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Abstract

Every unitary involutive solution of the quantum Yang-Baxter equation
(“R-matrix”) defines an extremal character and a representation of the
infinite symmetric group S∞. We give a complete classification of all such
Yang-Baxter characters and determine which extremal characters of S∞
are of Yang-Baxter form.

Calling two involutive R-matrices equivalent if they have the same
character and the same dimension, we show that equivalence classes are
classified by pairs of Young diagrams, and construct an explicit normal form
R-matrix for each class. Using operator-algebraic techniques (subfactors),
we prove that two R-matrices are equivalent if and only if they have similar
partial traces.

Furthermore, we describe the algebraic structure of the equivalence
classes of all involutive R-matrices, and discuss several classes of examples.
These include Yang-Baxter representations of the Temperley-Lieb algebra
at parameter q = 2, which can be completely classified in terms of their
rank and dimension.

1 Introduction
The Yang-Baxter equation originated in quantum mechanics and statistical
mechanics, in particular in the works of Yang [Yan67] and Baxter [Bax72]. By
now, it is known to be of fundamental importance also in many other areas:
Solutions of the Yang-Baxter equation (usually called “R-matrices”) appear
in integrable quantum field theory as scattering operators [AAR01], and as
quantum logical gates in quantum information theory [KL02]. Any R-matrix
defines a representation of the infinite braid group and can give rise to link
invariants in knot theory [Tur88, Jon87], as originally discovered in the context
of subfactors and Jones’ fundamental construction [Jon83]. Also quasitriangular
Hopf algebras define universal R-matrices satisfying the Yang-Baxter equation
[CP94].
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This list of topics and references is far from exhaustive and serves only as a
sample of the vast literature on the subject. For a more complete introduction
to the Yang-Baxter equation and further references, see [Jim89].

In its most basic form, the (quantum) Yang-Baxter equation is an equation
for an endomorphism R ∈ End(V ⊗ V ) on the tensor square of a vector space V ,
namely

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R) (1.1)

as an equation in End(V ⊗ V ⊗ V ). Several variations of this equation exist,
such as the classical Yang-Baxter equation [CP94], the Yang-Baxter equation
with spectral parameters [Jim89], or the set-theoretic Yang-Baxter equation
[LYZ+00]. We shall only consider the form (1.1).

Although (1.1) makes perfect sense for infinite-dimensional Hilbert spaces V ,
and in fact has many interesting infinite-dimensional solutions1, we restrict
ourselves to finite-dimensional V , and agree to write d = dimV throughout. We
fix a scalar product on V (and hence its tensor powers), and denote the set of all
unitary solutions of (1.1) by R(V ). As usual, the elements of R(V ) are referred
to as “R-matrices”. Given some R ∈ R(V ), we also adopt the convention of
referring to d as the “dimension of R” – although R is an endomorphism of a
space of dimension d2 – and to V as the “base space” of R.

As is well known, any R ∈ R(V ) generates (unitary) representations ρ(n)R ,
n ∈ N, of the braid groups Bn on V ⊗n, by representing the elementary braid2

bk, k ∈ {1, . . . , n− 1}, as

ρ
(n)
R (bk) := id

⊗(k−1)
V ⊗R⊗ id

⊗(n−k−1)
V ∈ EndV ⊗n . (1.2)

We set ρ(1)R = idV . Proceeding to the inductive limit B∞ =
⋃
nBn of the infinite

braid group, every R-matrix defines a homomorphism of C[B∞] into the infinite
(algebraic) tensor product E0 :=

⋃
n End(V )⊗n.

In this paper, we focus on representations ρ(n)R that factor through the
surjective group homomorphism Bn → Sn onto the symmetric group Sn of n
letters. This is the case if and only if R is involutive, R2 = 1. The simplest
involutive R-matrices are, up to a sign, the identity and the tensor flip on V ⊗V ,

R = ± idV⊗V , R = ±F, F (v ⊗ w) = w ⊗ v, (1.3)

however, infinitely many more exist. Involutive solutions appear in particular
in integrable quantum field theory, as symmetries of categories of vector spaces
[Lyu87] and in a recent construction of non-commutative spaces [DVL17].

We write R0(V ) ⊂ R(V ) for the subclass of involutive unitary R-matrices,
and R, R0 for the union of R(V ), R0(V ) over all finite-dimensional vector
spaces.

1Note that a solution of the Yang-Baxter equation with spectral parameter can be rewritten
as one without parameter, but on an infinite-dimensional base space – see, for example, [HL17,
Lemma 2.2].

2Recall that a presentation of the braid group Bn on n strands is given by Bn =
〈b1, . . . , bn−1 : bibi+1bi = bi+1bibi+1, bibj = bjbi for |i− j| > 1〉.
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One of the aims of this work is to find and classify all elements of R0 up to
a natural equivalence which has its origins in previous work of the first author
in integrable quantum field theory [AL17]. The same notion can be found in
[Gur86], and a weaker version of this equivalence relation also played a role in
the context of computing all solutions of the Yang-Baxter equation for dimV = 2
[Hie92].

Definition 1.1. Two R-matrices R, S ∈ R are defined to be equivalent, denoted
R ∼ S, if and only if for each n ∈ N, the representations ρ(n)R and ρ

(n)
S are

equivalent.

Considering the case n = 2 and taking into account that the only possible
eigenvalues of R = R−1 = R∗ are ±1, one sees that ρ(2)R ∼= ρ

(2)
S for R, S ∈ R0

if and only if R and S have the same dimension and trace. There is an old
conjecture of Gurevich to the effect that the converse also holds, that is, that
R ∼ S if and only if R and S have the same dimension and trace [Gur86, p. 760].
Our findings in this article will in particular disprove this conjecture. The full
equivalence R ∼ S is a much stronger condition than having the same dimension
and trace, which is reflected in the rich structure of R0/∼ that we find.

Simple examples of equivalent R-matrices can be produced as follows: For
any R ∈ R0(V ) and A ∈ GL(V ), one has

R ∼ (A⊗ A)R(A−1 ⊗ A−1) ; (1.4)

here ρ(n)R and ρ(n)(A⊗A)R(A−1⊗A−1) are intertwined by A⊗n (and the latter represen-
tation is unitary if, for example, A is unitary). Another example of equivalent
R-matrices is given by

R ∼ FRF , (1.5)

where F is the tensor flip (1.3). Here ρ(n)FRF (ιn)−1ρ
(n)
F (ιn) is an intertwiner, where

ιn is the total inversion. But in general, these two operations do not generate
the full equivalence class of R ∈ R0.

Any R ∈ R0 defines a representation of the infinite symmetric group S∞,
the group of all bijections of N that move only finitely many points. As any
infinite discrete group having no normal abelian subgroup of finite index, S∞
admits unitary representations which are not of type I [Tho64b], meaning that its
irreducible representations are not classifiable in a reasonable manner. However,
it is still possible to classify its extremal characters, corresponding to finite factor
representations. Thoma found an explicit parameterization of the extremal
characters of S∞ [Tho64a], see also [EI16] and the literature cited therein for
similar classifications for other “wild” (non-type I) groups. This parameterization
depends on countably many continuous variables in a simplex T, and we will
rely on it to analyze the equivalence ∼.

Characters and representations of S∞ are a topic of ongoing research. We
mention here the works of Vershik and Kerov [VK81, VK+82], Okounkov and
Olshanski [OO98], and in particular the recent monograph [BO17] for an intro-
duction to the subject. Since Thoma’s original work, various new proofs of his
results have been obtained [VK81, Oko95, GK10].
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We have now introduced sufficient context to state the three main questions
that we ask and answer in this article.

Q1) How can one classify unitary involutive solutions of the Yang-Baxter
equation up to equivalence?

Q2) Given R, S ∈ R0, how to efficiently decide whether R ∼ S?

Q3) Which representations ρ of S∞ are Yang-Baxter representations, that is, of
the form ρ ∼= ρR for some involutive R-matrix R ∈ R0?

To answer these questions, we start in Sect. 2 by recalling Thoma’s simplex T
and how it parameterizes the extremal characters of S∞. We show that any
involutive R-matrix R defines an extremal character χR (Sect. 2.1), but that not
every extremal character is of Yang-Baxter form. This poses the question of how
to characterize the subset TYB ⊂ T parameterizing the Yang-Baxter characters.

Despite the finite-dimensional appearance of the Yang-Baxter equation, a
full understanding of TYB requires infinite-dimensional analysis and tools from
operator algebras. We consider subfactors arising from a subgroup S>∞ ⊂ S∞
in Yang-Baxter representations ρR in Sect. 3. Via this approach, we derive
further properties of TYB, and arrive at an answer to Q2) in Thm. 3.3, stating
that R ∼ S if and only if these R-matrices have similar partial traces. This
section builds on the works of Gohm and Köstler on noncommutative probability
and generalizations of Thoma’s theorem [GK10, GK11], and of Yamashita on
S∞-subfactors [Yam12].

To show that the properties of TYB found up to this point already characterize
this set within T, we develop in Sect. 4.1 a constructive procedure for generating
R-matrices, independent of subfactor theory. The main idea is to find a good
replacement for taking direct sums of representations which respects the Yang-
Baxter equation. We define a binary operation on R0 which enables us to build
non-trivial R-matrices from the trivial ones ± idV⊗V . This procedure results in
a classification of Yang-Baxter characters (Thm. 4.7), and thus also essentially
answers Q3). The full answer to Q1) is then given in Sect. 4.2, where we establish
a parameterization of R0/∼ by pairs of Young diagrams (Thm. 4.8).

In Sect. 5, we use K-theory to characterize the equivalence R ∼ S in terms
of approximate unitary equivalence of the homomorphisms ρR, ρS (Thm. 5.3)
and recover a result of Kerov and Vershik [VK83] in our Yang-Baxter setting.

As K0(C
∗S∞) is isomorphic to a quotient of the ring of symmetric functions

[VK83], this also enables us to give an explicit formula for the decomposition
of the Yang-Baxter representations ρ(n)R into irreducibles in terms of symmetric
functions (Prop. 5.7).

Sect. 6 is devoted to a discussion of examples, including in particular Yang-
Baxter representations of the Temperley-Lieb algebra at parameter q = 2 [TL71].
Our results allow us to classify such representations completely in terms of their
dimension and rank (Prop. 6.3).

4



2 R-matrices and characters of S∞
The infinite symmetric group S∞ is the group of all bijections of N that move
only finitely many points, a countable discrete group with infinite (non-trivial)
conjugacy classes. A character of S∞ is defined as a positive definite class
function χ : S∞ → C that is normalized at the identity, χ(e) = 1. For example,
the trivial representation has the constant character 1. The characters of S∞
form a simplex, the extreme points of which are called extremal characters
(or indecomposable characters). An example of an extremal character is the
Plancherel trace χ(σ) = δσ,e.

Thoma found the following characterization of extremality of characters
of S∞, often called “Thoma Multiplicativity”. In its formulation, we define the
support of σ ∈ S∞ as the complement of the fixed points of σ : N→ N.

Theorem 2.1. [Tho64a] A character χ of S∞ is extremal if and only if for
σ, σ′ ∈ S∞ with disjoint supports, it holds that χ(σσ′) = χ(σ)χ(σ′).

