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Because of their capacity to alter floe size distribution
and concentration and consequently to influence
atmosphere-ocean fluxes, there is a compelling
justification and demand to assimilate waves into
ice/ocean models and earth system models. Similarly,
global wave forecasting models like Wavewatch III R©

need better parameterizations to capture the effects
of a sea ice cover such as the marginal ice zone
on incoming wave energy. Most parameterizations
of wave propagation in sea ice assume without
question that the frequency-dependent attenuation
which is observed to occur with distance x travelled,
is exponential, i.e. A=A0e

−αx. This is the solution
of the simple first-order linear ordinary differential
equation dA/dx=−αA, which follows from an Airy
wave mode ansatz A exp i(kx± ωt). Yet, in point
of fact, it now appears that exponential decay isn’t
observed consistently and a more general equation of
the type dA/dx=−αAn is proposed to allow for a
broader range of attenuation behaviours.

1. Introduction
Ocean wave propagation into and within sea ice fields
is a well-established geophysical research topic that
is currently attracting renewed attention, prompted by
recent adjustments to Arctic sea ice especially, which
are occurring as a result of global climate warming.
Indeed, [1] and [2] include exhaustive bibliographies that
catalog early progress in the field including commentary
from the heroic era of exploration [3,4]; experimental
studies in the 1930s; the introduction of mathematical
sophistication in the 50s and late 60s; the influential
work of Wadhams and his collaborators in the 70s and
80s — the latter prompted by the MIZEX campaign, see
e.g. [5,6] and papers referenced therein; and more recent
further developments utilizing powerful theoretical and
numerical solution methods that began with [7] for shore
fast sea ice and [8] for finite ice floes such as those found
in the marginal ice zone (MIZ).
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As well as observations collected in situ, remote sensing has also provided valuable data sets
utilizing both satellites and aircraft missions. Whether focused upon continuous pack ice, the
loosely compacted ice floes of the MIZ, or pancake ice, nilas, frazil and grease ice, the compilation
of research papers and reports is impressive and continues to grow as the contemporary
importance of the subject is recognized and technological advances make practicable more
sophisticated measurements that were not feasible 20 years ago.

Ocean waves propagating in an ice field are observed to decrease in amplitude. The observed
reduction is due to a combination of two processes — scattering and dissipation, which both
need to be accommodated in any earth system model, ice/ocean model or wave forecasting
parameterization. Scattering redistributes energy but does not eliminate it while dissipation,
insofar as the waves are concerned, removes energy. Undoubtedly, the latter process actually
reassigns the energy to other parts of the atmosphere/ice/water system, e.g. to kinetic energy
in the mixed layer, etc., and this will be important in earth system models which are required
to conserve energy because they compute results over very long timescales. However, this
prerequisite is not important here, as the system under consideration isn’t closed.

The energy transport equation, or the wave action equation in Wavewatch III R© where ocean
currents are included, is used to embed ocean waves in these large scale models. Here we express
this equation in its simplest notional form for energy density E =E(x, ω, θ),

(∂t + cg.∇)E =
∑

S = Sin + Snl + Sds + Sice, (1.1)

where x denotes the spatial coordinates, ω is the radian frequency (= 2πf = 2π/T where f is
the frequency and T is wave period), θ is the direction of travel of the wave, the group velocity
cg is taken as constant, and

∑
S encapsulates a number of source/sink terms, as follows. Sin

represents wind-wave interaction, Sln is a nonlinear wave-wave interactions’ term, Sds is a
dissipation (whitecapping) term and Sice = Sice(x, ω, θ) is the term of interest in this work as it
characterizes how the waves are affected by the ice field. Sice can be partitioned into the two
processes introduced above, which are respectively designated attenuation coefficients αscat and
αdis,

Sice =−cg

(
E(αscat + αdis) +

∫2π
0
EK(θ − θ′) dθ′

)
, (1.2)

such that
∫2π
0
Sice dθ= 0 and − αscat +

∫2π
0
K(θ − θ′) dθ′ = 0 when αdis = 0.

Considerable modelling work has been done to understand αscat in the MIZ, e.g. the phase-
resolving, two-dimensional scattering theory described in [9,10] and tested against field data
in [11]. The most appreciable scattering occurs when floe diameters and ocean wavelengths are
of similar order, so waves passing through a field of pancake ice will not be scattered to any
extent. Although, it is recognized that such scattering models are never perfect, the author feels
that the redistribution of wave energy that occurs due to scattering which results in attenuation
of the wave field expressed through the coefficient αscat is well understood and well modelled.
This is important because contemporary phase-resolving scattering models provide a direct link
to ice floe breakup and hence to how the floe size distribution changes, as flexural stresses in
the compliant ice floes that make up the MIZ are easily calculated [10]. It only remains to find a
numerically efficient way to replicate the properties of K(θ − θ′) in equation (1.2).

