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Abstract. We introduce notions of a constraint metric approximation and of a
constraint stability of a metric approximation. This is done in the language of
group equations with coefficients. We give an example of a group which is not
constraintly sofic. In building it, we find a sofic representation of free group with
trivial commutant among extreme points of the convex structure on the space of
sofic representations.

We consider the centralizer equation in permutations as an instance of this
new general setting. We characterize permutations p ∈ Sk whose centralizer is
stable in permutations with respect to the normalized Hamming distance, that is,
a permutation which almost centralizes p is near a centralizing permutation. This
answers a question of Gorenstein-Sandler-Mills (1962).

1. Introduction

The concept of an equation is fundamental in mathematics. Usual attributes of
an equation are variables and coefficients, and one searches for a solution subject
to some admissibility condition or constraint. In group theory, the literature on
equations with solutions in (and over) groups is immense.

We deal with almost solutions of equations in groups, where ‘almost’ is ex-
pressed in terms of a chosen bi-invariant metric on a group. This is very much
relevant to the currently fast-developing area of metric approximations of groups.
Notable examples of metrically approximable groups are sofic and hyperlinear
groups. Sofic groups are groups approximable by (Sk, dH)k∈N, symmetric groups
of finite degree endowed with the normalized Hamming distance dH. They have
been introduced by Gromov in the context of Gottschalk’s surjunctivity conjecture
in symbolic dynamics and have been named ‘sofic’ by Weiss. Hyperlinear groups
are groups approximable by (U(k), dHS)k∈N, unitary groups of finite rank endowed
with the normalized Hilbert-Schmidt distance dHS. They have been appeared in
relation to Connes’ embedding conjecture in operator algebras and have been
named ‘hyperlinear’ by Rădulescu.

The existence of a metric approximation of a group G can be formulated through
the existence of almost solutions of equations (without coefficients), defined in the
approximating groups by the relator words of G. On the other hand, the stability
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of a metric approximation requires that such an ‘almost’ solution is always close,
in the given metric, to an exact solution. Combined, the existence and the stability
of a metric approximation of G imply a robustness of G: the group is forced to be
fully residually-{ the class of the approximating groups }. This opens a possibility
to establish the non-existence of certain metric approximations by providing an
example of a stable not fully residually-{ the class of the approximating groups }
group, see our previous work [AP15], initiating the study of stability of metric
approximations of arbitrary groups.

In this paper, we introduce constraint metric approximations and we analyze
questions on their existence and stability. A constraint metric approximation is de-
fined by means of equations with coefficients and such that prescribed constraints
are imposed on the almost solutions. Besides being natural, this generalization
is strongly motivated by several well-known open questions on metric approxi-
mations (without constraints) of famous groups such as Higman group, Burger-
Mozes groups, etc. as well as of wide classes of groups such as one-relator groups.
Indeed, these groups are obtained via fundamental group-theoretical construc-
tions: free amalgamated products and HNN-extensions of approximable groups,
and our constraint metric approximations provide a rigorous general framework
to analyze metric approximability of such constructions.

A systematic treatment of constraint metric approximations we embark on in
the first part of the paper is incited by a well-known result on the soficity of
free amalgamated products of sofic groups over an amenable amalgamating sub-
group. A first attempt towards this result1 was made by Collins-Dykema [CD11]
who show the soficity of such products under a stronger assumption on the amal-
gamating subgroup. A main reason why the result does hold for an amenable
amalgamating subgroup is the Elek-Szabó theorem [ES11]. It states that a group
is amenable if and only if any two of its sofic representations are conjugated in the
universal sofic group Πk→ωSnk (see Section 3 for definitions). Therefore, given sofic
groups G1 and G2, and their sofic representations θi : Gi → Πk→ωSnk , for i = 1, 2,
we can assume that θ1(h) = θ2(h), for h ∈ H, where H is an amenable amalga-
mating subgroup. By the universal property of free amalgamated products, there
exists a homomorphism θ : G1 ∗H G2 → Πk→ωSnk . This is not yet a desired sofic
representation of G1 ∗H G2 as θmay not be injective but this can be overcome using
ergodic [Pău11] or combinatorial [ES11] tools. The situation is drastically more
difficult and unclear if the amalgamating subgroup H is no longer amenable. The
Elek-Szabó theorem is no longer true. However, in order to show soficity of the
free amalgamated product G1 ∗H G2 with such an arbitrary amalgamating sub-
group H, we still require to construct sofic representations θi : Gi → Πk→ωSnk , for
i = 1, 2, that agree on H. Thus, it is essential to understand under which circum-
stances a sofic representation of H can be extended to a sofic representation of
Gi. This is what we formalize in the concept of a constraint metric approximation
of Gi, with constraints prescribed by H. There are cases, we present them below,
where such an extension is not possible.

1This soficity result has a predecessor in hyperlinear groups [BDJ08].
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The paper is organized as follows.
In Section 2, we formalise the new concepts of constraint metric approximations

and constraint stability in the most general setting: the approximating family, its
cardinality, and the associated bi-invariant metrics are arbitrary; the approximated
group is arbitrary as well (e.g. it is not required to be finitely presented or
finitely generated). We prove both ultraproduct and algebraic characterizations
of existence and stability of such metric approximations. These encompass and
generalize all previously known such characterizations.

In Section 3, we focus on constraint sofic approximations. We give examples
of sofic groups admitting no constraint sofic approximations, with prescribed
constraints. In building such examples, we produce a sofic representation of
a non-abelian free group that acts ergodically on the Loeb measure space and
such that its commutant is trivial. This solves in the negative an open question
from [Pău14].

Section 4 is devoted to the constraint stability in permutations of the commu-
tator equation or, in other words, to the ‘stability of centralizer’ in permutations.
Such a stability was first considered in [GSM62] (see also [Mil63]), where a quan-
titative answer was obtained for permutations with a specific cycle structure. In
Theorem 4.3, answering a question of Gorenstein-Sandler-Mills (1962), we give a
qualitative characterization of stable centralizers in permutations in full general-
ity.

2. Metric approximations and equations in groups

2.1. Equations in groups. LetFm denote the free group of rank m freely generated
by x̄1, . . . , x̄m, and F` denote the free group of rank ` freely generated by ā1, . . . , ā`.
We endow F` ∗ Fm with the word length metric induced by the generating set
ā1, . . . , ā`, x̄1, . . . , x̄m.

A word w representing an element in the free productF` ∗Fm defines an equation
in m variables x̄1, . . . , x̄m with ` coefficients ā1, . . . , ā` for some ` > 0:

(2.1) w(ā1, . . . , ā`, x̄1, . . . , x̄m) = 1.

Let W ⊆ F` ∗Fm be a finite subset, ` > 0,m > 1. Let H be a group equipped with
a bi-invariant distance dH, and εH > 0 be a fixed real number.

Definition 2.1 (Solution and almost solution). Elements h1, . . . , hm ∈ H are a solu-
tion of W in H with coefficients a1, . . . , a` ∈ H if

(2.2) w(a1, . . . , a`, h1, . . . , hm) = 1H, ∀w ∈W,

where 1H denotes the identity of H.
Elements h1, . . . , hm ∈ H are a strong solution of W in H with coefficients a1, . . . , a` ∈

H if

w(a1, . . . , a`, h1, . . . , hm) = 1H, ∀w ∈W;(2.3)

dH(w(a1, . . . , a`, h1, . . . , hm), 1H) > εH, ∀w < 〈W〉,(2.4)

where 〈W〉 denotes the normal subgroup of F` ∗ Fm generated by W.
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Elements h1, . . . , hm ∈ H are a δ-solution of W in H with coefficients a1, . . . , a` ∈ H,
for some δ > 0, if

(2.5) dH (w(a1, . . . , a`, h1, . . . , hm), 1H) < δ, ∀w ∈W.