Some elements of S∞ will appear repeatedly. We write σi,j = (i, j) for two-
cycles, and specifically σk = σk,k+1 for neighboring transpositions, the standard
generators of S∞. General n-cycles will be denoted cn ∈ S∞. In case a specific
choice of n-cycle is necessary, we choose

cn = σn−1 · · ·σ2σ1 = σ1,2σ1,3 · · ·σ1,n , (2.1a)
σ1,n = σn−1 · · ·σ2σ1σ2 · · ·σn−1 . (2.1b)

In view of the above theorem and the cycle decomposition of permutations, an
extremal character χ of S∞ is uniquely determined by its values on n-cycles.
For a general group element σ ∈ S∞, one then has

χ(σ) =
∏
n≥2

χ(cn)kn ,

where kn is the number of n-cycles in the decomposition of σ into disjoint cycles.

2.1 Extremality and Thoma’s parameterization

We now connect S∞ to R-matrices by showing that any R-matrix defines an
extremal character and corresponding factor representation of S∞. We will
be working with the infinite tensor product E0 :=

⊗
n≥1 EndV (defined only

algebraically at this point), with inclusions fixed by tensoring with idV in the last
factor. With the group inclusions Sn ⊂ Sn+1 ⊂ S∞ defined by letting σ ∈ Sn act
on N by keeping all j > n fixed, the system of representations ρ(n)R , R ∈ R0(V )
is coherent and defines a ∗-homomorphism ρR : C[S∞]→ E0. The generators σi,
i ∈ N, are mapped to

Ri := ρR(σi) = 1⊗(i−1) ⊗R⊗ 1⊗ . . . , (2.2)

where here and hereafter, we write 1 instead of idV when the base space is clear
from the context. Note that Ri can be viewed as an element of EndV ⊗n for
n ≥ i+ 1, or of E0.
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We refrain from viewing ρR as a representation on
⊗

n≥1 V , as the definition
of this space depends on choices. Our S∞-representations will be defined by
composing ρR with the GNS representation of E0 with respect to its unique
normalized trace3,

τ =
⊗
n≥1

TrV
d

: E0 → C . (2.3)

Proposition 2.2. Let R ∈ R0(V ). Then

χR := τ ◦ ρR (2.4)

is an extremal character of S∞. On an n-cycle cn, n ≥ 2, it evaluates to

χR(cn) = d−n TrV ⊗n(R1 · · ·Rn−1), d = dimV. (2.5)

Proof. By standard properties of the trace, χR is a normalized positive class
function. To show that χR is also extremal, we have to verify that it factorizes
over permutations σ, σ′ ∈ S∞ with disjoint supports (Thm. 2.1).

Let σ, σ′ ∈ S∞ have disjoint supports. Taking into account that χR is a class
function, we may assume without loss of generality that suppσ ⊂ {1, . . . , n}
and suppσ′ ⊂ {n+ 1, . . . , n+m} for some n,m ∈ N.

Setting N := n+m, we then have ρ(N)
R (σ) = ρ

(n)
R (σ)⊗ 1⊗m and ρ(N)

R (σ′) =

1⊗n ⊗ ρ(m)
R (σ′). Using TrV⊗W (A⊗B) = TrV (A) TrW (B), we arrive at

χR(σσ′) = d−N TrV ⊗N ((ρ
(n)
R (σ)⊗ 1⊗m)(1⊗n ⊗ ρ(m)

R (σ′))

= d−n TrV ⊗n(ρ
(n)
R (σ)) · d−m TrV ⊗m((ρ

(m)
R (σ′))

= χR(σ)χR(σ′) ,

and the proof of extremality of χR is finished.
For the second statement, we only need to note that ρR (1.2) maps the

n-cycle σ1σ2 · · · σn−1 to R1R2 · · ·Rn−1 ∈ End(V )⊗n.

We will call the characters χR, R ∈ R0, Yang-Baxter characters of S∞. As
we just demonstrated, every Yang-Baxter character is extremal. We will see in
the next section that the converse is not true: not every extremal character is
Yang-Baxter.

Using the representation theory of finite groups and the inductive limit
definition of S∞, it follows from Prop. 2.2 that two R-matrices R, S ∈ R0 are
equivalent in the sense of Def. 1.1 if and only if they have the same character and
the same dimension. (As we work with normalized characters, the dimension is
not contained in the character.) Thus the dimension and the sequence of traces
(2.5) (indirectly) characterize the equivalence classes R0/∼.

Thoma not only found a criterion for characterizing extremal characters, but
also gave a classification in terms of an infinite dimensional simplex.

3See Sec. 5.3 for different choices of states on E0.
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Theorem 2.3. [Tho64a] Let T denote the collection of all sequences {αi}i∈N,
{βi}i∈N of real numbers such that

i) αi ≥ 0 and βi ≥ 0,

ii) αi ≥ αi+1 and βi ≥ βi+1,

iii)
∑

i αi +
∑

j βj ≤ 1.

For each (α, β) ∈ T, there exists a unique extremal character χ of S∞. On an
n-cycle, it takes the value

χ(cn) =
∑
i

αni + (−1)n+1
∑
i

βni , n ≥ 2. (2.6)

We will call the parameters (α, β) ∈ T the Thoma parameters of a character.

As a consequence of these results, any R ∈ R0 defines a point (α, β) ∈ T.
Questions Q1) and Q3) from the Introduction are therefore closely connected to
the problem of identifying the subset of all Thoma parameters of Yang-Baxter
characters inside T. This task is taken up in the following sections.

Question Q2), concerned with an explicit characterization of the equiva-
lence relation ∼, amounts to extracting the Thoma parameters (α, β) from an
involutive R-matrix. In view of (2.5) and (2.6), the parameters (α, β) ∈ T
corresponding to R ∈ R0 are uniquely fixed by the system of equations∑

i

αni + (−1)n+1
∑
i

βni = d−n TrV ⊗n(R1 · · ·Rn−1) , n ≥ 2. (2.7)

We will develop tools to compute (α, β) directly from R in Sections 3 and 4.1.

To conclude this section, let us list the Thoma parameters of the simple
R-matrices encountered so far. Recall that the flip in any dimension d is denoted
by F .

R non-vanishing Thoma parameters
1 α1 = 1, independent of d
−1 β1 = 1, independent of d
F α1 = . . . = αd = d−1

−F β1 = . . . = βd = d−1

Since the R-matrices R = 1 and R = −1 obviously give the trivial and
alternating representation of S∞, respectively, the first two lines immediately
follow from (2.7). The claimed parameters of ±F can be verified by computing
TrV ⊗n(F1 · · ·Fn−1) = d.

2.2 Faithfulness

Given an R-matrix R ∈ R0 of dimension d, the homomorphism ρR restricts to
a representation ρ(n)R of Sn on V ⊗n, which has dimension dn. This observation
expresses that Yang-Baxter representations are “small”, and leads to restrictions
on the Thoma parameters of Yang-Baxter characters.
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Proposition 2.4. Let R ∈ R0.

i) As a group homomorphism, ρR is injective if and only if R 6= ±1.

ii) As an algebra homomorphism, ρR : C[S∞]→ E0 is not injective.

Proof. i) This is a general property of S∞. Clearly, if R = ±1 then ρR is not
injective. Conversely, assume that ρR is not injective and σ ∈ S∞ lies in the
kernel, then σ also lies in the kernel of ρ|Sn for n sufficiently large. But for n ≥ 5,
the only non-trivial proper normal subgroup of Sn is the alternating group An.
Thus ker ρ|Sn contains at least An. This implies that the image of ρ is either
trivial or Z2. In the case at hand, this means that ρR is injective if and only if
R 6= ±1.

ii) ρR restricts to an algebra homomorphism ρ
(n)
R : C[Sn]→ EndV ⊗n. As the

dimensions of C[Sn] and End(V ⊗n) are n! and d2n, respectively, and n! > d2n

for n sufficiently large, it follows that ρ(n)R cannot be injective.

The second part of this proposition implies that Yang-Baxter characters are
never faithful. This observation allows us to make use of the following theorem
due to Wassermann [Was81, Thm. III.6.5].

Theorem 2.5. [Was81] Let χ be an extremal character of S∞ with Thoma
parameters (α, β) ∈ T. Then χ is faithful as a state of the group C∗-algebra
C∗S∞ if and only if either

∑
i αi+

∑
i βi < 1, or

∑
i αi+

∑
i βi = 1 and infinitely

many αi or βi are non-zero.

In combination with Prop. 2.4 ii), this immediately implies the following
result.

Corollary 2.6. Let (α, β) ∈ T be the Thoma parameters of a Yang-Baxter
character χR. Then

∑
i αi +

∑
i βi = 1, and only finitely many αi or βi are

non-zero.

We can now give a first example of an extremal non-Yang-Baxter character,
namely the Plancherel trace χ(σ) = δσ,e. By (2.6), the Plancherel trace has
Thoma parameters α = β = 0 and therefore violates the condition

∑
i αi +∑

i βi = 1. Its GNS representation is the left regular representation, which is
“too large” to be of Yang-Baxter form.

3 Yang-Baxter subfactors
The Thoma parameters of a Yang-Baxter character have further properties, in
addition to the ones spelled out in Cor. 2.6. To extract these properties, and
to derive a characterization of the equivalence relation ∼, we now switch to a
setting involving von Neumann algebras. Specifically, we will consider subfactors
[Jon83, JS97] arising from the subgroup

S>∞ ⊂ S∞ , S>∞ := {σ ∈ S∞ : σ(1) = 1}. (3.1)
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Given an extremal character χ of S∞, we may view it as a tracial state on the
group C∗-algebra C∗S∞ (we denote the state and the character by the same
symbol).

The GNS data of (C∗S∞, χ) will be denoted (Hχ,Ωχ, πχ), and the von
Neumann algebra generated by the representationMχ := πχ(C∗S∞)′′. Since χ
is extremal,Mχ is a (finite) factor — it is trivial for the one-dimensional trivial
and alternating representations, and hyperfinite of type II1 in all other cases.

In our situation of Yang-Baxter representations, we have the homomorphism
ρR : C[S∞] → E0 =

⋃
n EndV ⊗n. Proceeding to the GNS representation πτ

of E0 with respect to the trace τ , we may weakly close E0 to E (a hyperfinite II1
factor), and obtain the subfactor

MR := ρR(C[S∞])′′ ⊂ E . (3.2)

Since πτ is faithful (in contrast to ρR and πχR
, see Prop. 2.4), we suppress it in

our notation and often write ρR instead of πτ ◦ ρR. We can canonically identify
πτ ◦ ρR = πχR

, Ωτ = ΩχR
,MR =MχR

, HχR
=MRΩτ .

As an aside, let us mention that our equivalence relation R ∼ S implies the
unitary equivalence of the representations

R ∼ S =⇒ πτ ◦ ρR ∼= πτ ◦ ρS . (3.3)

In fact, R ∼ S implies χR = χS and hence πχR
= πχS

— since πχR
can be

identified with the restriction of πτ ◦ ρR to HχR
, (3.3) follows.

The subgroup (3.1) generates the von Neumann algebra

NR := ρR(C∗S>∞)′′ ⊂MR . (3.4)

As S>∞ ∼= S∞, this is a (I1 or II1) subfactor.
Gohm and Köstler [GK10] and Yamashita [Yam12] have independently ana-

lyzed the subfactor Nχ ⊂ Mχ in the setting of general (not necessarily Yang-
Baxter) extremal characters. They found that it is irreducible if and only if the
parameters (α, β) have one of the following values:

i) α1 = . . . = αd = d−1 for some d ∈ N,

ii) β1 = . . . = βd = d−1 for some d ∈ N,

iii) αi = 0 and βi = 0 for all i.

