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ABSTRACT. Given a finitely presented group Q, we produce a short exact sequence
1 → N ↪→ G � Q → 1 such that G is a torsion-free Gromov hyperbolic group
without the unique product property and N is without the unique product property
and has Kazhdan’s Property (T). Varying Q, we show a wide diversity of concrete
examples of Gromov hyperbolic groups without the unique product property. As an
immediate application, we obtain Tarski monster groups without the unique product
property.

1. INTRODUCTION

A group G has the unique product property (or said to be a unique product group)
whenever for all pairs of non-empty finite subsets A and B of G the set of products
AB has an element g ∈ G with a unique representation of the form g = ab with a ∈ A
and b ∈ B. Unique product groups are torsion-free. They satisfy the outstanding Ka-
plansky zero-divisor conjecture [Kap57, Kap70], which states that the group ring of a
torsion-free group over an integral domain has no zero-divisors. Rips and Segev [RS87]
gave the first examples of torsion-free groups without the unique product property.
In [Ste15], the second author has generalized their examples, proved that the (gener-
alized) Rips-Segev groups are Gromov hyperbolic, and provided an uncountable fam-
ily of non unique product groups. Other examples of torsion-free groups without the
unique product property can be found in [Pro88, Car14].

Our goal is to construct new concrete examples of non unique product groups with
diverse algebraic and geometric properties. We realize this by extending further our
construction of generalized Rips-Segev groups and by showing that every finitely pre-
sented group is a non-trivial quotient of a torsion-free Gromov hyperbolic non unique
product group.

Theorem 1.1. Let Q be a finitely presented group. Then there exists a short exact
sequence

1→ N ↪→ G� Q→ 1

such that
• G is a torsion-free Gromov hyperbolic group without the unique product prop-

erty,
• N is a 2-generated subgroup of G.
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The assumption on finite presentation of Q can be relaxed and our method still pro-
vides a non unique product group G. In such a general setting, G is not any more
Gromov hyperbolic, although it is a direct limit of those (in fact, of graphical small
cancellation groups, see more details in Section 3).

Theorem 1.2. Let Q be a finitely generated group. Then there exists a short exact
sequence

1→ N ↪→ G� Q→ 1

such that

• G is a torsion-free group without the unique product property which is a direct
limit of Gromov hyperbolic groups,
• N is a 2-generated subgroup of G.

VaryingQ in these theorems, we obtain many new groups without the unique product
property that have various algebraic and algorithmic properties, see Section 3.2.

We extend our construction further and produce strongly non-amenable examples.

Theorem 1.3. Let Q be a finitely generated group. Then there exists a short exact
sequence

1→ N ↪→ G� Q→ 1

such that

• G is a torsion-free group without the unique product property which is a direct
limit of Gromov hyperbolic groups,
• N is a subgroup of G with Kazhdan’s Property (T) and without the unique

product property.

We provide, in particular, first examples of Property (T) groups without the unique
product property.

Corollary 1.4. There are torsion-free Gromov hyperbolic groups with Kazhdan’s Prop-
erty (T) and without the unique product property.

Theorem 1.3 generalises the result on Rips short exact sequence with Kazhdan’s
Property (T) kernel from [OW07]. An alternative (T)-Rips construction is in [BO08].

Our approach combines three constructions: the famous Rips construction [Rip82],
the construction by Rips-Segev of torsion-free groups without the unique product prop-
erty [RS87], and Gromov’s groundbreaking construction of graphical small cancella-
tion groups with Property (T), cf. [Gro03, 1.2.A, 4.8.(3)], based on his spectral charac-
terization of this property [Sil03, OW07].

An essential technical point in our proofs is that we explain all three constructions
using the graphical small cancellation theory over the free product of groups. This
viewpoint is novel and of independent interest as it provides a new route for building
group presentations with Cayley graphs containing (subdivisions of) prescribed sub-
graphs. We show, in particular, that Gromov’s probabilistic construction of graphs
defining groups with Property (T) is flexible under taking edge subdivisions.
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Theorem 1.5. For all m > 64, there exists a finite connected graph T labeled by
{a1, . . . , am} such that the labeling satisfies the Gr′∗(1/6)–small cancellation con-
dition over the free product 〈a1〉 ∗ . . . ∗ 〈am〉, the labeling satisfies the Gr′(1/6)–
small cancellation condition with respect to the word length metric, and the group with
a1, . . . , am as generators and the labels of the cycles of T as relators has Property (T).

The graph T is produced by assigning to every edge of an expander graph a letter
and an orientation independently uniformly at random. It is an interesting technical
outcome that the small cancellation conditions over the free group and over the free
product can be combined in such graphs, see Section A. This flexibility in the small
cancellation condition is useful for constructing new groups with exotic properties.

Our examples are in a strong contrast with the previously known constructions of
torsion-free groups without the unique product property, alternative to the Rips-Segev
groups [Pro88, Car14]. Indeed, all those constructions yield infinite groups with the
Haagerup property1 (= a-T-menable groups, in the terminology of Gromov, see
[CCJ+01]), and, hence, groups which do not have Property (T).

Another way to get more non-unique product groups is to use free products of our
Gromov hyperbolic non-unique product groups with suitable groups. We can then
obtain required quotients of such free products. For instance, an alternative proof of our
Corollary 1.4, although without probabilistic and, hence, genericity aspects underlying
Theorem 1.5, can be using the small cancellation theory over hyperbolic groups.

Theorem 1.6 (Ol’shanskii, cf. [Ol′93, Th. 2]). Let G = H1 ∗ H2 be the free product
of two non-elementary torsion-free Gromov hyperbolic groups and M ⊆ H1 be a finite
subset. Then G has a non-elementary torsion-free Gromov hyperbolic quotient G such
that the canonical projection G� G is surjective on H2 and injective on M .

This result, together with our main Theorem 1.1, indeed yields Corollary 1.4. Take
for H1 our torsion-free Gromov hyperbolic group without the unique product property
for the sets A and B produced by Theorem 1.1. Take for H2 a Gromov hyperbolic
group with Property (T) (e.g. a discrete subgroup of finite covolume in Sp(n, 1)) and
for M a finite subset of H1 containing A, B, and AB. By Theorem 1.6, we get a
torsion-free Gromov hyperbolic group G with Property (T) and without the unique
product property2.

Our two ways to construct groups in Corollary 1.4 have two distinct outcomes. The
first approach, using Theorem 1.3, yields the existence of graphical small cancellation
presentations of such groups. Moreover, it gives their genericity as well as a recursive
procedure to build such a generic graphical small cancellation presentation. In contrast,
the second approach, based on Theorem 1.6, provides first explicit examples. However,
such examples are not graphical small cancellation presentations and to make them

1Groups in [Pro88] are solvable, hence, a-T-menable; groups in [Car14] are a-T-menable as they have
Zk × Fm as a finite index subgroup.

