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Abstract. The Morse boundary of a proper geodesic metric space is designed to encode
hypberbolic-like behavior in the space. A key property of this boundary is that a quasi-
isometry between two such spaces induces a homeomorphism on their Morse boundaries.
In this paper we investigate when the converse holds. We prove that for cocompact
CAT(0) spaces, a homeomorphism of Morse boundaries is induced by a quasi-isometry if
and only if the homeomorphism is quasi-mobius and 2-stable.

1. Introduction

Boundaries of hyperbolic spaces have played a major role in the study of hyperbolic ge-
ometry and hyperbolic groups. In particular, they provide a fundamental tool for studying
the dynamics of isometries and rigidity properties of hyperbolic groups.

The effectiveness of this tool depends on a few key properties. The first, is quasi-isometry
invariance: a quasi-isometry between two hyperbolic metric spaces induces a homeomor-
phism on their boundaries. In particular, this allows us to talk about the boundary of a
hyperbolic group. Moreover, these homeomorphisms satisfy some particularly nice proper-
ties; they are quasi-mobius and quasi-conformal. Quasi-mobius is a condition that bounds
the distortion of cross-ratios while quasi-conformal bounds the distortion of metric spheres.
These conditions have been studied in a variety of contexts by Otal, Pansu, Tukia, and
Vaisala, [1, 2, 3, 4, 5, 6] among others. One of the most general theorems can be found
in a 1996 paper of Paulin [7] where he proves that if f : ∂X → ∂Y is a homeomorphism
between the boundaries of two proper, cocompact hyperbolic spaces, then the following are
equivalent

(1) f is induced by a quasi-isometry h : X → Y ,
(2) f is quasi-mobius,
(3) f is quasi-conformal.

We remark that Paulin’s definition of quasi-conformal is different from the one used by
Tukia and others. In this paper, we will focus on the qusi-mobius condition.

Boundaries can be defined for a variety of other spaces. In particular, one can define a
boundary for any CAT(0) space. Unfortunately, many of the nice properties of hyperbolic
boundaries fail in this context. First, quasi-isometries of CAT(0) spaces do not, in general,
induce homeomorphisms on their boundaries. A well-known example of Croke and Kleiner
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[8] exhibits a group acting geometrically on two CAT(0) spaces with non-homeomorphic
boundaries. The missing property that leads to the failure of quasi-isometry invariance, is
that in hyperbolic spaces, quasi-geodesics stay bounded distance from geodesics (with the
bound depending only on the quasi-constants) while in CAT(0) spaces, this need not hold.
This property is known as the Morse property.

In [9] the first author and H. Sultan introduced a new type of boundary for CAT(0)
spaces by restricting to only those geodesic rays satisfying the Morse property. For CAT(0)
spaces, the Morse property is equivalent to the contracting property (see section 2 for
definitions) and the authors originally called their boundary the “contracting boundary”.
Subsequently, their construction was generalized to arbitrary proper geodesic metric spaces
by M. Cordes [10] using the Morse property. These boundaries have thus come to be known
as Morse boundaries. We denote the Morse boundary of X by ∂∗X. The key property of
this boundary is quasi-isometry invariance; a quasi-isometry between two proper geodesic
metric spaces induces a homeomorphism on their Morse boundaries [9, 10]. Thus the Morse
boundary is well-defined for any finitely generated group (though it may be empty if the
group has no Morse geodesics). For more about Morse boundaries of general groups, see
Cordes’ survey paper [11].

In this paper, we will restrict our attention to Morse boundaries of proper, CAT(0)
spaces. In [12], the second author proves that in this context, Morse boundaries have a
variety of other properties analogous to hyperbolic boundaries, properties that will play a
useful role in the proofs below. In the current paper, we prove the following analogue of
Paulin’s theorem.

Main Theorem. Let X and Y be proper, cocompact CAT(0) spaces and assume that
∂∗X contains at least 3 points. Then a homeomorphism f : ∂∗X → ∂∗Y is induced by a
quasi-isometry h : X → Y if and only if f is 2-stable and quasi-mobius.

We refer the reader to Section 3.1 for the definitions of quasi-mobius and 2-stable.
In particular, this theorem applies to CAT(0) groups. In [12], building on work of

Ballman and Buyalo [13], the second author showed that if G acts geometrically on a
CAT(0) space X, then ∂∗X contains at least 3 points if and only if G is rank one and not
virtually cyclic. Thus the theorem can be restated for CAT(0) groups as follows.

Corollary. Let G and H be rank one CAT(0) groups. Then G is quasi-isometric to H
if and only if there exists a homeomorphism f : ∂∗G → ∂∗H which is quasi-mobius and
2-stable.