Elements h1, . . . , hm ∈ H are a strong δ-solution of W in H with coefficients
a1, . . . , a` ∈ H, for some δ > 0, if ∀w ∈ F` ∗ Fm of length at most 1/δ we have

dH (w(a1, . . . , a`, h1, . . . , hm), 1H) < δ, ∀w ∈W;(2.6)

dH (w(a1, . . . , a`, h1, . . . , hm), 1H) > εH − δ, ∀w < 〈W〉.(2.7)

We say that W is solvable (resp. strongly solvable, δ-solvable, and strongly δ-
solvable ) in H, with coefficients a1, . . . , a` ∈ H, if there exists a solution (resp.
strong solution, δ-solution, and strong δ-solution) of W in H, with coefficients
a1, . . . , a` ∈ H.

We collect now standard interpretations of solvability, in the group, of equations
with coefficients. This is inspired by the theory of algebraic extensions of a field
and goes back to B.H. Neumann [Neu43]. We add arguments for completeness.

Given ` > 0 elements a1, . . . , a` ∈ H, there is a unique group homomorphism  =

(a1, . . . , a`) : F` ∗Fm → H ∗Fm such that āi 7→ ai, x̄i 7→ x̄i. For a finite subset W ⊆ F` ∗
Fm, we denote by V = (W) its image and by 〈V〉 the normal subgroup generated
by V. Thus, elements of V are words from W with letters āi are substituted by
letters ai.

Theorem 2.2. The following are equivalent.

(1) W is solvable in H, with coefficients a1, . . . , a` ∈ H.
(2) The natural homomorphism ι : H→ H ∗Fm/〈V〉, h 7→ h〈V〉 is split-injective, that

is, it has a left inverse.
(3) (a) There is an injective homomorphism ι : H ↪→ H ∗ Fm/〈V〉;

(b) There exists a normal subgroup NEH ∗Fm/〈V〉 such that HN = H ∗Fm/〈V〉
and H ∩N = {1}; that is, H ∗ Fm/〈V〉 = N oH.

(4) There is a split short exact sequence

1→ N ↪→ H ∗ Fm/〈V〉� H→ 1.

(5) H is a retract of H ∗ Fm/〈V〉.

Proof. (1) ⇔ (2). If W is solvable in H, with coefficients a1, . . . , a` ∈ H and
h1, . . . , hm ∈ H are a fixed solution, then we define a map

η : H ∗ Fm/〈V〉� H,

by assigning η(x̄1〈V〉) = h1, . . . , η(x̄m〈V〉) = hm, η(h〈V〉) = h for all h ∈ H, and
extending this multiplicatively to all u〈V〉 ∈ H ∗ Fm/〈V〉, where u is an arbitrary
word representing an element of H ∗ Fm. This map is well-defined: if u′ ∈ u〈V〉,
then H ∗Fm 3 u−1u′ is a product of conjugates of v±1 for some finitely many v ∈ V,
and hence, evaluates to 1H under η since h1, . . . , hm are a solution. It is obvious
that η is a homomorphism which is a left inverse of ι.
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Conversely, if η : H ∗ Fm/〈V〉 → H is a left inverse of ι, then we set h1 =

η(x̄1〈V〉), . . . , hm = η(x̄m〈V〉). Using that η(ι(h)) = h for all h ∈ H and η is a ho-
momorphism, it is immediate that these h1, . . . , hm are a solution of W.

(2) ⇔ (3). A split-injective map is always injective. So, if ι is split-injective, we
set N = Ker η, the kernel of a left inverse η of ι. Then, denoting x = u〈V〉 and
using that η(ι(h)) = h for all h ∈ H, we have

η(x · ι(η(x−1))) = η(x)η(ι(η(x−1))) = η(x)η(x−1) = 1H∗Fm/〈V〉.

Hence, x · ι(η(x−1)) ∈ N and x = ι(η(x)) ·n for some n ∈ N, that is, HN = H ∗Fm/〈V〉.
If ι(η(x)) belongs to N, then η(ι(η(x))) = η(x) = 1H and hence ι(η(x)) = 1H∗Fm/〈V〉,
whence H ∩N = {1}.

Conversely, a left inverse of ι is given by the natural map HN 3 (h,n) 7→ h ∈ H.
(3) ⇔ (4) ⇔ (5) are well-known and can be checked by definitions of the

involved concepts. �

Using basic terminology of algebraic geometry, the set of all solutions of W ⊆
F` ∗ Fm in H with coefficients a1, . . . , a` ∈ H form an algebraic set in Hm defined by
W, this algebraic set is uniquely (cf. Corollary 2.17) defined by its radical 〈V〉, and
the quotient H ∗ Fm/〈V〉 is the coordinate group of system W.

In a categorical language: H ∗ Fm (often denoted by H[x̄1, . . . , x̄m] and viewed
as an analogue of a polynomial algebra with H playing a role of the coefficients)
is the free object in the category of H-groups, i.e. groups containing a designated
copy of H viewed up to H-morphisms, group homomorphisms trivial on those
prescribed copies of H. Theorem 2.2 implies that each quotient H ∗ Fm/〈V〉 is an
object in this category and every solution of W can be described as an H-morphism
η : H ∗ Fm/〈V〉� H.

2.2. Constraint approximation and constraint stability of systems. Let F =

(Gα, dα, εα)α∈I be an approximating family: Gα is a group with a bi-invariant distance
dα and identity element 1α, and εα is a strictly positive real number such that
ε := infα∈I εα > 0. For each α ∈ I, we fix elements aα1 , . . . , a

α
` ∈ Gα.

The following definition encompasses both well-known metric approximations
such as sofic, hyperlinear, etc. approximations and metric approximations by
wider families (notice the use of the index set I instead of usualN).

Definition 2.3 (Constraint F -approximation). A finite system W ⊆ F` ∗ Fm is
constraint F -approximable with respect to aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if ∀δ > 0∃α ∈ I

such that W is strongly δ-solvable in Gα with coefficients aα1 , . . . , a
α
` ∈ Gα.

A finite system W ⊆ F` ∗Fm is F -approximable if it is constraint F -approximable
with respect to the identity coefficients aα1 = 1α, . . . , aα` = 1α ∈ Gα, α ∈ I.

Let us now formalize a possibility when an almost solution is close, in the given
metric, to a solution, while the coefficients are prescribed.

Definition 2.4 (Constraint F -stability). A finite system W ⊆ F` ∗ Fm is con-
straint F -stable with respect to aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if ∀ε > 0∃δ > 0 such that
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∀α ∈ I ∀g1, . . . , gm ∈ Gα a δ-solution of W with coefficients aα1 , . . . , a
α
` , there exist

g̃1, . . . , g̃m ∈ Gα a solution of W with coefficients aα1 , . . . , a
α
` such that dα(gi, g̃i) < ε.

A finite system W ⊆ F` ∗ Fm is F -stable if it is constraint F -stable with respect
to the identity coefficients aα1 = 1α, . . . , aα` = 1α ∈ Gα, α ∈ I.

The next notion is to take also into account the non-solutions of equations.

Definition 2.5 (Constraint weak F -stability). A finite system W ⊆ F` ∗ Fm is
constraint weaklyF -stable with respect to aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if ∀ε > 0∃δ > 0 such

that ∀α ∈ I ∀g1, . . . , gm ∈ Gα a strong δ-solution of W with coefficients aα1 , . . . , a
α
` ,

there exist g̃1, . . . , g̃m ∈ Gα a solution of W with coefficients aα1 , . . . , a
α
` such that

dα(gi, g̃i) < ε.
A finite system W ⊆ F` ∗Fm is weakly F -stable if it is constraint weakly F -stable

with respect to the identity coefficients aα1 = 1α, . . . , aα` = 1α ∈ Gα, α ∈ I.

