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Abstract. In this paper, we investigate two stochastic perturbations of the meta-
morphosis equations of image analysis, in the geometrical context of the Euler-
Poincaré theory. In the metamorphosis of images, the Lie group of diffeomorphisms
deforms a template image that is undergoing its own internal dynamics as it de-
forms. This type of deformation allows more freedom for image matching and has
analogies with complex fluids when the template properties are regarded as order
parameters (coset spaces of broken symmetries). The first stochastic perturbation
we consider corresponds to uncertainty due to random errors in the reconstruc-
tion of the deformation map from its vector field, as introduced in [13]. We also
consider a second stochastic perturbation, which compounds the uncertainty in of
the deformation map with the uncertainty in the reconstruction of the template
position from its velocity field. We apply this general geometric theory to several
classical examples, including landmarks, images, and closed curves, and we discuss
its use for functional data analysis.

1. Introduction

Variability in shapes can be modelled using flows of the group G of diffeomorphic
deformations of the ambient domain Ω in which the shape is embedded. This is the
basis of the large deformation diffeomorphic metric mapping (LDDMM) framework,
see [4,7,8,28]. In the LDDMM approach, the shape of an embedded template image
η ∈ N in the manifold of embedded shapes Emb(N,Ω) changes via the action gt.η of
time-dependent diffeomorphisms gt ∈ G on η ∈ N , through the action of gt on the
domain Ω. The metamorphosis extension [14, 21, 30, 31] of LDDMM introduces a
further time-dependent variation ηt of the template to model the combined dynamics
gt.ηt.

In this paper, we combine the geometrical metamorphosis framework of [14] with
recent developments in stochastically perturbed Euler-Poincaré dynamics in fluid
dynamics and shape analysis [2, 3, 12], to model evolutions of both shape and tem-
plate under stochastic perturbations. The resulting framework allows modelling of
random evolutions of shape and template simultaneously. A potential application
of such an evolution is in modelling the progression of disease using computational
anatomy, in which the model would address the analysis of disease progression in
both the population average and in the individual. From longitudinal image data,
mean evolutions over the population can be inferred. While average template evolu-
tions can be modelled deterministically, models for the dynamics of each individual
subject that include stochastic uncertainty are arguably more realistic than models
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supporting only smooth deterministic trajectories. The stochastic metamorphosis
model includes such non-smooth and non-deterministic variations by incorporat-
ing stochastic perturbations in shape and template simultaneously. We detail this
application and outline further areas of applications where similar generative mod-
els of data appear, particularly in the combined modelling of phase and amplitude
variation in functional data analysis.

time t

G

N

η

gt, no noise

nt, no noise
nt(ω)

ηt

Figure 1. Sketch of the deformation group G, the shape space N
(vertical arrows), evolution of the deformation variable gt, template
variable ηt, and shape variable nt without noise (Wt = 0, blue), and
shape variable nt with noise ω (black). The shape space is illustrated
as being linear (e.g. landmarks, images). However, the framework
applies to general non-linear shape spaces (e.g. curves, tensor fields).

1.1. Background. The LDDMM framework models the change of a shape η ∈ N
by the action of time dependent flows of diffeomorphisms gt ∈ G on the embedding
space Ω. One lifts the shape trajectory to a time-dependent curve gt on the diffeo-
morphisms by setting nt = gt.η ∈ N . For a right invariant metric on the tangent
space of a subgroup G of the diffeomorphism group Diff(N), N being the shape

space, an energy can be defined as E(gt) =
∫ 1

0
‖∂tgt‖2

gtdt. Combined with a data at-
tachment term, this approach allows matching of shapes and image registration [4].
The invariance of E(gt) under the right action of G implies that the metric descends
to a metric structure on the data space N itself. The action of gt differs between
data types, but otherwise, the framework is formally equivalent for different classes
of shapes. The use of the flows gt to model the shape variability is fundamental and
the right trivialization vt := ∂tgt ◦g−1

t gives an Eulerian interpretation of the metric.
The right invariance of the metric enables Euler-Poincaré reduction of the dynamics
to the Lie algebra of G to be performed, and the critical paths for E appear from
the reduced dynamics.