By comparison with our examples of R-matrices at the end of the preceding
section, we see that the relative commutant N ′R ∩MR is trivial if and only if R
is equivalent to one of the four R-matrices 1,−1, F,−F , of arbitrary dimension
d ∈ N. As we pointed out earlier, the last possibility iii) is realized by the
Plancherel trace, which is not Yang-Baxter.

To extract information about R from the subfactor (3.4), we consider the
unique τ -preserving conditional expectation onto its relative commutant,

ER :MR → N ′R ∩MR . (3.5)
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The inclusion NR ⊂MR is replicated on the level of the infinite tensor product E :
Here we consider the inclusion C ⊗ EndV ⊗ EndV ⊗ · · · ⊂ E , the relative
commutant of which is EndV , viewed as a subalgebra of E via the embedding
X 7→ X ⊗ 1⊗ 1 · · · . The corresponding τ -preserving conditional expectation is

E : E → EndV , E = idEndV ⊗ τ ⊗ τ ⊗ · · · . (3.6)

In the following arguments, it turns out to be better to use a twisted version of
E, namely the left partial trace,

El := (τ ⊗ idEndV )⊗ τ ⊗ τ ⊗ · · · : E → EndV ⊗ C⊗ C⊗ · · · . (3.7)

instead of the right partial trace (3.6). A posteriori, we will be able to conclude
El(R1) ∼= E(R1), but this is not clear from the outset.

We want to show that the diagram

EndV E

N ′R ∩MR MR

El

ER

(3.8)

is a commuting square. A priori, it is in particular not obvious that we have
the inclusion N ′R ∩MR ⊂ EndV on the left hand side, but this will be shown
below.

The key step is to show that ER and El agree on R1 = ρR(σ1) ∈ MR.
Following [Yam12], we consider the subgroups Tn = {σ ∈ Sn+1 : σ(1) = 1} ⊂
S∞ and the von Neumann algebras generated by them, NR,n := ρR(Tn)′′ ⊂MR.
As Tn ⊂ Tn+1, this yields a descending chain of relative commutants, n ∈ N,

MR ⊃ (N ′R,n ∩MR) ⊃ (N ′R,n+1 ∩MR) ⊃ (N ′R ∩MR) ,

with corresponding conditional expectations ER,n :MR → N ′R,n ∩MR. Since
Tn is finite, ER,n is simply given by averaging,

ER,n(M) =
1

n!

∑
σ∈Tn

ρR(σ)MρR(σ−1), M ∈MR . (3.9)

It is not hard to compute that for M = R1, one gets [Yam12]

ER,n(R1) =
1

n

n+1∑
j=2

ρR(σ1,j) . (3.10)

Lemma 3.1. ER(R1) = El(R1).

Proof. The basic idea of the proof is to use the fact that ER,n → ER as n→∞
in the 2-norm given by τ . That is, we need to show that (note that R1 = R∗1)

τ(|ER,n(R1)− El(R1)|2) = τ(ER,n(R1)ER,n(R1)) (3.11)
− 2 τ(ER,n(R1)El(R1)) + τ(El(R1)

2)
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converges to zero as n→∞. The argument is thus similar to the one in [Yam12],
but involves some extra twists in our setting.

In a first step, we claim that for any X ∈ ρR(C[S∞]), we have

lim
n→∞

τ(XER,n(R1)) = lim
n→∞

1

n

n+1∑
j=2

τ
(
XρR(σ1,j)

)
= τ
(
X El(R1)

)
. (3.12)

It is sufficient to show the claim for X = ρR(σ) with σ ∈ Sk, k ∈ N.
As σ1,j = σj−1 · · · σ2σ1σ2 · · ·σj−1 (2.1b), it follows that χR(σσ1,j) = χR(σσ1,k+1)

for all j > k. With this observation, we have

1

n

n+1∑
j=2

τ
(
ρR(σ)ρR(σ1,j)

)
=

1

n

k∑
j=2

χR(σ · σ1,j) +
1

n

n+1∑
j=k+1

χR(σ · σ1,k+1).

As n→∞, the first term vanishes and the second converges to χR(σσ1,k+1). To
compute this character value, we compare the cycle structures of σ and σ ·σ1,k+1:
Any cycle of σ that does not involve 1 also occurs in σ · (1, k + 1). If the cycle
involving 1 has length m, then this cycle is changed to a cycle of length m+ 1
in σ · σ1,k+1. Thus χR(σ · σ1,k+1) = χR(σ) · χR(cm+1)/χR(cm).

By definition of El (here the difference to E enters), the right hand side of
(3.12) is

τ
(
ρR(σ)El(R1)

)
= τ
(

(1⊗ ρR(σ))R1

)
= χR(σ′ · σ1) ,

where σ′ ∈ Sk+1 is defined by σ′(1) = 1, σ′(i) = σ(i − 1), i > 1. Again we
compare the cycle structures of σ and σ′σ1: Any cycle not involving 1 in σ
appears as a cycle not involving 2 in σ′. The cycle including 1 in σ, say of length
m, yields an (m+ 1)-cycle in σ′σ1. Thus χR(σ′ · σ1) = χR(σ) ·χR(cm+1)/χR(cm),
in agreement with the previously computed limit, proving (3.12).

This result implies that El(R1) is an element of MR. In fact, by the
traciality of τ , we have shown that for any X, Y ∈ ρR(C[S∞]), we have the
limit τ(XER,n(R1)Y )→ τ(XEl(R1)Y ). As ρR(C[S∞])Ωτ ⊂ HχR

is dense, and
‖ER,n(R1)‖ is uniformly bounded in n, it follows that ER,n(R1) converges weakly
to El(R1) ∈MR. In particular,

lim
n→∞

τ(ER,n(R1)El(R1)) = τ(El(R1)
2) .

Inserted into (3.11), we see that it remains to show tn,n → t∞ := τ(El(R1)
2) as

n→∞, where we have introduced tn,m := τ(ER,n(R1)ER,m(R1)).
To this end, note that the weak limit ER,n(R1)→ El(R1) implies

lim
n→∞

lim
m→∞

tn,m = t∞ .

For showing that this coincides with the desired diagonal limit limn tn,n, we
recall that for n ≥ m, the conditional expectation ER,n projects onto a smaller
algebra than ER,m, so that we have ER,n ◦ ER,m = ER,n. Hence, for n ≥ m,

tn,m = τ(ER,n(ER,n(R1)ER,m(R1))) = τ(ER,n(R1)ER,n(ER,m(R1))) = tn,n,

i.e., we have tn,m = tmax{n,m}. This implies limn tn,n = limn limm tn,m and
concludes the proof.
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With El(R1), we now have concrete elements of the relative commutant
N ′R ∩MR at our disposal. For R = ±1 or R = ±F , these partial traces are
trivial, El(±1) = ±d idV , El(±F ) = ± idV , as can be computed directly or
inferred from the above mentioned result on irreducibility of NR ⊂MR.

However, for all R-matrices not equivalent to ±1,±F , we get non-trivial
partial traces El(R1). In fact, it was shown in [GK11, Yam12] that ER(R1)
generates the relative commutant N ′R ∩MR. This implies that for R 6∼ ±1,±F ,
the expectation El(R1) is not a multiple of the identity. Additionally, we can
conclude that (3.8) is indeed a commuting square.

The partial trace El(R1) of the R-matrix turns out to be a complete invariant
for the equivalence relation ∼. This is a consequence of the next theorem, which
follows from the work of Gohm and Köstler, and our Lemma 3.1. These authors
prove it in a setting of noncommutative probability [GK10], building on their
earlier work [GK09, Kös10] (see also [GK11]). In our situation, only certain
aspects of [GK09, GK10, Kös10, GK11] are needed, and we give a shortened
proof for the sake of self-containedness.

This proof makes use of the so-called partial shifts, defined as

γm(M) = lim
n→∞

Rm+1Rm+2 · · ·Rn ·M ·Rn · · ·Rm+2Rm+1 , m ∈ N . (3.13)

These limits exist in the strong operator topology for any M ∈ MR [GK10,
Prop. 2.13], and define τ -preserving endomorphisms ofMR. Clearly γm acts
trivially on N ′R ∩ MR. Thus the conditional expectation onto the relative
commutant is invariant, ER ◦ γm = ER.

By explicit calculation based on (2.1b) and the Yang-Baxter equation, one
shows that [GK10, Prop. 3.3]

γm(ρR(σ1,n)) =

{
ρR(σ1,n) n < m+ 1

ρR(σ1,n+1) n ≥ m+ 1
. (3.14)

and in particular,

γp1(R1) = ρR(σ1,p+2) , p ∈ N . (3.15)

As mentioned before, the relative commutant N ′R ∩MR is contained in the
fixed point algebra of γ1. Gohm and Köstler proved that in fact, equality holds:
Mγ1

R = N ′R ∩MR [GK10, Thm. 3.6 (iii)].

Proposition 3.2. Let cn ∈ S∞ be an n-cycle, n ≥ 2. Then

χR(cn) = τ(El(R1)
n−1). (3.16)

Proof. For n = 2, the statement is a direct consequence of the definition of El.
For the induction step, we consider the specific cycle cn+1 = cnσ1,n+1 (2.1a).
Writing Cn = ρR(cn) as a shorthand, we note that γn(Cn) = Cn for (see (2.1a)
and (3.14)). As ER is invariant under γn, we obtain

ER(Cn+1) = ER(γn(CnρR(σ1,n+1)) = ER(Cn · ρR(σ1,n+2)).

12



In the same manner, we can now insert the endomorphism γn+1, which also
leaves Cn invariant, and maps ρR(σ1,n+2) to ρR(σ1,n+3). Iteratively, this gives
ER(Cn+1) = ER(Cn ρR(σ1,n+p)) = ER(Cn γ

n+p−2
1 (R1)), p ∈ N.

Averaging over p yields for any N ∈ N

ER(Cn+1) = ER

(
Cn ·

1

N

N∑
p=1

γp1(γn−21 (R1))

)
.

We may now use the ergodic theorem [Pet83], stating here that for anyM ∈MR,
the ergodic averages N−1

∑N
p=1 γ

p
1(M) converge strongly to the conditional

expectation ER(M) onto the fixed point algebraMγ1
R = N ′R ∩MR as N →∞

[Kös10, Thm.8.3]. As γn−21 (R1) ∈ MR, and ER is continuous in the strong
operator topology, we have ER(Cn+1) = ER(Cn · ER(γn−21 (R1))) = ER(Cn) ·
ER(γn−21 (R1)). In view of the γ1-invariance of ER and Lemma 3.1, the last term
simplifies to ER(γn−21 (R1)) = ER(R1) = El(R1).

We thus have shown ER(Cn+1) = ER(Cn) · El(R1), which implies ER(Cn) =
El(R1)

n−1 by induction. Evaluating in τ then gives the claimed result.

We have now extracted sufficient information from the subfactor setting, and
return to our analysis of equivalence of R-matrices. At this point, it is better to
switch to the usual partial trace of R, defined as

ptrR = dimV · El(R1) = (TrV ⊗ idEndV )(R) (3.17)

and viewed as an element of EndV rather than E . The key relation (3.16) can
then be rewritten as

χR(cn) = d−n TrV (ptr(R)n−1) . (3.18)

Theorem 3.3. Two R-matrices R, S ∈ R0 are equivalent if and only if they
have similar partial traces, ptrR ∼= ptrS.