2.3. Constraint approximation of groups. Given a finite system W ⊆ F` ∗ Fm, let
G = F` ∗ Fm/〈W〉 be the quotient of F` ∗ Fm by the normal closure of W, and

ρ : F` ∗ Fm � F` ∗ Fm/〈W〉

be the canonical projection. We denote by ai = ρ(āi), for the generators of F`, and
by xi = ρ(x̄i), for the generators of Fm. That is, G is given by the presentation

(2.8) G = 〈a1, . . . , a`, x1, . . . , xm | w(a1, . . . , a`, x1, . . . , xm) = 1,∀w ∈W〉

We would like now to determine the constraint F -approximability of a system
W through properties of the group G and vise versa. For this we use metric
ultraproducts of groups Gα, α ∈ I. Observe that the index set I is arbitrary and
there is no control over Gα ∈ F that are used in Definition 2.3. For different values
of n ∈ N∗ (taking n = 1/δ in Definition 2.3), α ∈ I can vary greatly or could be the
same, in which case we are lead to construct the ultrapower of Gα. This is why
we use a function f : N→ I, together with a non-principal ultrafilter ω overN.

The metric ultraproduct
∏

k→ω

(
G f (k), d f (k)

)
of the family of bi-invariant metric

groups
(
G f (k), d f (k)

)
k∈N

is the quotient of the direct product
∏

k∈NG f (k) by the normal

subgroup consisting of those elements
(
gk

)
k∈N such that limk→ω d f (k)

(
gk, 1 f (k)

)
=

0. The metric ultraproduct
∏

k→ω

(
G f (k), d f (k)

)
is endowed with a canonical bi-

invariant metric dω, obtained as the quotient of the bi-invariant pseudometric on∏
k∈NG f (k), and defined by dω

((
gk

)
k∈N , (hk)k∈N

)
= limk→ω d f (k)

(
gk, hk

)
. We write 1ω

for the identity element of this group.

Theorem 2.6. A finite system W ⊆ F` ∗ Fm is constraint F -approximable with respect
to aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if and only if there exist a non-principal ultrafilter ω overN, a

function f : N→ I, and a group homomorphism

θ : G→
∏
k→ω

(
G f (k), d f (k)

)
, such that

(i) dω
(
θ(g), θ(h)

)
> ε = limk→ω ε f (k) for every nontrivial distinct g, h ∈ G;

(ii) θ(ai) =
∏

k→ω a f (k)
i , for each i = 1, . . . , `.
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Proof. Take a sequence (δk)k∈N with δk ∈ R∗+ and such that δk → 0 as k → ∞,
and construct δk-strong solutions g f (k)

1 , . . . , g f (k)
m ∈ G f (k) of W, with respect to

a f (k)
1 , . . . , a f (k)

` ∈ G f (k) in the sens of Definition 2.1. Here, each f (k) = α(δk) is
given by Definition 2.3. Then define θ(ai) =

∏
k→ω a f (k)

i , for each i = 1, . . . , ` and
θ(xi) =

∏
k→ω g f (k)

i , for each i = 1, . . . ,m. It follows from (2.6) that θ is a homomor-
phism and from (2.7) that θ satisfies condition (i).

For the reverse implication, fix δ > 0. Let θk(xi) ∈ G f (k) be such that θ(xi) =

Πk→ωθk(xi). There are finitely many inequalities that elements θk(x1), . . . , θk(xm)
in G f (k) must obey for them to be a δ-strong solution of W. Since all of these
inequalities are satisfied in the ultralimit, it follows that there exists k ∈ N such
that θk(x1), . . . , θk(xm) are indeed a δ-strong solution of W. �

Definition 2.7 (Equivalent systems). Two systems W1 ⊆ F` ∗Fm1 and W2 ⊆ F` ∗Fm2

are called equivalent if there exists a group isomorphism φ : F` ∗ Fm1/〈W1〉 →

F` ∗Fm2/〈W2〉 such that φ(āi〈W1〉) = āi〈W2〉 for each i = 1, . . . , `, where ā1, . . . , ā` are
the generators of F`.

Corollary 2.8. Let W1 and W2 be two equivalent systems. If W1 is constraint F -
approximable then so is W2.

Proof. It is straightforward, by Theorem 2.6. �

Definition 2.9 (ConstraintF -approximation of groups). A group G = F` ∗Fm/〈W〉
is (constraint) F -approximable with respect to aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if W ⊆ F` ∗ Fm

is (constraint) F -approximable with respect to aα1 , . . . , a
α
` ∈ Gα, α ∈ I, in the sens of

Definition 2.3.

By Corollary 2.8, the notion of constraint F -approximability of a group is well-
defined: it does not depend on the choice of the group presentation.

Remark 2.10. Our definition of (constraint) F -approximation of a group encom-
passes all finitely presented groups, considered with chosen finitely many group
elements, coefficients. Indeed, let G be given by an arbitrary finite presentation
〈x1, . . . , xm | r = 1, ∀r ∈ R〉 and a1, . . . , a` ∈ G be fixed ` > 0 group elements. The
system W ⊆ F` ∗ Fm associated to this data is defined as follows: add elements
a1, . . . , a` to the generators of G and consider a new, still finite, presentation of
G ' F` ∗ Fm/〈W〉 for W ⊆ F` ∗ Fm, where W = R t A and A consists of words
ai = ai(x1, . . . , xm) representing each of the fixed coefficients ai ∈ G, i = 1, . . . , ` in
the initial generators x1, . . . , xm of G.

The notion extends to infinitely presented and countably generated groups. If
G = 〈x1, . . . , xm | r′ = 1, ∀r′ ∈ R′〉, where the set of relators R′ ⊆ Fm is infinite, we say
that G is (constraint) F -approximable if, for every finite subset R ⊆ R′, the finitely
presented group 〈x1, . . . , xm | r = 1, ∀r ∈ R〉 is (constraint) F -approximable. A
countable group G is said to be (constraint) F -approximable if so is its every finitely
generated subgroup.

Example 2.11 (Centralizer equation). Set ` = 1,m = 1, and W = {axa−1x−1
} ⊆ Z ∗Z.

Here a is the coefficient and x is the variable of the centralizer equation axa−1x−1 = 1.
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Then, by definition, W is (constraint)F -approximable with respect to aα ∈ Gα, α ∈ I
if and only if the group G = 〈a, x | axa−1x−1 = 1〉 is (constraint) F -approximable
with respect to aα ∈ Gα, α ∈ I.

Theorem 2.6 allows us to interpret the existence of constraintF -approximations
of a group via (exact) solutions of group relator equations, with coefficients, in
the metric ultraproduct of groups from the approximating family.

Corollary 2.12. A group G = F` ∗Fm/〈W〉 is constraintF -approximable with respect to
aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if and only if there exist a non-principal ultrafilter ω overN and a

function f : N→ I such that the system W is strongly solvable inG =
∏

k→ω

(
G f (k), d f (k)

)
,

with ` coefficients
∏

k→ω a f (k)
i ∈ G, i = 1, . . . , `, and εG = limk→ω ε f (k).

Thus, deciding whether or not there exists a (constraint) F -approximation of a
group reduces to solving equations (with coefficients) given by the group relators
in ‘big’ groups such asG.This approach is rather unexplored, besides Theorem 2.2
in this setting (taking H = G).

We give now an algebraic characterisation of constraint F -approximability of
a group.