Unfortunately, the author cannot say the same in regard to αdis, for which no satisfactory
models exist. Dissipation is due to an abundance of processes that are symptomatic of a MIZ,
defined as being the region of the ice cover that is substantially affected by open ocean processes.
As such, we expect considerable turbulence; inelastic ice floe collisions that can include reducing
the ice to a slurry by pummelling; vortex shedding; wave breaking, overtopping and overwashing
of the floes and possible green water; energy loss associated with ice deformation under extreme
conditions; ridging, rafting and ice floe fracture; and no doubt other less obvious mechanisms.
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Near the ice edge, when the seas are rough, considerable destruction of the ice floes can occur
but, because the dissipation eliminates higher frequency waves before lower frequency ones, the
zone of intense energy loss is typically limited to 10 or 20 km or so in Arctic waters, see e.g. [12].
In the Southern Ocean, where seas are much fiercer, the zone of destruction will be considerably
broader. It is quite likely that the attenuation rates in these outer zones may deviate significantly
from those in the interior and may even have a different functional dependence on the distance
travelled by the waves. It is also conjectured that large amplitude waves may attenuate differently
from those with smaller amplitudes, as the effects of nonlinear dissipation mechanisms such as
overwash and wave breaking will be more pronounced.

Creating a viable model that fits the multifarious realizations of the MIZ is unlikely to be
achievable, as the contribution from these several dissipative mechanisms will change with both
the wave and the ice conditions. Moreover, although the scattered fields are reasonably well
understood as noted above, potentially very energetic dissipation will also occur in the waters
between floes as a result of the scattering process itself. The convenience of separating αscat

and αdis in equation (1.2) may be problematical in this regard, although we accept its utility.
Nonetheless, while its magnitude may change according to ice conditions, in field observations a
simple power law appears to describe consistently how attenuation changes with wave frequency.
To the author’s knowledge, no model has reproduced this proportionality yet unfortunately;
indeed most are way off the mark and it is unlikely that a linear model will ever accurately
reproduce what is observed.

The above comments notwithstanding, it is conspicuous that the vast bulk of theoretical
models constructed to describe how waves are affected by sea ice, or vice versa, are configured to
fit a linear paradigm, i.e. they employ an Airy wave mode ansatz [13] of the formA exp i(kx± ωt).
In this expression, A is the initial wave amplitude, k denotes a generic complex wave number
that here defines either propagation in the water or beneath the ice cover, x is the direction of
propagation and t is time. In the usual way, k= κ+ iα encapsulates dispersion (via the real
quantity κ) and attenuation (via imaginary iα) into one consolidated complex wave number.
Typically, a boundary value problem is then solved, e.g. for open water surface gravity waves
travelling into an homogeneous plate or layer which can be semi-infinite or finite in horizonal
extent and has prescribed physical properties that define its behaviour in flexure. As a rule, the
ice would be designated as elastic, viscous or viscoelastic; each being reasonable when the wave
amplitudes are modest for the strain rates induced by typical surface waves in the sea ice under
different circumstances. The material properties chosen for the ice provide the dispersion relation
that regulates how the waves propagate under the ice cover, i.e. how they disperse and reduce in
amplitude, and, because the wave numbers in open water and ice-covered sea are different, the
impedance change at the ice edge which causes some of the wave energy to be reflected. Weakly
nonlinear formulations exist but they are relatively rare, e.g. [14].

In case the reader misunderstands, I am not dismissing the use of linear models to describe
wave propagation into and through sea ice fields. Indeed, the author along with graduate
students and colleagues has constructed many linear, physically-based models to describe
complex wave-ice interactions, notably [7–10] for example, over many years. Rather, I am
cautioning that the a priori adherence to the linear A=A0e

−αx prototype is problematical when
(i) parameterizing in operational forecasting systems and earth system models, as it predisposes
the attenuation to be exponential; (ii) attempting to fit any such model to data, because the
exponential function A=A0e

−αx may have too few degrees-of-freedom to fit the data at all the
spectral wave frequencies present. Moreover, (ii) may contribute to unexplainable data artefacts
documented in some published work, which have justifiably been attributed to wave growth or
wave-wave interactions in the past that are sometimes evident but not always present [6,15].