One might ask if there is also an equivalent quasi-conformality condition as in Paulin’s
theorem. In general, however, the Morse boundary is neither metrizable nor compact, so
it is not even clear what quasi-conformal should mean in this context. However, a recent
paper of Cashen and Mackey [14] introduces a metrizable topology on the Morse boundary
which could be potentially be used to define quasi-conformal. It would be interesting to
know whether a full analogue of Paulin’s theorem holds for this modified Morse boundary.
Another natural question is whether the main theorem holds for Morse boundaries of more
general geodesic metric spaces.
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2. Preliminaries

2.1. Contracting geodesics. In this section we review some basic facts about contracting
geodesics and the definition of the Morse boundary. The reader is referred to [15, 9, 16]
for details.

We assume throughout that X is a proper, CAT(0) space. Let ∂X denote the visual
boundary of of X, that is,

∂X = {α | α : [0,∞)→ X is a geodesic ray}/ ∼

where two rays are equivalent if they have bounded Hausdorff distance. The topology on
∂X is given by the neighborhood basis consisting of sets of rays which stay ε-close for
distance R.

For a geodesic α in X and a set Y ⊂ X, denote by πα(Y ) the image of the nearest point
projection of Y on α.

Definition 2.1. A (finite or infinite) geodesic α in X is D-contracting if for every metric
ball B that does not intersect α, the projection πα(Y ) has diameter at most D. Or
equivalently, if for any two points x, y ∈ X with d(x, y) < d(x, α), the distance between
πα(x) and πα(y) is at most D.

As noted above, in a CAT(0) space, the contracting property is equivalent to the Morse
property. (In the following, R+ denotes the non-negative real numbers.)

Definition 2.2. A geodesic α in X is Morse if there exists a function N : R+×R+ → R+

such that any (λ, ε)-quasi-geodesic with endpoints on α, lies in the N(λ, ε)-neighborhood
of α. The function N is called a Morse gauge for α.

For our purposes, the contracting property is more convenient since we will frequently
be concerned with projections of sets onto geodesics. Contracting geodesics in a CAT(0)
space satisfy a number of nice properties which we now recall briefly.

(1) Slim Triangle Property: There exists δD depending only on D such if α is D-
contracting, x ∈ X, and p = πα(x) is the projection of x on α, then for any point
y ∈ α, the geodesic from x to y lies in the δD-neighborhood of [x, p] ∪ [p, y].

(2) Equivalent Geodesics: There exist D′ such that if α and β are bi-infinite
geodesics with the same endpoints in ∂X and α is D-contracting, then β is D′

contracting and the Hausdorff distance between them is at most 2δD.
(3) Contracting Triangles: Given D, there exists D′ such that if two sides of a

triangle with endpoints in X ∪ ∂X are D-contracting, then the third side is D′-
contracting.
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(4) Bounded Geodesic Image Property: Given D, there exist a constant BD such
that for any geodesics α, β with α D-contracting, either the projection of β on α
has diameter greater than BD, or β contains a point z with d(z, α) < BD.

2.2. The Morse boundary. Fix a basepoint x0 ∈ X. Denote by ∂D∗ X the subspace of the
visual boundary consisting of D-contracting rays based at x0. The Morse (or contracting)
boundary of X is defined as the direct limit ∂∗X = limD→∞ ∂

D
∗ X. It is shown in [9]

that this topology is independent of choice of basepoint. While the Morse boundary is
set-theoretically contained in the visual boundary, the direct limit topology is generally
much finer than the subspace topology. In fact the two topologies agree if and only if X is
hyperbolic.

As in [12], we can also define a topology on X ∪ ∂∗X as follows. Let X = X ∪ ∂X
viewed as the set of generalized geodesic rays based at x0. (A generalized ray may either
go to infinity or stop at a point in the interior.) There is a standard topology on X, which
restricts to the visual topology on ∂X. It has a neighborhood basis consisting of sets of

rays that stay ε-close to a given ray for distance R. Let X
D
∗ be the set of generalized rays

in X that are D-contracting. Put the subspace topology on X
D
∗ and define the topology

on X∗ = X ∪ ∂∗X to be the direct limit topology. This topology is independent of choice
of basepoint and restricts to the given topologies on X and ∂∗X.

3. Homeomorphisms induced by quasi-isometries

In [9], it was shown that a quasi-isometry h : X → Y between proper CAT(0) spaces
induces a homeomorphism ∂∗h on the contracting boundaries. In this section we will show
that these homeomorphisms satisfy some additional properties. We assume throughout
that ∂∗X contains at least three points.

