
Modelling the Way Mathematics Is Actually Done
Joseph Corneli

University of Edinburgh
joseph.corneli@ed.ac.uk

Ursula Martin
University of Oxford

Ursula.Martin@cs.ox.ac.uk

Dave Murray-Rust
University of Edinburgh
d.murray-rust@ed.ac.uk

Alison Pease
University of Dundee
a.pease@dundee.ac.uk

Raymond Puzio
PlanetMath.org, Ltd.

rspuzio@planetmath.info

Gabriela Rino Nesin
University of Brighton

G.RinoNesin@brighton.ac.uk

Abstract
Whereas formal mathematical theories are well studied, com-
puters cannot yet adequately represent and reason about
mathematical dialogues and other informal texts. To address
this gap, we have developed a representation and reasoning
strategy that draws on contemporary argumentation the-
ory and classic AI techniques for representing and querying
narratives and dialogues. In order to make the structures
that these modelling tools produce accessible to computa-
tional reasoning, we encode representations in a higher-
order nested semantic network. This system, for which we
have developed a preliminary prototype in LISP, can repre-
sent both the content of what people say, and the dynamic
reasoning steps that move from one step to the next.

CCS Concepts • Computing methodologies → Philo-
sophical/theoretical foundations of artificial intelligence;

Keywords Arxana, knowledge representation and reason-
ing, inference anchoring theory, conceptual dependency,
mathematics, natural language, formal proof, exposition

ACM Reference format:
Joseph Corneli, Ursula Martin, Dave Murray-Rust, Alison Pease,
Raymond Puzio, and Gabriela Rino Nesin. 2017. Modelling the Way
Mathematics Is Actually Done. In Proceedings of FARM’17, Oxford,
United Kingdom, September 9, 2017, 12 pages.
https://doi.org/10.1145/3122938.3122942

1 Introduction
Building a computer system that can understand mathemat-
ics at a high level was one of the intriguing challenges iden-
tified early on in the field of artificial intelligence [62, 69].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FARM’17, September 9, 2017, Oxford, United Kingdom
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5180-5/17/09. . . $15.00
https://doi.org/10.1145/3122938.3122942

Simply understanding mathematics at all is a challenge faced
by schoolchildren and others everywhere. Mathematics as
it is practiced professionally is a compelling combination
of formal reasoning and informal exposition. Teaching the
craft of mathematics involves helping students learn how to
think like experts [11], however our understanding of expert
thinking in mathematics is not yet systematic. Mathematical
AI could make both education and research more effective.

And yet, most mathematicians are completely uninter-
ested in “computer mathematics” per se. The vast majority
do not write their theorems in any of the many systems
available for specifying and checking proofs formally. Nev-
ertheless, the power of computational approaches has been
amply demonstrated in formal mathematics [26] and in quasi-
formal domains ranging from Chess and Go to logistics.
Mathematical AI could ultimately be as indispensable in

conceptual domains as machine learning is in subsymbolic
domains. And indeed, machine learning is likely to be useful
for building mathematical AI—but in order to get to the point
where such an application of machine learning techniques
is possible, we would need representations of mathemat-
ics in which meaningful patterns can be found. This is the
challenge towards which we address this paper.

At the moment, natural language representations of math-
ematics are largely obscure to text processing techniques, al-
though inroads have been made in understanding the linguis-
tic features of some aspects of mathematics [15, 16, 21, 22].
Mathematical formalisms take this to an extreme, since they
simplify and tightly constrain the ways in which their users
can write things down. We note that machine learning meth-
ods have been applied to corpora of formalised mathematics
to good effect [30, 31, 33, 44]. However, mathematics as it is
done by most mathematicians has a very different structure
– and there is a lot more of it available, as summarised in
Table 1.1

1Compare: 1253 articles in theMizar Mathematical Library, http://mmlquery.
mizar.org/. Mizar is one of the oldest proof checking systems. The Archive
of Formal Proofs associated with another prover, Isabelle, comprises some
362 entries (https://www.isa-afp.org/statistics.shtml).
2https://mathoverflow.net/questions
3https://math.stackexchange.com/questions
4https://arxiv.org/archive/math
5https://tools.wmflabs.org/enwp10/cgi-bin/list2.fcgi?run=yes&projecta=
Mathematics

https://doi.org/10.1145/3122938.3122942
https://doi.org/10.1145/3122938.3122942
http://mmlquery.mizar.org/
http://mmlquery.mizar.org/
https://www.isa-afp.org/statistics.shtml
https://mathoverflow.net/questions
https://math.stackexchange.com/questions
https://arxiv.org/archive/math
https://tools.wmflabs.org/enwp10/cgi-bin/list2.fcgi?run=yes&projecta=Mathematics
https://tools.wmflabs.org/enwp10/cgi-bin/list2.fcgi?run=yes&projecta=Mathematics

FARM’17, September 9, 2017, Oxford, United Kingdom Corneli, Martin, Murray-Rust, Pease, Puzio, and Rino Nesin

791,310 questions about mathematics in relevant
Q&A forums on Stack Exchange2,3

292,516 mathematics papers on the Cornell e-print
arXiv4

15,983 Wikipedia articles on mathematics5
25,436 books about mathematics in the Library of

Congress6

Table 1. Sources of mainstream mathematical writing

The Stack Exchange corpus alone is much larger than the
160000 games in AlphaGo’s initial training set [34], but the
data looks completely different. Go games are comprised of
sequences of black and white stones placed on an otherwise
uniform 19 × 19 grid. The space of possible configurations
for mathematics is much more complicated. Machine learn-
ing has also made impressive progress in textual domains –
and incidentally, this remark includes DeepMind [27], the
company behind AlphaGo – but the biggest successes, such
as machine translation, throw away fine structural details
that would be essential for machine understanding of math-
ematics. Coarse models of non-mathematical dialogue are
state of the art for machine learning [71].

To begin to model mainstream mathematics in a way that
exposes its structure to machines, we need the tools that
are in some ways closer to the scholarly apparatus of liter-
ary criticism than to the formal logic used by Russell and
Whitehead to write Principia Mathematica. Indeed, we must
stress that our focus is on the way mathematical reasoning
is communicated, rather than on the physical, embodied,
and cultural intuitions that underlie mathematical thought.
These intuitions, we believe, would be difficult to model com-
putationally [63]. However, when they are communicated
they are referred to a distinct set of reasoning patterns –
albeit not only deductive, but also abductive, inductive and
heuristic. Peirce said: “all mathematical reasoning is diagram-
matic” [54, p. 47] – and our approach pursues this line of
thinking.7 In the AI subfield Knowledge Representation and
Reasoning (KRR), the keywords “ontology” and “semantic
network” denote specific types of diagrams that comput-
ers can read. We will describe a more general strategy for
representing and reasoning about mathematical texts. Our
approach necessarily begins in media res (cf. [56, p. 4]). More
specifically, we put inspiring developments in formal proof,
embodiment, linguistics, and machine learning each to one

6https://www.loc.gov/books/?fa=partof%3Acatalog|subject%
3Amathematics&all=true

7Peirce advanced this definition: “By diagrammatic reasoning, I mean rea-
soning which constructs a diagram according to a precept expressed in
general terms, performs experiments upon this diagram, notes their results,
assures itself that similar experiments performed upon any diagram con-
structed according to the same precept would have the same results, and
expresses this in general terms” [54, pp. 47–48].

side for now: not because these topics are unimportant, but
precisely because they are well-studied elsewhere.