2. Appraisal
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(a) Two paradigms
A crucial distinction needs to be made between two classes of theoretical model, designated
paradigms I and II herein. Articles [7–10] are paradigm I examples of models where the physics of
wave-ice interaction is replicated theoretically as credibly as possible. In the first paper, [7] solve
for the reflection and transmission coefficients at the interface between an open water half-space
and a half-space covered by a uniform ice sheet that represents so-called shore fast sea ice. In
concert with many models describing how ice flexes in response to waves, [7] assumes the ice
responds as a thin elastic plate. [8] also computes reflection and transmission coefficients, but this
time for a finite elastic ice floe. In the third example [9], a MIZ bathed by a prescribed directional
wave spectrum is modelled by means of large numbers of floating compliant plates which scatter
the penetrant wave energy in all directions. [10], the fourth example, leads on from [9], using
its scattering theory to evolve the MIZ floe size distribution, by breaking up those ice floes that
are too large to exist in the wave field using a Mohr-Coulomb fracture criterion. In all cases, the
physical properties of the ice, viz. its thickness, ice density and the elastic moduli, etc., can be
mapped straightforwardly onto the coefficients that appear in the model and in situ experiments
can be done to ascertain whether the model is a good fit to data. It is these attributes that are
symptomatic of a paradigm I model.

On the other hand, some theoretical work is more accurately labelled as a parameterization and
fits paradigm II, including models that are constructed for one purpose being used for another.
I am not dismissing the value of paradigm II, as it is simply not practicable to incorporate fully
phase-resolving wave-ice interaction theory into either an earth system model or Wavewatch III R©;
a pragmatical solution is therefore necessary that parameterizes the physics in the most accurate
way. Potential examples in current use are the viscoelastic layer of [16], which is well suited to
modelling waves travelling in homogeneous continuous ice, or the modified fast ice model [7]µ

altered to have a complex flexural rigidity so as to produce damping, being used to model an
entire, potentially open, i.e. of low-concentration, heterogeneous ice field. (The superscript µ
denotes viscosity, added to acknowledge that I am referring to a viscoelastic version of the original
elastic paper [7].) Parameterization aspires to represent a substantial region of ice cover composed
of many ice floes and ice cakes present at spatially-variable concentrations and thicknesses as an
effective medium with a single dispersion relation that describes how the waves disperse and
attenuate as they propagate via the wave number. Zones with different physical properties can be
introduced, recalling that the impedance alters where properties change so that a boundary value
problem exists at each interface which strictly requires reflection and transmission coefficients to
be found. However, the real challenge is mapping a loosely-configured, heterogeneous array of
independent ice floes, ice cakes and frazil onto the physical material coefficients that appear in
the “holistic” dispersion relation that describes the effective medium. Unlike when the examples
[7–10,16] given above are used as originally intended, there is no way that this can be done
by independently measuring each physical property of the sea ice and the only recourse is to
measure how the waves change as they pass through the ice medium and then to tune the model
parameters to “best fit” the observed data. Accordingly, the model is being calibrated with the
very data it is intended to predict.

The computed model parameters also strictly have no material physical interpretation as they
are only associated with the experimental data being analysed, so generalization to other ice
fields or ocean wave states is challenging or impossible. Moreover, it must be asked how faithful
the model is to the physics of the process being observed and whether it is actually capable of
replicating observations. The author contends that this has not been convincingly demonstrated
to date. Indeed, there are incontestable analyses that suggest that [7]µ and [16] can never replicate
observations well as a paradigm II stratagem because their asymptotic behaviour at mid- to high-
frequencies is usually wrong and the same is true of viscous layer models such as [17].

Without knowing that they are a universally valid parameterization, some prototype models
are already being embedded within operational wave forecasting systems such as Wavewatch
III R© and earth system models that operate under a very diverse range of environmental
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circumstances, e.g. for large wave steepnesses where the differential equation predicting
attenuation, namely dxA=−αA with solution A=A0e

−αx, is unlikely to be a reliable
approximation to Nature in all circumstances and the issue of poor adherence to observed
α(ω) behaviour at high frequencies is becoming clear. (Here and subsequently the abbreviation
dx ≡ d/dx is used.)

Although the purpose of this paper is not to review the field of wave-ice interactions, it
would be remiss of me not to corroborate the assertions I have made as best I can. This will
be done in later sections. Subsequently, using data from a recent field experiment, I will focus
on the constraints implicit in linear models that conflate dispersion and attenuation in ice fields
using the single complex wave number k= κ+ iα. An alternative differential equation, namely
dxA=−αAn, derived using physical arguments for pancake ice in [18] and potentially having
an additional degree-of-freedom n, will also be presented as a generalization of the archtypal
exponential attenuation lawA=A0e

−αx. Remarkably, [18]’s model affords the same equation for
attenuation built from different physics by [19]. While the physical basis of [19] can be challenged,
the differential equation that parameterizes how wave amplitude A changes from its value A0 at
the ice edge as the wave advances through the ice medium, viz.

dxA=−αAn with solution A(1−n) =A
(1−n)
0 − (1− n)αx, (2.1)

where n and α are to be found, is a generalized decay law that reverts to a linear law when n= 0

and exponential decay when n= 1 [18,19]. The equation is a consequence of allowing viscosity to
depend on strain rate and, because of this, frequency ω, in a particular way and derives from a
power law fluid constitutive relation. Rather than just “best fit” observations, I will also describe
how the value of n can be predetermined to some extent using aggregated intelligence about the
nature of wave-ice interaction in MIZs.