2Similarly, take GRS∗Fm, with GRS a Rips-Segev group from [Ste15], and use the small cancellation
theory over hyperbolic groups to get a group H̃1 with properties as in Theorem 1.1, where N is a quotient
of GRS ∗Fm [BO08]; due to a referee, this is in contrast to our graphical over the free product approach.
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explicit one needs to use a rather involved general method of graded van Kampen
diagrams over hyperbolic groups, developed in [Ol′93].

A further strong consequence of our results is the existence of Tarski monster groups
without the unique product property.

Corollary 1.7. There are torsion-free Property (T) groups G without the unique prod-
uct property such that all proper subgroups of G are cyclic.

Indeed, it follows from [Ol′93, Th. 2] that every non-cyclic torsion-free Gromov
hyperbolic group G has a non-abelian torsion-free quotient G̃ such that all proper sub-
groups of G̃ are cyclic, and that G � G̃ is injective on any given finite subset of G
[Ol′93, Cor. 1]. Applied to a finite subset containing A, B, and AB in a group G given
by Theorem 1.1, this immediately yields Tarski monster groups without the unique
product property.

In particular, we obtain the first examples of groups without the unique product
property all of whose proper subgroups are unique product groups. Again, explicit
recursive presentations are available for such new monster groups.

Our constructions are of particular interest also in the context of the following two
important open problems.

Open problem 1.8. Do the Rips-Segev groups without the unique product property
satisfy the Kaplansky zero-divisor conjecture?

Combining recent deep results [Sch14,LOS12,Ago13], we observe that the Kaplan-
sky zero-divisor conjecture holds for all torsion-free CAT(0)-cubical3 Gromov hyper-
bolic groups over the field of complex numbers. Our groups from Corollary 1.4 are
not CAT(0)-cubical as they are infinite Property (T) groups. Thus, it follows from our
results that the CAT(0)-cubulation cannot solve the Kaplansky zero-divisor conjecture
for all Gromov hyperbolic groups without the unique product property.

Open problem 1.9. Is every Gromov hyperbolic group residually finite?

If Q is finite then N in our construction is normal of finite index and without the
unique product property. Every residually finite Gromov hyperbolic group has a finite
index subgroup with the unique product property by a result of Delzant [Del97]. Then
the following questions arise naturally.

• Does there exist a Gromov hyperbolic group all of whose normal finite index
subgroups are without the unique product property?
• Does there exist a Gromov hyperbolic group all of whose subgroups of index

at most k, for a given k > 2, are without the unique product property?
The last question has recently been answered in affirmative [GMS15], via a further

application of the generalized Rips-Segev graphs.
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2. RIPS CONSTRUCTION VIA THE FREE PRODUCT OF GROUPS

In this section, we review the original Rips construction [Rip82] but regard it in the
context of small cancellation theory over the free product of groups. This allows us
to explicit the choice of group relators in an easier way and hence, to provide concrete
group presentations of the middle group, both in the original and in our new short exact
sequences of groups, see Theorems 1.1 and 1.3.

Let Q = 〈x1, . . . , xm | r1, . . . , rn〉 be a finitely presented group.
Let a, b 6∈ {x±11 , . . . , x±1m }. We consider the free product 〈x1, . . . , xm, a〉 ∗ 〈b〉, en-

dowed with the free product length | · |∗, also known as the syllable-length [LS77].
Let H be a group defined by a presentation 〈x1, x2, . . . , xm, a, b | R〉, where the set

R of relators consists of the following n+ 4m words:

ria
10i−9ba10i−8ba10i−7b · · · ba10ib, 1 6 i 6 n;

(1)

x−1j axja
10(n+j)−9ba10(n+j)−8ba10(n+j)−7b · · · ba10(n+j)b, 1 6 j 6 m,

(2)

xjax
−1
j a10(m+n+j)−9ba10(m+n+j)−8ba10(m+n+j)−7b · · · ba10(m+n+j)b, 1 6 j 6 m;

x−1j bxja
10(2m+n+j)−9ba10(2m+n+j)−8ba10(2m+n+j)−7b · · · ba10(2m+n+j)b, 1 6 j 6 m,

(3)

xjbx
−1
j a10(3m+n+j)−9ba10(3m+n+j)−8ba10(3m+n+j)−7b · · · ba10(3m+n+j)b, 1 6 j 6 m,

and the length on H is the free product length induced from 〈x1, . . . , xm, a〉 ∗ 〈b〉.
In the terminology of the small cancellation theory over the free product [LS77, Ch.

V. 9], the pieces in these relators have length (= the free product length) at most 3 and
the relators have length 19. Hence, this presentation of H satisfies the classical free
product C ′(1/6)–small cancellation condition over 〈x1, . . . , xm, a〉 ∗ 〈b〉.

It follows that H is torsion-free [LS77, Th. 10.1, Ch. V] and Gromov hyper-
bolic [Pan99]. Let N be the subgroup generated by a and b. The relators (2) and
(3) guarantee that N is normal in H . Thus, N coincides with the kernel of the epimor-
phism H � Q which maps a 7→ 1, b 7→ 1 and xi 7→ xi for all i. We conclude the
following significant result of Rips.

Proposition 2.1. [Rip82] LetQ be a finitely presented group. Then there exists a short
exact sequence

1→ N ↪→ H � Q→ 1

such that
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• H is a torsion-free Gromov hyperbolic group,
• N is a non-trivial normal 2-generator subgroup of H .

3. RIPS CONSTRUCTION WITHOUT UNIQUE PRODUCT

3.1. Combining Rips construction and Rips-Segev construction. We define here
our group G required by Theorem 1.1. We begin with definitions.

Let G be a (finite or infinite) graph with directed edges. A labeling ` of G by
{x1, . . . , xn, a, b} assigns to every edge e a letter y equal to xi, a or b, so that going
along e in positive direction we read y and going along e in negative direction we read
y−1.

A path in G is reduced if it has no backtracking. Every reduced labeled path in G
bears as label a word in letters from {x1, . . . , xn, a, b}. On the other hand, for every
such a word w there is a reduced path labeled by w.

Let e1 and e2 be edges in G with a common vertex v which are either both directed
towards v or both directed away from v, and such that `(e1) = `(e2). A Stallings
folding (briefly, a folding) of G is the identification of two such edges. A labeling of G
is reduced if it does not admit any foldings.

A (graphical) piece in a reduced labeled graph G is a reduced labeled path which
has at least two distinct immersions into G.