Metamorphosis extends the LDDMM setting by letting the template vary in time
as well as the deformation, thereby resulting in the flow gt.ηt, in which η0 = η
is the original template. The metamorphosis energy is encoded into a Lagrangian
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depending on both the G and N variability, again assuming invariance of the energy
to the group action on both G and N . A particular example of metamorphosis
dynamics arises in image analysis, where the image It changes both by deformation
via the right action gt.It = It ◦ g−1

t and via a pointwise change ∂tIt(x) for each
pixel/voxel x.

In this formulation of metamorphosis dynamics, an analogy with the flows of com-
plex fluids arises. In complex fluids, a diffeomorphic flow carries an order parameter,
defined as a coset space for a broken symmetry of homogeneous fluids, on which the
diffeomorphisms act. The order parameter moves with the fluid, but it can also
have its own internal dynamics, which in turn is coupled to the fluid motion [10,11].
A similar combined dynamics of shape and template also appears in the Fshape
framework [5].

In [2, 3], a stochastic model of shape evolution was introduced that preserves
the Euler-Poincaré theory of the deterministic LDDMM framework. The model
is based on the stochastic fluid dynamics model [12] where right-invariant noise is
introduced to perturb the reconstruction equation that evolves the flow from the
reduced dynamics. In deterministic LDDMM, the reconstruction equation specifies
the evolution of the group element by ∂tgt = vt ◦ gt generated by the reduced
Eulerian velocity vector field vt. Stochasticity is introduced as a perturbation to the
reconstruction equation, by introducing the stochastic time differential

dgt g
−1
t = vtdt+

N∑
l=1

σl ◦ dW l
t . (1.1)

Here W l
t are standard Wiener processes and σl are vector fields on the data domain

which characterize the spatial correlation of the noise. As it turns out, the noise in
Stratonovich form is denoted conventionally with the same symbol (◦) that denotes
composition of maps. This coincidence should not cause any confusion. However,
just to be sure, we will write composition of maps as concatenation whenever the two
meanings appear in the same equation, as in (1.1). The perturbation of the reduced
variable implies that the noise is right-invariant and in a certain sense compatible
with the right-invariant LDDMM metric. This approach preserves many of the
geometric structures of the deterministic framework. Importantly, the descent of the
stochastic model to particular data types is similar to the way the metric descends
in the deterministic LDDMM framework.

A stochastic metamorphosis extension of the stochastic Euler-Poincaré framework
was introduced in [13]. The stochastic perturbations there were also introduced
in the reduced variable influencing the deformation flow from the reconstruction
equation. The template evolution ηt is still deterministic. The aim of the present
paper is to extend this model to include noise in the template evolution ηt as well.
We will make this extension on the reduced template velocity gt∂tηt similarly to the
perturbation of the group variable. This procedure results in simultaneous stochastic
perturbations of the flow equations for both gt and ηt.

1.2. Paper outline. After a brief survey of the deterministic metamorphosis frame-
work in section (2.1), we formally derive the stochastic model in section (2.2). We
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then show in section (2.3) how to derive these equations in the Hamilton-Pontryagin
formulation, where the noise appears as a stochastic constraint in the variational
principle. We end the theoretical section by deriving the corresponding Hamiltonian
stochastic equations in (2.4) to then move to some classical examples of image anal-
ysis and computational anatomy in section (3), including landmarks and images.
The inclusion of two types of stochastic variations links the framework to combined
random phase and amplitude variations in functional data analysis. We provide
perspectives of the method to future applications in functional data analysis and
computational anatomy in section (4).

2. General stochastic metamorphosis

In this section, we introduce the stochastic deformation of metamorphosis, but
first, we recall the basis of this theory, in the context of reduction by symmetry. We
will only review what will be needed for our exposition, and we refer to [14] and [13]
for more extensive treatments.