(b) Contemporary parameterization
I briefly discuss the three most common material descriptions used to categorize sea ice when
it is subjected to ocean wave forcing; elastic, viscous and viscoelastic. The common theme
is (i) linearization about the basic state of rest, (ii) assuming the motion is proportional to
A exp i(kx± ωt), and (iii) derivation of a dispersion equation that connects ω with k. The
dispersion relations, ω= ω(k), are distinct in each case and for different models but the
dependency of the amplitude A on x that follows is always exponential.

The generic ice wave number k is real when the ice is purely elastic if no further dissipation,
arising from a combination of ice flexing, dissipation in the water and mechanical energy loss
such as collisions between ice floes or cakes, is parameterized. Waves disperse differently under
solid ice compared to open water and also attenuate because of scattering. This is because the
ice-coupled wave number depends on the physical properties of the sea ice so transitions of
ice morphology, e.g. thickness, or the edges of ice floes cause reflections to occur. However, this
process represents a redistribution of energy as opposed to dissipation. What this means in the
context of this paper is that a perfectly elastic sea ice cover can only reduce wave amplitude if the
ice is not spatially uniform.

A number of papers represent the entire sea ice cover as a viscous layer at the ocean surface,
e.g. [17] models wave propagation in a Newtonian viscous layer floating on an inviscid ocean,
while in [20] the underlying ocean is allowed to be viscous too. The primary focus of [17]’s
model was to explain some laboratory observations on wave propagation in grease ice written up
subsequently by [21], whereas [20] applied their model to a broader range of ice types including
the MIZ. Using a Lagrangian formulation, [22] also constructed a viscous model — in this case
for an unlayered, rotating ocean, and used it to represent a MIZ. [23] and [24,25] used a viscous
boundary layer model, based upon the eddy viscosity in the turbulent boundary layer beneath the
ice cover, observing that eddy viscosity is a phenomenological parameter that is to be determined
as a function of flow conditions rather than a physical measurable viscosity. These few papers
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collectively illustrate a reasonably common way of parameterizing the aggregated effect of sea
ice on waves.

In fact, sea ice itself is viscoelastic, with different degrees of nonlinearity dependent on its
physical properties and environmental circumstances. At ocean wave forcing frequencies, first-
year sea ice itself is approximately anelastic [26], i.e. any viscous deformation is recoverable,
which is a specific form of viscoelasticity where the hysteresis loop is closed. However, current
viscoelastic plate [27] and viscoelastic layer [16,28–30] models — the latter originally built to
synthesize the elastic plate [7] and viscous layer model [17], ignore this subtlety. Instead, they
accommodate other kinds of sea ice deformation and/or alternative dissipative mechanisms that
cause energy loss as the waves propagate into and through the material. In doing this they are
including both the modest dissipation due to sea ice flexure plus the typically substantial energy
loss arising from the several known but neglected pervasive mechanisms discussed in §1 —
many of which are nonlinear but are being rendered in a linear way in the model. In all cases,
a dispersion relation ω= ω(k) results that, as usual, is constructed by first assuming the Airy
wave mode ansatz A exp i(kx± ωt) with κ= Re k expressing dispersion and α= Im k expressing
attenuation via A=A0e

−αx so any nonlinearity is neglected a priori.
It is also noteworthy that variations in concentration c are treated by reducing the effective

medium’s effect linearly. At first sight this seems reasonable but, when it is recognized that most
of the dissipation arises because of turbulence in the water, it becomes counterintuitive. Surely
the level of dissipation would increase initially with a reduction in c, as ice floes become more
mobile and “belligerent”, and then start to decrease as c→ 0 as the effects of floe collisions, waves
breaking over floes and overwashing, and less attenuation, subside.