The labeling satisfies theGr′(1/6)–graphical small cancellation condition whenever
for all pieces p in G we have

|`(p)| < 1

6
min{|`(c)| | c is a non-trivial cycle in G},

where | · | denotes the usual word length metric on the free group on the free generating
set {x1, . . . , xn, a, b}.

The labeling satisfies the Gr′∗(1/6)–graphical small cancellation condition when-
ever for all pieces p in G we have

|`(p)|∗ <
1

6
min{|`(c)|∗ | c is a non-trivial cycle in G}.

A generalized Rips-Segev graph RS, associated to given non-empty finite subsets
A and B of elements in 〈a〉 ∗ 〈b〉, is a connected finite reduced graph labeled by
{a, b}, whose labeling satisfies the Gr∗(1/6)–graphical small cancellation condition,
and whose cycles are labeled by words expressing the non unique product property of
AB in a group generated by a, b subject to these relator words [Ste15]. We explain the
construction of such graphs on a concrete example, which we use then to prove our
theorems.

Let ci := bia10
J+10i−9

b · · · ba10J+10i−5 for i ∈ {1, . . . , K} and some integers
K, J > 1 to be specified below. Let

A :=
K⊔
i=1

{
ci, cia, cia

2, . . . , cia
10J+10i−1

}
and B := {1, a, b, ab}.

We now produce a graph encoding the non unique product property of AB.
We first choose a finite connected regular covering graph Θ of the (oriented) bouquet

of 4 cycles labeled by the letters y1, y2, y3, y4 such that the length of non-trivial cycles in
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Θ is at least 19. Such a covering graph does exist as the free group (= the fundamental
group of the bouquet) is residually finite. Indeed, for every ball B(r) of radius r in the
Cayley graph of the free group there exists a finite index normal subgroup N such that
B(r) ∩N is the identity. The covering graph corresponding to N is a finite connected
graph with vertex degree 8 and girth at least 2r. Taking r > 10 yields the required
covering graph Θ.

Let us enumerate the vertices of Θ by 1, . . . , i, . . . K. As it is the covering graph
of the bouquet labeled by y1, y2, y3, y4, for all 1 6 j 6 4 each vertex i has an edge
yij := (lij, i) and an edge zij := (i, kij) such that zij = ykijj. These are the “in” and
“out” edges at vertex i labeled by yj if we consider the labeling of Θ induced from the
bouquet by the covering map.

We define a new labeling L of Θ as follows. For each i, we set

L(yi1) :=ba−10
J+10i−4

L(yi2) :=a10
J+10li2 ba−10

J+10i−3

L(zi3) :=a10
J+10i−2

ba−10
J+10ki3

L(zi4) :=a10
J+10i−1

b.

The graph Θ coincides with the graph used by Rips-Segev in their original construc-
tion [RS87].

Now we subdivide and label edges of Θ according to L, so that an edge bears a
letter from {a, b} and has the respective orientation. For instance, the edge yi1 of Θ
becomes a path of length 10J+10i−4 + 1 all of whose vertices but the endpoints are of
degree 2 and whose label is ba−10J+10i−4 . The resulting labeled graph, denoted by Θ′, is
not reduced. For our purposes, we further reduce the graph (that is, make all possible
foldings). Let us denote such a reduced graph by Θ′′. Note that certain vertices of Θ′′

are identified with vertices 1, . . . , i, . . . , K of Θ: the vertices of Θ we started with have
not been identified while producing Θ′′. Note that the free product length of non-trivial
cycles in Θ′′ is at least 19.

Observe that a non-zero exponent Pi in words

aQbε1aPibε2aQ
′

with εt = ±1,

read on reduced paths in Θ′′ (hence the reduction of the label on a path (lij, i), (i, kis)
in Θ′) is unique among the numbers

10J+10i−49, . . . , 10J+10i−49999, 10J+10i−39, . . . , 10J+10i−19, 10J+10i−4, . . . , 10J+10i,

that is, all Pi’s are pairwise distinct.
We now use Θ′′ to produce a new graph. Namely, for each i we glue a path γi

labeled by ci to Θ′′ so that vertex i of Θ′′ is identified with the endpoint of γi. The
starting points of all γi’s are all identified with a new vertex, denoted by 0, and γi has
no vertices other than its endpoint in common with Θ′′. Let us fold this new graph and
denote the result by RS. We see, as above, that the exponents P of a in paths labeled
by bε1aP bε2 are pairwise distinct.

The reduced graphRS is our generalized Rips-Segev graph. In particular, the graph-
ical pieces in RS consist of paths aP , aP bεaP ′ , and aP b2εaP

′ , where P and P ′ are
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possibly zero. Therefore, the free product length of the pieces in RS is at most 3. By
construction, the free product length of all “new” cycles in RS is at least 19. Thus,
the free product length of all non-trivial cycles in RS is at least 19. It follows that the
labeling of RS satisfies the Gr′∗(1/6)–graphical small cancellation condition over the
free product 〈x1, . . . , xm, a〉 ∗ 〈b〉.

If we choose J such that 9(n + 4m) < 10J , then Pi is not among the numbers
1, . . . , 9(n+ 4m) for all i.

Let G be the disjoint union of RS and of the (n + 4m) cycles labeled by words
(1), (2), and (3) defined above. The graphical pieces in G are of length at most 3
and non-trivial cycles are labeled by words whose free product length is at least 19
in 〈x1, . . . , xm, a〉 ∗ 〈b〉. Therefore, the labeling of G satisfies the Gr′∗(1/6)–graphical
small cancellation condition over the free product 〈x1, . . . , xm, a〉 ∗ 〈b〉.

Let G be a group generated by x1, . . . , xm, a, b, subject to relators defined by G,

G := 〈x1, . . . , xm, a, b | labels on reduced cycles of G〉,
also denoted briefly G = 〈x1, . . . , xm, a, b | G〉. The following general results ensure
that G is torsion-free and Gromov hyperbolic.

Theorem 3.1. [Ste15, Th. 1] Let G1, . . . , Gn be finitely generated groups. Let G be a
family of finite connected graphs edge-labeled by G1 ∪ . . .∪Gn so that the Gr′∗(1/6)–
graphical small cancellation condition with respect to the free product length on the
free product G1 ∗ · · · ∗ Gn is satisfied. Let G be the group given by the corresponding
graphical presentation, that is, the quotient ofG1∗· · ·∗Gn subject to the relators being
the words read on the cycles of G.

Then G satisfies a linear isoperimetric inequality with respect to the free product
length. Moreover, G is Gromov hyperbolic whenever G1, . . . , Gn are Gromov hyper-
bolic and G is finite.

The graph G injects into the Cayley graph of G with respect to G1 ∪ . . . ∪Gn.
Furthermore, G is torsion-free whenever G1, . . . , Gn are torsion-free and G satisfies

the Gr′∗(1/8)–graphical small cancellation condition4.