Proof. If R ∈ R0(V ) and S ∈ R0(W ) have similar partial traces, then clearly
TrV (ptr(R)n−1) = TrW (ptr(S)n−1). As similarity of the partial traces implies in
particular that the dimensions dimV = dimW coincide, we conclude χR = χS
from (3.18) and Thoma multiplicativity. Thus, ptr(R) ∼= ptr(S)⇒ R ∼ S.

Conversely, if R ∼ S, then these R-matrices have the same dimension and
character, and hence TrV (ptr(R)n−1) = TrW (ptr(S)n−1), n ≥ 2, from (3.18).
This implies that the selfadjoint endomorphisms ptr(R), ptr(S) have the same
characteristic polynomial, and are therefore similar.

As an immediate application, let us return to our earlier discussion of left
and right partial traces. Since FRF ∼ R for any R ∈ R0, Thm. 3.3 implies that
ptr(R) ∼= ptr(FRF ). But ptr(FRF ) coincides with the right partial trace of R,
namely (idEndV ⊗TrV )(R). Thus, a posteriori, we also have E(R1) ∼= ER(R1),
where E is the conditional expectation (3.6).

Thm. 3.3 shows that the eigenvalues of ptr(R) (and their multiplicities)
characterize the equivalence classes R0/∼. Such spectral characterizations also
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appear in the work of Okounkov on Thoma measures and Olshanski pairs [Oko95].
In our Yang-Baxter setting, the spectrum of ptr(R) has a very specific form,
which will be the key to our classification of R-matrices in the next section.

As a second important consequence of Prop. 3.2, next we demonstrate
that Yang-Baxter characters have rational Thoma parameters after stating a
preparatory lemma.

Lemma 3.4. Let {xi}i and {yj}j be two finite sequences of positive real numbers
such that for all n ∈ N, ∑

i

x2n+1
i =

∑
j

ynj . (3.19)

Then the xi, yj are rational.

Proof. We order the sequences {xi}i, {yj}i non-increasingly and define µ ∈ N
as the multiplicity of the maximal value of the first sequence, i.e. x1 = . . . =
xµ > xµ+1. Dividing (3.19) by x2n+1

1 yields

∑
i

(
xi
x1

)2n+1

=
1

x1

∑
j

(
yj
x21

)n
.

In the limit n→∞, the left hand side converges to µ. In this limit, the right
hand side goes to infinity if y1 > x21 and to 0 if y1 < x21. As 0 < µ < ∞, we
conclude that y1 = x21, and define ν ∈ N as its multiplicity, y1 = . . . = yν > yν+1.
Then the right hand side has the limit ν

x1
as n→∞, so that x1 = ν

µ
and y1 = x21

are rational.
Inserting these values of x1 and y1 into (3.19), we find

µ

(
ν

µ

)2n+1

+
∑
i>µ

x2n+1
i = ν

(
ν

µ

)2n

+
∑
j>ν

ynj ,

and hence (3.19) also holds for the shorter sequences {xi}i>µ and {yj}j>ν . The
claim now follows by induction.

Definition 3.5. TYB ⊂ T is defined as the subset of all (α, β) ∈ T satisfying:

i) Only finitely many parameters αi, βj are non-zero.

ii)
∑

i αi +
∑

j βj = 1.

iii) All αi, βj are rational.

Theorem 3.6. The Thoma parameters of any Yang-Baxter character lie in TYB.

Proof. Due to Cor. 2.6, the only property of Definition 3.5 that remains to be
shown is iii). To do so, we express the character on the left hand side of (3.18)
in terms of its Thoma parameters (α, β) (2.6), and the traces on the right hand
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side of (3.18) in terms of the non-zero eigenvalues tj of ptrR (note that ptrR is
selfadjoint, so the tj are real). This yields∑

i

αni + (−1)n+1
∑
i

βni = d−n
∑
j

tn−1j .

Specializing to the case that n = 2m+ 1 is odd, we are in the situation of the
preceding lemma with {xi}i = {dαi, dβi}i and yj = t2j .

Not only the Thoma parameters, but also the eigenvalues of ptr(R) are
rational. In fact, we will see that each eigenvalue of ptrR is a non-zero integer,
with multiplicities following a specific pattern. These facts will be discussed in
the next section.

4 The structure of R0/∼

4.1 Normal forms of involutive R-matrices

Our next aim is to prove that TYB parameterizes the set of all Yang-Baxter
characters, that is, that every (α, β) ∈ TYB is realized as the Thoma parameters
of some R-matrix.

We will follow a procedure which has some analogy to building general group
representations (of, say, a finite group) as direct sums of irreducibles. Yang-
Baxter representations are reducible, but decomposing them gives representations
which are no longer of Yang-Baxter form. Conversely, taking direct sums of
Yang-Baxter representations is not compatible with the Yang-Baxter equation
either.

To get around these problems, we introduce a binary operation � on R-
matrices that on the level of the base spaces corresponds to taking direct sums,
and respects the Yang-Baxter equation. Under various names, such operations
have been considered in the literature before [Lyu87, Gur91, Hie93]. We present
here the version that is most useful for the case at hand.

Definition 4.1. Let V,W be finite dimensional vector spaces and let X ∈
End(V ⊗V ), Y ∈ End(W ⊗W ). We define X �Y ∈ End((V ⊕W )⊗ (V ⊕W ))
as

X � Y = X ⊕ Y ⊕ F on (4.1)
(V ⊕W )⊗ (V ⊕W ) = (V ⊗ V )⊕ (W ⊗W )⊕ ((V ⊗W )⊕ (W ⊗ V )).

In other words, X � Y acts as X on V ⊗ V , as Y on W ⊗W , and as the flip
on the “mixed tensors” involving factors from both, V and W . Note that the
above definition works in the same way for infinite dimensional Hilbert spaces.

Before applying this operation to R-matrices, we collect its main properties.
In particular, we note that � behaves well under taking the partial trace

ptr : End(U ⊗ U)→ EndU , (4.2)
X 7→ (TrU ⊗ idEndU)(X), (4.3)

where U is any finite dimensional vector space.
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Lemma 4.2. Let V,W be finite dimensional vector spaces and X ∈ End(V ⊗V ),
Y ∈ End(W ⊗W ).

i) � is commutative and associative up to canonical isomorphism.

ii) If X and Y are unitary (respectively selfadjoint, involutive, invertible),
then X � Y is unitary (respectively selfadjoint, involutive, invertible).

iii) If X commutes with the flip (on V ⊗V ) and Y commutes with the flip (on
W ⊗W ), then X � Y commutes with the flip (on (V ⊕W )⊗ (V ⊕W )).

iv) ptr(X � Y ) = (ptrX)⊕ (ptrY ). In particular, Tr(X � Y ) = TrX + TrY .
The same formula holds for the right partial trace.

Proof. i) The definition (4.1) is invariant under exchanging (X, V ) with (Y,W ),
that is X�Y = Y �X. Associativity follows by repeatedly evaluating the defini-
tion. Given finite dimensional vectors spaces V 1, . . . , V n and X i ∈ End(V i⊗V i),
i = 1, . . . , n, one finds

n

�
i=1

X i = X1 ⊕ . . .⊕Xn ⊕ F , (4.4)

where on the right hand side, each X i acts on V i⊗ V i, and F on the orthogonal
complement of

⊕
i(V

i ⊗ V i) in (
⊕

i V
i)⊗2.

ii), iii) These statements follow directly from the facts that F is unitary,
selfadjoint, involutive, invertible, and the flip of (V ⊕W )⊗ (V ⊕W ) leaves the
three subspaces in the decomposition (4.1) invariant.

iv) Proving the claimed formula amounts to showing that the partial trace
of FQ vanishes, where Q is the orthogonal projection onto (V ⊗W )⊕ (W ⊗ V ).
Let v1, v2 ∈ V , and let {wk} be an orthonormal basis of W . Then the left partial
trace satisfies 〈v1, ptr(FQ)v2〉 =

∑
k〈wk ⊗ v1, F (wk ⊗ v2)〉, because Q vanishes

on V ⊗ V . But 〈wk ⊗ v1, F (wk ⊗ v2)〉 = 0 because V and W lie orthogonal to
each other. The argument for the right partial trace is the same.

We now apply � to R-matrices. The following result is known [Lyu87, Gur91,
Hie93]. But since no proof seems to be available in the literature, we state it
here with a proof.

Proposition 4.3. Let R, R̃ ∈ R. Then R� R̃ ∈ R.

Proof. Invertibility of R�R̃ follows from the preceding lemma and the invertibil-
ity of R, R̃. The main point is to check that R̂ := R� R̃ solves the Yang-Baxter
equation on the third tensor power of V ⊕ Ṽ , where V, Ṽ stand for the base
spaces of R, R̃.

This space is the direct sum of eight orthogonal subspaces V1 ⊗ V2 ⊗ V3,
where each Vi is either V or Ṽ . By definition of R̂, this operator leaves the
subspaces V ⊗ V and Ṽ ⊗ Ṽ invariant, and exchanges V ⊗ Ṽ with Ṽ ⊗ V . This
implies that R̂1R̂2R̂1 and R̂2R̂1R̂2 both decompose into the direct sum of their
restrictions to the six subspaces V ⊗3, V ⊗ Ṽ ⊗ V , (V ⊗ V ⊗ Ṽ )⊕ (Ṽ ⊗ V ⊗ V ),
Ṽ ⊗3, Ṽ ⊗ V ⊗ Ṽ , and (Ṽ ⊗ Ṽ ⊗ V )⊕ (V ⊗ Ṽ ⊗ Ṽ ).
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We have to show that R̂1R̂2R̂1 and R̂2R̂1R̂2 coincide on each of these sub-
spaces, and by symmetry in V, Ṽ and R, R̃, it suffices to do so for the first three
subspaces in the list. On V ⊗3, R̂iR̂jR̂i acts as RiRjRi, i = 1, 2, and since R solves
the Yang-Baxter equation, we immediately get R̂1R̂2R̂1|V ⊗3 = R̂2R̂1R̂2|V ⊗3 .

Inserting the definition of R̂, one finds that on V ⊗ Ṽ ⊗ V , R̂1R̂2R̂1 acts
as F1R2F1, while R̂2R̂1R̂2 acts as F2R1F2. But these two operators coincide,
as they are both equal to R1,3, defined as acting as R on the outer two tensor
factors, and trivially on the middle factor.

Similarly, for the last remaining subspace W := (V ⊗ V ⊗ Ṽ )⊕ (Ṽ ⊗ V ⊗ V )
one finds R̂1R̂2R̂1|W = (F1F2R1 ⊕ R1F2F1)|W and R̂2R̂1R̂2|W = (R2F1F2 ⊕
F2F1R2)|W . But F1F2R1 = R2F1F2 and F2F1R2 = R1F2F1, which finishes the
proof.

By Lemma 4.2 ii), � preserves involutivity, and thus also induces a binary
operation on R0 ⊂ R.

It is clear that variants of this operation are possible: A trivial change would
be to use −F instead of F in the definition of �, but also more substantial
variations exist [Hie93]. However, all these variations lead to R-matrices that
are equivalent in the sense of Def. 1.1.

For characterizing equivalence classes of R-matrices, we next describe how �
acts on the Yang-Baxter characters of S∞ and their Thoma parameters.