Observations suggest that α(ω)∝ ω2–ω3 in many circumstances, yet Dr Johannes Mosig
(personal communication, 2017) has shown, after switching off any elasticity, that [7]µ and [17]
have power 11 and power 7 proportionality respectively. The dispersion relation in [16] is so
complicated that it is hard to be absolutely sure about its asymptotic behaviour but with zero
shear modulus it is expected to behave like the Keller model [17], so is likely to be power 7
as well. All enhanced viscosity ocean models [22–25] go as ω7/2. The closest to ω2–ω3 to date
is [7], for which α(ω)∝ ω3. It has simple velocity-dependent damping incorporated in the elastic
plate model [7] as an alternative to the flexural rigidity being made complex as in [7]µ. This
is well illustrated in Figure 1, which shows wave spectra from a 2015 field experiment in the
Beaufort Sea carried out from the ship R/V Sikuliaq. In Figure 1 these data are compared with
Wavewatch III R© modelled hindcasts, based upon [16] but with the shear modulus set to zero
making it equivalent to the model in [17]. The figure indicates that the model is damping high
frequency energy strongly in all cases, while the buoys indicate that strong damping is occurring
only for a subset of cases. Presumably, α(ω)∝ ω7 behaviour is responsible for the high frequency
tail drop off that is so evident in the dashed red and green theoretical curves but is absent in
the solid red and green data curves. The corresponding blue curves, which arise from higher
concentrations of pancakes and frazil, both do decrease rapidly at first on the other hand. A more
general equation describing attenuation such as dxA=−αAn built into Wavewatch III R© could
allow for such variations.

3. The power law model

(a) A granular floe jostling model
To the author’s knowledge, the differential equation dxA=−αAn was first applied to sea ice
back in 1973 [19], specifically invoking a model of dissipation based on the Glen-Nye flow
law for glacial steady-state flow, where n= 3. In its general form the equation requires that
the viscosity of the deforming material µ is not constant, as it would be for Newtonian flow,
but that it depends on strain rate. When n= 3, µ(·) is inversely proportional to the square of

J2 =
√

1
2σ

(d)
ij σ

(d)
ij = τ , which is defined as the second invariant of the deviatoric stress tensor
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forcing. It may be associated with over-
prediction of dissipation by the IC3 phys-
ics, or measurement error (e.g., noise).

4.2. Estimated Dissipation Rate
(Inverse Model)
Herein, we quantify dissipation rate
using ki, the exponential decay rate of
amplitude in space, introduced in sec-
tion 2. This variable is expected to
depend on ice rheology and wave fre-
quency. To put our estimates in con-
text, it is useful to consider other
examples. Doble et al. [2015] found ki

values up to approximately 731024

m21 in pancake ice near Antarctica, for
waves of 8 second period, with values
for thinner pancake being significantly
smaller, e.g., 131024 m21. The reader
is referred to other articles for exam-
ples of attenuation rate in non-pan-
cake floes: Wadhams et al. [1988], Liu
et al. [1991], and Meylan et al. [2014]. In

these articles, the quantity is most correctly termed ‘‘attenuation rate’’ as opposed to ‘‘dissipation rate,’’ since
some observed attenuation is a result of nondissipative scattering. Also, the reader should keep in mind
that these articles present the energy decay rate a, which is twice the amplitude decay rate, a52ki .

From section 4.1, we found that while Hm0 predictive skill is generally acceptable, that of m4 is not, and in
the context of the latter we can conclude that observed ice conditions are a useful predictor for the skill of
the forward model. Application of the same rheological parameters (m50:03 m2s21; G 5 0) with the given
ice forcing—thick ice (15 to 45 cm) in high concentration (50 to 100%)—only yields acceptable m4 results
for some observed ice types, and only a subset of those. This being the case, we take a different tack in the
present section. We temporarily set aside the physics-based IC3 model, determine the optimal dissipation
profile ki fð Þ that provides a match to the each buoy spectrum, and evaluate the outcome in context of
observed ice type. Subsequently, the results are compared with the IC3 model dissipation profiles, thus
bringing the model physics back into the discussion.

The basic concept of a model inversion process is to determine the model inputs that will produce a partic-
ular model output. Loosely defined, the gross calibration of the viscosity parameter m to produce small bias
in waveheight is a crude form of inversion. Similarly, if elasticity parameter G is found to significantly influ-
ence bias in another wave parameter (say, m4), then a two-parameter (two input, two output) calibration
can be performed. However, the term ‘‘model inversion’’ is more commonly used to label more complex
analyses.

One approach (not used here) is to apply a forward model repeatedly for each of 17 fixed ki values using
the IC1 method described in section 2. Then, for each frequency, the ki that produces the least bias for ener-
gy at that frequency is selected. The end result is a step-wise description of ki fð Þ that represents the time
period used to calculate the bias. Though this method provides a concise outcome, it sacrifices information
about temporal variability.