Applying this theorem to G = 〈x1, . . . , xm, a, b | G〉 we obtain that G is Gromov
hyperbolic. Torsion-freeness of our G, and an alternative proof for the graph injection,
is obtained in the more general framework of the C(6)–graphical small cancellation
theory over the free group [Gru15, Cor. 2.19, Lem. 4.1]: in our case Gi

∼= Z and so
the Gr′∗(1/6)-condition implies the C(6)-condition.

Thus, it suffices to check that G does not have the unique product property. This,
together with Proposition 2.1, will then imply our main result, Theorem 1.1.

Theorem 3.2. The group G does not satisfy the unique product property. Namely, the
sets A and B embed into G and do not have the unique product property in G.

Proof. The set RG of relators of G is the set of all words read on the reduced cycles
of G. By definition, RG is the disjoint union of the above defined set R and the words

4We believe that the torsion-freeness holds under the Gr′∗(1/6)–condition as well, though we do not
require it here despite of our choice of G with the Gr′∗(1/6)–condition. Also, we can produce a graph G
with the Gr′∗(1/8)-condition, and then have both hyperbolicity and torsion-freeness by Theorem 3.1.
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read on the cycles ofRS. The latter words encode the non unique product property of
finite sets A and B of cyclically reduced words in the letters a±1 and b±1 (in the group
〈a, b | RS〉 defined by RS). Denote by A′ and B′ the image of A and B in G. Let
us show that the maps ιA : A → A′ and ιB : B → B′ are injective. By construction of
RS, it will follow that A and B do not have the unique product property in G.

For each a ∈ A the generalized Rips-Segev graph RS contains a reduced path
labeled by the word a, whose starting vertex is 0 and whose terminal vertex is uniquely
determined by the label a asRS is reduced. Suppose that a1 6= a2 ∈ A and a1 =G a2 in
G. Let p be a reduced path inRS connecting the vertices a1 and a2 (that is, connecting
the endpoints of two paths starting at vertex 0 and labeled by a1 and a2, respectively).
Let x be the label of p. Then x =G 1. If a1 = cia

k, a2 = cja
l, then x = cia

k−lc−1j is one
such label. But x =G 1, then also b−jciak−lc−1j bj =G 1. Now |b−jciak−lc−1j bj|∗ 6 18.
That is, there is a relation in G of free product length at most 18.

This is a contradiction as the Gr′∗(1/6)–graphical small cancellation condition over
the free product 〈x1, . . . , xm, a〉 ∗ 〈b〉 implies that the free product length of non-trivial
relations in G has to be at least 19 (=the girth of the defining graph G).

This follows from the analysis of van Kampen diagrams over free products, see
[Ste15, Lemma 1.3], and the observation that the label of each face in a van Kampen
diagram equals to the label of a non-trivial reduced cycle in the graph. Therefore,
ιA : A→ A′ is injective.

Now for B = {1, a, b, ab}. If b1 6= b2 ∈ B and b1 =G b2, then |b1b−12 |∗ < 3. As
before we conclude that ιB : B → B′ is injective as well.

Thus, G does not satisfy the unique product property. �

Remark 3.3. Alternatively, the injectivity of the above maps ιA : A→ A′ and ιB : B →
B′ is immediate from Theorem 3.1. Indeed, forA, by construction the terminal vertices
of the two reduced paths labeled by a1 and a2 are distinct inRS, the graphRS injects
into G, and our labeling of G satisfies the Gr′∗(1/6)–condition. Theorem 3.1 ensures
that G injects into the Cayley graph of G and, hence, A injects into G. The argument
for B is analogous.

Corollary 3.4. Each connected component of the graph G injects into the Cayley graph
of the group G it defines.

The groups G we have just constructed are the only known examples of torsion-free
Gromov hyperbolic groups without the unique product property. It remains unknown
whether these torsion-free groups without the unique product property do satisfy the
Kaplansky zero-divisor conjecture.

The proof of Theorem 1.2 is straightforward by the arguments above applied to an
infinite generalized Rips-Segev graph, that is, to an infinite disjoint union of finite
Rips-Segev graphs. Several explicit constructions of such infinite families of finite
graphs can be found in [Ste15]. A finite subunion of such a family yields a torsion-free
Gromov hyperbolic group without the unique product property as above, whence the
direct limit of such groups for the resulting group G in Theorem 1.2.

3.2. More examples of torsion-free groups without unique product. We now vary
the quotient group Q in our new short exact sequence above, Theorem 1.1. This
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provides a wide diversity of new Gromov hyperbolic torsion-free groups without the
unique product property which satisfy many unusual algebraic, geometric, and algo-
rithmic properties. In particular, all our examples below are non-trivial in the sense
that they are not isomorphic to a free product. The following results are immediate
generalizations of [Rip82].

Proposition 3.5. For each of the following, there exists a torsion-free Gromov hyper-
bolic group G without the unique product property, which is not isomorphic to a free
product, and such that:

• G has unsolvable generalized word problem;
• there are finitely generated subgroups P1, P2 of G such that P1 ∩ P2 is not

finitely generated;
• there is a finitely generated but not finitely presented subgroup of G;
• for any r > 3 there is an infinite strictly increasing sequence of r–generated

subgroups of G.

More algorithmic properties in the context of Rips construction are investigated in
[BMS94]. Applied to our situation they yield the following.

Proposition 3.6. For each of the following, there exists a torsion-free Gromov hyper-
bolic group G without the unique product property, which is not isomorphic to a free
product, and such that there is no algorithm to determine

• the rank of G;
• whether an arbitrary finitely generated subgroup of G has finite index;
• whether an arbitrary finitely generated subgroup of G is normal;
• whether an arbitrary finitely generated subgroup of G is finitely presented;
• whether an arbitrary finitely generated subgroup S ofG has a finitely generated

second integral homology group H2(S,Z).

The proofs are by choosing a group Q with the required property, which then allows
to pullback the property to the group H and then (immediately, for the above algorith-
mic properties) to G. The presentations of Q and, hence, of H and of G can be given
explicitly as in the previous section.