Proposition 4.4. Let R, R̃ ∈ R0 have dimensions d, d̃.

i) The characters of R, R̃, and R� R̃ are related by (cn an n-cycle, n ≥ 2)

χR�R̃(cn) =
dn

(d+ d̃)n
χR(cn) +

d̃n

(d+ d̃)n
χR̃(cn) . (4.5)

ii) Let (α, β) and (α̃, β̃) be the Thoma parameters of R and R̃, respectively.
Then the Thoma parameters of R� R̃ are the non-increasing arrangements
of

{α̂i}i = { d
d+d̃

αk,
d̃
d+d̃

α̃l, : k, l ∈ N} ,

{β̂i}i = { d
d+d̃

βk,
d̃
d+d̃

β̃l, : k, l ∈ N} . (4.6)

Proof. i) We denote the base spaces of R and R̃ by V+ and V−, respectively,
and write R̂ := R � R̃ and V̂ := V+ ⊕ V−. Noting that the dimension of V̂ is
d+ d̃, equation (4.5) is equivalent to

TrV̂ ⊗n(R̂1 · · · R̂n−1) = TrV ⊗n
+

(R1 · · ·Rn−1) + TrV ⊗n
−

(R̃1 · · · R̃n−1) . (4.7)

The trace on the left hand side is taken over V̂ ⊗n =
⊕

ε1,...,εn
(Vε1 ⊗ . . .⊗ Vεn),

where the sum runs over εi = ±, i = 1, . . . , n. We claim that

(R̂1 · · · R̂n−1)Vε1 ⊗ . . .⊗ Vεn 6⊥ Vε1 ⊗ . . .⊗ Vεn ⇒ ε1 = . . . = εn . (4.8)
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Note that (4.8) implies (4.7): If (4.8) holds, then the trace over V̂ ⊗n simplifies
to the sum of the trace over V ⊗n+ and that over V ⊗n− . As R̂ acts as R and R̃ on
V+ ⊗ V+ and V− ⊗ V−, respectively, (4.7) then follows.

To show (4.8), we consider the position of the image (R̂1 · · · R̂n−1)Vε1 ⊗ . . .⊗
Vεn relative to Vε1 ⊗ . . .⊗ Vεn for given ε1, . . . , εn = ±. Assume that εn−1 6= εn.
Then the rightmost factor R̂n−1, acting non-trivially only on Vεn−1⊗Vεn , simplifies
to the flip by definition of R̂ = R � R̃. As all other factors R̂1 · · · R̂n−2 act
trivially on the last tensor factor Vεn , this implies (R̂1 · · · R̂n−1)Vε1 ⊗ . . .⊗ Vεn ⊂
V̂ ⊗n−1 ⊗ Vεn−1 ⊥ Vε1 ⊗ . . . ⊗ Vεn . Hence the non-orthogonality assumption in
(4.8) implies εn−1 = εn.

We next assume εn−2 6= εn−1 = εn. In this situation, the rightmost factor
R̂n−1 maps the product of the last two tensor factors Vεn ⊗ Vεn onto itself, so
that we are left with the same situation as before, but with the number of tensor
factors reduced by one. Inductively, we conclude that the non-orthogonality
assumption in (4.8) implies ε1 = . . . = εn.

ii) Define parameters α̂i, β̂j by (4.6), ordered non-increasingly. Then 0 ≤
α̂i, β̂j ≤ 1, and for any n ∈ N,

∑
i

α̂ni + (−1)n+1
∑
j

β̂nj =

(
d

d+ d̃

)n(∑
i

αni + (−1)n+1
∑
j

βnj

)

+

(
d̃

d+ d̃

)n(∑
i

α̃ni + (−1)n+1
∑
j

β̃nj

)
.

Since (α, β), (α̃, β̃) ∈ T, we have
∑

i αi +
∑

j βj ≤ 1 and
∑

i α̃i +
∑

j β̃j ≤ 1, and
therefore

∑
i α̂i +

∑
j β̂j ≤ 1. This shows that (α̂, β̂) ∈ T. In terms of characters,

the above equation reads, n ∈ N,

∑
i

α̂ni + (−1)n+1
∑
j

β̂nj =
dn

(d+ d̃)n
χR(cn) +

d̃n

(d+ d̃)n
χR̃(cn) ,

and by part i) and the uniqueness of the Thoma parameters of an extremal
character, identifies (α̂, β̂) as the Thoma parameters of χR̂.

By construction, � maps pairs of parameters in TYB into TYB, preserving
the three properties of TYB (Def. 3.5). But given d, d̃ > 0, (4.5) also makes sense
as an operation on general extremal characters of S∞. We do not investigate
this observation any further here.

After these preparations, we come to the definition of special “normal form
R-matrices” as �-sums of identities and negative identities. We will write 1a for
the identity on a vector space of dimension a2, i.e. 1a ∈ R0(Ca).

Definition 4.5. Let n,m ∈ N0 with n + m ≥ 1, d+ ∈ Nn and d− ∈ Nm. The
normal form R-matrix N with dimensions d+, d− is

N := 1d+1 � . . .� 1d+n � (−1d−1 ) � . . .� (−1d−m) . (4.9)
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Any R-matrix of the type (4.9) will be called normal form R-matrix. Note
that in view of Prop. 4.3, N is indeed an involutive R-matrix, of dimension
|d+|+ |d−|, where |d±| =

∑
i d
±
i . We emphasize that N is not simply the identity:

For example, 11 � 11 = F is the flip of dimension 2.

Lemma 4.6. Let N ∈ R0 be the normal form R-matrix with dimensions d+ ∈
Nn, d− ∈ Nm. The Thoma parameters of χN are

αi =
d+i
d
, i = 1, . . . , n, βj =

d−j
d
, j = 1, . . . ,m, (4.10)

where d = |d+|+ |d−|.
Proof. Recall that the identity 1 ∈ R0(V ) has α1 = 1 as its only non-vanishing
Thoma parameter, and the negative identity −1 ∈ R0(V ) has β1 = 1 as its only
non-vanishing Thoma parameter, independently of the dimension of V . From
this observation and the fact that � adds dimensions, one can easily compute
the Thoma parameters of N (4.9) by iterating Prop. 4.4 ii), with the claimed
result α = d+/d and β = d−/d.

In Thm. 3.6 we had proven that the Thoma parameters of every Yang-Baxter
character lie in TYB. Lemma 4.6 now implies the converse.

Theorem 4.7. The Yang-Baxter characters of S∞ are in one to one correspon-
dence with TYB (Def. 3.5) via Thoma’s formula (2.6).

Proof. Let (α, β) ∈ TYB. All that remains to be shown is that there is an R-
matrix with these Thoma parameters. There exists d ∈ N such that all dαi, dβj
are integer because the αi, βj are rational and finite in number (Def. 3.5). The
character of the normal form R-matrix N with dimensions d+i = dαi, d−j = dβj
then has Thoma parameters (α, β) by Lemma 4.6.

This result also justifies the notation TYB as the “Yang-Baxter simplex”, con-
sisting of all Thoma parameters of Yang-Baxter characters. Thoma’s simplex T,
viewed as a subset of [0, 1]∞× [0, 1]∞, where [0, 1]∞ is equipped with the product
topology, is a compact metrizable space. It is noteworthy to point out that
TYB ⊂ T is a dense subset, cf. [BO17, Ch. 3].

At this stage, we know that every R-matrix R ∈ R0 is equivalent to a normal
form R-matrix. We briefly mention further properties of normal form R-matrices:
Any normal form R-matrix N commutes with the flip because of Lemma 4.2 iii).
Thus any involutive R-matrix is equivalent to an R-matrix which commutes
with the flip, though this need not be true for an R-matrix not in normal form.

Furthermore, one can check that any normal form R-matrix N satisfies

N(1⊗ ptrN)N = ptrN ⊗ 1 . (4.11)

By Thm. 3.3, a normal form R-matrix N (of dimension d) satisfies, as any
involutive R-matrix,

χN(cn) = d−n TrV ⊗n(N1 · · ·Nn−1) = d−n TrV ((ptrN)n−1), (4.12)

where cn is an n-cycle, n ≥ 2. With the exchange relation (4.11), it is a matter of
explicit calculation to prove (4.12) directly for normal form R-matrices, without
relying on subfactor theory.

19



4.2 Parameterization by pairs of Young diagrams

The correspondence in Thm. 4.7 classifies the family of Yang-Baxter characters,
but it does not classify R0/∼ because the dimension of the base space is not
recorded in the Thoma parameters. However, it is now easy to incorporate the
dimension as well: Given R ∈ R0 with Thoma parameters (α, β) and dimension
d, we switch to the rescaled Thoma parameters

ai := dαi, bi := dβi. (4.13)

By Lemma 4.6, the ai, bi are integers summing to d. We can therefore view
(a, b) as an ordered pair of integer partitions, or, equivalently, Young diagrams.
Denoting the set of all Young diagrams (with an arbitrary number of boxes)
by Y, we arrive at the following theorem.

Theorem 4.8.

i) R0/∼ is in one to one correspondence with Y×Y\{(∅, ∅)} via mapping [R]
to the pair (a, b) (4.13). Classes of R-matrices of dimension d correspond
to pairs of Young diagrams with d boxes in total.

ii) Let R ∈ R0. The eigenvalues of ptrR lie in {±1,±2, . . . ,±d} and for
each eigenvalue λ, there exists nλ ∈ N such that its multiplicity is nλ · |λ|.
Define an integer partition a as the ordered set of positive eigenvalues,
in which λ is repeated nλ times, and analogously for b and the negative
eigenvalues. Then R corresponds to (a, b) via the bijection in part i).

Proof. i) If R, S ∈ R0 are equivalent, they have the same dimension d and
the same Thoma parameters (α, β) and hence the same rescaled parameters
(4.13). Conversely, if R, S ∈ R0 have the same parameters (a, b), they have the
same dimension d =

∑
i(ai + bi) and therefore the same Thoma parameters, i.e.

R ∼ S. This also shows the claim about the dimension, and that all pairs of
Young diagrams with the exception of (∅, ∅) occur.

ii) We may switch from R to its normal form N (with dimensions d±), which
has the same partial trace ptrN ∼= ptrR. Repeated application of Lemma 4.2 iv)
shows ptrN =

⊕
i ptr(1d+i )⊕

⊕
i ptr(−1d−i ). But ptr(±1d±i ) = ±d±i idi,±, where

idi,± is the identity matrix on Cd±i . Hence the eigenvalues of ptrR are ±d±i .
Defining nd±i as the number of times d±i occurs in d±, we see that ±d±i has
multiplicity nd±i · d

±
i , i = 1 . . . , k.

In view of (4.10) and (4.13), the rescaled Thoma parameters of N are exactly
ai = d+i , bi = d−i . As d

±
i occurs nd±i times in this list, the proof is finished.

To illustrate the correspondence with ordered pairs of Young diagrams, let
us list all normal forms of dimension two in terms of box sums and diagrams:

12 −12 11 � 11 −11 �−11 11 �−11

( , ∅ ) ( ∅, )
(
, ∅
) (

∅,
)

( , )
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From left to right, these R-matrices (in End(C4)) are: 1) the identity, 2) the
negative identity, 3) the flip, 4) equivalent to the negative flip, and 5)

11 �−11 =


1

1
1

−1

 .