Theorem 2.13. A group G = F` ∗Fm/〈W〉 is constraint F -approximable with respect to
aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if and only if ∀n ∈N∗ there exists a homomorphismπn : F` ∗Fm →

Gα, for some Gα ∈ F , such that

(1) dα (πn (r) , 1α) < 1/n for every group relator r ∈W ⊆ F` ∗Fm of length at most n,
(2) dα (πn (w) , 1α) > εα − 1/n for every w ∈ F` ∗ Fm of length at most n with

ρ(w) , 1G,
(3) dα

(
πn (āi) , aαi

)
< 1/n for every generator āi of F`, for i = 1, . . . , `.

Proof. Let G = F` ∗ Fm/〈W〉 be a constraint F -approximable group with respect
to aα1 , . . . , a

α
` ∈ Gα, α ∈ I. For each n ∈ N apply Definition 2.3 (and, hence, Defini-

tion 2.1 with n = 1/δ) to get a homomorphism πn : F` ∗Fm → Gα with the required
properties. In the third condition, we actually have πn(āi) = aαi for i = 1, . . . , `.

For the reverse implication, we define the homomorphism to the ultraproduct
π : F` ∗Fm →

∏
n→ω

(
G f (n), d f (n)

)
by π(w) =

∏
n→ω πn(w). The first condition implies

〈W〉 ⊆ Kerπ. The second condition implies dω(π(w), 1ω) > ε for any w < 〈W〉, and
the third condition implies that π(āi) =

∏
n→ω a f (n)

i , for i = 1, . . . , `. We deduce that
Kerπ = 〈W〉 and π factors to a group homomorphism of G as in Theorem 2.6,
whence the conclusion. �

2.4. Constraint stability of groups. We turn to the stability of metric approxima-
tions and characterize (constraint)F -stability through the existence of (constraint)
lifts. This generalizes our result [AP15, Theorem 4.2 and observation thereafter]
to a much wider setting.

Definition 2.14 (Constraint F -stability of groups). A group G = F` ∗ Fm/〈W〉 is
(constraint) F -stable with respect to aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if W ⊆ F` ∗ Fm is (con-

straint) F -stable with respect to aα1 , . . . , a
α
` ∈ Gα, α ∈ I, in the sens of Definition 2.4.
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Definition 2.15 (Constraint lifts). Let G = F` ∗ Fm/〈W〉. Given a non-principal
ultrafilter ω over N and a function f : N → I, a (not necessarily injective) group
homomorphism

θ : G→
∏
k→ω

(
G f (k), d f (k)

)
, such that θ(ai) =

∏
k→ω

a f (k)
i , i = 1, . . . , `

is called constraint liftable with respect to aα1 , . . . , a
α
` ∈ Gα, α ∈ I, if for each k ∈ N

there exist gk
i ∈ G f (k), i = 1, . . . ,m such that gk

1, . . . , g
k
m are a solution of W in G f (k)

with coefficients a f (k)
1 , . . . , a f (k)

` ∈ G f (k) and θ(xi) =
∏

k→ω gk
i for each i = 1, . . . ,m.

A constraint lift of θ is the homomorphism θ̃ : G→
∏

k∈N

(
G f (k), d f (k)

)
, defined by

θ̃(ai) =
∏

k∈N a f (k)
i for each i = 1, . . . , ` and by θ̃(xi) =

∏
k∈N gk

i for each i = 1, . . . ,m.
Again, we have notions of a liftable homomorphism (cf. [AP15, Definition 4.1],

where it was named perfect), and of a lift, whenever we consider the preceding
conditions with respect to the identity coefficients aα1 = 1α, . . . , aα` = 1α ∈ Gα, α ∈ I.

Theorem 2.16. A group G = F` ∗ Fm/〈W〉 is constraint F -stable with respect to
aα1 , . . . , a

α
` ∈ Gα, α ∈ I, if and only if every group homomorphismθ : G→

∏
k→ω

(
G f (k), d f (k)

)
such that θ(ai) =

∏
k→ω a f (k)

i for each i = 1, . . . , ` is constraint liftable, for any f : N→ I.

Proof. Let W ⊆ F` ∗ Fm be the system which is constraint F -stable and let θ be
a group homomorphism as above with θ(ai) =

∏
k→ω a f (k)

i for each i = 1, . . . , `.
Choose maps θk : G→ G f (k) such that:

(1) θ(g) =
∏

k→ω θk(g), for all g ∈ G;
(2) θk(ai) = a f (k)

i for each i = 1, . . . , `.

Then limk→ω d f (k)

(
w(a f (k)

1 , . . . , a f (k)
` , θk(x1), . . . , θk(xm)), 1 f (k)

)
= 0 for all w ∈ W. It

follows thatθk(x1), . . . , θk(xm) are eventually δ-solutions for an arbitrary prescribed
δ > 0. According to Definition 2.4, there exist homomorphisms πk : Fm → G f (k)

such that πk(x̄1), . . . , πk(x̄m) is a solution to W, limk→ω d f (k)

(
πk(x̄ j), θk(x j)

)
= 0 for

each j = 1, . . . ,m, and πk(vi) = a f (k)
i for any vi ∈ Fm with ρ(vi) = ai. Then θ̃ : G →∏

k∈N(G f (k), d f (k)), θ̃(x j) =
(
πk(x̄ j)

)
k∈N

is a constraint lift of θ.
For the reverse implication assume that G is not constraint F -stable. Then

there exists ε > 0 such that for each δ > 0 there is α ∈ I and g1, . . . , gm ∈ Gα a
δ-solution of W with no ε-close, with respect to dα, solution to W, that restricted
to ai is equal to aαi . Choosing a sequence δk decreasing to 0, we have such δk-
solutions gk

1, . . . , g
k
m ∈ G f (k) for some f : N → I. We assign x j 7→

∏
k→ω gk

j for each
j = 1, . . . ,m, whence a homomorphism θ : G →

∏
k→ω(G f (k), d f (k)) that admits no

constraint lift. �

Extending our result from [AP15, Section 3], we show that the definition of (con-
straint) F -stability does not depend on the particular choice of finite presentation
of the group.

Corollary 2.17. Let W1 and W2 be two equivalent systems. If W1 is constraint F -stable
then so is W2.

Proof. It is straightforward, by Theorem 2.16. �
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Classical fully residually-F groups are basic examples of F -approximable
groups. For instance, residually symmetric groups are examples of sofic groups,
residually finite groups are examples of weakly sofic groups, etc. Clearly, con-
straint analogues of fully residually-F groups are natural examples of constraint
F -approximable groups.

Definition 2.18 (Constraint fully residually-F groups). A group G is constraint
fully residually-F with respect to a1, . . . , a` ∈ G and aα1 , . . . , a

α
` ∈ Gα, α ∈ I if for each

set of non-identity elements g1, . . . , gr ∈ G there exists a normal subgroup K E G
such that

(1) g1, . . . , gr < K;
(2) G/K � Gα for some α ∈ I;
(3) aiK = aαi for i = 1, . . . , `.

Dropping condition (3) above yields the usual definition of fully residually-F
groups. Considering one non-identity element (i.e. taking r = 1), defines the class
of (constraint) residually-F groups. A careful choice of constraints leads easily to
examples of groups that are fully residually finite but that are not constraint fully
residually finite.

Example 2.19. (Integers) Set F cyc
{0,1} = ((Z/pZ)×, d{0,1}, 1p)p prime, p>3, where (Z/pZ)× is

the group of invertible elements mod p, i.e. the cyclic group of order p− 1, with
identity element 1p, and with the trivial {0, 1}-valued metric d{0,1} (induced by the
length function assigning length 1 to each non-trivial group element).

Obviously,Z is fully residually-F cyc
{0,1}. For each p, choose ap

∈ Z/pZ, an element
that is a quadratic nonresidue mod p. Then, using the above notation (for ` = 1
and α = p),Z is not constraint fully residually-F cyc

{0,1} with respect to a = 2 ∈ Z and
ap
∈ Z/pZ.