In overview: we select a representation model called Infer-
ence Anchoring Theory+Content [12, 58] as the foundation
of our strategy. We are not aware of any other representation
framework that is both flexible and expressive enough to
connect the formal and informal reasoning that is present in
mainstream mathematical texts and dialogues. Our survey
in §3 will point to structured proofs [40] and Lakatos Games
[53] as two pieces of exemplary work that do not possess this
bridging property. We also draw on Conceptual Dependence
theory [45, 61, 64], and broadly, on a reflexive strategy for
representation, because we are not only aiming to represent
reasoning, but also to simulate it computationally – whereas
IATC by itself is purely about representation. Herein we
present a preliminary proof-of-concept operationalization
of flexiformalism [36], the key tenets of which are:

(1) Formal models should show the correspondence with
informally-given problems;

(2) Proofs are fundamentally informative communication;
(3) Formality is not all-or-nothing.

In outline: §2 characterizes mathematical texts in terms
of their distinct formal and expository registers, and offers a
high-level characterization of the current effort. §3 surveys
related work, with a focus on the available modelling lan-
guages that bear on our representational goals. §4 illustrates,
informally, how mathematical text can be modelled in one of
these languages, and gives an initial description of our strat-
egy for representing non-deductive reasoning. §5 adds more
detail to the modelling approach and shows how existing AI
strategies can be applied to make non-deductive reasoning
explicit. §6 describes a prototype software implementation
that we have developed in LISP, and shows how it can be
applied to make the kind of diagrammatic reasoning we de-
scribe in the paper actionable on a computer. The system
implementation itself is available as literate program [13].
The application to mathematics should be understood to
be at a preliminary stage of development, the discussion in
the current paper focuses on describing how it can be done;
our argument is supported by initial experimentation. §7
presents our conclusions and returns to the four themes we
set aside earlier to give an outlook on future work.

2 Background
Since our purpose is to understand mathematical reasoning
as practiced by mathematicians, we began by studying exam-
ples of mathematical texts. In this section, we will summarize
some high-level observations.

One of the first features which leaps to the eye when read-
ing mathematics is that much of the text is written in a fash-
ion which employs a precise technical vocabulary, logical

https://www.loc.gov/books/?fa=partof%3Acatalog|subject%3Amathematics&all=true
https://www.loc.gov/books/?fa=partof%3Acatalog|subject%3Amathematics&all=true

Modelling the Way Mathematics Is Actually Done FARM’17, September 9, 2017, Oxford, United Kingdom

idioms, and symbolic notation to state mathematical proposi-
tions. We will refer to this as the formal register of mathemat-
ical discourse.8 One example of an utterance in the formal
register is “Every integer equals the sum of four squares.”
Symbolic paraphrases can readily be found, in whatever
formal system one chooses. For instance, the four-square
theorem could also be written (∀n ∈ N)(∃m1,m2,m3,m4 ∈

N)n =
∑4

i=1m
2
i . Furthermore, in mathematical writing it

is understood that nothing essential is lost in translating
between the verbal and symbolic statements.

While statements in the formal register are an important
part of mathematical writing, a text consisting only of formal
statements would be frustrating to read because, while it
may contain all the technical information, it would offer no
guidance to the reader as to where the statements came from,
why they are interesting, and how to go about understanding
them. To offer this guidance, a mathematical text will also
contain expository statements such as the following:

Next, we will prove the four-square theorem
using an algebraic identity similar to the one we
just used to prove the two squares theorem.

This expository register has several salient features which
work together and which distinguish it from the formal reg-
ister.9 While the subject matter of expository statements is
also mathematical objects and propositions, the language
involves not only description, but also narration and argu-
mentation. In the example given above, we see a narrative
structure in which a proof is introduced by comparing the
technique to that used in a previous proof.
Whereas in formal logic, only the strictest deductive rea-

soning is allowed, mathematical exposition also makes use
of inductive and abductive reasoning, and even looser rea-
soning by analogy. For instance, our example above makes
an analogy between two “similar” algebraic identities. In the
following sequence of questions, we see evidence of an in-
ductive mode of reasoning in which the questioner examines
several examples, searching for a suitable generalization of
the problem under consideration.

8Carnap defined the formal mode of speech similarly: “A theory, a rule, a
definition, or the like is to be called formal when no reference is made in it
either to the meaning of the symbols (for examples, the words) or to the
sense of the expressions (e.g. the sentences), but simply and solely to the
kinds and order of the symbols from which the expressions are constructed”
[10, p. 1].
9 Carnap opposes his “formal mode” (see Note 8, above) to what he calls the
material mode of speech. This conception is related to but distinct from what
we have termed the expository register. Carnap’s material mode includes
“those logical sentences which assert something about the meaning, content,
or sense of sentences or linguistic expressions of any domain” [10, p. 285].
He points out that the material mode of speech is “transposed” insofar as
“in order to assert something about an object a, something corresponding
is asserted about an object b which stands in a certain relation to the object
a” (p. 308). In particular, “in order to say something about a word (or a
sentence) we say instead something parallel about the object designated by
the word (or the fact described by the sentence, respectively)” (p. 309).

Can we do this for x + y? For e? Rationals with
small denominator?

A related point is that, whereas formal statements only
make use of the truth values and predicates of formal logic,
the expository register also makes use of loose, heuristic,
judgements of plausibility. Oftentimes, these are expressed
using adjectives like “superficial” and “deep” which are not
formally defined but refer to approximate notions which
inform heuristic choices.
The expository register is also metamathematical, dis-

cussing not only objects and propositions, but also proofs
and strategies. When setting out to prove a theorem, onemay
first assess different possible proof strategies using heuristic
judgements like “depth” or “difficulty,” or by making analo-
gies with known techniques to prove abstractly similar re-
sults. In this way, informal reasoning frequently serves to
guide the construction of a formal proof. Quite often, even if
known, the exact deduction of a mathematical result might
be lengthy and/or opaque. In this case, it is helpful to the
reader to augment formal reasoning with informal reasoning
which is shorter and easier to understand.10

In this essay, ourmain focuswill be to construct a theory of
mathematical exposition which will account for the features
noted above, and implement it computationally.

2.1 Framing the current effort
For a high-level view of how mainstream mathematics re-
lates to other challenge problems for computational under-
standing, one can compare previous research on the blocks
world [70], board games, and story comprehension (Table
2). These require increasingly sophisticated patterns of in-
ference, thinking, and reasoning, which we understand, after
David Moshman [49], to be defined as follows:

• Inference—going beyond the data—is elementary and
ubiquitous.

• Thinking is the deliberate application and coordina-
tion of one’s inferences to serve one’s purposes.

• Reasoning is epistemically self-constrained thinking
[. . .] with the intent of conforming towhat [are deemed]
to be appropriate inferential norms.

We assert that, understood as a computational challenge,
mainstream mathematics lies somewhere in between board
games and story comprehension. It deals with rules (axioms)
and strategies (as described, e.g., by Pólya [55]), but it also

10Lamport [40, p. 20] quotes a referee who had read one of his structured
proofs (see Section 3.1.3, below): “The proofs . . . are lengthy, and are pre-
sented in a style which I find very tedious. I think the readers . . . are going
to be more interested in understanding the techniques and how they can
apply them, than they will be in reading the formal proofs. A problem
with the proofs is that they do not clearly distinguish the trivial manipula-
tions from the nontrivial or surprising parts. . . . My feeling is that informal
proof sketches . . . to explain the crucial ideas in each result would be more
appropriate.”