As a higher-dimensional example, consider
(

,
)
. This R-matrix has

dimension 8 (the number of boxes) and Thoma parameters α = (3
8
, 1
8
), β = (1

4
, 1
4
).

The rescaled Thoma parameters are also useful for describing the � operation
introduced in Sect. 4.1. We have already seen that � gives R0 the structure of
an abelian semigroup and preserves equivalence, i.e., descends to the quotient
R0/∼. Recalling the effect of � on the level of Thoma parameters (Prop. 4.4 ii)),
it becomes apparent that for the rescaled parameters, we have

(a, b) � (a′, b′) = (a ∪ a′, b ∪ b′), (4.14)

where a∪ a′ denotes the partition whose parts are the union of those of a and a′.

Another operation on R is the tensor product of R-matrices. For R ∈ R(V ),
S ∈ R(W ), we define R� S ∈ R(V ⊗W ) by

R� S = F2(R⊗ S)F2 : V ⊗W ⊗ V ⊗W → V ⊗W ⊗ V ⊗W, (4.15)

where F2 exchanges the second and third tensor factors. It is evident that �
preserves the Yang-Baxter equation and involutivity, i.e. it defines a product on
R and R0.

Lemma 4.9. Let R,R′ ∈ R0 have rescaled Thoma parameters (a, b) and (a′, b′),
respectively. Then the rescaled Thoma parameters of R � R′ are the non-
increasing arrangements of

{âij} = {aia′j, bib′j},
{b̂ij} = {aib′j, bia′j}. (4.16)

Proof. With d, d′ the dimensions of R,R′, we have on an n-cycle, n ≥ 2,

(d · d′)nχR�R′(cn) = Tr(V⊗W )⊗n((R�R′)1 · · · (R�R′)n−1)

= TrV ⊗n(R1 · · ·Rn−1) TrW⊗n(R′1 · · ·R′n−1)
= dnχR(cn) · (d′)nχR′(cn)

=

(∑
i

ani + (−1)n+1
∑
j

bnj

)(∑
k

(a′k)
n + (−1)n+1

∑
l

(b′l)
n

)

=
∑
i,k

(aia
′
k)
n +

∑
j,l

(bjb
′
l)
n + (−1)n+1

(∑
i,l

(aib
′
l)
n +

∑
j,k

(bja
′
k)
n

)
,

and the claim follows.
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It follows that � defines an associative commutative product on R0/∼ for
which the class [11] = (�, ∅) (consisting of the identity R-matrix in dimension
d = 1) is the unit, that is, R0/∼ has a second unital abelian semigroup structure.

From the description of � and � in terms of the rescaled Thoma parameters,
it is evident that they satisfy the distributive law

([R] � [S]) � [T ] = ([R] � [T ]) � ([S] � [T ]) , R, S, T ∈ R0 . (4.17)

These operations give R0/∼ the structure of a semiring, sometimes also referred
to as a “rig” (ring without negatives). Additionally, the multiplication rules for
rescaled Thoma parameters in Lemma 4.9 can be generalized to a λ-operation.
This λ-operation is most easily described using symmetric polynomials and
we therefore postpone it until Sect. 5.2. The consequences of the ring and λ
structures of R0/∼ will be an interesting topic of further study.

As yet another operation on R, we briefly mention the cabling procedure
known from the braid groups, applied to the Yang-Baxter equation by Wenzl
[Wen90]: Given any p ∈ N, one can form “cabling powers” Rc(p), which lie in
R (or R0) if R does. We do not give details here because it turns out that
Rc(p) ∼ R�p for all R ∈ R0, p ∈ N.

5 Yang-Baxter representations
Our basic Def. 1.1 of equivalence of R-matrices refers only to the Sn-representations
ρ
(n)
R . We have seen already that R ∼ S implies unitary equivalence of the GNS

representations πτ ◦ ρR ∼= πτ ◦ ρS (3.3). Now we investigate the implications of
R ∼ S for the homomorphisms ρR, ρS.

5.1 R-matrices and K-theory

In this section we extend the previously defined ρR to a ∗-homomorphism of
C∗-algebras, ρR : C∗S∞ → E∞, where E∞ is the C∗-algebraic counterpart of
the algebra E from Section 3. On K-theory the map ρR will induce a ring
homomorphism ρR∗ : K0(C

∗S∞) → Z[1
d
] with d = dim(V ). The equivalence

relation introduced in Def. 1.1 will then translate into the approximate unitary
equivalence of the corresponding ∗-homomorphisms. In fact, when the invariant
ρR∗ is composed with the canonical inclusion Z[1

d
] ⊂ R it is an indecomposable

finite trace on K0(C
∗S∞) in the sense of Kerov and Vershik and we recover

[VK83, Thm. 2.3] from the Yang-Baxter equation. For the basic facts about
UHF-algebras that we use we refer the reader to [RS02].

Let R ∈ R0(V ), let d = dim(V ) and denote the associated unitary represen-
tation of Sn by ρ(n)R . We obtain the following sequence of ∗-homomorphisms,
which we will continue to denote ρ(n)R :

ρ
(n)
R : C∗(Sn) = C[Sn]→ End(V ⊗n)

Let E∞ be the C∗-algebra obtained as the infinite tensor product of the algebras
End(V ), i.e. as the C∗-algebraic inductive limit

E∞ = lim−→
n

End(V ⊗n)
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taken over the maps sending T to T ⊗ idV . This is an infinite UHF-algebra
with K0(E∞) ∼= Z[1

d
] and K1(E∞) ∼= 0. The algebra E∞ has a unique trace

that restricts to the normalized trace on End(V ⊗n). It induces an explicit
isomorphism τ∗ : K0(E∞)→ Z[1

d
] as follows: Let p, q ∈MN(E∞) be projections.

Then
τ∗([p]− [q]) = (TrN ⊗τ)(p)− (TrN ⊗τ)(q) ,

where TrN ⊗τ : MN (E∞) = MN (C)⊗E∞ → C is induced by the non-normalized
trace TrN tensored with τ . This is in fact a ring isomorphism. To understand
the ring structure on K0(E∞) note that E∞ is strongly self-absorbing [TW07,
Ex. 1.14]. In particular, there is an isomorphism ψ : E∞ ⊗ E∞ → E∞ and any
two such isomorphisms are homotopic. Let pi ∈ MNi

(E∞) for i ∈ {1, 2} be
projections and let [pi] ∈ K0(E∞) be the corresponding K-theory classes. Let
ψ′ : MN1(E∞) ⊗ MN2(E∞) → MN1N2(E∞) be the isomorphism induced by ψ.
Then we have [p1] · [p2] = [ψ′(p1 ⊗ p2)]. It follows from the uniqueness of the
normalized trace on E∞ that

(TrN1 ⊗τ)⊗ (TrN2 ⊗τ) = (TrN1N2 ⊗τ) ◦ ψ′ ,

which implies τ∗([p1] · [p2]) = τ∗([p1]) · τ∗([p2]).
Note that E∞ ⊂ E with E as in Section 3. The inductive limit of the

representations ρ(n)R : C∗(Sn)→ End(V ⊗n) provides us with a ∗-homomorphism

ρR : C∗S∞ → E∞ . (5.1)

The K-theory of C∗S∞ was studied by Kerov and Vershik in [VK83]. In
particular, they obtained that K0(C

∗S∞) is isomorphic to a quotient of the
ring of symmetric functions. As an abelian group it is therefore spanned by
projections pλ ∈ K0(C

∗S∞), that are labeled by partitions λ = [λ1, . . . , λk] of
natural numbers n ∈ N. The map ρR induces a group homomorphism

ρR∗ : K0(C
∗S∞)→ K0(E∞) (5.2)

in K-theory. Using the ring isomorphism induced by the unique trace on E∞ we
will identify K0(E∞) with Z[1

d
]. The following lemma shows that ρR∗ remembers

the equivalence class of R.

Lemma 5.1. Let λ be a partition of n ∈ N. We will identify λ with the
corresponding irreducible representation of Sn. On the projection pλ ∈ C∗S∞
associated to λ the value of ρR∗ is given by

ρR∗([pλ]) =
1

dn
〈λ, ρ(n)R 〉 ,

where 〈λ, µ〉 denotes the multiplicity of the irreducible representation λ in the
representation µ.

Proof. We have ρR∗([pλ]) = τ(ρR(pλ)). Let τn : End(V ⊗n)→ C be the normal-
ized trace. Since pλ ∈ C∗(Sn) ⊂ C∗S∞ and the inclusion End(V ⊗n) → E∞
preserves the normalized trace, we obtain

τ(ρR(pλ)) = τn(ρ
(n)
R (pλ)) =

1

dn
TrV ⊗n(ρ

(n)
R (pλ)) .
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Let VR = V ⊗n be the representation space of ρ(n)R . The decomposition into its
irreducible components gives

VR ∼=
⊕

µ∈Irrep(Sn)

homC∗(Sn)(Vµ, VR)⊗ Vµ ,

where the action on the left is via ρ(n)R and on the right acts only on the second
tensor factor Vµ via µ. Observe that pλVµ is zero for λ 6= µ and 1-dimensional
for λ = µ. Hence,

TrV ⊗n(ρ
(n)
R (pλ)) = dim(ρ

(n)
R (pλ)VR) = dim(homC∗(Sn)(Vλ, VR)⊗ pλVλ)

= dim(homC∗(Sn)(Vλ, VR)) = 〈λ, ρ(n)R 〉 .

From this we obtain two useful additional characterizations of the equivalence
relation from Def. 1.1, one of them K-theoretic, the other one C∗-algebraic. For
the second one we need the following equivalence relation [RS02, Def. 1.1.15]:

Definition 5.2. Let ϕ, ψ : A→ B be ∗-homomorphisms between separable unital
C∗-algebras A and B. We call them approximately unitarily equivalent if there
is a sequence of unitaries un ∈ B with the property that for all a ∈ A we have

lim
n→∞
‖ϕ(a)− un ψ(a)u∗n‖ = 0 .

We denote this by ϕ ≈u ψ.

Theorem 5.3. Let R, S ∈ R0(V ). The following are equivalent:

i) R ∼ S,

ii) ρR∗ = ρS∗,

iii) ρR ≈u ρS.

Proof. The equivalence of i) and ii) is a consequence of Lemma 5.1 and the fact
that ρ(n)R and ρ(n)S are unitarily equivalent if and only if the multiplicities of their
irreducible subrepresentations agree.

To see that ii) and iii) are equivalent, note that the C∗-algebras C∗S∞ and E∞
are both AF-algebras. The statement then follows from [RS02, Prop. 1.3.4].