3.3. (T)-Rips-construction without unique product. Our viewpoint on Rips con-
struction via the free product of groups allows to combine the original, now classical,
arguments with further geometric properties by adding suitable new relators to the pre-
sentation of H. In our Theorem 1.1, these new relators encode the non unique product
property and are given by the generalized Rips-Segev graph. Another famous property
that can be encoded by graphs is Kazhdan’s Property (T). For instance, Gromov’s spec-
tral characterization of Property (T) can be used to get finitely presented groups with
Kazhdan’s Property (T) given by the graphical Gr′(1/6)–small cancellation presenta-
tions [Gro03, Sil03]. Mixing the original Rips construction and this Gromov’s result,
Ollivier and Wise [OW07] obtain a short exact sequence 1 → N ↪→ G � Q → 1,
where G is a torsion-free group defined by a finite graphical Gr′(1/6)–small cancella-
tion presentation and N has Kazhdan’s Property (T). We extend their result as follows.
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Theorem 3.7. Let Q be a finitely presented group. Then there exists a short exact
sequence

1→ N ↪→ G� Q→ 1

such that
• G is a torsion-free non-elementary Gromov hyperbolic group,
• N has Kazhdan’s Property (T) and does not satisfy the unique product property.

Proof. Let 〈x1, . . . , xm | r1, . . . , rn〉 be a presentation of Q. Let a1, . . . , a35, b be
distinct and different from each of x1, . . . , xm. Let T be the finite graph provided
by our Theorem A.1 below, with a labeling by {a1, . . . , a35, b} such that the group
〈a1, . . . , a35, b | T 〉 defined by this graph satisfies Property (T) and the labeling of
T satisfies the Gr′∗(1/6)–graphical small cancellation condition. Let M exceed the
largest exponent of a1 in the labeling of T . We take the following new explicit Rips
relators, see our version of the Rips construction in Section 2.

ria
10i−9+M
1 ba10i−8+M1 b · · · ba10i+M1 b for all 1 6 i 6 n,(4)

x−1j akxja
10(n+(k−1)m+j)−9+M
1 ba

10(n+(k−1)m+j)−8+M
1 b · · ·(5)

· · · ba10(n+(k−1)m+j)+M
1 b, for all 1 6 j 6 m, 1 6 k 6 35,

xjakx
−1
j a

10(n+(k+34)m+j)−9+M
1 ba

10(n+(k+34)m+j)−8+M
1 b · · ·

· · · ba10(n+(k+34)m+j)+M
1 b, for all 1 6 j 6 m, 1 6 k 6 35,

x−1j bxja
10(71m+n+j)−9+M
1 ba

10(71m+n+j)−8+M
1 b · · · ba10(71m+n+j)+M

1 b(6)
for all 1 6 j 6 m,

xjbx
−1
j a

10(72m+n+j)−9+M
1 ba

10(72m+n+j)−8+M
1 b · · · ba10(72m+n+j)+M

1 b

for all 1 6 j 6 m.

Let R be the disjoint union of 72m + n cycles, each labeled by one of these Rips
relators. Let M ′ := 10(72m + n) + M . Take a generalized Rips-Segev graph RS for
a := a1 and b, where J is chosen such that M ′ < 10J .

Our new group G is defined by the following graphical presentation,

G := 〈x1, . . . , xm, a1, . . . , a35, b | T t R tRS〉.
The relators of G are the labels of the reduced cycles of T t R t RS. Let N be the
subgroup ofG generated by a1, . . . , a35, b. This subgroupN is normal inG by our Rips
relators (5) and (6) read on R. The map G → Q, defined by xi 7→ xi and ai, b 7→ 1,
is an epimorphism. The kernel of this map is generated by a1, . . . , a35, b and therefore
coincides with N .

The labeling of T t R t RS satisfies the Gr′∗(1/6)–graphical small cancellation
condition over 〈x1, . . . , xm, a1〉 ∗ 〈a2〉 ∗ · · · ∗ 〈a35〉 ∗ 〈b〉, that is, with respect to the free
product length | · |∗ in 〈x1, . . . , xm, a1〉∗〈a2〉∗ · · ·∗〈a35〉∗〈b〉. Indeed, the reduced non-
trivial cycles in T , R, and RS have the free product length at least 20. The immersed
subpaths common in T , R and RS are of free product length at most 3, by our choice
of the a1-exponents.
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Theorem 3.1 implies that G is torsion-free and Gromov hyperbolic. The proof of
Theorem 3.2, applied to the graph T t R t RS , shows that G is without the unique
product property.

As a subgroup, the group N injects into G. Therefore, given two words w1 and w2

in a1, . . . , a35, b with w1 6=N w2 in N , we have that w1 6=G w2 in G. This yields

N = 〈a1, . . . , a35, b | T t RS t relations in G in letters a±11 , . . . , a±135 , b
±1〉.

Thus, N is without the unique product property. Indeed, the sets A and B defining
RS are contained in N and the relations read on RS imply that N does not have
the unique product property for A and B. The group N is a quotient of the group
〈a1, . . . , a35, b | T 〉. This group has Property (T) by Theorem A.1. Thus, N has
Kazhdan’s Property (T) as well. �

Observe that our use of the free product language above simplifies the arguments
of [OW07, Prop. 2.2] and the proof of [OW07, Th. 1.1] which justify that relators in
the Rips construction can be added to the relators defined by the graph T .

APPENDIX A. SMALL CANCELLATION LABELLINGS AND PROPERTY (T)

Given a graph G labeled by {a1, . . . , am}, we denote by G(G) the group defined by
〈a1, . . . , am | G〉. Our aim is to prove the following result.

Theorem A.1. For all m > 35, there exists a finite connected graph T labeled by
{a1, . . . , am} such that the labeling satisfies the Gr′∗(1/6)–graphical small cancella-
tion condition over the free product 〈a1〉 ∗ . . . ∗ 〈am〉 and such that G(T ) has Prop-
erty (T).

This generalizes the following result of Gromov [Gro03, 1.2.A, 4.8.(3)], see also
[Sil03] and [OW07].

Theorem A.2 ([OW07, Prop. 7.1]). If m > 2, there exists a finite connected graph T
labeled by {a1, . . . , am} such that the labeling satisfies the Gr′(1/6)–graphical small
cancellation condition with respect to the word length on the free group on a1, . . . , am
and the group G(T ) has Property (T).

Our proof of Theorem A.1 proceeds as the proof of Theorem A.2 of [OW07, Sec. 7]
but with appropriate technical and quantitative adjustments required by the free product
setting. Moreover, we show that the graph T satisfies the conclusions of both Theorem
A.1 and Theorem A.2:

Theorem A.3. For all m > 64, there exists a finite connected graph T labeled by
{a1, . . . , am} such that the labeling satisfies the Gr′∗(1/6)–graphical small cancella-
tion condition over the free product 〈a1〉∗. . .∗〈am〉, the labeling satisfies theGr′(1/6)–
graphical small cancellation condition with respect to the word length metric, and the
group G(T ) has Property (T).