FARM’17, September 9, 2017, Oxford, United Kingdom Corneli, Martin, Murray-Rust, Pease, Puzio, and Rino Nesin

Table 2. Comparison between computation in different domains

Level Blocks World Board Games Story Comprehension
elements blocks on a table game pieces on board episodes from everyday life
inference follow instructions rules & strategy analogy
thinking consistency prediction of winning costs and benefits
reasoning (trivial) multiple strategies ethical dilemmas

must make sense of informal descriptions, loose parallels,
and multiple points of view.
Since a city is not a tree [2], tree-shaped guides – like

information scientists’ ontologies, or other taxonomic de-
scriptions – will miss its interacting sub-systems. Similarly,
we claim that a formal proof will miss out the ontogenetic
aspects of proving (cf. [5, p. 219]).
In the following section we draw on several strands of

related work to formulate a novel approach to representation
of and reasoning about mathematics.

3 Survey of related work
In the theoretical side of our work we will draw on two
primary frameworks: conceptual dependence theory, which
originated in early work in story understanding by Schank
and his coauthors [61], and inference anchoring theory, which
is a relatively recent development in the field of argumenta-
tion [6]. In what follows we contextualise our use of these
two theoretical models, but do not attempt a full survey
of story understanding and argumentation theory, both of
which are subjects of considerable ongoing attention.11

The practical aspects of our work are rooted in a graphical
style of reasoning. In broad terms we reason about triples,
rather like those found in the Semantic Web’s Resource De-
scription Framework (RDF). Triples stand for labelled re-
lations between objects, as in a classical semantic network.
Because we need to reason about both the contents and struc-
ture of graphs in detail, relations are themselves treated as
first-class objects: that is, in Semantic Web terminology, the
triples are “reified” [47, §4.3]. We have experimented with
different strategies for representing this data: for instance,
one earlier prototype used a MySQL database that replicated
simple triple store features, and we have experimented with
more complex storage mechanisms. In the work presented
here, we opted to use a representation strategy more closely
coupled with LISP. We are broadly inspired by the genre of
annotative programming, in which programs take the form
of hypertext and dependencies are indicated by links, as pio-
neered in the Flare Programming Language12 and Nelson’s
ZigZag [50]. In a case of parallel invention, another plat-
form called AtomSpace has been created based on similar
11Briefly, computational research on stories continues in many venues; one
recent paper with some similarity to Schank’s work is [57]. The intersections
of argumentation with computer science have been explored, for example,
in the biennial Computational Models of Argument conference since 2006.
12http://flarelang.sourceforge.net/

design decisions [23, 24]. Both AtomSpace and our system,
Arxana (described in Section 6) treat relations as first-order
objects, support the creation of programming structures in
their graphs, and generally prefer expressibility to computa-
tional efficiency. AtomSpace directly incorporates a range of
advanced features, such as attentional weighting and rela-
tions between an arbitrary number of nodes, which are not
present in Arxana, but which could be simulated within our
simpler “first order” relational system. AtomSpace seems a
considerably more mature piece of software, e.g., it comes
with both Scheme and Python bindings and a range of opti-
misations, and it has been used in interesting applications
[43]: however, its greater complexity makes it less immedi-
ately useful as an illustrative tool for prototyping. Some of
its features may represent future development targets for
our system.
Having presented an overview of the landscape within

which our work sits, the following subsections continue the
survey, focusing in on several key landmarks that will guide
our work later in the paper.

3.1 Models of mathematical reasoning
Bundy has argued that finding the right representation is
the key to successful reasoning [8, p. 16]. Since we cannot
simply build on formal theorem proving for our current pur-
poses, we need to look further afield for foundations. We are
concerned in particular with building representations of rea-
soning [12]. This helps guide our search for useful paradigms.
McCarthy [48] posited several high-level features of a hy-
pothetical “language of thought”, highlighting in particular
the ways in which such a language would not be like spoken
language. We quote two key points:

• Much mental information is represented in
parallel and is processed in parallel.

• Pointers to processes while they are operating
may be important elements of its sentences.

Diagrammatic languages are in general well aligned with
the first point. Most modern programming languages have a
notion of concurrency, addressing the second. There have
been several efforts to build “graphical” programming lan-
guages (e.g., [1]), but they are not directly relevant to our
application. Here, we will review the features of several rep-
resentation languages that we can build upon.

http://flarelang.sourceforge.net/

Modelling the Way Mathematics Is Actually Done FARM’17, September 9, 2017, Oxford, United Kingdom

3.1.1 Inference Anchoring Theory + Content
Our modelling approach builds on argumentation theory; in
particular Inference Anchoring Theory (IAT), which was de-
vised by Budzynska et al [6, 7] to model the pro-and-contra
logical structure of dialogical arguments. IAT has since been
adapted to model mathematical arguments with an extension
we call “IAT+Content” (IATC) [12, 58]. The primary features
of this adaptation are: (1) to introduce explicit relationships
between pieces of mathematical content; and (2) to describe
a range of intermediate relations that model the way these
objects fit together in discourse. These intermediate relations
include inferential structure, judgements of validity or use-
fulness, and reasoning tactics. Whereas, as its name suggests,
IAT anchors logical inferences in dialog norms, IATC simul-
taneously connects logical inferences to contentful purposes
and constraints (see Moshman’s definitions of thinking and
reasoning, quoted above).

3.1.2 Conceptual Dependence
Conceptual Dependence was initially introduced as a tool for
understanding natural language [60]. However, it is also used
to represent knowledge about actions [45, 64]. An example
shown in Figure 1 shows how “John sold Mary a book” can
be represented as a combination of smaller actions.

John ATRANS book
John

Mary
ks +3 oo o oo R

oo

//

Mary ATRANS money
Mary

John
ks +3 oo o oo R

oo

//
I/R

OO

Figure 1. CD example (adapted from Figure 3 in [45])

CD has been used to reason about a range of informally-
constructed scenarios. For instance, the system might be
presented with a description of a restaurant in the form of a
script, and a CD representation of a story such as:

John went to a restaurant. He sat down. He got
mad. He left.

Schank andAbelson’s Script ApplierMechanism (SAM) could
produce a paraphrase and make inferences such as conclud-
ing that John was upset because the waiter did not come
[4, pp. 306 et seq.]. Furthermore, by augmenting the knowl-
edge base with goals and plans, it became possible to explain
actions. For instance:

Willa was hungry. She picked up the Michelin
guide.

Here one could explain why she picked up the guide as
follows: The first sentence suggests the goal of finding food,
and the restaurant script describes a way of satisfying this
goal – but applying the script requires the user to know the
location of a restaurant, hence the guide.

3.1.3 Structured proofs
Lamport’s notion of a “structured proof” [38] is an interest-
ing example of a “missing link” between informal and formal
mathematics. In essence, a structured proof combines a high-
level summary (or “proof sketch”) with a mode of writing out
details in such a way that each step is made clear and each as-
sumption and assertion is clearly labelled. Structured proofs
are trees, and, as such, are directed to the formal register.
As first introduced, they made use of just a few keywords:
assume, prove, let, and case. In a more recent reassess-
ment [40], Lamport states “The way I now write proofs has
profited by my recent experience designing and using a for-
mal language for machine-checked proofs.” In line with this,
additional keywords new, suffices, and pick are imported
from his “Temporal Logic of Actions+” (TLA+) language [39],
along with a shorthand for equational proofs.13 At least these
basic keywords, or equivalents, should be supported in the
lower, content-addressing, layers of our language.