The K-group K0(C
∗S∞) is in fact a ring: Let λ be a partition of n ∈ N

and let µ be a partition of m ∈ N. Denote by pλ, pµ ∈ C∗S∞ the associated
projections. Let ιn,m : C∗(Sn)⊗ C∗(Sm)→ C∗(Sn+m) be the ∗-homomorphism
induced by the inclusion Sn × Sm → Sn+m, where Sn permutes the first n
elements and Sm the last m elements. The product [pλ] · [pµ] is then defined to
be the class of the projection ιn,m(pλ ⊗ pµ) ∈ C∗(Sn+m) ⊂ C∗S∞ in K0(C

∗S∞).
With respect to this ring structure we make the following observation:

Proposition 5.4. Let R ∈ R0(V ). Then the associated K-theory invariant

ρR∗ : K0(C
∗S∞)→ Z[1

d
]

is a ring homomorphism.
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Proof. Let λ, µ be partitions of n,m ∈ N respectively. Let pλ ∈ C∗(Sn), pµ ∈
C∗(Sm) be the corresponding projections. Since the representations ρ(n)R arise
from the same R-matrix, we have ρ(n+m)

R ◦ ιn,m = ρ
(n)
R ⊗ ρ

(m)
R . Hence, we obtain

ρR∗([pλ] · [pλ]) = [ρ
(n+m)
R ◦ ιn,m(pλ ⊗ pµ)] = [ρ

(n)
R (pλ)⊗ ρ(m)

R (pµ)]

and after application of the isomorphism τ∗ : K0(E∞) → Z[1
d
] induced by the

trace:

τ∗(ρR∗([pλ] · [pλ])) = τn+m(ρ
(n)
R (pλ)⊗ ρ(m)

R (pµ))

= τn(ρ
(n)
R (pλ)) τm(ρ

(m)
R (pµ)) = τ∗(ρR∗([pλ])) · τ∗(ρR∗([pµ]))

where τr : End(V ⊗r)→ C denotes the (normalized) trace on the matrix algebra
and we used that the inclusion End(V ⊗r) ⊂ E∞ is trace preserving.

Finite traces on K0(C
∗S∞) have been studied by Kerov and Vershik in

[VK83] and ρR∗ can be seen as a refinement of such a trace taking values in Z[1
d
].

In particular, we recover the multiplicativity proven in [VK83, Thm. 2.3] in
Prop. 5.4. From the point of view of C∗-algebras it is surprising that we obtain
a ring homomorphism on K-theory that is induced by a ∗-homomorphism.

5.2 R-matrices, K-theory and symmetric functions

Before discussing the connections between R-matrices, K-theory and symmetric
functions in greater detail, we first collect some facts about symmetric func-
tions to fix notation. We refer readers unfamiliar with symmetric functions to
Macdonald’s book [Mac95].

The ring of symmetric functions, Λ, admits numerous free generators. Here,
the most important are:

i) Elementary symmetric functions:

ek =
∑

1≤i1<i2<···<ik

xi1xi2 · · ·xik , k ≥ 1.

ii) Complete symmetric functions:

hk =
∑

1≤i1≤i2≤···≤ik

xi1xi2 · · ·xik , k ≥ 1.

iii) Power sums:
pk =

∑
i≥1

xki .

The ring of symmetric functions also admits many interesting bases usually
indexed by partitions of integers. For example the above three sets of generators
each define a basis by having the basis vector associated to a partition λ =
[λ1, λ2, . . . ] be fλ = fλ1fλ2 · · ·, where f is either e, h or p and one defines f0 = 1.
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An additional important basis is given by Schur functions sλ, which in terms
of elementary and complete symmetric functions are given by the following
determinantal formulae:

sλ = det (hλi−i+j)1≤i,j≤n = det
(
eλ′i−i+j

)
1≤i,j≤m ,

where n ≥ `(λ), λ′ is the partition conjugate to λ and m ≥ `(λ′).
The ring of symmetric functions also admits a ring involution ω : Λ → Λ

which on the generators and bases defined above acts as

ω(ek) = hk, ω(hk) = ek, ω(pk) = (−1)k+1pk, ω(sλ) = sλ′ .

Finally, we will also make use of the coproduct ∆ : Λ→ Λ⊗ Λ which maps a
symmetric function f(x) to the same function f(x, y) but with the alphabet of
variables split into two alphabets.

The images of the sets of generators defined above are then

∆(ek) =
k∑
q=0

eq (x) ek−q (y) , ∆(hk) =
k∑
q=0

hq (x) hk−q (y) ,

∆(pk) = pk (x) + pk (y) .

The corresponding formulae for Schur functions are more involved but can be
derived from their determinantal expressions in terms of elementary or complete
symmetric functions.

The elementary symmetric functions and their coproducts can be used to
define a λ-operation on rescaled Thoma parameters (a, b) in the following way:
Denote the λn operation on (a, b) by λn(a, b) = (λna, λnb), where λna and λnb
are the non-decreasing arrangements of

λna = {monomial summands of en (a, b) with even number of factors from b},
λnb = {monomial summands of en (a, b) with odd number of factors from b}.

For example if (a, b) = ([a1, a2] , [b1]),

e0 (a, b) = 1, e1 (a, b) = a1 + a2 + b1, e2 (a, b) = a1a2 + a1b1 + a2b1,

e3 (a, b) = a1a2b1, en (a, b) = 0, n ≥ 4.

Thus,

λ0(a, b) = ([1] , ∅), λ1(a, b) = ([a1, a2] , [b1]), λ2(a, b) = ([a1a2] , [a1b1, a2b1]),

λ3(a, b) = (∅, [a1a2b1]), λn(a, b) = (∅, ∅), n ≥ 4.

Lemma 5.5. The operation λn is a λ-operation.

Proof. In order for λn(a, b) to be a λ-operation it must satisfy λ0(a, b) = ( , ∅),
λ1(a, b) = (a, b) and λn ((a, b) � (c, d)) = �n

q=0 λ
q(a, b) � λn−q(c, d). The first

two properties follow directly from the definition of e0 and e1, while the last
property follows from the action of the coproduct ∆ on elementary symmetric
functions.
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Let I ⊂ Λ be the ideal generated by e1 − 1 and let Λ̂ = Λ/I. Kerov
and Vershik point out that the homomorphism θ : Λ̂ → K0(C

∗S∞) fixed by
θ(sλ) = [pλ] is in fact a ring isomorphism [VK83]. Using this identification we
can now completely determine the K-theory invariant ρR∗ in terms of the Thoma
parameters of R.

Theorem 5.6. Let R ∈ R0(V ). Let (α, β) be the Thoma parameters of R. Then
we have

ρR∗(θ(ek)) = [(1⊗ ω) ◦∆(ek)] (α, β)

Proof. The generating function gR associated to the trace ϕ = τ∗ ◦ ρR∗ ◦ θ : Λ̂→
Z[1

d
] ⊂ R is given by

gR(z) =
∞∑
l=0

ϕ(el)z
l

as described in [VK83, eq. (11)] and is related to the Thoma parameters (α, β)
as follows [VK83, eq. (12)] (note that γ = 0 and N = max{n,m} in our case):

gR(z) =
N∏
i=1

1 + αiz

1− βiz
.

Hence, the statement follows from the following computation and comparison of
coefficients with gR(z):

∞∑
l=0

[(1⊗ ω) ◦∆(el)](α, β) zl

=
∞∑
l=0

∑
i+j=l

ei (α1, . . . , αn) hj (β1, . . . , βm) zl

=

(
∞∑
i=0

ei (α1, . . . , αn) zi

)(
∞∑
j=0

hj (β1, . . . , βm) zj

)

=
n∏
i=1

(1 + αiz)
m∏
j=1

1

1− βjz
=

N∏
i=1

1 + αiz

1− βiz
.

An immediate consequence of the above theorem is that applying ρR∗(θ(−))
to a power sum pλ is the same as evaluating the class function χR at a group
element of cycle shape λ. Moreover, Lemma 5.1, Theorem 5.6 and the fact
that θ(sλ) = [pλ] can now be used to easily derive explicit formulae for the
multiplicities of irreducible representations of Sn in ρ(n)R .

Proposition 5.7. Let R ∈ R0 with rescaled Thoma parameters (a, b), then the
multiplicity of the Sn representation associated to a partition λ of n in ρ(n)R is

〈λ, ρ(n)R 〉 = [(1⊗ ω) ◦∆(sλ)] (a, b).

Further let `(a), `(b) be the respective lengths of a and b. Then 〈λ, ρ(n)R 〉 = 0 if
and only if the Young diagram of λ contains a rectangle of height `(a) + 1 and
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width `(b) + 1. If λ contains a rectangle of height `(a) and width `(b) (but not
of respective height and width `(a) + 1, `(b) + 1), then

〈λ, ρ(n)R 〉 = sµ (a) sν (b)

`(a)∏
i=1

`(b)∏
j=1

(ai + bj),

where µ, ν are the partitions whose parts are µi = λi − `(b), i = 1, . . . , `(b) and
νj = λ′j − `(a), j = 1, . . . , `(b).

Proof. Let d be the dimension of [R] and let ([a1/d, a2/d, . . . ] , [b1/d, b2/d, . . . ])
be the associated Thoma parameters. The lemma follows by direct computation

〈λ, ρ(n)R 〉 = dnρR∗([pλ]) = dnρR∗(θ(sλ))

= dn [(1⊗ ω) ◦∆(sλ)] (a1/d, a2/d, . . . , b1/d, b2/d, . . . )

= [(1⊗ ω) ◦∆(sλ)] (a, b).

The remainder of the proposition is just Example 23 of Section 3 and Example 23
of Section 5 in [Mac95].

An example of the multiplicities of irreducible Sn representations computed
using Prop. 5.7 is given in Fig. 1. The conditions for the vanishing of 〈λ, ρ(n)R 〉
were previously observed in [Was81, Thm. III.6.5] and in [DHR71, Thm. 6.9].

3

2
7

6
15

4
14

31

12
30

63

Figure 1: The Young lattice for the class of R-matrices associated to the pair
(∅, ). Since the length of the first partition is 0 and that of the second is 2,
any diagram containing a rectangle of height 1 and width 3 gives multiplicity 0.
The first irreducible representation whose corresponding partition contains such
a rectangle is the trivial representation of S3. For the remaining diagrams the
multiplicities are given in the first box.

5.3 R-matrices and product states

Our Yang-Baxter characters are defined by composing the homomorphism
ρR : C[S∞]→ E0 with the unique tracial product state τ =

⊗
n≥1

TrV
d

of E0 (2.4).
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In this section, we briefly discuss how this construction extends to a much larger
class of extremal characters when we change τ to a different product state on
E0: All extremal characters with Thoma parameters summing to 1 can, together
with their GNS representations, be expressed in terms of R-matrices and product
states. The essential difference to our Yang-Baxter setting is that instead of the
canonical trace τ , a different product state is used.

Let R ∈ R0(V ) and Z ∈ End(V ) such that [R,Z ⊗ Z] = 0. We consider
the product state ωZ :=

⊗
n≥1 TrV (Z · ) on E0, which is tracial in restriction to

ρR(C[S∞]). Composed with ρR, we thus get a character ωRZ := ωZ ◦ ρR of S∞.
As in Prop. 2.2, one shows that ωRZ is extremal.

We want to show that any extremal S∞-character with Thoma parameters
(α, β) satisfying

∑
i(αi + βi) = 1 is of this form. To this end, consider two

Hilbert spaces V1, V2, such that dimV1 and dimV2 equal the number of non-
vanishing α’s and β’s, respectively (which might be countably infinite). Let us
fix orthonormal bases {ei}i and {fj}j of V1 and V2, and trace class operators
A ∈ B(V1), B ∈ B(V2) fixed by Aei = αi · ei, Bfj = βj · fj.
Lemma 5.8. In the notation introduced above, consider the Hilbert space W :=
V1⊕ V2 and the (now possibly infinite-dimensional) R-matrix F �−F ∈ R0(W ).
Then

ωF�−F
A⊕B :=

⊗
n≥1

TrW ((A⊕B) · ) ◦ ρF�−F : S∞ → C (5.3)

is an extremal character of S∞. Its α-parameters are the eigenvalues of A, and
its β-parameters are the eigenvalues of B.