3.1. Two-stable maps. Recall that ∂D∗ X was defined in terms of a fixed basepoint x0.
Changing the basepoint changes the contracting constant associated to a point on the
boundary. In this paper we are concerned with bi-infinite D-contracting geodesics. Let α
be a bi-infinte, D-contracting geodesic in X. While its endpoints α+ and α− are in ∂∗X,
the rays from x0 to these points may have much larger contracting constants, so α+ and
α− need not lie in ∂D∗ X.

For two points a, b ∈ X∗ let (a, b) denote the set of geodesics from a to b. Denote

by ∂∗X
(n,D), n-tuples of distinct points (a1, a2, . . . an) in ∂∗X such that every bi-infinite

geodesic in (ai, aj) is D-contracting. Since ∂∗X has at least 3 points and the bi-infinite

geodesic between any two of these is contracting, ∂∗X
(3,D) is non-empty for D sufficiently

large. We will refer to 3-tuples (a, b, c) ∈ ∂∗X(3,D) as D-triangles.

Definition 3.1. Let X and Y be proper, cocompact CAT(0) spaces. A map f : ∂∗X →
∂∗Y is two-stable if for every D ≥ 0, there exists D′ ≥ 0 such that f maps ∂∗X

(2,D) into

∂∗Y
(2,D′). Note that it follows that f maps ∂∗X

(n,D) into ∂∗Y
(n,D′) for all n ≥ 2.

Now suppose f : ∂∗X → ∂∗Y is a homeomorphism. Since a closed set in ∂∗X is compact
if and only if it is contained in ∂D∗ X, for some D, it must be the case that for each D,
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there exists a D′ such that f maps ∂D∗ X into ∂D
′
∗ Y . On the other hand, this is does not

guarantee that f is 2-stable.

Example 3.2. Let X be the Euclidean plane R2 with a ray rm,n attached at each lattice
point (m,n) ∈ Z2 ⊂ R2. View the plane as horizontal and the attached rays as vertical. It
is easy to see that the contracting boundary is the discrete set of the vertical rays. For a bi-
infinite geodesic between two such boundary points rm,n and rs,t, the optimal contracting
constant for the bi-infinite geodesic connecting them is given by the distance in the plane
from (m,n) to (s, t).

Consider the homeomorphism f : ∂∗X → ∂∗X which interchanges rn,0 and r−n,0 and
leaves all other points on the boundary fixed. Let αn be the bi-infinite geodesic from rn,0 to
rn,1. Then for all n, αn is 1-contracting, whereas after applying f , the bi-infinite geodesic
between the resulting points, r−n,0 and rn,1 is worse than 2n-contracting. Thus, f is not
2-stable.

One can promote this example to a space with a cocompact group action. Namely, let X
be the universal cover of a torus wedge a circle, T 2 ∨ S1. View the flats in X as horizontal
and the edges covering the circle as vertical. Choose a base flat F and identify it with R2.
Let e(n,m) denote the upward edge attached at (n,m) ∈ F . Define f : ∂∗X → ∂∗X by
interchanging any ray from the origin passing through e(n, 0) with the corresponding ray
passing through e(−n, 0), and leaving the rest of the boundary fixed. This again defines a
homeomorphism on the boundary which, by the same argument as above, is not 2-stable.

3.2. Cross-ratios. We begin by reviewing Paulin’s definition of the cross-ratio. For four
points a, b, c, d in a δ-hyperbolic space X, Paulin defines the cross-ratio to be [a, b, c, d] =
1
2(d(a, d) + d(b, c) − d(a, b) − d(c, d)). He then extends this definition to ∂X by taking
limits over sequences of points approaching the boundary. We will use a slightly different
definition of the cross-ratio motivated by the following observation. Let p = π(a,c)(b) and
q = π(a,c)(d) be the projections of b and d on (a, c), as in Figure 1. Using the thin triangle
property, it is easy to see that (the absolute value of) Paulin’s cross-ratio is approximately
equal to d(p, q), they differ by at most 4δ.

The notion of projection extends to the boundary and gives rise to a definition of the
cross-ratio in ∂∗X that is more intrinsic and generally easier to work with. Following [12],
one can define the projection of a point b ∈ ∂∗X onto a D-contracting geodesic α as follows.
For any ray β representing b, consider the points on α which are limit points of sequences
πα(β(ti) with ti → ∞. The set Pα(b) ⊂ α of all such limit points has diameter bounded
by BD, where BD is the constant defined in the Bounded Geodesic Image Property. The
projection, πα(b), is then defined as the barycenter of Pα(b).

Using this projection, we can now expand the slim triangle property to include ideal
triangles (at the expense of increasing the constant δD to take into account the diameter
of the projection sets).