2.1. Deterministic metamorphosis. The theory of metamorphosis begins with a
template N , considered here as a manifold (landmarks, images, etc. . . ) upon which
a group of diffeomorphism G = Diff(N) acts. The parameter space of this theory
is G × N , with curves (gt, ηt) ∈ G × N , where gt is the deformation curve and ηt
is the template curve. The image curve will be denoted nt = gt.ηt ∈ N , where the
dot represents the group action. This curve is the total motion of the template,
or image N , under both the deformation and its own dynamics. For standard
LDDMM, the motion of the image is only nt = gt.η, for a fixed reference template
η. This combined action thus allows more freedom in the matching procedure, while
remaining compatible with the theory of reduction by symmetries, which we now
describe. We first define the two reduced velocity fields

ut := ġtg
−1
t , and νt := gtη̇t . (2.1)

The first is the reduced deformation velocity and the second is the reduced template
velocity. We then assume that the original Lagrangian of this theory is invariant
under the group action of G, so that we may write the reduced Lagrangian in terms
of the reduced velocity fields and the image position nt, i.e.,

L(gt, ġt, ηt, η̇t) = l(ut, nt, νt) . (2.2)

Because the reduced Lagrangian still depends on the template variable nt, reduction
by the action of the diffeomorphisms will result in a semi-direct product structure,
where the template is an advected quantity, in the language of fluid dynamics.

We next compute the variations of the three variables in the reduced Lagrangian,
upon introducing the notation ξt = δgtg

−1
t and ω = gδη, where δg and δη are free

variations, to obtain

δu = ξ̇t − [ut, ξt] ,

δn = ωt + ξtηt ,

δν = ω̇t + ξtνt − utωt .
(2.3)
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In these formulas, we need to specify what we mean by the multiplication, as the
vector fields live in different spaces. In fact, ut, ξt ∈ g = X(N) are vector fields; so the
Lie bracket is the natural operation. Recall that ηt ∈ N , thus ξtηt corresponds to the
tangent map of the action of G on the manifold N , and similarly for ν ∈ TN , where
the action is on the tangent space of N . We do not need these actions explicitly
now, but we will need their ‘adjoint action’ in the following sense:

〈n∗ �m,u〉g = −〈n∗, un〉N , (2.4)

〈u ? ν∗, ν〉TN = 〈ν∗, uν〉TN , (2.5)

where N ∈ N , n∗ ∈ N∗, ν ∈ TN , ν∗ ∈ T ∗N and u ∈ g. The first equality defines
the diamond operation (�), which will serve as a force term to capture the coupling
between the advected quantity n and the main dynamics of the diffeomorphism
group. The second equality defines the star operation (?), which is the adjoint of
the action of u on TN . That is, it defines the action of u on T ∗N .

Applying the variational calculus to the action S =
∫
ldt, we obtain the Euler-

Poincaré formulation of the metamorphosis equation in the form

d

dt

δl

δu
+ ad∗

ut

δl

δu
+
δl

δn
� n+

δl

δν
� ν = 0 ,

d

dt

δl

δν
+ ut ?

δl

δν
− δl

δn
= 0 ,

(2.6)

together with the reconstruction equation

ṅ = utnt + νt . (2.7)

We refer to [13,14] for the details of this derivation, which we will do in the context
of Hamilton-Pontryagin with noise in the next section.

From here, a choice of Lagrangian and data N will reduce the system to particular
cases, some of which we discuss in the applications section 3.

2.2. Formal derivation of the stochastic equations. We will first derive the
equation informally, using ‘stochastic variations’, then show a more straightforward
derivation using the Hamilton-Pontryagin principle. The second derivation also has
the advantage of revealing the effects of the noise more transparently.