Next we express robustness of (constraint)F -approximableF -stable groups. It
extends our previous result on stable sofic groups [AP15, Theorem 4.3] to arbitrary
(constraint) metric approximations.

We write that SF = F if all subgroups of every Gα ∈ F belong to F .

Theorem 2.20. Let SF = F . If G = F` ∗ Fm/〈W〉 is both constraint F -approximable
and constraint F -stable, then G is constraint fully residually-F .

Proof. Since G is constraint F -approximable, by Theorem 2.6, there exists an
injective group homomorphism

θ : G ↪→
∏
k→ω

(G f (k), d f (k))

such that θ(ai) =
∏

k→ω a f (k)
i for i = 1, . . . , `. Since G is constraint F -stable, by

Theorem 2.16, there exists θ̃ : G→
∏

k∈NG f (k), a constraint lift of θ. Given finitely
many non-identity elements g1, . . . , gr ∈ G, it remains to choose k ∈ N such that
θ̃(g j) is non-identity for j = 1, . . . , r. This is possible as θ and, thus, θ̃ are injective
homomorphisms. Since SF = F , their images are groups from F . �
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3. Examples of non constraint sofic approximations

Let us recapitulate the context of constraint metric approximability: F =

(Gα, dα, εα)α∈I is a family of groups, ` > 0, and we fix aα1 , . . . , a
α
` ∈ Gα for each

α ∈ I. Further, G is an arbitrary countable group where we fix ` group elements
a1, . . . , a` ∈ G. We denote this data by (G � a1, . . . , a`) and this is the object we want
to constraint F -approximate or, in contrast, for which we show that it admits no
any constraint F -approximation by (Gα � aα1 , . . . , a

α
` )α∈I.

Let H 6 G be the subgroup generated by a1, . . . , a` ∈ G. If the group H cannot be
F -approximated (without constraints) using only the coefficients aαi , i = 1, . . . , `,
then G is not constraint F -approximable by (Gα � aα1 , . . . , a

α
` )α∈I in a trivial way.

Thus, when constructing a meaningful non-trivial counter-example to the exis-
tence of a constraint F -approximation of G, we have to make sure that there in-
deed exist homomorphisms θ : H→

∏
k→ω(G f (k), d f (k)) such that θ(ai) =

∏
k→ω a f (k)

i .
Thus, the subgroup H 6 G is viewed as the ‘fixed part’, the one for which the
F -approximation is already given and cannot be changed. Our concept of con-
straint F -approximability makes rigorous the analysis of whether or not such a
‘fixed’ approximation can be extended from a subgroup H to the ambient group
G.

We produce now an example where there is no such an extension. This is
done in the realm of constraint sofic approximations. That is, the approximating
family is F so f = (Sn, dH, 1n)n∈N, where Sn denotes the symmetric group acting on
the set {1, . . . ,n}, with the identity element 1n ∈ Sn, and dH denotes the normalised
Hamming distance defined, for two elements p, q ∈ Sn, by

dH(p, q) =
1
n

Card
{
i : p(i) , q(i)

}
.

The metric ultraproduct of Snk , k ∈ N with respect to the normalized Hamming
distance is the universal sofic group, an object introduced by Elek-Szabó [ES05]:

Πk→ωSnk = Πk∈NSnk/{(pk)k∈N ∈ Πk∈NSnk : lim
k→ω

dH(pk, 1nk) = 0},

endowed as usual with the canonical bi-invariant metric dω.
The following result provides an explicit example of a group which is not con-

straint approximable by a subfamily ofF so f , in a non-trivial way (cf. Example 3.9).

Theorem 3.1. There exist ank
1 , a

nk
2 ∈ Snk , k ∈ N such that the group F2 ×Z = 〈a1, a2, x |

[a1, x] = 1, [a2, x] = 1〉 is not constraint (Snk , dH, 1)k∈N-approximable with respect to
ank

1 , a
nk
2 , k ∈N.

Here, F2 = 〈a1, a2〉 is the ‘fixed subgroup’ of F2 × Z. Our strategy to prove
Theorem 3.1 is to show the existence of a suitable sofic representation of F2.
Recall that a sofic representation of a group G is a homomorphism θ : G→ Πk→ωSnk

with dω(θ(g), 1ω) = 1 for every element 1G , g ∈ G.

Theorem 3.2. There exists a sofic representation of the free group F2,

θ : F2 ↪→ Πk→ωSnk
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such that its commutant θ(F2)′ = {p ∈ Πk→ωSnk : pθ(w) = θ(w)p, ∀w ∈ F2} is trivial,
i.e. contains only the identity element 1ω.

In order to construct such a sofic representation we use two results from [Pău16].
We temporarily fix an integer n > 0, the degree of the symmetric group Sn. Denote
by a ∈ Sn the n-cycle with a(i) = i + 1 and a(n) = 1.

Proposition 3.3. [Pău16, Proposition 5.13] Let ε > 0. The number of permutations
y ∈ Sn such that dH(ay, ya) < ε is less than nbnεc+1.

Proposition 3.4. [Pău16, Theorem 5.20] For any ε > 0 and w ∈ F2, there exists
n0 such that for any n > n0 for at least (1 − ε)[(n − 1)!] n-cycles c ∈ Sn we have
dH (w(a, c), 1n) > 1 − ε.

Proposition 3.3 provides an estimate for the number of permutations almost
commuting with an n-cycle. However, for our construction, we also need an
estimate for the number of permutations commuting with an arbitrary element.

Proposition 3.5. Let b ∈ Sn be such that dH(b, 1n) > 4ε. The number of permutations
c ∈ Sn such that dH(bc, cb) < ε is less than n!

nnε+3 , for large enough n.

Proof. Let δ = 4ε and define C = {c ∈ Sn : dH(bc, cb) < ε}. Choose c ∈ C. Consider
the following subsets of {1, . . . ,n}: Ac = {i : bc(i) = cb(i)} and B = {i : b(i) , i}. Then
|Ac| > (1 − ε)n and |B| > δn. It follows that |Ac ∩ B| > (δ − ε) · n.

Let i ∈ Ac ∩ B. Then c
(
b(i)

)
= bc(i) and b(i) , i. Hence, once the value of c(i) is

fixed, the value of c on b(i) must be bc(i). Unfortunately, the set Ac depends on c.
This makes the counting argument a little more involved.

Lets recall how to count the number of permutations p ∈ Sn: p(1) can take
any of the n values in the set {1, . . . ,n}; p(2) can take any of the remaining n − 1
values, and so on. Hence, the cardinality of Sn is n!. We adapt this argument to
count the number of permutations c with the required properties. Without loss of
generality, we can assume that B = {1, 2, . . . , |B|}. As before c(1) can take n values.
If 1 ∈ Ac, a information that at the moment we don’t have, than c(b(1)) is also set.
Thus, the following value of c to be decided (c(2) if b(2) , 2, and c(3) otherwise),
has only n − 2 options. If 1 < Ac, we continue our enumeration of elements in B
till |B|. In the worst scenario, the first ε · n elements of B will not be in Ac. After
this, all remaining elements of B are bound to also be in Ac.

Thus, denoting by t = bεnc and s = b(δ− ε)n/2c, our estimation for the maximal
number of elements in C is:

n(n − 1) . . . (n − t + 1)︸                     ︷︷                     ︸
t terms

(n − t)(n − t − 2) . . . (n − t − 2s + 2)︸                                       ︷︷                                       ︸
s terms

(n−t−2s)(n−t−2s−1) . . . 1.

Hence:
|C| <

n!
(n − t − 2s + 1)s <

n!
[(1 − δ)n](δ−ε)n/2−1

.