It is not surprising that T satisfies the conclusions of both Theorem A.1 and The-
orem A.2, for a large enough m. The intuition is that the free product length in
〈a1〉 ∗ . . . ∗ 〈am〉 approximates the word length on the free group on a1, . . . , am as
m→∞. Indeed, the minimal cycle length in the free product length bounds the length
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of the minimal cycles in the word length from below. Pieces are words of finite length
chosen uniformly at random. Let us evaluate the probability that the word length and
the free product length of such a random word in letters a±11 , . . . , a±1m coincide. Such
a word is of word length equal to n if it is aP1

i1
aP2
i2
. . . a

Pj
ij

with all coefficients Pi 6= 0,
aij 6= aij+1

, and
∑j

i=1 Pi = n. Its free product length equals to n if, in addition, all
exponents Pi = ±1. The probability that all Pi = ±1 in such a word is given by(
2m−2
2m

)n−1
, which tends to 1 as m→∞.

We provide an explicit value m = 64, for which the approximation of the word
length by the free product length is sufficient to conclude Theorem A.3.

A.1. Ollivier-Wise’s proof of Theorem A.2. First, we give a quantitative explanation
of Ollivier-Wise’s proof of Theorem A.2. Then we extend this proof to our general free
product setting.

Given an expander graph, we endow it with a labeling chosen uniformly at random
and extract from [Sil03] and [OW07] explicit bounds on the probability that the group
defined by such a labeled graph has Property (T) and the corresponding presentation
satisfies the graphical small cancellation condition. We put an emphasis on the combi-
nation of the estimates on the occurring probabilities.

Let G be a finite connected graph with a vertex set V (G) and a set of undirected
edges E(G). We denote by λ(G) the spectral gap of G. The girth, denoted by girth(G),
is the minimal number of edges in a shortest non-trivial cycle of G.

A labeling ` of G by {x1, . . . , xn, a, b} × {±1} assigns to each edge a letter xi, a, or
b, and an orientation. We keep the notation G for the resulting directed graph labeled
by {x1, . . . , xn, a, b}. We say G is reduced, whenever G and its folding coincide.

Givenm > 1, we denote by G̃ the graph G labeled by {a1, . . . , am}×{±1} uniformly
at random. We denote the corresponding folded labeled directed graph by Fold(G̃).

The j-subdivision Gj of G is the graph G with every edge replaced by j edges. Conse-
quently, G

(
G̃j
)

denotes the group defined by the j-subdivision of G labeled uniformly
at random.

The probability that G
(
G̃j
)

has Property (T) is denoted by PT . The probability that

the map folding : G̃j → Fold
(
G̃j
)

is a local quasi-isometric embedding is denoted by

Pqi, and the conditional probability that the labeling of Fold
(
G̃j
)

satisfies theGr′(α)–
small cancellation condition with respect to the word length metric, under the condition
that the folding is a local quasi-isometric embedding, is denoted by Psc. Thus, the prob-
ability that the labeling of Fold

(
G̃j
)

satisfies the Gr′(α)–small cancellation condition
is at least PqiPsc.

We extract explicit lower bounds for PT , Pqi and Psc from [Sil03, OW07]. This

allows to estimate the probability that the labeling of Fold
(
G̃j
)

satisfies the Gr′(α)–

small cancellation condition and G
(
G̃j
)

has Property (T). This probability is at least
PT + PqiPsc − 1. For certain infinite families of graphs (Si)i, we then show that the
probability that (Sji )i satisfies these properties converges to 1 as i→∞. This provides
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the existence of graphs that define groups with Property (T) and whose labeling satisfies
the graphical small cancellation condition.

Let Sl be the number of words of length l in letters a±11 , . . . , a±1m that reduce to the
identity in the free group on free generators a1, . . . , am. The gross cogrowth of the free
group is defined by

η(m) := lim
l→∞

log2m(S2l)

2l
.

The limit exists as Sl+l′ > SlSl′ and, hence, log2m(S2l) is superadditive.
The spectral radius of the simple random walk on the free group of m generators

equals to (2m)η(m)−1. By a result of Kesten [Kes59, Th. 3],

(2m)η(m) = 2
√

2m− 1.

The gross cogrowth satisfies 1/2 < η(m) < 1 and η(m) → 1/2 as m → ∞. See e.g.
[Oll04, Sec. 1.2] for basic properties of the gross cogrowth.

We extract from [Sil03, Cor. 2.19 p. 164] the following estimate on PT . We denote
by λ(G) the smallest non-zero eigenvalue of the graph laplacian ∆, while in [Sil03]
λ(G) denotes the maximal eigenvalue of 1 − ∆, cf. [OW07, comment to Prop. 7.3]
and [Sil03, Def. in Lem.2.11 p. 154 & p.151]. (We denote the number of generators
by m instead of k used by [Sil03].)

Proposition A.4. For all m > 2, d > 3, λ0 > 0, and j ∈ N, there exists a number

g0 = g0(m,λ0, j)

such that if the graph G satisfies
(1) girth(G) > g0,
(2) λ(G) > λ0 for all i,
(3) 3 6 deg(v) 6 d for all v ∈ V (G),

then G(G̃j) has Property (T) with probability

PT > 1− a(m, d, λ0, j)e
−b(m,d,λ0,j)|V (G)|,

where a and b are positive numbers which do not depend on girth(G) or |V (G)|.
We express the probability PT in terms of girth(G) 6 |V (G)| :

PT > 1− a(m, d, λ0, j)e
−b(m,d,λ0,j) girth(G).

The following proposition allows to compare the edge length of an immersed path p in
G̃j with the word length of the labeling of p.

A (c1, c2, c3)–local quasi-isometric embedding between metric spaces (X, dX) and
(Y, dY ) is a map f : X → Y such that, whenever dX(a1, x2) 6 c3, we have

c−11 dX(a1, x2)− c2 6 dY (f(a1), f(x2)) 6 c1dX(a1, x2) + c2.

We use the proof of [OW07, Prop. 7.8] to obtain the following.

Lemma A.5. For all m > 2, β > 0, d ∈ N, j > 1, if deg(v) 6 d for all v ∈ V (G),
then the folding G̃j → Fold

(
G̃j
)

is a
(

η(m)
1−η(m)

, βj girth(G), girth(G)j
)

–local quasi-
isometric embedding with probability

Pqi > 1− j2ddiam(G)+girth(G)(2m)−(1−η(m))β girth(G)j.
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In particular, if the folding is a local quasi-isometric embedding, then it maps non-
trivial cycles to non-trivial cycles.

We extract the following estimate from [OW07, Proof of Prop. 7.4, the small can-
cellation part].