In order to introduce a noise compatible with the Euler-Poincaré equation, we need
to perturb the theory at its core, which is in this case the definition of the reduced
velocities in (2.1). Indeed, the variations were computed from these definitions,
and the deterministic Euler-Poincaré equation emerged. Although a single relation
is used in the Euler-Poincaré equation (2.7), we will split it into two parts, and
perturb them with two different noise components as follows,

dgtg
−1
t = ut(x)dt+

Ku∑
l=1

σul (x) ◦ dW l
t =: dut(x) ,

gtdη = νtdt+
Kν∑
k=1

σνk ◦ dW k
t =: dνt .

(2.8)
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In a slight abuse of notation, dut(x) and dνt are written as stochastic processes.
Here σul : N → g are a set of Ku vector fields on the domain Ω, and σνl ∈ TN are
another set of Kν tangent vectors on the template. We also denote by W l

t or W k
t

the Ku + N ν independent standard Weiner processes. In addition, we denote by
x0 ∈ Ω the Lagrangian labels upon which gt acts, so that the first equation can be
written equivalently as

dgt = ut(gtx0)dt+
Ku∑
l=1

σul (gtx0) ◦ dW l
t .

The second equation for η in (2.8) does not have any x0 dependence, as it is an
equation for the template itself. Thus, σνk are not functions of N ; rather, they are
tangent vectors to N .

With the notation for dut and dνt in (2.8), we have the complete reconstruction
relation for the stochastic image template nt

dnt = dut nt + dνt . (2.9)

Because nt ∈ N , the concatination dut nt means the composition dut(nt). In (2.9),
the noise in the ut vector field was introduced in [13], based on the stochastic fluid
dynamics model of [12], whereas the noise in the νt field is new. The first noise
term in (2.9) corresponds to random errors in the reconstruction of the diffeomor-
phism path from its velocity field, while the second one represents random errors
for the reconstruction of the template position from its velocity field. In stochastic
metamorphosis, the two noise terms will affect the dynamical equations differently.

From these stochastic perturbations of the reconstruction relation, we can formally
compute the variations and obtain

δu = dξt + [ξ, dut] ,

δν = dω + ξdνt − dutω .
(2.10)

These are convenient expressions, but they introduce the variations as stochastic
processes; so they should not be taken at face value without further analysis. We
will see in the next section how to re-derive these equations without introducing
stochastic variations, by using the Hamilton-Pontryagin principle. Because the re-
sults are identical for the two methods, we can proceed formally here by using these
variations as we did in the deterministic variational principle to obtain the following
stochastic reduced metamorphosis equations in Euler-Poincaré form,

d
δl

δu
+ ad∗

dut

δl

δu
+
δl

δn
� ndt+

δl

δν
� dνt = 0 ,

d
δl

δν
+ dut ?

δl

δν
− δl

δn
dt = 0 ,

(2.11)

as well as equation (2.9), all to be compared with the deterministic case in equations
(2.6) and (2.7).

2.3. Derivation using the Hamilton-Pontryagin principle. We now show how
to rederive the stochastic metamorphosis equations more transparently, without
introducing stochastic variations (2.10). For this purpose, we will use the stochastic
Hamilton-Pontryagin approach and closely follow the exposition of [13].



STOCHASTIC METAMORPHOSIS WITH TEMPLATE UNCERTAINTIES 7

The deterministic Hamilton-Pontryagin principle is a variational principle with
the following constrained action

S(ut, nt, ṅt, νt, gt, ġt) =

∫ 1

0

l(ut, nt, νt)dt+

∫ 1

0

〈Mt, (ġtg
−1
t − ut)〉dt

+

∫ 1

0

〈σt, (ṅt − νt − utnt)〉dt ,
(2.12)

where Mt ∈ X∗(N) and σt ∈ T ∗N are generalised Lagrange multipliers to enforce
the constraint of the reconstruction relations. Taking free variations for all the
variables yields the deterministic reconstruction relation (2.7) and the deterministic
Euler-Poincaré equation (2.6). We refer to [13] for more details of the derivation.
The crucial point here is to allow free variations, by introducing constraints into the
variational principle, and not in the variations as in the standard Euler-Poincaré
reduction theory. An alternative approach would be to use the Clebsch constrained
variational method used for fluid dynamics in [12].