3.1.4 Lakatos Games
Arguments are similar to games, insofar as both typically
have winners and losers: this is made precise with the notion
of a dialogue game [9, 46].
Lakatos [37] developed an abstract, dialectical, model of

mathematical creativity which has recently been formalized
as one such dialogue game [52, 53]. In the “Lakatos Game”,
assertions are made and then progressively refined through
discussion and debate. For instance, a statement may be
sharpened so that it applies to a restricted class of objects
(“Strategic Withdrawal”), or a putative counterexample may
be shown not to be a counterexample at all (“Monster Bar-
ring”). Lakatos’s theory is limited, first, in its theoretical com-
mitments, insofar as Lakatos’s mathematics is closely linked
to the Hegelian notion of thesis/antithesis/synthesis [42].
Secondly, even though Lakatos’s theory is now implemented
computationally (per [53]), the model leaves out concrete de-
tails of mathematical objects and relationships among them.
The trace of a Lakatos Game does include content – but the
relationships between elements are mediated by a controlled
vocabulary of 20 dialog moves, whose sequence is structured
into a game tree.14 Wewould like to broaden our understand-
ing to include, for example, dialogs that do not follow strict

13More recently, a second version of this language called TLA+2 has been
made available [41]. In full, TLA+2’s keywords are: action, assumption,
axiom, by, corollary, def, define, defs, have, hide, lambda, lemma,
new, obvious, omitted, only, pick, proof, proposition, prove, qed,
recursive, state, suffices, take, temporal, use, witness.
14Part of an example from [53, §A.1]: Conjecture(‘statement holds
in the convex polygon plus point case’) →GlobalCounter(‘equilateral
triangle plus point’, ‘statement holds in the convex polygon case’)
→MonsterBar(‘equilateral triangle plus point’, ‘statement holds in the con-
vex polygon case’, ‘line is alternating’) →PDefinition(‘equilateral trian-
gle plus point’, ‘line is alternating’, ‘“line” extends in both directions’)
→MonsterAccept(‘equilateral triangle plus point’, ‘line is alternating’).

FARM’17, September 9, 2017, Oxford, United Kingdom Corneli, Martin, Murray-Rust, Pease, Puzio, and Rino Nesin

dialectical outlines, as well as broader informal patterns of
reasoning.

3.2 The search for the ‘quantum of progress’
The Polymath project aimed to answer the question “is mas-
sively collaborative mathematics possible?” This project was
convened by Timothy Gowers in 2009, and he developed 15
rules to address the “questions of procedure” that he antic-
ipated would arise in the project.15 The basic premise was
that people would work together on a shared blog to discuss
a given mathematical problem in the open, and jointly work
out a solution. Within these ground rules, Gowers carefully
explicated the imperative to share comments that are “not
fully thought out.” good contribution to the project would
comprise what he called a “quantum of progress.” Continu-
ing with Gowers’s physics metaphor, it should be clear that
we need to better understand the “fields” that generate these
quanta! That is, in order to build a functional representation
of mathematical reasoning, we need to model both what’s
there at any given step, and also how it evolves – noting
that such evolution is generally heuristic. To date, twelve
Polymath projects and four MiniPolymath projects (focused
on collective solutions to pre-college level competition prob-
lems) have been convened.16 For researchers studying math-
ematical practice, these provide a useful source of data.17
To add to the body of thought on “proof and progress in

mathematics” [68], it is interesting to compare Polymath
with Gowers’s joint work with Ganesalingam on a “human-
oriented theorem proving” system that they call ROBOTONE
[20]. Work on this system motivated Gowers’s public pre-
sentation of a mathematical challenge problem that we will
take up as our central example in Section 4. However, Gane-
salingam and Gowers’s system was only able to solve more
straightforward “textbook” problems, in which the next step
is always more or less “obvious.” ROBOTONE has a num-
ber of heuristics, ranked by attractiveness, that it uses to
transform its goal step-by-step in a logically-sound manner.
ROBOTONE’s progress is distinctly mechanical. The novel
and interesting aspect of the system is that it generates proofs
in natural language and also makes its internal processing
explicit – so it straightforward to diagram its operations in
IATC.18 (However, we should emphasize that ROBOTONE’s
inferences are not “driven” by natural language as its main
motivation or mediator.)

Sussman gives an example of a LISP program that models
“‘how to’ as well as ‘what is’” [66] – namely, a program that
he wrote with with Richard Stallman that can replicate the

15http://gowers.wordpress.com/questions-of-procedure/
16http://michaelnielsen.org/polymath1/index.php?title=Main_Page
17E.g., Footnote 14 draws the data that the Lakatosian framework mod-
els from one of the MiniPolymath dialogues, and Rino Nesin tagged two
MiniPolymath dialogues into IATC in detail as an initial check on the com-
pleteness of the language as it was being developed.
18http://metameso.org/ar/robotone-example.pdf.

process of analyzing a circuit [67]. The program explains
why it comes up with the answers it does. The “why ques-
tion” is even more important (and interesting) when non-
trivial “creativity” is involved in the reasoning process [25].
Mathematical creativity may prove to be both possible and
interesting to model, and it may be possible to devise com-
putational systems that offer thought-provoking answers to
the “why question.” However, in the case of Ganesalingam
and Gowers’s ROBOTONE, described above, the answer to
the “why question” will always be more or less the same [20,
pp. 261–261]:

the program can [. . .] be regarded as repeat-
edly applying a single tactic, which is itself con-
structed by taking a list of subsidiary tactics and
applying the first that can be applied.

This is unlikely to work outside of a limited domain of
“textbook” problems – for example, it would stumble over
Polymath-style dialogues, or even “challenge problems” from
outside the textbook genre – such as the example we describe
in the following section.

4 Example: a diagrammatic model of
mathematical reasoning via IATC

An informal proof is in general not a tree, even if a struc-
tured proof – or the trace of moves made in a dialogue game
– does rather satisfactorily describe the proof as a tree. In
the limit of full formality, tree-shaped descriptions are ma-
chine checkable – and by the Curry-Howard correspondence,
proofs-as-programs are even runnable. However, by default
these objects give very little information about the proof’s
(or program’s) genesis. Indeed, as we shall see, we soon
run into problems even with a still-more-general network
model. Figure 2 presents an IATC analysis of Gowers’s walk-
through solution to the problem “What is the 500th digit
of (

√
2 +

√
3)2012?” In IATC, utterances expand to performa-

tives (here, only Assert and Suggest are used).19 The per-
formatives, in turn, expand to nodes that convey inferential
structure, reasoning tactics, and heuristic judgements (e.g.,
implies, strategy, and generalize, respectively) – as well
as content-level relations (e.g., “contains as summand”).
Intermediate nodes typically have targets in the content
layer. For example, the assertion that “‘(

√
3 −

√
2)2012’ has

property ‘is small’” is typical in this regard.
The implements node in Figure 2, and the implies node

somewhat lower down, bothwith bold outbound arrows pose
some difficulty – insofar as these outbound arrows do not
have another node as a target. What the implements node
is saying is that the subgraph it is pointing at implements a
heuristic that was proposed earlier, namely “The trick might
be: it is close to something we can compute.” Without such

19Austin [3] characterises performative utterances as follows: (a) they do
not ‘describe’ and accordingly have no truth value; and (b) the utterance
itself performs an action.

http://gowers.wordpress.com/questions-of-procedure/
http://michaelnielsen.org/polymath1/index.php?title=Main_Page
http://metameso.org/ar/robotone-example.pdf

Modelling the Way Mathematics Is Actually Done FARM’17, September 9, 2017, Oxford, United Kingdom

Figure 2. A mathematical challenge problem

certified implementations, we would see a proliferation of
heuristic suggestions, without any sense of which ones are
actually used later on. Again, this assertion is made about
a subgraph, and not a specific piece of content. Recall Mc-
Carthy’s assertion about the language of thought: “Pointers
to processes while they are operating may be important ele-
ments of its sentences.” Whereas a structured proof would
just give the indicated subgraph a name and push it down the
hierarchy into a lemma, we can see from the diagram that
such a representation strategy has limitations. The inbound
link to “some integer” (from the subsequent implies reason-
ing step) could be represented formally as a reference to the
lemma’s conclusion, but the link to an heuristic introduced
much earlier on is entirely informal. The example here is
simple, but reasoning about graph structure has the potential
to become highly complex. To cope with these complications,
we need hypergraphs, not just graphs. Specifically, we will
rely on one of the standard generalizations of the hypergraph
concept: the ability for an edge to point to another edge.20
The basic reason, again, is that we need a way to lasso the
embedded “lemma” as an object of interest, and point to it,
without wholly separating it off from the rest of the proof
(see Section 6).