Lemma 3.3 (Slim Triangle Property). Let a, b, c be distinct points in X ∪ ∂∗X and
suppose α ∈ (a, c) is D-contacting. Let p = πα(b). Then there exists δD, depending only
on D, such that any geodesic β ∈ (a, b) lies in the δD-neighborhood of (a, p) ∪ (p, b).
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Figure 1. Projection distance is coarsely equal to Paulin’s cross-ratio

It therefore makes sense to define the cross-ratio on ∂∗X as follows.

Definition 3.4. The cross-ratio of a four-tuple (a, b, c, d) ∈ ∂∗X(4) is defined to be

[a, b, c, d] = ± sup
α∈(a,c)

d(πα(b), πα(d))

where the sign is positive if the orientation of the geodesic (πα(b), πα(d)) agrees with that
of (a, c) and is negative otherwise.

For the quasi-mobius property, we will want to bound the absolute value of the cross-
ratio. The following lemma shows that for this, we need only work with a specific choice
of geodesic α.

Lemma 3.5. If (a, b, c, d) ∈ ∂∗X(4,D), then for any choice of geodesic α ∈ (a, c),

|[a, b, c, d]| − 6δD ≤ d(πα(b), πα(d)) ≤ |[a, b, c, d]|.

Proof. Any two geodesics α, α′ ∈ (a, c) have Hausdorff distance at most 2δD. An easy
exercise then shows that the projection of any point x ∈ X onto α lies within 6δD of its
projection onto α′, so the same holds for projections of boundary points on α and α′. �

Definition 3.6. Let X and Y be CAT(0) spaces. A homeomorphism f : ∂∗X → ∂∗Y is
D-quasi-mobius if there exists a continuous map ψD : [0,∞) → [0,∞) such that for all
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4-tuples (α, α′, β, β′) in ∂∗X
(4,D),

|[f(α), f(α′), f(β), f(β′)]| ≤ ψD(|[α, α′, β, β′]|).
We say that f is quasi-mobius if f and f−1 are both D-quasi-mobius for every D.

We remark that one can always choose the functions ψD to be non-decreasing.
For a point (a, b, c) ∈ ∂∗X(3,D), let T (a, b, c) denote an ideal triangle with vertices a, b, c.

That is, we specify a choice of bi-infinite geodesics as edges.

Lemma 3.7. Let (a, b, c) ∈ ∂∗X(3,D), and set

EK(a, b, c) = {x ∈ X | x lies within K of all three sides of some T (a, b, c)}.
Then for any K ≥ BD + δD, the following hold.

(1) For any α ∈ (a, c), πα(b) lies in EK(a, b, c)
(2) EK(a, b, c) has bounded diameter with the bound depending only on D and K. In

particular, it has a well-defined barycenter, πX(a, b, c)
(3) There is a constant C depending only on D and K, such that for any (a, b, c, d) ∈

∂∗X
(4,D), |[a, b, c, d]| differs from d(πX(a, b, c), πX(a, c, d)) by at most C.

Proof. (1) Say α, β, and γ are the three sides of a triangle T (a, b, c) with α the side from a
to c. Then the slim triangle property guarantees that every point on the projection πα(β)
lies within δD of β and similarly, every point on the projection πα(γ) lies within δD of
γ. The limit points of these projections both lie in the projection set Pα(b), which has
diameter at most BD, so they lie within BD of πα(b) = the barycenter of Pα(b). It follows
that πα(b) lies within K of both β and γ.

(2) To show that EK(a, b, c) has bounded diameter, fix an ideal triangle T = T (a, b, c).
Any other triangle T ′ = T ′(a, b, c) lies in the 2δD-neighborhood of T , so for any point
x ∈ EK(a, b, c), x lies within K ′ = K + 2δD of all three sides of T . Projecting x onto
the sides of T gives three points on T that all lie within 2K ′ of each other. By standard
arguments, this subset of T has bounded diameter with the bound depending only on K ′

and D.
(3) This follows immediately from parts (1) and (2), together with Lemma 3.5. �

Theorem 3.8. Let h : X → Y be a (λ, ε)-quasi-isometry between proper CAT(0) spaces.
Then the induced map ∂∗h : ∂∗X → ∂∗Y is a 2-stable, quasi-mobius homeomorphism.
Moreover, the functions ψD in the definition of quasi-mobius can all be taken to be linear
with multiplicative constant λ.

Proof. The fact that ∂∗h is a homeomorphism was proved by the first author and H. Sultan
in [9]. In particular, using the equivalence of the contracting and Morse properties for
CAT(0) geodesics, they showed that for each D there exists a D′ such that the image of
a D-contracting ray under the quasi-isometry h can be “straightened” to a D′-contracting
ray in Y . The same proof applies to bi-infinite geodesics to show that ∂∗h is 2-stable.