In the present context, we enforce the stochastic reconstruction relations (2.8) via
the following stochastic Hamilton-Pontryagin principle

S(ut, nt, dnt, νt, gt, dgt) =

∫ 1

0

l(ut, nt, νt) +

∫ 1

0

〈Mt, (dgtg
−1
t − dut)〉

+

∫ 1

0

〈σt, (dnt − dνt − dutnt)〉 ,
(2.13)

or, more explicitly, upon substituting for dut and dνt from (2.8), we have

S(ut, nt, dnt, νt, gt, dgt) =

∫ 1

0

l(ut, nt, νt)dt

+

∫ 1

0

〈
Mt, dgtg

−1
t − utdt−

Ku∑
l=1

σul (x) ◦ dW l
t

〉

+

∫ 1

0

〈
σt, dnt − νtdt−

Kν∑
k=1

σνk(x) ◦ dW k
t

〉

−
∫ 1

0

〈
σt,
(
utdt+

Ku∑
l=1

σul (x) ◦ dW l
t

)
nt

〉
.

(2.14)

Proposition 2.1. The stochastic variational principle δS = 0 with action (2.14)
yields the stochastic Euler-Poincaré equation (2.11) with stochastic reconstruction
relation (2.8) and (2.9).

Proof. The proof is a direct computation by taking free variations. We will show
the key steps below. First, the variations with respect to Mt and σt yield the
reconstruction relations (2.8) and (2.9). Then, the variations with respect to ut, nt
and νt specify

δl

δut
= Mt + σt � nt , and

δl

δνt
= σt . (2.15)
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We also have, for the nt variations,

δl

δnt
dt = dσt + ut ? σtdt+

Ku∑
l=1

σul (x) ? σt ◦ dW l
t . (2.16)

Finally, for ξ = δgg−1 vanishing at the endpoints, we have

δ(dgtg
−1
t ) = dξ −

[
utdt+

Ku∑
l=1

σul (x) ◦ dW l
t , ξ

]
. (2.17)

From this computation, we have the last term in the calculus of variations which
reads

dMt = − ad∗
utMt −

Ku∑
l=1

ad∗
σul (x)Mt ◦ dW l

t . (2.18)

Finally, substituting the values of Mt and σt of (2.15) in equation (2.16) and (2.18)
yields the stochastic metamorphosis equation (2.11) after a few more manipulations
(see Corollary 3 of [13]). �

2.4. Hamiltonian formulation. Provided that the Lagrangian is hyperregular,
the stochastic metamorphosis equation (2.11) can be written as a stochastic Hamil-
tonian equation with Hamiltonian obtained via the reduced Legendre transform,

h(µ, σ, n) = 〈µ, u〉+ 〈σ, ν〉 − l(u, ν, n) , (2.19)

in which µ and σt are the conjugate variables of ut and νt, respectively. The noise
is encoded into the stochastic potentials

Φu
l (µt) = 〈µt, σul 〉g×g∗ , and Φν

k(σt) = 〈σt, σνk〉TN×T ∗N , (2.20)

such that the stochastic equation of motion has a Hamiltonian drift term with h and
stochastic terms obtained via the same Hamiltonian structure, but with stochastic
potentials. Notice that the two potentials have a different pairing, one on the Lie
algebra of the diffeomorphism group, and the other on the tangent space of the
template manifold. The Hamiltonian structure is given in [13] and we will only
display here the Hamiltonian equations

dµt + ad∗
δh
δµ
udt+ σ � δh

δσ
dt+

δh

δn
� ndt

+
∑
l

ad∗
δΦu
l

δµ

u ◦ dW l
t +

∑
l

σt �
δΦν

l

δσ
◦ dW l

t = 0 ,

dσt +
δh

δµ
? σtdt−

δh

δn
+
∑
l

δΦu
l

δµ
? σt ◦ dW l

t = 0 .