5 Towards functional models of
mathematical reasoning

By combining ideas from IATC (for representation) and CD
(for reasoning) it should be possible to have the system look
at the data in Figure 2 and answer questions like:

• “Why are we interested in integers at this point?”
• “Why is 9 seen as a likely answer once we know that
(
√
3 −

√
2)2012 is small?”

The premise here is that the dynamics at work are based on
performatives being chosen based upon current valuations,
goals, and other contextual features. We expand this idea in
the following subsections.

5.1 Kinematics (IATC+CD)
The basis of CD theory is a classification of actions into broad
classes called primitives, each of which are equipped with a
number of places for arguments (referred to as slots) which
hold objects that fulfil roles specific to that class of actions.
When a primitive’s slots have been filled in, the result takes
the form of the graph.

We emphasize that the primitives of CD were designed to
represent everyday activities in the physical world and hence
might not be the best fit for mathematical texts. Therefore,
we will instead use the IATC performatives as our action
primitives. Like the standard CD primitives, these perfor-
matives have slots. The statements that are introduced via
these performatives also have slots, e.g., ‘has_property (o,
20 https://www.slideshare.net/delaray/knowledge-extraction-presentation:
“Mom resents the fact that John disapproves of Jane and Jim’s marriage.”

https://www.slideshare.net/delaray/knowledge-extraction-presentation

FARM’17, September 9, 2017, Oxford, United Kingdom Corneli, Martin, Murray-Rust, Pease, Puzio, and Rino Nesin

p)’ asserts that object o has property p. The specification of
IATC includes 9 performatives and 15 intermediate relations
[58]; a subset of the specification is given in Appendix A.
Assertions that are fully unfolded generally bottom out

in the content layer: assertions can be made directly about
objects and propositions, or about relationships between the
same, as in Figure 2’s “contains as summand” relation; con-
tent can be addressed in other intermediate assertions, such
as “(

√
3 −

√
2)2012” has_property “is small”. The performa-

tives rooted on the utterance
And (

√
3−

√
2)2012 is a very small number. Maybe

the final answer is “9”?
are represented as s-expressions in Listing 1. (We defer fur-
ther comment on the somewhat technical matter of pointing
at a specific subgraph to Section 6, but highlight here that
that from the point of view of IATC, it just means that we
can substitute “subgraph” for “statement” in slots that ask
for a statement.)

(Assert
"contains as summand"
"(sqrt(2)+sqrt(3))^2012+(sqrt(3)-sqrt(2))^2012"
"(sqrt(3)-sqrt(2))^2012")

(Assert (has_property "(sqrt(3)-sqrt(2))^2012"
"is small"))

(Assert (implements #SUBGRAPH
"the trick might be: it
is close to something
we can compute"))

(Suggest (strategy "numbers that are very close
to integers have \"9\"
in many places of their
decimal expansion"))

Listing 1. Assertions from Figure 2 modelled with CD-like
code, using IATC performatives as our primitives

5.2 Dynamics
Static graphical representations of mathematical reasoning
do not by themselves offer functionalmodels of mathematical
reasoning. We need to be able to reason about structure:
answering “why” questions, as above, or introducing new
reasoned statements into a dialogue. Here we are inspired
by Sowa and Majumdar’s treatment of reasoning by analogy
[65]. For example, early in the solution to the challenge
problem from Figure 2, Gowers asks:

Can we do this for x + y? For e? Rationals with
small denominator?

Inspecting the context, we see that the anaphor “this”
refers to computing the 500th digit of X. As we remarked

in Section 2, the quoted sequence of questions embodies an
inductive search for a suitable generalization of the question;
specifically, this search arrives at “themth digit of (

√
2+

√
3)n”.

Sowa and Majumdar [65, §2] show that inductive reasoning
and analogical reasoning can achieve similar results. Using
a typed formalism we could be specific about the difference
between the two sides, while retaining a structural similarity
on the two sides of the analogy.
Given sufficiently detailed representations – sometimes

requiring background theories – we expect analogical rea-
soning to serve as the main explanatory mechanism. Sowa
and Majumdar describe three ways to do analogical rea-
soning about conceptual graphs. There is in fact a (high-
order) analogy between what goes on in building represen-
tations via parsing and reasoning about the representations
so-described. Lytinen [45] summarises Schank and Birnbaum
[59] on semantic parsing, again, referring to three aspects
of the parser: Making this analogy more precise, Sowa and
Majumdar refer to a “graph grammar”; this topic is devel-
oped in more detail by Ehrig et al [18]. We will describe an
example relevant to our setting in the following section.

Originally, the various systems related to CD were imple-
mented in different software packages such as SAM, PAM,
and VAE [4, 65]. Rather then adapt these packages and in-
terface them, we will take a different approach: computing
with hypergraphs.

6 Our prototype, Arxana
6.1 System overview
In order to store graphical representations of knowledge in
memory and query them, we will make use of a system called
Arxana which we have been developing in LISP [13]. The ba-
sis of this system is higher-order nested semantic networks.
By “higher order,” it is meant that links can point to other
links. By “nested,” it is meant that the nodes which make up a
networkmay contain other networks, which themselves may
have nodes containing yet other networks, etc. In addition,
all the links are bidirectional and no fundamental distinction
is made between links and nodes. We call the basic unit from
which we will construct our networks a nema. Nemas (or
nemata) are data objects which serve to encode both links
and nodes and are characterized by the following compo-
nents: Identifier, Source, Sink, and Content. Source and
sink are pointers to other articles and content is a place in
which to store a LISP object, which might be some text, or an
expression, or maybe a number or maybe something else. In
particular, the content of an article can even be another net-
work constructed out of more articles. By choosing suitable
conventions, one can build up more complex functionality
from the basic features. For instance, one can introduce typ-
ing by designating a certain nema as the “home nema” for
that type and interpreting a link whose source is the home

Modelling the Way Mathematics Is Actually Done FARM’17, September 9, 2017, Oxford, United Kingdom

nema and whose sink is some other nema as stating that the
sink nema is of that type.

Figure 3.
Cone over
a subgraph

Likewise, as shown in Figure 3, one can
encode subhypergraphs by designating a
specific nema as a label, and then indicat-
ing the components of the hypergraph of
interest by links from that label. Here, the
lighter-colored nema at the top of the dia-
gram together with the arrows emanating
from it point out a bold-faced triangle com-
prised of three nodes and the lines between
them. We call this structure a cone.21 We
could use a similar construction to make
the implements relation discussed in Sec-
tion 4 explicit, namely by pointing to all
of the constituent elements of the relevant
subgraph.

In order to make these representations above actionable,
we use two main facilities: hypergraph matching and hyper-
graph programming. Given a hypergraph, we can query it
for subhypergraphs which match some suitable criterion. A
query consists of a hypergraph whose articles contain pred-
icates and a match consists of a mapping of hypergraphs
from the query onto a subhypergraph such that, for every
article in the query, the predicate it contains is true of the
contents of the corresponding database article.

Like a cons cell, a nema comes with two links, source and
sink (analogous to car and cdr) which point to other nemata.
However, we extend the model in two ways: firstly, each
nema also contains an additional place, called content, in
which one can store an arbitrary LISP object which could be
a text string, a program, or even a network. By embedding
programs inside the hypergraph, reasoning steps can be
stored close to where they are used. In particular, we can
store hypergraph grammar rules that are used to transform
graphs (e.g., on a link).