The approach used here is similar to the prior insofar as the model is run for many different fixed ki values.
It differs insofar as an optimal ki fð Þ distribution is calculated for each buoy spectrum. For each spectrum
and for each frequency bin, we determine the optimal ki , where Eobs fð Þ5Emodel fð Þ. The buoy and model
spectra are first preconditioned by organizing into eight coarse frequency bins centered at 0.075, 0.120,
0.175, 0.225, 0.275, 0.325, 0.375, and 0.445 Hz, which increases the degrees of freedom of the spectra with
the intent of providing more reliable results [e.g., Elgar, 1987]. As the spectra are now colocated in time,
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Figure 6. Example comparisons of 1-d spectrum, for three different SWIFT buoys,
corresponding to the same time (2200 UTC 12 October). Dark and light gray lines
correspond to an f25 and f24 tail slope, respectively. Solid red, dark green, and
blue lines are measured spectra. Corresponding dashed lines are from the model
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Figure 1. Example comparisons of one dimensional wave spectra for three different SWIFT buoys, corresponding to the

same time (2200 UTC 12 October 2015). Dark and light gray lines correspond to an f5(ω5) and f4(ω4) tail slope,

respectively. Solid red, dark green, and blue lines are measured spectra. Corresponding dashed lines are from model

hindcasts. After [15].

σ
(d)
ij , but when n is unspecified µ(·)∝ τ (1−n). The quantity τ is called the effective shear stress

or octahedral stress. Physically, a choice of n= 3 is hard to justify as anything other than a
parameterization characterizing the synthesis of all of the dissipative processes effected on ocean
wave trains as they propagate within a MIZ, because there is no physical argument that can
explain why waves should lose energy in the same manner as a creeping glacier. The strain rates
associated with the two natural phenomena are different by several orders of magnitude. Yet the
model did rather well in replicating observations in both the Arctic and Antarctic MIZs [19].

Nonetheless, although serendipitous, a back-of-the-envelope analysis of pancake ice subjected
to waves that invokes granular flow theory [18], also produces the same equation, i.e. dxA=

−αAn. The differential equation actually arises from the so-called power-law fluid, which is
defined such that

σ
(d)
ij = 2µ(·)ε̇ij = 2

(
1
2M
−1τ (1−n)

)
ε̇ij = 2

(
1
2M
− 1

n ε̇
1−n
n
)
ε̇ij , (3.1)

where M is constant, ε̇ij is the strain rate tensor and ε̇=
√

1
2 ˙εij ˙εij is effective strain rate.

Power-law fluids have a strain-rate-dependent apparent viscosity µ(·) ∝ ε̇
1−n
n . The value that

the index n takes on determines the way the material deforms; for example, when n∈ (0, 1),
µ(·) increases with increasing strain rate and it is said to be dilatant or shear thickening; when
n /∈ (0, 1), the viscosity µ(·) decreases as strain rate increases and the material is described as
pseudoplastic or shear thinning. Because shorter period waves reduce in amplitude more rapidly
than longer ones in sea ice, i.e. attenuation increases as frequency and strain rate increase, the
phenomenon of wave-ice interaction is dilatant. This does not, however, necessarily mean that sea
ice is a dilatant material; indeed at very long timescales it would be expected to behave similarly
to fresh water glacial ice and to be pseudoplastic. To the author’s knowledge the power law fluid
has not been considered as a viable constitutive relation for sea ice itself.

Interestingly, dilatancy has the special cases (i) n= 0, where viscosity µ increases linearly with
τ , which leads to the imperative of waves decaying linearly in the present context; (ii) n= 1/2,
where µ increases linearly with ε̇; and (iii) n= 1, where µ= const. and an exponential decay law
holds. Of course, n can take on other values that determine whether the attenuation is less or
more rapid than exponential.
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(b) Choosing n
In §2(b) I observed that several models describe wave propagation in the MIZ by making the
ocean more viscous there, typically through the use of an eddy viscosity that captures the
enhanced internal fluid friction arising from the turbulent transfer of momentum by eddies
analogous to the action of molecular viscosity in laminar flow but on a much larger scale. These
models have a dispersion relation of the form µg2k4 = 2ω(ω2 − gk)2 and furnish an α(ω)∝ ω7/2.
By way of a demonstration, I ask the question “can µ(·) be adjusted such that the order of these
viscous models is reduced from ω7/2 to ω2 by choosing n such that the excessive dilatancy is
eliminated?”. It is conjectured that n=−2 achieves this goal, ultimately producing α(ω)∝ ω2

from that predicted by the dispersion relation.
Also, by way of illustration, we can investigate how a plausible amplitude spectrum A0(f)

evolves with distance x, again assuming that α(f)∝ f2 recalling that ω= 2πf . A0(f) is derived
from the quintessential Pierson-Moskowitz spectrum E0 =E0(f) at the ice edge by integrating
across a comb of frequency bands. E0, see Figure 2(a), has the form