Lemma A.6. For all m > 2, β > 0 such that 1−η(m)
η(m)

− β > 0, d ∈ N, α > 0 such that
1−η(m)
2η(m)

− β > α, j > 1 if

(1) deg(v) 6 d for all v ∈ V (G),
(2) folding : G̃j → Fold

(
G̃j
)

is a
(

η(m)
1−η(m)

, β girth(G)j, girth(G)j
)

–local quasi-
isometric embedding,

then the labeling of Fold
(
G̃j
)

satisfies the Gr′(α)–small cancellation condition with
respect to the word length metric on the free group with probability

Psc > 1− j4d2 diam(G)+2 girth(G)(2m)−(1−η(m))2 girth(G)jα( 1−η(m)
η(m)

−β).

As Psc is a conditional probability, where the condition is that the folding is a local
quasi-isometric embedding, we conclude:

Proposition A.7. For all m > 2, β > 0 such that 1−η(m)
2η(m)

− β > 0, d ∈ N, α > 0,

such that 1−η(m)
2η(m)

− β > α, j > 1 if deg(v) 6 d for all v ∈ V (G), then the labeling of

Fold
(
G̃j
)

satisfies the Gr′(α)–small cancellation condition with respect to the word
length metric on the free group with probability at least

Psc(m,β, d, α, j)Pqi(m,β, d, j).

Let us now consider the Selberg family of graphs S := (Si)i [Lub94]:
(1) for all vertices v in S, 3 6 deg(v) 6 d for some fixed d ∈ N,
(2) λ(Si) > λ0 > 0 uniformly over all i for some constant λ0,
(3) girth(Si)i →∞ as i→∞,
(4) there is C > 1 such that diam(Si) 6 C girth(Si) for all i.

Choose β > 0 such that 1−η(m)
2η(m)

− β > 0. For all α > 0 such that 1−η(m)
2η(m)

− β > α,

the probability that the labeling of S̃ji satisfies the Gr′(α)–small cancellation condition

and G
(
S̃ji
)

has Property (T ) is at least

PT (m, d, λ0, j)(i) + Psc(m, d, α, β, j)(i)Pqi(m, d, α, β, j)(i)− 1.

There exists j0 so that for all j > j0 we have that

d2(C+1)(2m)−(1−η(m))βj < 1 and d2(C+1)(2m)−(1−η(m))2jα( 1−η(m)
η(m)

−β) < 1.

Then, PscPqi converges to 1 exponentially as i→∞. Simultaneously, the probabil-
ity PT converges to 1 exponentially as i→∞.

A labelling satisfying the Gr′(α)–small cancellation condition clearly satisfies the
Gr′(α′)–small cancellation condition for all α′ > α. Theorem A.2 follows.
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A.2. Proof of Theorem A.1 and Theorem A.3. We extend the proof from [OW07],
in particular, Lemmas A.5 and A.6 to the free product setting. We view G̃j with the
edge length and Fold(G̃j) with the free product length over 〈a1〉 ∗ . . .∗ 〈am〉. The prob-
ability that the map folding : G̃j → Fold

(
G̃j
)

is a local quasi-isometric embedding is

denoted by P ∗qi, and the conditional probability that the labeling of Fold
(
G̃j
)

satisfies
theGr′∗(α)–small cancellation condition over 〈a1〉∗ . . .∗〈am〉, under the condition that
the folding is a local quasi-isometric embedding, is denoted by P ∗sc. That is, the proba-
bility that the labeling of Fold

(
G̃j
)

satisfies the Gr′∗(α)–small cancellation condition
is at least P ∗qiP

∗
sc.

We derive lower bounds for this probabilities. Our results then require a careful
analysis of the obtained estimates.

Lemma A.8. Let Wl be a word of length l in 2m letters chosen uniformly at random.
Then

P (|Wl|∗ 6 L) 6 (2m− 1)
L
2

(
lm

2m− 1

) 1
2

( √
2

(2m)1−η(m)

)l

.

Proof. Let Bl be the ball of radius l with respect to the word length metric in the free
group on m generators. Let plx denote the probability that Wl = x where the equality
is in the free group.

The number of elements x in Bl such that |x|∗ = k is at most

∑
k6l′6l

(
l′ − 1

k − 1

)
2m(2m− 2)k−1 6 l

(
l − 1

k − 1

)
2m(2m− 1)k−1.

Hence ∑
x∈Bl

(2m− 1)−|x|∗ 6
∑
16k6l

l

(
l − 1

k − 1

)
2m(2m− 2)k−1(2m− 1)−k(7)

6 l
2m

2m− 1
2l−1.

We compute the expected value,

E
(

(2m− 1)−
1
2
|Wl|∗

)
=
∑
x∈Bl

(2m− 1)−
1
2
|x|∗plx.

By the Cauchy-Schwartz inequality, this is bounded by

6

(∑
x∈Bl

(2m− 1)|x|∗

) 1
2
(∑
x∈Bl

(plx)
2

) 1
2

.

The right term
∑

x∈Bl(p
l
x)

2 is the return probability of the simple random walk on the
free group of rank m at time 2l. This probability is at most (2m)−(1−η(m))2l. Applying
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inequality (7), we have that

E
(

(2m− 1)−
1
2
|Wl|∗

)
6

(
l

2m

2m− 1
2l−1

) 1
2

(2m)−(1−η(m))l

=

(
lm

2m− 1

) 1
2

( √
2

(2m)1−η(m)

)l

.

The result now follows using Markov’s inequality,

P (|Wl|∗ 6 L) = P
(

(2m− 1)−L/2 6 (2m− 1)−
1
2
|Wl|∗

)
6 (2m− 1)−L/2E

(
(2m− 1)−

1
2
|Wl|∗

)
.

�

Lemma A.9. For allm > 2, d ∈ N, β > 0, j > 1, if deg(v) 6 d for all v ∈ V (G), then
the folding map from G̃j , equipped with the edge length, to Fold

(
G̃j
)

, equipped with

the free product length in 〈a1〉 ∗ . . . ∗ 〈am〉, is a
(

1
2(1−η(m))

, β girth(G)j, girth(G)j
)

–
local quasi-isometric embedding with probability P ∗qi, which is

> 1− (jd)2ddiam(G)+girth(G)
(

girth(G)j
m

2m− 1

) 1
2

2
girth(G)j

2

(√
2(2m)η(m)

2m

)β girth(G)j

.

Proof. Let g := girth(G). Choose a path p of edge length βgj + ` 6 gj in G̃j . It
suffices to show that |`(p)|∗ > 2(1 − η(m))`, where | · |∗ denotes the free product
length on the folded graph Fold

(
G̃j
)

.
The probability that a random labeling of p, that is, a word in βgj + ` letters cho-

sen uniformly at random, has the free product length at most 2(1 − η(m))` has been
estimated in Lemma A.8. It is at most

(2m− 1)(1−η(m))`

(
(βgj + `)m

2m− 1

) 1
2

( √
2

(2m)1−η(m)

)βgj+`

.