6.2 Application to mathematical reasoning
Relative to our current purposes, the first key function of
Arxana is to make graphical representations like the ones in
Figure 2 accessible to the computer.

Here, we focus in on expanding and making sense of the s-
expressions from Listing 1. Note that the utterances recorded
in Figure 2 do not contain everything needed for this task. In
particular, some of the expansions that shown in the figure
are noted to be “unspoken”. Background information about
mathematics needs to be programmed into a knowledge base,
i.e., the system needs a range of facts, so that, for example,
“is small” is known to be synonymous to “close to zero”.
Relatedly, the lengthy strings embedded in Listing 1 need to
be parsed further – for example “the trick might be: it is close

21From https://ncatlab.org/nlab/show/cone: “In homotopy theory, the cone
of a space X is the space got by taking the X -shaped cylinder X × I , where
I may be an interval object, and squashing one end down to a point.”

to something we can compute” breaks down to two content-
level statements: “it is close to something” and “something
is computable”, along with a meta-level bid to find suitable
objects with the corresponding properties.

When we expand the “implements” and “#SUBGRAPH” we
obtain a node whose content is a proof certificate and a cone
below that node, respectively, as illustrated in Figure 2 and
described above. What’s missing from Figure 2, however, is
a link between this certificate and the new strategy the same
set of performatives Suggests. A detailed IATC+CD analysis
reveals that this missing link, F , emerges from the reasoning
process itself. We demonstrate one part of this derivation
below, leaving out a few steps related to the first s-exp from
Listing 1, which a computer algebra system could quickly
make sense of. The result of this process is a second certificate
that is provided by the last lambda expression in Listing 2
and verifies the reasoning behind the suggested strategy. The
corresponding cone (illustrated in Figure 4) is constructed
from eight links labelled A,B,C,D,E, F ,α , β ,γ . The links
A,B,C,D,E, F point to semantic subnetworks whose seri-
alizations are given at the top of Listing 2 and the links
α , β ,γ point to lambda expressions which implement in-
ference rules. These lambda expressions are of the form
(lambda (plex) (replace (car (search LHS plex))
RHS)) where LHS and RHS are subexpressions specific to the
inference rule and are given in the middle of Listing 2.
Verification proceeds by using the Arxana facility for

running embedded programs. When it runs, the certificate
first gathers the various premises and conclusions from
the cone. Starting with the premise C , it apples the rule
“weaken-equiv” which it finds by following link γ of the
cone. Implementing this rule is accomplished by hypergraph
search and replacement. It then proceeds similarly with the
remaining hypotheses, using inference rules to extend the
chain of reasoning and finishes by checking whether the
final result agrees with the conclusion pointed to by link F .

At the higher level, one would invoke an inference engine
such as mini-kanren (from The Reasoned Schemer [19]) to
unify the conclusion from the hypotheses. Analogous ques-
tions about restaurants were answered by Schank et al.’s Lisp
programs, however their work predates Prolog: neverthe-
less, CD inferencing and parsing would port over to a logic
language naturally.

Figure 4. The reasoning itself suggests a key strategy

https://ncatlab.org/nlab/show/cone

FARM’17, September 9, 2017, Oxford, United Kingdom Corneli, Martin, Murray-Rust, Pease, Puzio, and Rino Nesin

;; assertions
(A (has_property "(sqrt(3)-sqrt(2))^2012" is-small))
(B (implies (and (close-to N M)

(isa M integer))
(has_property N 9s-decimal)))

;;; existing knowledge base
(C (equivalent-to (N has_property is-small)

(N close-to 0)))
(D (isa 0 integer))
(E (implies (N isa integer)

(N has_property computable)))

;;; conclusion
(F (viable-strategy "(sqrt(3)+sqrt(2))^2012"

(has_property N 9s-decimal)))

;;; inference rules
(simplify-has_property+implies
:lhs (((y) (a has_property) (x) (b implies) (z))

((x src y) (y flk a) (x snk z) (x flk b)))
:rhs (((y) (a has_property) (z))

((z src y) (y flk a))))
(transitivity
:lhs (((y) (a implies) (x) (b implies) (z))

((x src y) (y flk a) (x snk z) (b flk z)))
:rhs (((y) (a implies) (z))

((z src y) (y flk a))))
(weaken-equiv
:lhs (((b equivalent-to)))
:rhs (((b implies))))

;;; computing the certificate
(lambda (V)

(apply
(lambda (F A B C D)

(equal
(simplify-has_property+implies
(graph-union
B
(transitivity
(graph-union
D
(simplify-has_property+implies
(graph-union
A
(weaken-equiv C)))))))

F))
(mapcar
(lambda (X)

(get-sink
(car
(triples-given-beginning-and-middle V X)))

'(A B C D)))))

Listing 2. Key elements for reasoning about Listing 1

7 Conclusions and Future Work
The formal register of mathematical discourse has been stud-
ied by de Bruijn, Ranta, Ganesalingam, and others. Once we
have formal representations, it is possible to reason effec-
tively about them using tools from Frege and others. In this
paper we have focused, instead, on a computational theory
of the expository register. We have drawn upon both classic
and recent AI research which has considered situations with
which everyday mathematics shares common features.

Quite to the contrary of the sentiment conveyed by the
misattributed quote “Mathematics is a game played accord-
ing to certain simple rules with meaningless marks on paper,”
David Hilbert, an early and important proponent of mathe-
matical formalism, emphasized the role of intuition and expe-
rience, and discussed conjectural thinking and the fallibility
of mathematical reasoning [14, 28].22 Our work continues
roughly in this spirit: but rather than referring intuition to
logical and mathematical foundations, we have outlined a
novel, if preliminary, operationalization of flexiformal repre-
sentation and reasoning. Specific items of future work will
re-integrate the themes we set aside in the introduction to
this paper. They include:

Formal proof

• Demo the system walking through the steps of a proof
like the challenge problemwe discussed, or aMiniPoly-
math dialogue, which would necessitate refining both
representations and reasoning.

• Integrate external SMT solvers, proof checkers, proof
assistants, and computer algebra systems (e.g., ‘X sums
“some integer”’ and ‘X contains as summandY ’ could
be treated by different external systems).

Embodiment and cognitive science

• Build on CD theory to reason about embodied intu-
itions in geometric problems, integrate with Lakoff
and Núñez’s conceptual metaphors [51]; connect this
with formal approaches in geometry.

• Relate reasoning about hypergraphs to work by Silvia
de Toffoli [17], Mateja Jamnik [29], and other contem-
porary scholars working on reasoning with diagrams.

Linguistics and NLP

• Integrate parsers to generate IATC+CD automatically,
initially via intermediate semantic markup [35].

• The IATC specification (presented in part above) is to
be understood as preliminary, and the language should
be expanded and improved based on corpus studies.

• Use statistical methods on the relevant corpora, ex-
panding on the work of Kaliszyk et al [32] who ascer-
tained the frequency of various schematic usages like
“let X be a Y ” in a specific corpus of proofs.

22https://www.cs.nyu.edu/pipermail/fom/2005-April/008889.html.

https://www.cs.nyu.edu/pipermail/fom/2005-April/008889.html

Modelling the Way Mathematics Is Actually Done FARM’17, September 9, 2017, Oxford, United Kingdom

Machine learning

• Integrate with knowledge bases of mathematical terms
and frequency data (as above).

• Model Stack Exchange dialogues, in parallel with the
work done on Reddit discussions [71].

• Build a system with multiple agents that “converse
with each other to sharpen their wits” [69].