E0(f) = 8.1× 10−3
g2

(2π)4
f−5 exp

(
−5

4

(
fp

f

)4
)
, (3.2)

where fp is the peak frequency which is set to 0.1 Hz to be consistent with Figure 1, g is the
acceleration due to gravity, and the numerical constant 8.1× 10−3 is known as the Phillips
constant [31]. Equation (3.2) can be integrated to give

∫
E0(f) df = exp (−1.25× 10−4f−4), so it is

an easy matter to createA0 directly or by numerical integration. The two sets of amplitude spectra,
coloured green, magenta and yellow in Figures 2(b) and 2(c) show the frequency-dependent
attenuation experienced by the A0(f) spectrum as it advances into the notional ice cover which
either attenuates exponentially (b) or linearly (c) with penetration x. It is very evident that the
linear decay (c) is much greater for the same constant of proportionality in α∝ f2. Although an
artificial experiment, it does demonstrate the potential of the more general behaviour furnished
by dxA=−αAn, which may be especially useful for parameterizing dissipation caused by the
aggregation of nonlinear processes that expunge energy from incoming wave trains for the first
ten or so kilometres from the ice edge or, in all likelihood, farther when wave amplitudes are large
(see §1).

Finally, let us consider some real data and adopt the red curve in Figure 1 which shows that
the outer energy density E0(f) has an f−4 tail above f = 0.1Hz, i.e. E0(f)∝ f−4 =⇒ A0(f)∝
f−2. (The Pierson-Moskowitz spectrum has an f−5 tail and we have confirmed that the A0(f)

spectrum in Figures 2(b) and 2(c) has an f−
5
2 tail, as required.) Seek a model that has an α(f)∝ f2

form irrespective of the value of n, interpreting α throughout equivalently. Three examples are
considered, the first of which is somewhat artificial, as follows

(i) Suppose that the f−4 tail in the spectrum doesn’t change as the wave field from which
it is constituted propagates farther into the sea ice cover. Using equation (2.1) it is
straightforward to argue that n= 2 is the only value of n that can produce the desired
behaviour for α at frequencies above about 0.1 Hz. For n= 2, α= (A−1 −A−10 )/x.

(ii) Exponential attenuation is recovered when n= 1. In this case, amplitude A=

A0 exp (−αx)∝ f−2 exp (−αx) = f−2(1− αx+ . . .), so that A∝
∼
f−2(1− c1f2x) to first

order, i.e. an initial linear decay.
(iii) For the linear attenuation case, viz. n= 0, A=A0 − αx∝ f−2(1− c2f4x).

In the above c1 and c2 are constants that arise from the proportionalities assumed, i.e. in the
tail of the incident energy density spectrum, where E0(f)∝ f−4, and α(f)∝ f2. Although the
exponential case is initially linear, the degree to which the amplitude reduces as a function of
distance x travelled is greater for the linear attenuation example if the magnitudes of α are similar,
as observed in the Pierson-Moskowitz analysis reported above.
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Figure 2. ((a) The Pierson-Moskowitz spectrum E0 defined by equation (3.2). (b) The partially obscured green bar graph

is an amplitude spectrum A0(f) created from E0(f) by integrating across frequency bands of width 0.01 Hz with the

central frequency at the mid-point. A0(f) is plotted as a bar graph to emphasize that each amplitude is valid over a

frequency band, e.g. from 0.2–0.21 Hz with a central frequency 0.205 Hz, rather than at a single frequency. The other

amplitude spectra, coloured magenta and yellow respectively, show how A0 evolves exponentially, i.e. when n= 1, as x

increases. (c) Amplitude spectra constructed in the same manner as for (b), but for n= 0, i.e. linear attenuation. Identical

values for the constant of proportionality in α∝ f2 and the distances from the ice edge are used for (b) and (c), chosen

to emphasize the disparity between exponential and linear attenuation. It is the relativity between the same colours in

plots (b) and (c) that is important, rather than the absolute values.