(2.21)

In the examples in the next section, we will use this formulation to derive the
stochastic equations of motion. Taking the Hamiltonian approach turns out to be
more transparent than the Lagrangian description.
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3. Applications

Following [14], we explicitly provide the stochastic metamorphosis equations for a
few classical examples, including landmarks and images, and leave other applications
such as closed planar curves, densities or tensor fields for later works.

3.1. Landmarks and peakons. Consider the case when the template manifold N
is the space of n landmarks q = (q1, . . . , qn) ∈ Ωn with momenta p = (p1, . . . , pn) ∈
TqΩn ∼= Ωn. One needs to specify a Lagrangian for this system, and the simplest is

l(u, n, ν) =
1

2
‖u‖2

K +
λ2

2

n∑
i=1

|pi|2 , (3.1)

where the first norm depends on the kernel K(x) and the second norm is the vector
norm of the momenta multiplied by a constant λ2. In this case, we interpret the
momenta as the conjugate variables to the template deformation vector field ν in
order to have an equation only in term of the position and momenta of the land-
marks. The derivation of the landmark equation is rather standard. Hence, we will
only show it on the Hamiltonian side. We refer, for example, to [14] for more details
of the deterministic derivation, or to [3] and [15] for discussions of the stochastic
landmark dynamics.

Recall that the landmark Hamiltonian is

hK(p,q) =
1

2

∑
ij

pi · pjK(qi − qj) , (3.2)

and the metamorphosis Hamiltonian is thus

h(qi, pi) = hK(q,p) +
λ2

2

n∑
i=1

|pi|2 . (3.3)

The stochastic potentials (2.20) become in this case

Φu
l (q,p) =

∑
i

pi · σul (qi) and Φν
i (p) = pi · σνi . (3.4)

Notice that the stochastic potential Φν is described by a fixed vector, where σνi is
the amplitude of the noise for the landmark i. However, for the stochastic potential
Φu, we have to specify space (or q) dependent functions σul (q). This simple form
comes from the fact that we used a discrete set of points and ν = p for the template
deformation, and the summation over k becomes a summation over the landmark
index. In addition, a sum of two Wiener process is another Wiener process with the
sum of the amplitude (if it is additive and in Itô form). From this observation, one
can see that the general equation Φν

k(p) =
∑

i pi · σνk is equivalent to a change of
amplitudes σνk and i = k.
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We compute the stochastic Hamiltonian equations for landmarks to arrive at

dqi =
∂hK
∂pi

dt+
∑
l

σul ◦ dW l
t + λ2pidt+ σνi dW i

t ,

dpi = −∂hK
∂qi

dt+
∑
l

∂qi(pi · σul ) ◦ dW l
t ,

(3.5)

in which we can use the Itô integral for the ν-noise, as it is additive.

Notice that setting λ = 0 recovers the standard landmark dynamics, but with an
additive noise in the position equation. This is different from the conventional phys-
ical perspective, in which additive noise often appears in the momentum equation,
as in [20,29,33].

3.2. Images. The present stochastic metamorphosis framework can be directly ap-
plied to images, by taking the template space N to be the space of smooth functions
from the domain Ω ⊂ R2 to R. We set ut ∈ X(Ω) the deformation vector field and
ρ ∈ TN ∼= N the template vector field. As before, the Lagrangian must have two
parts, and the simplest non-trivial one is the sum of kinetic energies written as

l(u, n, ν) =
1

2
‖ut‖2

K +
λ2

2
|ρt|2L2 , (3.6)

where the first norm depends on the kernel K and the second norm is the standard
L2 norm over Ω. By choosing a L2 norm we can identify ρt with its dual in the case
λ = 1. We will thus not distinguish between σt and νt of the general framework.