Suppose h is a (λ, ε)-quasi-isometry. To prove that ∂∗h is quasi-mobius, first con-

sider a triple (a, b, c) ∈ ∂∗X
(3,D) and let (a′, b′, c′) ∈ ∂∗Y

(3,D′) its image under ∂∗h. Let
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T = T (a, b, c) be a representative triangle. Applying h to T gives a quasi-triangle (a tri-
angle whose sides are quasi-geodesic) in Y . The sides can be straightened to geodesics to
obtain a triangle T ′ = T ′(a′, b′, c′). The Morse property guarantees that there exists an N ,
depending only on D′, λ, ε such that T ′ lies in the N -neighborhood of h(T ).

Now set K = BD + δD and consider the image of EK(a, b, c) under h. For any x ∈
EK(a, b, c), h(x) lies within λK + ε of all three sides of h(T ) for some T and hence within
λK+ ε+N of all three sides of T ′. Taking K ′ = max{BD′ + δD′ , λK+ ε+N}, we conclude
that the image of EK(a, b, c) under h lies in EK′(a′, b′, c′).

Consider a 4-tuple (a, b, c, d) ∈ X(4,D) and let (a′, b′, c′, d′) ∈ Y (4,D′) be its image under
∂∗h. Choose a geodesic α ∈ (a, c) let p and q be the projections of b and d on α. Likewise,
choose α′ ∈ (a′, c′) and let p′, q′ be the projections of b′ and d′ on α′. Then up to a constant,
|[a, b, c, d]| = d(p, q) and |[a′, b′, c′, d′]| = d(p′, q′). Hence to prove ∂∗h is quasi-mobius, it
suffices to bound d(p′, q′) as a function of d(p, q).

By part (1) of Lemma 3.7, we have p ∈ EK(a, b, c) and p′ ∈ EK′(a′, b′, c′). By the
discussion above, we also have h(p) ∈ EK′(a′, b′, c′). By part (2) of Lemma 3.7, the diameter
of EK′(a′, b′, c′) is bounded by a constant C ′ depending only on K ′, D′, so d(p′, h(p)) < C ′.
By the same argument, d(q′, h(q)) < C ′. We conclude that

d(p′, q′) < d(h(p), h(q)) + 2C ′ ≤ λd(p, q) + ε+ 2C ′.

It follows that ∂∗h is quasi-mobius with linear bounding functions with multiplicative
constant λ. �

4. Quasi-isometries induced by homeomorphisms

The goal of this section is to prove a converse of Theorem 3.8. Namely, if f : ∂∗X → ∂∗Y
is a homeomorphism such that f and f−1 are both 2-stable and quasi-mobius, then f is
induced by a quasi-isometry h : X → Y .

We assume from now on that ∂∗X contains at least three points and that there exists a
cocompact group action on X. Similarly for Y .

4.1. Extending f to the interior. Given a homeomorphism f : ∂∗X → ∂∗Y , we need
to extend it to a map h : X → Y . Let us outline the steps involved in defining such an h.

Choose D such that ∂∗X
(3,D) is non-empty. We begin by defining a map

πDX : ∂∗X
(3,D) → X.

Fix K = BD + δD. Recall from Lemma 3.7 that EK(a, b, c) is bounded and hence has a
well-defined barycenter. Define

πDX(a, b, c) = the barycenter of EK(a, b, c).

When D is fixed, we will generally omit it from the notation and denote the map by πX .
If G is a group acting cocompactly by isometries on X, then the induced action of G on

∂∗X preserves the contracting constants of bi-inifinte geodesics and πX is equivariant with
respect to the induced action. Choose a basepoint x0 that lies in the image of πX . Since
the action of G on X is cocompact, there is a ball B(x0, R) whose G-translates cover X,
so every point in X lies within R of πX(a, b, c) for some (a, b, c).
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Now assume that f : ∂∗X → ∂∗Y is a 2-stable homeomorphism and say f(∂∗X
(2,D)) ⊆

∂∗Y
(2,D′). As observed above, it follows that f(∂∗X

(n,D)) ⊆ ∂∗Y
(n,D′) for all n ≥ 2. Set

πX = πDX and let πY = πD
′

Y : ∂∗Y
(D′,3) → Y be the analogous map for Y . We would like to

define h(x) to be the barycenter of the set

Π(x) = πY ◦ f ◦ π−1X (B(x,R)) ⊂ Y.
To do this, we must first prove that for any x, Π(x) has bounded diameter.

Lemma 4.1. There exists a constant C1 depending only on D such that for any (a, b, c, d) ∈
∂∗X

(4,D), the absolute value of one of the three cross-ratios [a, b, c, d], [a, c, b, d], [a, c, d, b]
is less than C1.