(c) Limiting cases
There has been a some evidence presented in observations [32] that the gradual, frequency-
dependent reduction in the amplitude of ocean waves with distance travelled may be linear
as opposed to exponential, under some circumstances and particularly when the waves are of
substantial amplitude. Although this has been disputed subsequently [33] in the context of [32],
it is of interest to establish whether such a form of attenuation occurred in the 2015 R/V Sikuliaq
data set, where the wave amplitudes were large during some experiments as this accords with our
original conjecture in §1. This is illustrated for a single wave attenuation experiment which took
place from 11th to 13th October 2015 in Figure 3, where the median n value extracted from a direct
best fit of the data is plotted against energy density in plot 3(a), median n is plotted against the
mean value of frequency in plot 3(b), and the percentage of linear attenuation profiles as a function
of energy density is plotted in plot 3(c). It is quite clear that the likelihood of a profile being linear,
i.e. n= 0, increases with the energy density and hence wave amplitude from plot 3(a). It is also
clear from plot 3(b) that n= 0 is associated with low frequencies but this is simply because of the
shape of the wave spectrum entering the ice field, which goes as f−4 in the part of the spectrum
where significant energy exists. The percentage of n= 0 decay profiles increases monotonically
with the energy density, flattering out at about 60% or so beyond an energy density E0 of about
5m2s as shown in plot 3(c). Consequently, the author contends that ocean waves do sometimes
decay linearly during their passage through sea ice fields and that this should be accommodated
in models such as Wavewatch III R©, which are used in forecasting where high fidelity outputs can
matter.

A similar analysis can be done with significant wave height in the manner of [32], which
produces an analogous conclusion, namely that waves are most likely to attenuate exponentially
when they are of modest amplitude but to attenuate linearly when they reach a predefined critical
value that will depend on the properties of the ice field through which the waves are propagating.
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Figure 3. Left panels show n versus E0, created from clusters of E0 that each contain about 100 estimated values.

Each point on the plot gives the mean of this sample of E0 values versus the median of the corresponding sample of

n values. The transition between n= 1 and n= 0 occurs at E0 ∼ 1.5m2s. The median of n versus the mean of the

frequency calculated as the mean of all the frequency samples corresponding to the E0 samples in a bin is shown in

the middle panels. There is a dependence on frequency which follows closely the dependence on energy because the

two are strongly correlated for f > 0.1Hz in the spectral tail where E0 ∝ f−4. The right panels show the percentage of

linearly decaying profiles in each E0 bin.

4. Summary
To finish, the most significant conclusions of this paper are drawn together here, as follows

(i) It is not feasible to use a paradigm I model in a global scale earth system model or
Wavewatch III R©.

(ii) The reduction in amplitude observed in ocean waves travelling through sea ice is due
to two phenomena; conservative scattering by the ice floes, which relocates energy, and
true dissipation, arising from copious nonlinear phenomena which remove energy that
are poorly understood and modelled.

(iii) Dissipation is likely to be extreme closest to the ice edge and/or when the waves are most
fierce but the width of the zone over which it dominates other sources of attenuation
will vary with the wave and ice conditions and it is probable that the most severe
environments will occur in the Southern Ocean as a result.

(iv) Scattering is most significant when the diameter of the ice floes is of the same order as
wavelength, while dissipation is always present but likely to be less important when
wavelengths are larger.

(v) Although the energy transport equation’s source/sink term Sice, defined in equation (1.2),
separates αscat and αdis, the scattered wave field will also be subjected to considerable
dissipation that will reduce its impact on surrounding floes.

(vi) Ocean waves break up ice floes, a process that is modelled well by scattering theory which
takes into account the flexural stresses in the floes that are provoked by wave-induced
bending.

(vii) Nearly all contemporary models constructed to characterize wave propagation into and
beneath sea ice in its several forms are linear and all paradigm II models are linear with
some having been reapplied to represent “effective media” in circumstances that they
were not originally intended to model.

(viii) The fidelity of current effective media models in the MIZ has not yet been demonstrated.
(ix) Material constants in effective media have no physical meaning, as to make its predictions

the medium aggregates a smorgasbord of disparate mechanisms and calibration is
unattainable because of the unique set of conditions that define each experiment.

(x) Observations indicate that the attenuation coefficient α has a power law frequency
dependence of the form α(ω)∝ ωp, where 2≤ p≤ 3, with several experiments giving
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p= 2, yet parameterizations created from contemporary linear models do not nearly
reproduce the asymptotic details observed in field observations for p.

(xi) Primarily because of dissipation, there is reasonable observational evidence to conclude
that attenuation is not always exponential and a natural consequence of this is that waves
may experience different “attenuation laws”, during their passage through ice fields.

(xii) Because of nonlinearity, exponential attenuation appears to be associated with waves of
low amplitude while higher waves may be attenuated linearly.

(xiii) Scaling the material constants linearly to absorb concentration changes is counterfactual.
(xiv) The decay law dxA=−αAn with solution A(1−n) =A

(1−n)
0 − (1− n)αx holds promise

for a simple parameterization of wave attenuation in sea ice that includes the effects of
both scattering and dissipation. But, it is just a parameterization.

5. Conclusion

Data Accessibility. Matlab codes and data files created for the numerical investigation reported here can be
accessed through http://www.maths.otago.ac.nz/files/icebreakup/Data_breakup.zip.
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