8 Acknowledgements and supplement
The authors would like to thank Daniel Pique for useful
discussions and advice, and Steve Corneli, who provided
extensive comments on an early draft of the paper. We also
thank the anonymous workshop reviewers and our paper
shepherd Michael Sperber for their suggestions, which sig-
nificantly improved the final submission.
The authors acknowledge the financial support of the

EPSRC via Ursula Martin’s fellowship “The Social Machine
of Mathematics” (EP/K040251/1). The paper also benefitted
from conversations at the Isaac Newton Institute residential
programme on “Big Proof” (EP/K032208/1).
Auxilliary material, including computer programs, data

sets, and full versions of diagrams quoted above are available
via this URL: http://metameso.org/ar/.

References
[1] Tom Addis and Jan Addis. Drawing programs: the theory and practice

of schematic functional programming. Springer Science & Business
Media, 2009.

[2] Christopher Alexander. A city is not a tree. Architectural Forum,
122(1):58–62, April 1965.

[3] John Langshaw Austin. How to Do Things With Words. Oxford Univer-
sity Press, 1975.

[4] Avron Barr and Edward A Feigenbaum. The handbook of artificial
intelligence, volume 1. Butterworth-Heinemann, 1981.

[5] Jean-Hugues Barthélémy. Fifty key terms in the works of Gilbert
Simondon. In Arne De Boever, Alex Murray, Jon Roffe, and Ashley
Woodward, editors, Gilbert Simondon: Being and Technology, pages
203–231. Edinburgh University Press, 2012.

[6] Katarzyna Budzynska, Mathilde Janier, Chris Reed, and Patrick Saint-
Dizier. Towards extraction of dialogical arguments. In Proceedings
of 13th International Conference on Computational Models of Natural
Argument (CMNA 2013), 2013.

[7] Katarzyna Budzynska,Mathilde Janier, Chris Reed, Patrick Saint-Dizier,
Manfred Stede, and Olena Yaskorska. A Model for Processing Illocu-
tionary Structures and Argumentation in Debates. In Proceedings of the
Ninth International Conference on Language Resources and Evaluation
(LREC-2014), Reykjavik, Iceland, May 26-31, 2014, pages 917–924, 2014.

[8] Alan Bundy. The interaction of representation and reasoning. Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 469(2157), 2013.

[9] Lauri Carlson. Dialogue games: An approach to discourse analysis.
Springer Science & Business Media, 2012.

[10] Rudolf Carnap. Logical syntax of language. Psychology Press, 1937.
[11] Allan Collins, John Seely Brown, and Susan E Newman. Cognitive

apprenticeship: Teaching the craft of reading, writing andmathematics.
Thinking: The Journal of Philosophy for Children, 8(1):2–10, 1988.

[12] Joseph Corneli, Ursula Martin, Dave Murray-Rust, and Alison Pease.
Towards mathematical AI via a model of the content and process of
mathematical question and answer dialogues. In Herman Geuvers,

Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke,
editors, Intelligent Computer Mathematics 10th International Conference,
CICM 2017, Edinburgh, UK, 2017, Proceedings, 2017.

[13] Joseph Corneli and Raymond Puzio. Arxana 2017. Technical report,
metameso.org/ar/, 2017.

[14] Leo Corry. The origins of eternal truth in modern mathematics: Hilbert
to Bourbaki and beyond. Science in Context, 10(02):253–296, 1997.

[15] Marcos Cramer, Peter Koepke, and Bernhard Schröder. Parsing and
disambiguation of symbolic mathematics in the Naproche system. In
International Conference on Intelligent Computer Mathematics, pages
180–195. Springer, 2011.

[16] Marcos Cramer, Daniel Kühlwein, and Bernhard Schröder. Presup-
position Projection and Accommodation in Mathematical Texts. In
KONVENS, pages 29–36, 2010.

[17] Silvia De Toffoli. ‘Chasing’ The Diagram–The Use of Visualizations
in Algebraic Reasoning. The Review of Symbolic Logic, 10(1):158–186,
2017.

[18] Hartmut Ehrig, Annegret Habel, and Hans-Jörg Kreowski. Introduc-
tion to graph grammars with applications to semantic networks. Com-
puters & Mathematics with Applications, 23(6-9):557–572, 1992.

[19] Daniel P Friedman, William E Byrd, and Oleg Kiselyov. The Reasoned
Schemer. MIT Press, 2005.

[20] M. Ganesalingam and W. T. Gowers. A Fully Automatic Theorem
Prover with Human-Style Output. Journal of Automated Reasoning,
pages 1–39, 2016.

[21] Mohan Ganesalingam. The Language of Mathematics, A Linguistic and
Philosophical Investigation, volume 7805 of LNCS. Springer Verlag,
2013.

[22] Deyan Ginev. The structure of mathematical expressions. Master’s
thesis, Jacobs University, Bremen, Germany, 2011.

[23] Ben Goertzel, Cassio Pennachin, and Nil Geisweiller. Engineering
General Intelligence, Part 1: A Path to Advanced AGI via Embodied
Learning and Cognitive Synergy, volume 5 of Atlantis Thinking Ma-
chines. Springer, 2014.

[24] Ben Goertzel, Cassio Pennachin, and Nil Geisweiller. Engineering
General Intelligence, Part 2: The CogPrime Architecture for Integrative,
Embodied AGI, volume 6 of Atlantis Thinking Machines. Springer, 2014.

[25] Christian Guckelsberger, Christoph Salge, and Simon Colton. Address-
ing the “Why?” in Computational Creativity: A Non-Anthropocentric,
Minimal Model of Intentional Creative Agency. In Ashok Goel, Anna
Jordanous, Alison Pease, Mikhail Jacob, and Matthew Guzdial, editors,
Proceedings of the Eighth International Conference on Computational
Creativity, ICCC 2017, 2017.

[26] Thomas Hales et al. A formal proof of the Kepler conjecture. In Forum
of Mathematics, Pi, volume 5. Cambridge University Press, 2017.

[27] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse
Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching
machines to read and comprehend. In Advances in Neural Information
Processing Systems, pages 1693–1701, 2015.

[28] David Hilbert. Natur und mathematisches Erkennen: Vorlesungen, gehal-
ten 1919-1920 in Göttingen. Birkhäuser, [1919] 1992.

[29] Mateja Jamnik. Mathematical reasoning with diagrams. University of
Chicago Press, 2001.

[30] Cezary Kaliszyk, François Chollet, and Christian Szegedy. HolStep: A
Machine Learning Dataset for Higher-order Logic Theorem Proving.
CoRR, abs/1703.00426, 2017.

[31] Cezary Kaliszyk and Josef Urban. Learning-assisted automated rea-
soning with Flyspeck. Journal of Automated Reasoning, 53(2):173–213,
2014.

[32] Cezary Kaliszyk, Josef Urban, Jiří Vyskočil, and Herman Geuvers.
Developing corpus-based translation methods between informal and
formal mathematics [Poster of [33]]. http://cl-informatik.uibk.ac.at/
cek/docs/14/ckjujvhg-cicm14-poster.pdf.

http://metameso.org/ar/
http://cl-informatik.uibk.ac.at/cek/docs/14/ckjujvhg-cicm14-poster.pdf
http://cl-informatik.uibk.ac.at/cek/docs/14/ckjujvhg-cicm14-poster.pdf

FARM’17, September 9, 2017, Oxford, United Kingdom Corneli, Martin, Murray-Rust, Pease, Puzio, and Rino Nesin

[33] Cezary Kaliszyk, Josef Urban, Jiří Vyskočil, and Herman Geuvers. De-
veloping corpus-based translation methods between informal and for-
mal mathematics. In International Conference on Intelligent Computer
Mathematics, pages 435–439. Springer, 2014.