We only need to show that [(1 − δ)n](δ−ε)n/2−1 > nnε+3. Using the logarithm, this is
equivalent to:

((δ − ε)n/2 − 1) ln[(1 − δ)n] > (nε + 3) ln n.
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We factor the two terms and compute the limit via L’Hospital’s rule.

lim
n→∞

((δ − ε)n/2 − 1) ln[(1 − δ)n]
(nε + 3) ln n

= lim
n

((δ − ε)/2) ln[(1 − δ)n] + ((δ − ε)n/2 − 1) · 1/n
ε ln n + (nε + 3) · 1/n

=

lim
n

((δ − ε)/2) ln[(1 − δ)n]
ε ln n

=
((δ − ε)/2)

ε
=

4ε − ε
2ε

=
3
2
> 1.

�

We continue our counting argument by introducing two sets of n-cycles with
specific properties. Given δ > 0, we define:

Lδn = {c ∈ Sn, c is an n-cycle : @b ∈ Sn with dH(b, 1n) > 4δ, dH(ab, ba) < δ and dH(cb, bc) < δ}.

Proposition 3.6. For a fixed δ > 0 and large enough n ∈N,

Card Lδn > (1 − n−1)[(n − 1)!].

Proof. According to Proposition 3.3 there are at most nnδ+1 permutations b ∈ Sn

such that dH(ab, ba) < δ. By Proposition 3.5, for each of those permutations b with
dH(b, 1n) > 4δ, there are at most n! · n−nδ−3 cycles c such that dH(cb, bc) < δ. All in
all, the complement of Lδn has a cardinality less than nnδ+1

· n! · n−nδ−3 = n−1(n − 1)!.
The conclusion hence follows. �

The set Lδn cannot be used directly to construct the required sofic representation.
This is because dH(b, 1n) is in some sense a moving target, while in the definition
of Lδn it is supposed to be fixed. This is why we introduce the following set:

Kδ
n = {c ∈ Sn, c is an n-cycle : ∀b ∈ Sn, dH(b, 1n) 6 8 ·max{dH(ab, ba), dH(bc, cb), δ}.}

Proposition 3.7. For a fixed 1 > δ > 0 and a large enough n ∈N,

Card Kδ
n > (1 − δ)[(n − 1)!].

Proof. The proof is almost over when we notice that Kδ
n ⊇ Lδn ∩ L2δ

n ∩ . . . ∩ L2kδ
n ,

where k is minimal with the property that 2k+2δ > 1. So let c ∈ Lδn ∩ L2δ
n ∩ . . . ∩ L2kδ

n

and take b ∈ Sn. Denote by λ = max{dH(ab, ba), dH(bc, cb)}. If λ < δ, then as c ∈ Lδn,
dH(b, 1n) 6 4δ.

Assume that λ > δ. Then, there exists i > 0 such that 2i−1δ 6 λ < 2iδ. If i 6 k,
then c ∈ L2iδ

n , so dH(b, 1n) 6 4 · 2iδ 6 8λ. If i > k then 8λ > 1. This proves c ∈ Kδ
n.

By Proposition 3.6 and using De Morgan’s formula∩k
j=0L2 jδ

n = ∪k
j=0L2 jδ

n ,we obtain
that

|Lδn ∩ L2δ
n ∩ . . . ∩ L2kδ

n | > (1 − (k + 1)n−1)[(n − 1)!].

As k is fixed, depending only on δ, we can find n such that |Kδ
n| > (1−δ)[(n−1)!]. �

Now we construct the required sofic representation of F2, so n is no longer
fixed. We denote by an

1 ∈ Sn the canonical n-cycle i 7→ i + 1, n 7→ 1. (The notation
an

1 ∈ Sn reflects our use of aα1 , . . . , a
α
` ∈ Gα in a general setting.)

Proposition 3.8. For each δ > 0 there exist n ∈ N∗ and π : F2 = 〈a1, a2〉 → Sn such
that:

(1) dH (w(π(a1), π(a2)), 1n) > 1 − δ for every 1F2 , w ∈ F2 of length at most 1/δ,
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(2) π(a1) = an
1 and π(a2) ∈ Kδ

n.

Proof. Given δ > 0, denote by Bk
F2

the set of words in F2 of length at most k = b1/δc
and choose ε > 0, ε 6 δ such that ε ·Card Bk

F2
+ δ < 1. By Propositions 3.4, applied

to each 1F2 , w ∈ Bk
F2

, for large enough n, for at least (1 − ε · Card Bk
F2

)[(n − 1)!]
n-cycles c ∈ Sn we have dH(w(an

1 , c), 1n) > 1 − ε. For this estimate, we again use De
Morgan’s formula, as in the proof of Propostion 3.7.

Now, using the statement of Proposition 3.7, for large enough n ∈N, for at least
(1 − ε · Card Bk

F2
− δ)[(n − 1)!] n-cycles c ∈ Sn, we have the previous property and

also c ∈ Kδ
n. Choosing such a cycle c ∈ Sn and setting π(a2) = c yields conditions

(1) and (2) above. �

We are ready now to prove Theorems 3.2 and 3.1.

Proof of Theorem 3.2. Let (δk)k∈N ∈ R∗+ be a decreasing sequence converging to 0 as
k → ∞. Using the previous Proposition, for each k ∈ N, construct πk : F2 → Snk

with the stated properties for δ = δk. Then construct θ = Πk→ωπk : F2 → Πk→ωSnk .
By the first condition, θ is a sofic representation.

Let b = Πk→ωbk ∈ Πk→ωSnk be in the commutant of θ. Then we have that
limk→ω dH(πk(a1)bk, bkπk(a1)) = 0 and limk→ω dH(πk(a2)bk, bkπk(a2)) = 0. Let ε > 0.
There exists F ∈ ω such that for all k ∈ F, δk < ε and dH(πk(a1)bk, bkπk(a1)) < ε,
dH(πk(a2)bk, bkπk(a2)) < ε. As πk(a2) ∈ Kδk

nk
, we get

dH(bk, 1nk) 6 8 ·max{dH(πk(a1)bk, bkπk(a1)), dH(πk(a2)bk, bkπk(a2)), δk} < 8ε.

It follows that dH(b, 1ω) 6 8ε. As ε is arbitrary, b = 1ω. �

Proof of Theorem 3.1. Using Proposition 3.8, we construct πk : F2 = 〈a1, a2〉 → Snk

such that:

(1) dH
(
w(πk(a1), πk(a2)), 1nk

)
→ 1 as k → ∞ for every 1F2 , w ∈ F2 of length at

most k (this is the classical limit, not the ω-limit);
(2) πk(a1) = ank

1 and ank
2 = πk(a2) ∈ K1/k

nk
.

In order to show that F2 ×Z = 〈a1, a2, x | [a1, x] = 1, [a2, x] = 1〉 is not constraint
(Snk , dH, 1nk)n∈N-approximable with respect to ank

1 , a
nk
2 ,n ∈N, we use Theorem 2.6.

Suppose to the contrary, and let ω, f : N → N, and θ : F2 ×Z → Πk→ωSn f (k) be
given by that theorem. Then limk→ω f (k) = ∞, otherwise the ultraproduct would
be a finite group. It follows that dH(θ(w), 1ω) = 1 for each non-trivial w. Using
similar arguments as in the proof of Theorem 3.2, we also get that θ(F2) has trivial
commutant.

Let b = θ(x), where x is the generator of the subgroup Z. As b is in the
commutant of θ(F2), b needs to be the identity. This is in contradiction with
dH(θ(x), 1ω) = 1. �

This non-trivial example is due to a careful choice of coefficients ank
1 , a

nk
2 ∈ Snk . If

we allow extra space in approximating direct products, such as G ' F2 × Z, the
group becomes constraint F so f -approximable as our next example shows.
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Example 3.9 (Direct products). Let H = 〈a1, . . . , a`〉. Fix θ : H ↪→
∏

n→ω Snk a sofic
representation and θk : H → Snk such that θ =

∏
k→ω θk. Then

(
H × G � a1, . . . , a`

)
is constraint approximable by

(
S(nk)2 � θk(a1) ⊗ 1nk , . . . , θk(a`) ⊗ 1nk

)
, whenever G is

an arbitrary countable sofic group.