There are at most (jd)2ddiam(G)+girth(G) paths of length 6 gj in Gj . Indeed, there are
at most ddiam(G) starting vertices for a simple path in G. There are at most ddiam(G)+l

possibilities of paths of length6 l in G. A path in Gj of edge length l′ is traveling along
l′/j vertices in G with at most jd possibilities to choose the starting/terminal vertex.
Therefore, there are at most (jd)2ddiam(G)+l′/j possibilities for paths of length l′ in Gj .

We combine both estimates to complete the proof. �

Compared to the estimate of Pqi in Lemma A.5, we have a new subexponential term
and a new exponential term 2girth(G)j/22β girth(G)j/2 in our estimate of P ∗qi. To obtain the
required results we therefore need a more careful analysis than above.

Proposition A.10. For all m > 35, d ∈ N, there is j0 > 0 such that for all j > j0 the

folding from S̃ji , equipped with the word length metric, to Fold
(
S̃ji
)

, equipped with the
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free product length in 〈a1〉∗ . . .∗〈am〉, is a
(

1
2(1−η(m))

, 1/3 girth(G)j, girth(G)j
)

–local
quasi-isometric embedding with probability tending to 1 exponentially as i→∞.

Compared to Lemma A.9, we have specified β = 1/3.

Proof. The claim follows when 2
1
2

(√
2(2m)η(m)

2m

)1/3
< 1. Then there is j0 such that for

all j > j0 we have that

d(C+1)

2
1
2

(√
2(2m)η(m)

2m

)1/3
j

< 1.

By Lemma A.9, P ∗qi → 1 exponentially as i→∞.
By a result of Kesten [Kes59, Th. 3], (2m)η(m) = 2

√
2m− 1, so we need that(√

2
√

2m− 1

m

)1/3

<
1√
2
.

That is, 0 < m2−32m+16. This holds for allm > 35. Note that η(m) < 2
3

ifm > 35.
We therefore have

1− η(m) >
1

3
.

We conclude as before. �

Lemma A.11. For all m > 2, d ∈ N, β such that 1− η(m)− β > 0, α > 0 such that
α < (1− η(m))− β, j > 1, if

(1) the vertices of the graph G have degree at most d,
(2) folding : G̃j → Fold

(
G̃j
)

is a
(

1
2(1−η(m))

, β girth(G)j, girth(G)j
)

–local quasi-

isometric embedding, where Fold
(
G̃j
)

is with the free product length in 〈a1〉 ∗
. . . ∗ 〈am〉,

then the labeling of Fold
(
G̃j
)

satisfies the Gr′∗(α)–small cancellation condition over
〈a1〉 ∗ . . . ∗ 〈am〉 with probability

P ∗sc > 1− (jd)4d2 diam(G)+2 girth(G)(2m)−(1−η(m))2 girth(G)jα(2(1−η(m))−β).

Proof. Let g := girth(G). First observe that by the quasi-isometry assumption

ḡ := min |labels of non-trivial cycles in Fold(G̃j)|∗ > (2(1− η(m))− β)gj.

Let α < (1 − η(m)) − β. It suffices to estimate the probability that there are no α-
pieces, that is, pieces p in Fold(G̃j) such that |`(p)|∗ = αḡ. Let q, q′ be immersed paths
in G̃j whose folding equals p. For the word length |`(q)|, |`(q′)| 6 gj

2
. Indeed, other-

wise, |`(p)|∗ > ((1− η(m))−β)gj by the quasi-isometry assumption, a contradiction.
On the other hand, |`(q)|, |`(q′)| > |`(p)| > |`(p)|∗ = αḡ.

Therefore, suppose that q and q′ are αḡ pieces in G̃j . We now apply the following.
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Lemma A.12 ([OW07, Prop. 7.11]). Let q, q′ be two immersed paths in a graph G of
girth g. Suppose that q and q′ have length l and l′ respectively, with l and l′ at most
g/2. Endow G with a uniform random labeling. Suppose that after folding the graph,
the paths q and q′ are mapped to distinct paths. Then the probability that q and q′ are
labeled by two freely equal words is at most

Cl,l′(2m)−(1−η(m))(l+l′),

where Cl,l′ is a term growing subexponentially in l + l′.

Hence, the probability that two paths q, q′ in G̃j are αḡ pieces in G̃j is at most

Cgj(2m
−(1−η(m))2gjα(2(1−η(m))−β)),

where Cgj is a sub-exponential term in g. The probability that there are two such paths
q, q′ in G̃j is at most

j4v2 diam(G)+2gCgj(2m
−(1−η(m))2gjα(2(1−η(m))−β)).

�

Theorem A.13. For all m > 64, d ∈ N, there is j0 > 0 such that for all positive

numbers j > j0, the labeling of Fold
(
S̃ji
)

satisfies both

• the Gr′∗(α)–small cancellation condition over 〈a1〉 ∗ . . . ∗ 〈am〉, and
• the Gr′(α)–small cancellation condition with respect to the word length metric

in the free group on a1, . . . , am,
with probability tending to 1 exponentially as i→∞.

Observe that S does not need to satisfy condition (2) above.

Proof. Note that 1 − η(m) > 1/3, choose β = 1/4 so that 1 − η(m) > β, and
1−η(m)
2η(m)

− β > 0. If m > 64, then, by an estimate as in the proof of Proposition A.10,

2
1
2

(√
2(2m)η(m)

2m

)1/4

< 1.

Choose α > 0 such that

α <
1− η

2η
− 1/4 and α < (1− η)− 1/4.

The probability that Fold
(
S̃ji
)

does not satisfy the required small cancellation con-
ditions is at most

1− Psc(m, d, α, 1/4, j)(i)Pqi(m, d, α, 1/4, j)(i) + 1

− P ∗sc(m, d, α, 1/4, j)(i)P ∗qi(m, d, α, 1/4, j)(i).
There exists j0 such that for all j > j0 we have that
• d2(C+1)(2m)−(1−η(m))1/4j < 1,

• d2(C+1)(2m)−(1−η(m))2jα( 1−η(m)
η(m)

−1/4) < 1,
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• d(C+1)

(
2

1
2

(√
2(2m)η(m)

2m

)1/4)j
< 1, and

• (jd)4d2(C+1)(2m)−(1−η(m))2jα(2(1−η(m))−1/4) < 1.

Then
Psc(m, d, α, 1/4, j)(i)Pqi(m, d, α, 1/4, j)(i)

and simultaneously

P ∗sc(m, d, α, 1/4, j)(i)P
∗
qi(m, d, α, 1/4, j)(i)

tend to 1 exponentially as i→∞.
�

Theorems A.1 and A.3 now follow as Theorem A.2.
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