Proof. Let p = πα(b) and q = πα(d). Interchanging b and d if necessary (which changes
only the sign of the cross-ratio), we may assume that p lies between a and q as in Figure 2.

Consider the triangles (a, b, p) and (c, d, q). We claim that the distance between these
triangles is at least d(p, q) − 2BD − 4δD. To see this, first note that the projections
of (p, b) and (q, d) on α lie within BD of p and q respectively, so these rays remain at
least d(p, q) − 2BD apart. By the slim triangle property, the rays (p, b) and (q, c) are
distance at least d(p, q)− 2δD apart, and likewise for (q, d) and (p, a). Thus, (p, a) ∪ (p, b)
and (q, c) ∪ (q, d) are separated by a distance of at least d(p, q) − 2BD − 2δD. Finally,
for any geodesics γ ∈ (a, b) and ρ ∈ (c, d), the slim triangle property then implies that
d(γ, ρ) > d(p, q)− 2BD − 4δD as claimed.

Now set C = 3BD + 4δD and suppose d(p, q) > C. Then by the discussion above,
d(γ, ρ) > BD. Applying the Bounded Geodesic Image property we conclude that πγ(ρ) has
diameter less than BD. The projections of c and d on γ lie within BD of πγ(ρ), thus

d(πγ(c), πγ(d)) < 3BD < C.

By Lemma 3.5, replacing C by C1 = C + 6δD, we conclude that |[a, b, c, d]| > C1 implies
|[a, c, b, d]| < C1. �

Let us now recall Lemma 3.7. By part (3) of that lemma, we see that if |[a, b, c, d]|
is small, then the barycenters of the triangles (a, b, c) and (a, c, d) are close. Thus, the
lemma above says that starting with any D-triangle T = (b, c, d) and any point a with

(a, b, c, d) ∈ ∂∗X
(4,D), one of the three vertices of T can be replaced by a causing only

a small change in the barycenter. This is the key idea behind the proof of the next
proposition.

Proposition 4.2. Let f : ∂∗X → ∂∗Y be a 2-stable, quasi-mobius homeomorphism. Then
for any L ≥ 0, there exists a constant C2 such that for any two D-triangles (a, b, c), (u, v, w)

in ∂∗X
(3,D),

dX(πX(a, b, c), πX(u, v, w)) ≤ L =⇒ dY (πY (f(a), f(b), f(c)), πY (f(u), f(v), f(w)) ≤ C2.

Proof. Let T1 = (a, b, c) and T2 = (u, v, w) be two D-triangles and set x = πX(a, b, c) and

y = πX(u, v, w). Fix a constant L ≥ 0. We first show that there exists D̃, depending only
on D and L, such that if d(x, y) ≤ L, then any geodesic from a vertex of T1 to a vertex
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b
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d

p

q

γ ρ

Figure 2. Some cross-ratio is small

of T2 is D̃-contracting. Say, for example, that γ ∈ (a, u) is such a geodesic. By Lemma
3.7, x (resp. y) is uniformly bounded distance, say distance C, from the sides of any
triangle representing T1 (resp. T2). It follows that (a, x) is in the C-neighborhood of any
geodesic in (a, b), and (u, y) is in the C-neighborhood of any geodesic in (u, v). Assuming
d(x, y) ≤ L this also implies that (u, x) is in the (C +L)-neighborhood of (u, v). It follows
that there is a constant D1, depending only on C and L, such that (a, x) and (u, x) are

D1-contracting, and hence by the Contracting Triangles Property, a constant D̃ such that
[a, u] is D̃-contracting. The same argument applied to other pairs of vertices shows that

(a, b, c, u, v, w) ∈ ∂∗X(D̃,6).

By Lemma 4.1, there is a constant C1 such that for any (p, q, r, s) ∈ ∂∗X
(D̃,4), some

permutation of (p, q, r, s) has the absolute value of its cross-ratio bounded by C1. We will
say that such a cross-ratio is “small”. It follows from Lemma 3.7(3), that if [p, q, r, s] is
small, then the barycenters πX(p, q, r) and πX(p, s, r) are uniformly close, say at distance
< C ′. In this case, we call the move from (p, q, r) to (p, s, r) a “small flip”.

To prove the lemma, we begin by showing that applying at most 2 small flips to each of
the triangles T1 = (a, b, c) and T2 = (u, v, w), we obtain a pair of triangles that share an
edge. To see this, first replace a vertex of (a, b, c) by w. Permuting a, b, c if necessary, we
get a small flip from (a, b, c) to (a, b, w). Next, replace a vertex of (a, b, w) by v. If the flip
to either (v, b, w) or (a, v, w) is small we are done since these share an edge with (u, v, w).
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Suppose only the flip to (a, b, v) is small. In this case, consider the flips of (u, v, w)
obtained by replacing a vertex by a. All of the resulting triangles (a, v, w), (u, a, w),
(u, v, a) all share an edge with either (a, b, w) or (a, b, v), so whichever flip is small, gives
the desired pair of adjacent triangles.