However, there are examples of pairs of groups, H 6 G, where any amplification
will not help in making the group G constraint approximable with respect to H.
Such an example is provided in Section 5 of [Pău16]. A sofic representation of
F2 = 〈a1, a2〉 is constructed, that even when amplified it cannot be extended to a
sofic representation of Z ∗Z/2Z = 〈a1, a2, x | x2 = 1, xa1x = a2〉.

Theorem 3.10. [Pău16, Proposition 5.21] There exist ank
1 , a

nk
2 ∈ Snk , k ∈ N such that

the group Z ∗ Z/2Z = 〈a1, a2, x | x2 = 1, xa1x = a2〉 is not constraint (Sn2
k
, dH, 1)k∈N-

approximable by
(
S(nk)2 � ank

1 ⊗ 1nk , a
nk
2 ⊗ 1nk

)
.

Our method of proving Theorems 3.2 and 3.1 is very relevant to Question 2.14
from [Pău14] to which we turn our attention now. The remainder of this section
assumes familiarity with [Pău14] and, to a lesser extent, [Pău16]. The space
of sofic representations So f (G,Pω) is introduced in [Pău14, Section 1.4] and its
convex structure is defined in [Pău14, Section 2.2]. All the notation used is
introduced in Sections 1.1 and 1.2 of the same article. For the proof we also need
some techniques from [Pău16, Section 5]. In particular, the normalized Hamming
distance on arbitrary matrices, and the notion of expander in this context are
important.

Definition 3.11. [Pău16, Definition 5.1] For x, y ∈Mn(C) we define:

dH(x, y) =
1
n

Card
{
i : ∃ j x(i, j) , y(i, j)

}
.

This definition is consistent with the normalised Hamming distance on permu-
tations we used so far.

Definition 3.12. A sequence of pairs of permutations {ak
1, a

k
2}k∈N, ak

1, a
k
2 ∈ Pnk , is an

expander if there exists λ > 0 such that for any k and any projection p ∈ Dnk with
0 < Tr(p) 6 1

2 we have λTr(p) < dH

(
p, ak

1p(ak
1)∗

)
+ dH

(
p, ak

2p(ak
2)∗

)
(see condition (1) of

[Pău16, Proposition 5.5]).

Proposition 3.13. Let θ : F2 = 〈a1, a2〉 ↪→ Πk→ωSnk be a sofic representation. Choose
ak

1, a
k
2 ∈ Snk such that θ(a1) = Πk→ωak

1 and θ(a2) = Πk→ωak
2. Assume that {ak

1, a
k
2}k∈N is an

expander. Then [θ] is an extreme point in So f (F2,Pω).

Proof. We use Lemma 2.12 from [Pău14]. Let {rk}k∈N be a sequence of natural
numbers and p = Πk→ωpk ∈ (θ ⊗ 1rk)

′
∩ Πk→ωDnkrk be a projection. We show that

p = Πk→ωqk, where qk = Idnk ⊗ sk, for some projection sk ∈ Drk .
As pk ∈ Dnkrk , there exist projections pi

k ∈ Dnk such that pk = p1
k ⊕ . . . ⊕ prk

k . We
construct qk ∈ Dnkrk , by replacing each projection pi

k with 0nk or Idnk , depending
on which one is closer. So qk = q1

k ⊕ . . . ⊕ qrk
k , with qi

k ∈ {0nk , Idnk} and dH(pi
k, q

i
k) =

min{Tr(pi
k), 1 − Tr(pi

k)}. Thus dH(pk, qk) = 1
rk

∑rk
i=1 min{Tr(pi

k), 1 − Tr(pi
k)}.
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From the definition of an expander, we can deduce that λmin{Tr(s), 1 − Tr(s)} <
dH

(
s, ak

1s(ak
1)∗

)
+ dH

(
s, ak

2s(ak
2)∗

)
for any projection s ∈ Dnk . It follows that:

λdH(pk, qk) <
1
rk

rk∑
i=1

dH

(
pi

k, a
k
1pi

k(a
k
1)∗

)
+ dH

(
pi

k, a
k
2pi

k(a
k
2)∗

)
=dH

(
pk, (ak

1 ⊗ 1rk)pk(ak
1 ⊗ 1rk)

∗
)

+ dH

(
pk, (ak

2 ⊗ 1rk)pk(ak
2 ⊗ 1rk)

∗
)
.

Setting q = Πk→ωqk, and passing to the ultralimit, we get:

λdH(p, q) 6 dH(p, (θ(a1) ⊗ 1rk)p(θ(a1) ⊗ 1rk)
∗) + dH(p, (θ(a2) ⊗ 1rk)p(θ(a2) ⊗ 1rk)

∗).

As p ∈ (θ⊗ 1rk)
′, the last term is equal to zero. It follows that dH(p, q) = 0, so p = q.

By construction, q = 1nk ⊗ s, with s a projection in Πk→ωDrk . Then (θ⊗ 1rk)q is just
an amplification of θ (check Definition 2.4 from [Pău14]). Then [(θ ⊗ 1rk)q] = [θ]
and we are done. �

Remark 3.14. Elaborating on these arguments, one can prove that [θ] is an extreme
point even when the expander condition is replaced by the weaker assumption
that the induced action of θ on the Loeb space is ergodic.

Corollary 3.15. There exists a sofic representation of the free group F2,

θ : F2 ↪→ Πk→ωSnk ,

such that [θ] is an extreme point of the convex structure So f (F2,Pω), and such that its
commutant is trivial. This solves in negative Question 2.14 from [Pău14].

Proof. We follow the same plan as in the proof of Theorem 3.2. Only Proposition 3.8
has to be slightly adapted. Namely, when choosing c ∈ Sn, we make sure that an

1
and c satisfy the expander formula for λ = 0.2. This can be done by Proposition
5.11 from [Pău16]. The “a, c” notation used there is consistent with the present
article. The sofic representation so obtained, has trivial commutant and it’s an
extreme point by the previous proposition. �

4. Centralizer equation in symmetric groups and soficity

In this section, we investigate the constraint F so f -stability for the commutator
equation: ` = 1,m = 1,W = [a, x], where a is a coefficient and x is a variable.

Let X = {1, . . . ,n}. For p ∈ Sn, a cycle of p is a subset c = {x1, . . . , xt} ⊆ X on which
the action of p is ergodic, that is, {x1, . . . , xt} = {p(x1), p2(x1), . . . , pt(x1)}. Then Card(c)
plays the role of the length of the cycle c. For i ∈N∗ and p ∈ Sn, we define

cyci(p) =
1
n

Card {x ∈ X : x ∈ c,Card(c) = i} ,

that is, the ratio of elements in X that are part of cycles of length i in p. We have∑
i cyci(p) = 1. For i ∈N∗ and p = Πk→ωpk, we define

cyci(p) = lim
k→ω

cyci(pk).

As
∑

i cyci(pk) = 1 for every k, it follows that
∑

i cyci(p) 6 1. Also set:

cyc∞(p) = 1 −
∑

i

cyci(p) > 0.
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As in the case of symmetric group Sn, the numbers cyci(p), associated to p =

Πk→ωpk, constitute a complete set of invariants under conjugacy equivalence rela-
tion:

Proposition 4.1. [ES05, Proposition 2.3(4)] Two elements p, q ∈ Πk→ωSnk are conjugate
if and only if cyci(p) = cyci(q) for all i ∈N∗.