[34] Christof Koch. How the Computer Beat the Go Master, March 2017.
[35] M. Kohlhase. STEX: Semantic markup in TEX/LATEX. Self-Documenting

LATEX package, 2017.
[36] Michael Kohlhase. The flexiformalist manifesto. In Symbolic and

Numeric Algorithms for Scientific Computing (SYNASC), 2012 14th In-
ternational Symposium on, pages 30–35. IEEE, 2012.

[37] Imre Lakatos. Proofs and Refutations: The Logic of Mathematical Dis-
covery. Cambridge University Press, 1976.

[38] Leslie Lamport. How to write a proof. The American Mathematical
Monthly, 102(7):600–608, 1995.

[39] Leslie Lamport. Specifying Concurrent Systems with TLA+. NATO
Science Series, III: Computer and Systems Sciences, 173(173):183–247,
1999.

[40] Leslie Lamport. How to write a 21st century proof. Journal of fixed
point theory and applications, 11(1):43–63, 2012.

[41] Leslie Lamport. TLA+2: A Preliminary Guide. 2014.
[42] Brendan Larvor. Lakatos’s Mathematical Hegelianism. The Owl of

Minerva, 31(1):23–44, 1999.
[43] Ruiting Lian, Ben Goertzel, Linas Vepstas, David Hanson, and Changle

Zhou. Symbol Grounding via Chaining of Morphisms. CoRR,
abs/1703.04368, 2017.

[44] SarahM. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk.
Deep Network Guided Proof Search. CoRR, abs/1701.06972, 2017.

[45] Steven L Lytinen. Conceptual dependency and its descendants. Com-
puters & Mathematics with Applications, 23(2-5):51–73, 1992.

[46] William C. Mann. Dialogue games: Conventions of human interaction.
Argumentation, 2(4):511–532, Nov 1988.

[47] Frank Manola, Eric Miller, Brian McBride, et al. RDF primer. W3C
recommendation, 2004.

[48] John McCarthy. The well-designed child. Artificial Intelligence,
172(18):2003–2014, 2008.

[49] David Moshman. From inference to reasoning: The construction of
rationality. Thinking & Reasoning, 10(2):221–239, 2004.

[50] Theodor Holm Nelson. Zigzag (tech briefing). In Proceedings of the
12th ACM conference on Hypertext and Hypermedia, pages 261–262.
ACM, 2001.

[51] Rafael Núñez and George Lakoff. The cognitive foundations of mathe-
matics. Handbook of mathematical cognition, pages 109–124, 2005.

[52] Alison Pease, Katarzyna Budzynska, John Lawrence, and Chris Reed.
Lakatos Games for Mathematical Argument. In S. Parsons, N. Oren,
C. Reed, and F. Cerutti, editors, Proceedings of the Fifth International
Conference on Computational Models of Argument (COMMA 2014),
pages 59–66, Pitlochry, 2014. IOS Press.

[53] Alison Pease, John Lawrence, Katarzyna Budzynska, Joseph Corneli,
and Chris Reed. Lakatos-style Collaborative Mathematics through
Dialectical, Structured and Abstract Argumentation. Artificial Intelli-
gence, 246:181–219, May 2017.

[54] Charles S. Peirce. The New Elements of Mathematics, volume 4. Mouton,
1976.

[55] G. Pólya. How to Solve It. Princeton University Press, 1945.
[56] Willard Van Orman Quine, Patricia S Churchland, and Dagfinn Følles-

dal. Word and object. MIT press, [1960] 2013.
[57] Mark O Riedl and Brent Harrison. Using stories to teach human val-

ues to artificial agents. In Paula Boddington, Miles Brundage, Joanna
Bryson, Judy Goldsmith, Ben Kuipers, and Toby Walsh, editors, AI,
Ethics, and Society Workshop at the Thirtieth AAAI Conference on Arti-
ficial Intelligence, 2016.

[58] Gabriela Rino Nesin. Extending Inference Anchoring Theory for use
with mathematical argumentation. Technical report, University of
Edinburgh, 2016.

[59] R. Schank and L Birnbaum. Memory, meaning, and syntax. Technical
Report 189, Department of Computer Science, Yale University, 1980.

[60] Roger C Schank. Conceptual dependency: A theory of natural language
understanding. Cognitive psychology, 3(4):552–631, 1972.

[61] Roger C Schank and Robert P Abelson. Scripts, plans, goals, and un-
derstanding: An inquiry into human knowledge structures. Psychology
Press, [1977] 2013.

[62] Herbert A Simon and Allen Newell. Heuristic problem solving: The
next advance in operations research. Operations research, 6(1):1–10,
1958.

[63] Aaron Sloman. The well-designed young mathematician. Artificial
Intelligence, 172(18):2015–2034, 2008.

[64] John F Sowa. Conceptual Graphs. In F. van Harmelen, V. Lifschitz, and
B. Porter, editors, Handbook of Knowledge Representation, chapter 5,
pages 213–237. Elsevier, 2008.

[65] John F Sowa and Arun K Majumdar. Analogical reasoning. In A. Aldo,
W. Lex, and B. Ganter, editors, Conceptual Structures for Knowledge Cre-
ation and Communication: 11th International Conference on Conceptual
Structures, ICCS 2003, Dresden, Germany, July 21-25, 2003, Proceedings,
number 2746 in LNAI, pages 16–36. Springer, 2003.

[66] Gerald Jay Sussman. Why programming is a good medium for ex-
pressing poorly understood and sloppily formulated ideas. In OOPSLA
’05: Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 6–6.
ACM, 2005.

[67] Gerald Jay Sussman. We Really Don’t Know How To Compute! In
Strange Loop, 2011.

[68] W.P. Thurston. On proof and progress in mathematics. Bulletin (New
Series) of the American Mathematical Society, 30(2):161–177, 1994.

[69] A. M. Turing. Intelligent Machinery, A heretical theory. Philosophia
Mathematica, 4(3):256–260, [1957] 1996.

[70] TerryWinograd. Procedures as a representation for data in a computer
program for understanding natural language. Technical Report 235,
MIT AI Lab, February 1971.

[71] Amy X Zhang, Bryan Culbertson, and Praveen Paritosh. Charac-
terizing Online Discussion Using Coarse Discourse Sequences. In
Proceedings of the Eleventh International Conference on Web and Social
Media. AAAI Press, 2017.

A Partial specification of IATC
Assert (s [, a]) Assert belief that statement s is true,

optionally because of a.
Agree (s [, a]) Agree with a previous statement s,

optionally because of a.
Challenge (s [, a]) Assert belief that statement s is false,

optionally because of a.
Retract (s [, a]) Retract a previous statement s, op-

tionally because of a.
Define (o, p) Define object o via property p.
Suggest (s) Suggest a strategy s.
Judge (s) Apply a heuristic value judgement s

to some statement.
Query (s) Ask for the truth value of statement

s.
QueryE ({pi (X)} . i) Ask for the class of objects X for

which all of the properties pi hold.
has_property (o, p) Object o has property p.
strategy (m, s) Method m may be used to prove

statement s.
beautiful (s) Statement s is beautiful.

	Abstract
	1 Introduction
	2 Background
	2.1 Framing the current effort

	3 Survey of related work
	3.1 Models of mathematical reasoning
	3.2 The search for the `quantum of progress'

	4 Example: a diagrammatic model of mathematical reasoning via IATC
	5 Towards functional models of mathematical reasoning
	5.1 Kinematics (IATC+CD)
	5.2 Dynamics

	6 Our prototype, Arxana
	6.1 System overview
	6.2 Application to mathematical reasoning

	7 Conclusions and Future Work
	8 Acknowledgements and supplement
	References
	A Partial specification of IATC