Since the barycenters x, y of T1, T2 are at distance at most L, the centers of the resulting
pair of adjacent triangles are at distance at most L′ = L + 3C ′. In summary, there is
a sequence of at most 5 triangles with vertices in {a, b, c, u, v, w}, beginning with T1 and
ending with T2 such that consecutive triangles share an edge and have centers at distance
at most L′.

Now apply f to this sequence of triangles. Since f is 2-stable, f(a, b, c, u, v, w) lies in

∂∗Y
(E,6) for some E ≥ 0. Using Lemma 3.7 and the quasi-mobius function ΨD̃, one gets a

bound on the distance between the centers of consecutive triangles, and hence a bound on
the distance between the centers of f(T1) and f(T2). This proves the proposition. �

In particular, it follows that for any x ∈ X, the set πY (f(π−1X (B(x,R)))) ⊂ Y has
bounded diameter with the bound, say M , depending only on the choice of D,D′ and R.
Set

Π(x) = πY (f(π−1X (B(x,R))))

and define a map h : X → Y by

h(x) = the barycenter of Π(x).

We call h an extension of f to X. While the definition of Π, and hence h, depends on a
choice of D,D′ and R, increasing any of these constants just increases the size of Π, and
hence the resulting map differs from the original by a uniformly bounded amount.

Proposition 4.3. For any L,D ≥ 0, there exists C3 such that

dX(x, y) ≤ L =⇒ dY (h(x), h(y)) ≤ C3.

Proof. Let (a, b, c) and (u, v, w) be D-triangles with πX(a, b, c) and πX(u, v, w) in B(x,R)
and B(y,R) respectively. If dX(x, y) ≤ L, then dX(πX(a, b, c), πX(u, v, w)) ≤ L + 2R. So
by Lemma 4.2, there exists C depending only on D,L,R such that

dY (πY (f(a), f(b), f(c)), πY (f(u), f(v), f(w)) ≤ C.

Now πY (f(a), f(b), f(c)) is an element of Π(x) which is a set of diameter at most M , so
its center, h(x), lies within M of πY (f(a), f(b), f(c)). Similarly, h(y) lies within M of
πY (f(u), f(v), f(w)). Thus, dY (h(x), h(y)) ≤ C + 2M . �

4.2. Main theorem.

Theorem 4.4. Let X and Y be CAT(0) spaces with proper, cocompact actions G y X
and H y Y , and assume ∂∗X has at least 3 points. Suppose f : ∂∗X → ∂∗Y is a 2-stable,
quasi-mobius homeomorphism, and likewise for f−1. Then there exists a quasi-isometry
h : X → Y with ∂∗h = f .
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Proof. Choose D′ so that f(∂∗X
(2,D)) ⊆ ∂∗Y (2,D′) and f−1(∂∗Y

(2,D)) ⊆ ∂∗X(2,D′). Choose
R > 0 so that both X and Y are covered by the R-neighborhood of an orbit. Using these
constants, define h to be the extension of f to X and h−1 to be the extension of f−1 to Y .
That is, h(x) = barycenter of Π(x) and h−1 = barycenter of Π(y), where

Π(x) = πY (f(π−1X (B(x,R))))

Π(y) = πX(f−1(π−1Y (B(y,R))))

As above, let M denote an upper bound on the diameter of Π(x).
To prove that h is a quasi-isometry, it suffices to show

(i) for all x, y ∈ X and p, q ∈ Y there are linear bounds dY (h(x), h(y)) ≤ AdX(x, y)+B
and dY (h−1(p), h−1(q)) ≤ A′dY (p, q) +B′, and

(ii) h and h−1 are quasi-inverses.

For (i), let S be a finite generating set for G. Choose a base point x0 ∈ X. Approxi-
mate the geodesic from x to y by a sequence of orbit points g0x0, g1x0, . . . gnx0 such that
gi+1 = gisi for some generator si ∈ S. Now map this sequence by h into Y . Since the
distance between consecutive points is bounded, Proposition 4.3 implies that there exists
C3 such that dY (h(g0x0), h(gnx0)) ≤ C3 n and hence dY (h(x), h(y)) ≤ C3 n + 2M . Since
the inclusion of G into X as the orbit of x0 is a quasi-isometry, there exists λ, ε such that
n = dG(g0, gn) ≤ λdX(x, y) + ε, so

dY (h(x), h(y)) ≤ C3λ dX(x, y) + (C3ε+ 2M).