4.1. An almost centralizing permutation away from the centralizer. Let p ∈ Sn

be an arbitrary permutation and c = {x1, . . . , xt} be a cycle of p. Let us assume that
pi(x1) = xi+1, for i = 1, . . . , t− 1. We want to construct a permutation, supported on
c, almost commuting with p, and that is far from the centralizer of p. Construct
rp,c ∈ Sn as follows: let a = bt/3c and define rp,c(x j) = x j+a for j = 1, . . . , a; rp,c(x j) =

x j−a for j = a + 1, . . . , 2a; rp,c(x j) = x j for j = 2a + 1, . . . , t and rp,c(x) = x for x < c. So,
rp,c(c) = c and rp,c is the identity outside of c. Then dH(p · rp,c, rp,c · p) = 3/n. Since
every permutation commuting with a cycle is a power of that cycle, we deduce
that for any q ∈ Sn commuting with p, we have dH(q, rp,c) > 2a/n.

This example is rather general (our p is an arbitrary permutation) and shows
also that the study of F -stability as we performed in [AP15] is very different from
investigations of constraintF -stability as we initiate in the present paper. Indeed,
one of the main results of [AP15] isF so f -stability of the commutator (equation). In
contrast, the preceding example shows that fixing one of the commuting elements
(i.e. imposing the constraint) change the F so f -stability property drastically. In the
next subsection, we characterize permutations which are constraint F so f -stable,
when considering the commutator equation.

4.2. Stability of centralizer equation.

Definition 4.2 (Stable centralizer). Let (pk)k∈N ∈ Πk∈NSnk be a sequence of permu-
tations and p = Πk→ωpk ∈ Πk→ωSnk its image in the universal sofic group. We say
that (pk)k∈N has stable centralizer in permutations if for any q ∈ Πk→ωSnk such that
pq = qp there exists qk ∈ Snk such that q = Πk→ωqk and pkqk = qkpk for every k ∈N.

Thus, stable centralizer is an instance of constraint F so f -stability for the com-
mutator equation: ` = 1,m = 1,W = [a, x], and G = Z×Z = 〈a, x | [a, x] = 1〉 in the
notation of Definitions 2.4 and 2.14.

Theorem 4.3. A sequence (pk)k∈N ∈ Πk∈NSnk has stable centralizer if and only if

cyc∞(Πk→ωpk) = 0.

Proof. Direct implication. Let us first consider (pk)k∈N ∈ Πk∈NSnk such that
cyc∞(p) > 0, where p = Πk→ωpk. Strictly positive cyc∞(p) can happen if there
are fewer and fewer cycles in pk, as k → ω, that occupy the same space. In order
to see this, we want to split the cycles of pk in two categories: those that add
to

∑
i∈N∗ cyci(p) and those that should be considered as part of cyc∞(p). The per-

mutation pk has exactly cyci(pk)·nk
i cycles of length i. If this number is much larger

than cyci(p)·nk
i then some of these cycles have to be discarded towards cyc∞(p). The
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formal definition is as follows. For i, k ∈N define:

c(i, k) = min
{

cyci(pk) · nk

i
, b

cyci(p) · nk

i
c

}
.

Let P(k) be a collection of cycles of pk that contains exactly c(i, k) cycles of length
i and let E(k) be the collection of the remaining cycles. The goal here is to prove
that limk→ω e(k)/nk = 0, where e(k) = Card(E(k)) (this is similar to the proof of
Elek and Szabo that numbers cyci(p) completely describe the conjugacy class of
p inside Πk→ωSnk). Let e(i, k) be the number of cycles of length i in E(k), such that
e(k) =

∑
i e(i, k). We know from the definition of cyci(p) that limk→ω e(i, k)/nk = 0.

Then for any T ∈N∗:

lim
k→ω

e(k)
nk

= lim
k→ω

∑
i<T

e(i, k)
nk

+ lim
k→ω

∑
i>T

e(i, k)
nk
6

1
T
.

This inequality holds for any T ∈ N∗ so indeed limk→ω e(k)/nk = 0. In conclusion,
cycles in E(k) are trivial in number, but not in size, as their total relative length is
cyc∞(p). It is this phenomena that makes p unstable with respect to its centraliser.

We now construct q = Πk→ωqk to contradict the stable centraliser property of p.
Define qk = Πc∈E(k)rpk,c. Then:

dH(pkqk, qkpk) =
∑

c∈E(k)

dH(pkrpk,c, rpk,cpk) =
∑

c∈E(k)

3
nk

=
3e(k)

nk
.

As limk→ω e(k)/nk = 0, it follows that pq = qp. Let now, for every k ∈ N, sk ∈ Snk

be a permutation commuting with pk. We want to evaluate dH(qk, sk). For c ∈ E(k),
we have qk(c) = c. The permutation sk is sending cycles of pk into cycles of pk, as it
is commuting with pk. Therefore, in order to minimise dH(qk, sk), we can assume
that sk(c) = c. By the definition of qk, for any c ∈ E(k), the permutations sk and qk

have to differ on at least 2 · bCard(c)/3c points. Then:

dH(qk, sk) >
∑

c∈E(k)

2
nk
b
Card(c)

3
c >

2
∑

c∈E(k) Card(c)

3nk
−

e(k)
3
.

We can estimate the limit limk→ω dH(qk, sk) > 2/3 · cyc∞(p) > 0. So q ∈ Πk→ωSnk

cannot be represented by permutations exactly commuting with pk.
Reverse implication. Again p = Πk→ωpk and we assume now that cyc∞(p) = 0.

It follows that
∑

i∈N∗ cyci(p) = 1. Let q ∈ Πk→ωSnk be such that pq = qp and choose
qk ∈ Snk such that q = Πk→ωqk.

Fix ε > 0 and let i ∈ N be such that
∑

j6i cyc j(p) < 1 − ε/3. There exists F ∈ ω
such that for any k ∈ F:∑

j6i

cyc j(pk) < 1 − ε/2 and dH(pkqk, qkpk) < ε/2i.

Fix such a k ∈ F. Let c1, . . . , ct be the cycles of pk of length less or equal to i. By the
above condition, at most ε/2 · nk points are outside these cycles. We call a cycle cs

good if pkqk(x) = qkpk(x) for any x ∈ cs, and bad otherwise. As dH(pkqk, qkpk) < ε/2i,
there are at most ε/i · nk/2 bad cycles in pk.
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Let cs be a good cycle. Then qk(cs) is another cycle in pk of equal length. This
defines a partial map ϕ : {1, . . . , t} → {1, . . . , t}, qk(cs) = cϕ(s). We can extend this to
ϕ̄ : {1, . . . , t} → {1, . . . , t}, a total map such that Card(cs) = Card(cϕ̄(s)).

We now construct q̄k as follows: on a good cycle cs we let q̄k = qk; on a bad
cycle cs we choose a bijection such that q̄k(cs) = cϕ̄(s) and q̄k commutes with pk on
cs; outside of cycles c1, . . . , ct we let q̄k be the identity. By construction q̄kpk = pkq̄k

and dH(qk, q̄k) 6 [(ε/i · nk/2)i + ε/2 · nk]/nk = ε. �
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[AP15] Goulnara Arzhantseva and Liviu Păunescu, Almost commuting permutations are near
commuting permutations, Journal of Functional Analysis 269 (2015), 745–757.

[BDJ08] Nathanial P. Brown, Kenneth J. Dykema, and Kenley Jung, Free entropy dimension in
amalgamated free products, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 339–367, DOI
10.1112/plms/pdm054. With an appendix by Wolfgang Lück. MR2439665

[CD11] Benoı̂t Collins and Kenneth J. Dykema, Free products on sofic groups with amalgamation
over monotileably amenable groups, Munster J. Math. 4 (2011), 101–118.
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