 3.

Proof. Suppose without loss of generality that αd is defined by a Cuntz
family with nd ≥ 2. Then α̂d is also given by the Cuntz family {sj ⊗d−1 I}
of size nd. By Proposition 3.16 we can write A×α Zd+ ' B×α̂d

Z+ for some
w*-closed algebra B. Applying then Corollary 5.3 completes the proof.

Corollary 5.13. If A is reflexive then A⊗H∞(Zd+) is reflexive.

Corollary 5.14. Let (A, α,Zd+) be a unital automorphic system over a max-

imal abelian selfadjoint algebra A. Then A×α Zd+ is reflexive.

We can apply the arguments of [22] to tackle other dynamical systems.

Definition 5.15. A w*-dynamical system (A, α,Zd+) is injectively reflexive
if: (i) A is reflexive, (ii) A is injectively reducible by M ; and (iii) βn(A) is

reflexive for all n ∈ Zd+ with

βn(a) =

[
a|M 0

0 αn(a)|M⊥

]
.

Consequently every (A, αi,Z+) is injectively reflexive for the same M .
Again it follows that systems over Type II or Type III factors are injectively
reflexive.

Theorem 5.16. Let (A, α,Zd+) be a unital w*-dynamical system. If the

system is injectively reflexive then A×α Zd+ is reflexive.
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Proof. The proof follows in a similar way as in Theorem 5.9. In short if T is
in Ref(A×α Zd+) then T is lower triangular and Tm,0 ∈ A for every m ∈ Zd+.

Thus we just need to show that Tm+n,n = αn(Tm,0) for every n ∈ Zd+. For a
fixed n let the spaces

K0 := span{ξ ⊗ ew | ξ ∈M,w ∈ Zd+}
and

Kn := span{η ⊗ en+w | η ∈M⊥, w ∈ Zd+}
and let the unitary U : K0 ⊕Kn → H⊗ `2(Zd+) given by

U(ξ ⊗ ew + η ⊗ en+w) = (ξ + η)⊗ ew.
If p is the projection on K0 ⊕Kn then

Uπ(a)pU∗ =
∑
w∈Zd+

(αw(a)|M + αn+w(a)|M⊥)⊗ pw and ULipU
∗ = Li.

On the other hand we have that

UGm(T )pU∗ = Lm
∑
w∈Zd+

(Tm+w,w|M + Tn+m+w,n+w|M⊥)⊗ pw.

Taking compressions and using reflexivity of βn(A) implies that there exists
an a ∈ A such that

Tm,0|M + Tn+m,n|M⊥ = a|M + αn(a)|M⊥ ,
and therefore Tm+n,n = αn(a) = αn(Tm,0).

Corollary 5.17. Let (A, α,Zd+) be a unital w*-dynamical system on a factor

A ⊆ B(H) for a separable Hilbert space H. Then A×α Zd+ is reflexive.

Remark 5.18. The w*-semicrossed products A×α Zd+ do not fit in the
theory of W*-correspondences. This has been observed in [14, 25] for the
norm-analogues but the arguments apply here mutatis mutandis. That is,
when A = C then A×α Zd+ is the commutative algebra H∞(Zd+). Therefore
the results of this section are disjoint from those of [22] when d ≥ 2.
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