An analogous argument for f−1 gives an upper bound on dX(h−1(p), h−1(q)) as a linear
function of dY (p, q).

Next we prove that h and h−1 are quasi-inverses. Say D′′ is such that f−1(∂∗Y
(2,D′)) ⊆

∂∗X
(2,D′′). Choose R′ ≥ max{R,M} and note that Π(x) ⊂ B(h(x), R′) for all x. Let

π′X = πD
′′

X and define ĥ−1(y) to be the barycenter of the set

Π′(y) = π′X(f−1(π−1Y (B(y,R′)))).

Since Π′ is obtained from Π simply by increasing the constants, Π(y) ⊆ Π′(y) for all y, so

the distance between h−1 and ĥ−1 is uniformly bounded.
Now say y = h(x). Then for any D-triangle (a, b, c) whose image z = πX(a, b, c) lies in

B(x,R), we have πY (f(a, b, c)) ∈ Π(x) ⊂ B(y,R′), and hence z lies in Π′(y). This set has

bounded diameter, say M ′, independent of y and its barycenter is ĥ−1(y), so

d(x, ĥ−1h(x)) = d(x, ĥ−1(y)) ≤ d(x, z) + d(z, ĥ−1(y)) ≤ R+M ′.

It follows that h−1 ◦ h is also at bounded distance from the identity map. An analogous
argument proves that the same holds for h ◦ h−1.

It remains to show that ∂∗h = f . For this, we will use the fact that one can put a
topology on X ∪ ∂∗X with the property that for a fixed basepoint x, a sequence {xi} of
points in X ∪ ∂∗X converges to a point p on ∂∗X if and only if the geodesics from x to xi
have bounded contracting constants and converge pointwise to the geodesic from x to p.
(See [12] for details.)



A RANK-ONE CAT(0) GROUP IS DETERMINED BY ITS MORSE BOUNDARY 13

Choose a basepoint x ∈ X such that x = πX(a, b, c) is the barycenter of some D-triangle

(a, b, c) ∈ ∂∗X(D,3). Let p be a point in ∂∗X and say the ray α from x to p is D′-contracting
for some D′ ≥ D. Approximate α by a sequence of orbit points {gix} converging to p. Set
xi = gix, so xi is the barycenter of the triangle (ai, bi, ci) = (gia, gib, gic). Note that there
exists D′′ such that the geodesic ray from x to any vertex in any one of these triangles
is D′′-contracting. This follows from the Contracting Triangle Property since the triangle
(x, xi, ai) has two sides, (x, xi) and (xi, ai), which stay close to D′-contracting rays, and
similarly for bi and ci.

Consider the sequences {ai}, {bi}, and {ci}. We claim that at least two of these sequences
converge to p. Suppose not. Say {ai} and {bi} do not converge to p. Then {ai} and {bi} are
disjoint from some open neighborhood U of p. It follows that for all i, the projections of ai
and bi on α lie in some bounded segment [α(0), α(R)]. Since xi lies bounded distance from
some geodesic in (ai, bi), the projections of every xi on α also lies in a bounded segment.
But this contradicts the assumption that {xi} converges to p.

Since f : ∂∗X → ∂∗Y is a homeomorphism, it follows that two of the sequences
{f(ai)}, {f(bi)}, {f(ci)} converge to f(p) and hence the barycenters {yi} of these trian-
gles also converge to f(p). Since h(xi) lies bounded distance from yi, we conclude that
∂∗h(p) = limi→∞ h(xi) = f(p). �

Combining Theorems 3.8 and 4.4 we thus have

Theorem 4.5. Let X and Y be proper, cocompact CAT(0) spaces with at least 3 points in
their Morse boundaries. A homeomorphism f : ∂∗X → ∂∗Y is induced by a quasi-isometry
h : X → Y if and only if f is 2-stable and quasi-mobius.

We conclude by noting that the homeomorphisms described in Example 3.2 that are not
2-stable, also fail to be quasi-mobius. For example, setting m = n+ 1, the cross-ratio

|[rn,0, rm,0, rn,1, rm,1]| = 1

whereas after applying f we get a cross-ratio of

|[r−n,0, r−m,0, rn,1, rm,1]| > 2n− 1

It seems reasonable to conjecture that this is always the case.

Conjecture 4.6. If X and Y are proper, cocompact CAT(0) spaces, then every quasi-
mobius homeomorphism, f : ∂∗X → ∂∗Y , is 2-stable and hence induced by a quasi-isometry.
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318–346. http://dx.doi.org/10.1007/BF02796595.
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