Proof. In view of the simple structure of F � −F , it is easy to see that this
operator commutes with Z ⊗ Z, where Z := A⊕B. Thus ωF�−F

A⊕B is indeed an
extremal character, and it remains to compute its Thoma parameters. Using the
orthogonality V1 ⊥ V2 and the direct sum structure of Z = A⊕B, one shows in
close analogy to Prop. 4.4 (see, in particular, (4.7)), that for any n-cycle,

ωF�−F
A⊕B (cn) = ωFA(cn) + ω−FB (cn) . (5.4)

Furthermore,

ωFA(cn) =
∑
i1,...,in

αi1 · · ·αin 〈ei1 ⊗ . . .⊗ ein , ei2 ⊗ . . .⊗ ein ⊗ ei1〉 =
∑
i

αni ,

ω−FB (cn) = (−1)n+1
∑
j1,...,jn

βj1 · · · βjn 〈fj1 ⊗ . . .⊗ fjn , fj2 ⊗ . . .⊗ fjn ⊗ fj1〉

= (−1)n+1
∑
j

βnj .

These two terms sum to the value of the extremal character with Thoma
parameters (α, β).

We next describe the GNS representation of ωF�−F
A⊕B , which turns out to be

closely related to R-matrices as well. In the notation introduced above, let
V := W ⊗W and

R := (F �−F ) � 1 ∈ R0(V ) , (5.5)
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where F ∈ R0(V1), −F ∈ R0(V2), and 1 ∈ R0(W ). In V , we fix the unit vector

ξ :=
∑
i

√
αiei ⊗ ei +

∑
j

√
βjfj ⊗ fj ∈ W ⊗W = V. (5.6)

This vector determines inclusions V ⊗n → V ⊗(n+1) by tensoring with ξ from the
right, and we denote the corresponding inductive limit Hilbert space

⊗ξ
n≥1 V .

Proposition 5.9. Let χ be an extremal S∞-character with Thoma parameters
(α, β) satisfying

∑
i(αi + βi) = 1. Then the GNS data (πχ,Hχ,Ωχ) can be

described in terms of the previously introduced V,R, and ξ as

Ωχ =
⊗
n≥1

ξ, Hχ = ρR(C[S∞])Ωχ, πχ = ρR . (5.7)

Proof. Observe that for w1, w2, w3, w4 ∈ W , the R-matrix (5.5) acts according
to

R(w1 ⊗ w2 ⊗ w3 ⊗ w4) = ±w3 ⊗ w2 ⊗ w1 ⊗ w4 , (5.8)

where the sign is negative if w1 and w3 lie in V2, and positive if at least one of
these vectors lies in V1.

Let w1, . . . , wn, u1, . . . , un ∈ W , and σ ∈ Sn. Then this action of R implies

ρR(σ)
n⊗
k=1

(wk ⊗ uk) = ±
n⊗
k=1

(wσ−1(k) ⊗ uk), (5.9)

with the sign depending on the number of vectors wk lying in V2. From here
one verifies

〈
⊗
n≥1

ξ, ρR(σ)
⊗
n≥1

ξ〉 = χ(σ) (5.10)

by following [BO17, Prop. 10.5, Prop. 10.6].

The representation in the above proposition is known (see the original
literature [Ols90, Was81] or the monograph [BO17], where also the relation to
spherical representations of S∞ is discussed), but takes a particularly simple
formulation in terms of our operations � and �.

6 Examples
In this section, we discuss two special classes of involutive R-matrices.

6.1 R-matrices of diagonal type

As a simple class of examples which exist in any dimension, we consider involutive
R-matrices of diagonal type. An R-matrix R ∈ R0 is said to be diagonal if it is
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of the form R = DF , with F the flip, and for some orthonormal basis {ei}i of V ,
the matrix D ∈ End(V ⊗ V ) is diagonal in the corresponding tensor basis, i.e.

D(ei ⊗ ej) = λij ei ⊗ ej , i, j = 1, . . . , d , (6.1)

where λij ∈ C. It is easy to check that such R solve the Yang-Baxter equation.
An R-matrix is said to be of diagonal type if it is equivalent to a diagonal one.

The R-matrix R = DF , R(ei ⊗ ej) = λji ej ⊗ ei, is unitary and involutive if
and only if

|λij| = 1 , λji = λ−1ij , i, j = 1, . . . , d. (6.2)

In particular, we have λii = ±1 for each i ∈ {1, . . . , d}, and we introduce the
parameter ` ∈ {0, . . . , d} as the number of λii’s that are equal to +1. This
parameter is uniquely fixed by the rank r, defined as the multiplicity of the
eigenvalue +1 of R. In fact, the trace of R is

2`− d =
d∑
i=1

λii = Tr(R) = 2r − d2 . (6.3)

As ` ranges over {0, . . . , d}, the rank r ranges over

1

2
d(d− 1) ≤ r ≤ 1

2
d(d+ 1) . (6.4)

Thus diagonal involutive R-matrices of dimension d and rank r exist if and only
if (6.4) is satisfied.

Proposition 6.1.

i) Let R ∈ R0 be of diagonal type, with dimension d, rank r, and ` :=
r − 1

2
d(d− 1). Then

R ∼
`

�
i=1

11 �
d−`

�
j=1

(−11) , (6.5)

and the non-vanishing Thoma parameters of R are α1 = α2 = . . . = α` =
β1 = . . . = βd−` = d−1.

ii) Any two involutive R-matrices of diagonal type with the same dimension
and rank are equivalent.

Proof. i) In the basis defining D, one has

〈ei, ptr(R) ej〉 =
∑
k

〈ei ⊗ ek, D ek ⊗ ej〉 = λii δij,

which shows ptr(R) = 1` ⊕ (−1d−`). The claim now follows from Thm. 3.3 ii)
and Thm. 4.8 ii).

ii) The character depends only on d and `, and the rank r determines `
uniquely.
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In terms of diagrams, diagonal R-matrices have the form(
,

)
, (6.6)

with ` boxes in the left and d − ` boxes in the right column. Yang-Baxter
characters of diagonal R-matrices appear in the analysis of the statistics of
superselection sectors in quantum field theory [DHR71, Prop. 6.10].

6.2 Temperley-Lieb R-matrices

As a second class of examples, we consider solutions coming from representations
of the Temperley-Lieb algebra [TL71]. Given an involutive R-matrix R ∈ R0,
we denote its spectral projection onto eigenvalue +1 by P , i.e. P = 1

2
(R + 1).

One computes
1

8
(R1R2R1 −R2R1R2) =

(
P1P2P1 −

1

4
P1

)
−
(
P2P1P2 −

1

4
P2

)
, (6.7)

and this vanishes by the Yang-Baxter equation. If both terms on the right hand
side vanish individually,

P1P2P1 =
1

4
P1 , P2P1P2 =

1

4
P2 , (6.8)

then R is said to be of Temperley-Lieb type. This terminology is justified by the
close relation of (6.8) to the defining relations of the Temperley-Lieb algebra:
Recall that given q ∈ C, the Temperley-Lieb algebra T (q) is the unital ∗-algebra
over C with generators Tk, k ∈ N, and the relations

T 2
k = q Tk, T ∗k = Tk,

TkTm = TmTk , |k −m| ≥ 2 ,

TkTmTk = Tk , |k −m| = 1 .

Given an orthogonal projection P ∈ End(V ⊗ V ) satisfying (6.8), setting Tk :=
2Pk, k = 1, . . . , n− 1, defines a representation of the Temperley-Lieb algebra
T (q) with q = 2.

Our equivalence relation ∼ preserves the property of being of Temperley-Lieb
type, as follows from the lemma below.

Lemma 6.2. An R-matrix R ∈ R0 is of Temperley-Lieb type if and only if ρ(3)R
does not contain the trivial representation of S3.

Proof. Let p3 ∈ C[S3] be the projection given by the trivial representation of
S3, represented as

ρR(p3) =
1

6
(R1R2R1 +R1R2 +R2R1 +R1 +R2 + 1) . (6.9)

Clearly, ρ(3)R does not contain the trivial representation if and only if ρR(p3) = 0.
Inserting R = 2P − 1 into (6.9) gives by straightforward calculation

ρR(p3) =
4

3

(
P1P2P1 −

1

4
P1

)
=

4

3

(
P2P1P2 −

1

4
P2

)
.

Thus ρR(p3) = 0 is equivalent to the Temperley-Lieb relations (6.8).
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See Fig. 1 for an example of a Temperley-Lieb type R-matrix where the
trivial representation of S3 does not appear in ρ(3)R .

Yang-Baxter representations of the Temperley-Lieb algebra with general
parameter q, i.e., representations in which the tensor structure Tk = 1⊗(k−1) ⊗
T ⊗ 1⊗ . . . is required for the generators of T (q), have recently been studied
by Bytsko. He found various inequalities between q, the dimension d, and
the rank r = TrV⊗V (P ) that are necessary for such representations to exist
[Byt15b, Byt15a].

For the special value q = 2, we can give a necessary and sufficient condition
on d and r for Yang-Baxter representations of T (2) with these parameters to
exist, and classify such representations to equivalence.

Proposition 6.3.

i) Yang-Baxter representations of the Temperley-Lieb algebra T (2) with rank r
and dimension d exist if and only if

d2 − 4r = k2 (6.10)

for some k ∈ N0. Two such representations are equivalent if and only if
they have the same dimension and rank.

ii) Let R be an involutive R-matrix of Temperley-Lieb type with dimension d
and rank r. Then its non-vanishing Thoma parameters are

β1 =
1

2

(
1 +

√
1− 4r

d2

)
, β2 =

1

2

(
1−

√
1− 4r

d2

)
. (6.11)

Proof. We first show the second part ii). Let R ∈ R0 have Thoma parameters
(α, β). According to the preceding Lemma, the trivial representation of S3,
corresponding to the Young diagram , does not occur in ρ(3)R if and only if R
is of Temperley-Lieb type. We can thus conclude from Prop. 5.7 that (equivalence
classes of) Temperley-Lieb R-matrices are in one to one correspondence with
those (α, β) ∈ TYB that have β1, β2 as their only non-vanishing entries.

We have β1 + β2 = 1, and on a two-cycle, we get

χR(c2) = −β2
1 − β2

2 =
TrV⊗V (R)

d2
=

2r − d2

d2
. (6.12)

Solving the resulting quadratic equation proves (6.11).
i) A Yang-Baxter representation of T (2) of dimension d and rank r exists if

and only if a Temperley-Lieb R-matrix with the same parameters exists. Since
the rescaled Thoma parameters are integers, we know that k := d(β1 − β2) is an
integer. In view of (6.11), k =

√
d2 − 4r. This shows that (6.10) is necessary

for the existence of a representation with dimension d and rank r.
Conversely, if (6.10) holds for some k ∈ N0, then (6.11) defines a Temperley-

Lieb R-matrix with dimension d and rank r. In terms of diagrams,

R =
(
∅,

)
, (6.13)
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consisting of d boxes distributed over (one or) two rows on the right, with the
difference in row lengths equal to k.

The last statement follows because the Thoma parameters (6.11) depend
only on d and r.

Let us point out that our Temperley-Lieb R-matrices have non-vanishing
β-parameters (instead of α’s) because we required the Temperley-Lieb relation
for the spectral projection onto eigenvalue +1. If we used the spectral projection
onto eigenvalue −1 instead, α and β would be exchanged.
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