Thus, as before, we use the Hamiltonian formulation of the stochastic metamor-
phosis equations with the stochastic potentials,

Φu
l (mt) =

∫
Ω

〈mt(x), σul (x)〉dx and Φν
k(σt) =

∫
Ω

〈ρt(x), σνl (x)〉dx . (3.7)

Notice that in this case, both σul and σνl are functions of the domain Ω, and they
encode spatial correlation structure of the stochastic perturbations.

Then, because the Hamiltonian structure has three sorts of terms, the ad∗, the �
and the ? terms defined in equation (2.5), which in this case are

ad∗
utmt = (ut · ∇)mt + (mt · ∇)ut + div(ut)mt ,

σt � νt = σt · ∇νt ,
ut ? σt = ∇ · (σtut) ,

we arrive at the following set of stochastic PDEs (for any λ)

dmt + ad∗
utmtdt+

∑
l

ad∗
σul
mt ◦ dW l

t = λ2ρt · ∇ρtdt+
∑
k

ρt · ∇σνk ◦ dW k
t ,

dρt +∇ · (ρtut)dt+
∑
l

∇ · (ρσul ) ◦ dW l
t = 0 .

(3.8)

Another important equation is the reconstruction relation (2.9), which now reads

dgt = ut(gt)dt+
∑
l

σul (gt) ◦ dW l
t + ρtdt+

∑
k

σνk ◦ dW k
t . (3.9)
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Notice that if we set λ = 1, the effect of the density, or template motion on the
momentum m only appears via the noise term, similarly to the landmark case.

In the one dimensional case, the metamorphosis equation is known to reduce to
the so-called CH2 system, which is equation coupling the Camassa-Holm equation
with a density advection equation for ρt = νt. We refer to [6, 14] and references
therein for more details about this equation and its complete integrability in the
deterministic case. A similar reduction holds for both stochastic deformations, and
we have the following stochastic CH2 equation

dm+ (u∂xm+ 2m∂xu)dt

= −ρ∂xρdt−
∑
k

ρ∂xσ
ν
k ◦ dW k

t −
∑
l

(
σul ∂xm+

∑
l

2m∂xσ
u
l

)
◦ dW l

t ,

dρ+ ∂x(ρu)dt+ ∂x(ρσ
u
l ) ◦ dW l

t = 0 .

(3.10)

Compared to the landmark example, the noise associated to the template dynam-
ics is described by a set of functions of the image, not a set of fixed vectors. The
difference between the nature of these two types of noise is thus less apparent, apart
from how they appear in the equation.

4. Perspectives

4.1. Computational Anatomy. Estimation of population atlases and longitudi-
nal analysis of anatomical changes caused by disease progression constitute integral
parts of computational anatomy [34]. The relation between these problems and the
stochastic metamorphosis model presented here can be illustrated by the analysis
of longitudinal brain MR-image data of patients suffering from Alzheimer’s disease.
The data manifold N is here a vector space of images as described above with
Ω ⊆ R3.

Focusing first on template estimation, in medical imaging commonly denoted atlas
estimation, the aim is to find a population average of data assumed observed at a
fixed time point. In the literature, this is for example pursued by minimizing the
total sum of the regularized LDDMM energies of deterministic geodesic trajectories
that deform the atlas to match the observed data [16]. For k data points n1, . . . , nk

and with data matching term S : N ×N → R, the template η is then estimated by
joint minimization of

min
(η,v1

t ,...,v
k
t )

k∑
i=1

∫ 1

0

‖vit‖2dt+ S(φiT .η, n
i) , (4.1)

where the deformations φiT each are endpoints of the integral of the vector fields vit
on an interval [0, T ].

A different approach to atlas estimation is to perform inference in statistical mod-
els where observations are assumed random perturbations of a template and infer-
ence of the template is performed via maximum-likelihood or maximum-a-posteriori
estimation. This approach is pursued, for example, in a [1, 24, 35]. See also the
discussion below.
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N

η

population average
nt N

n0

population trend

geodesic perturbations

nt N
η

nt(ω)

population trend

continuous noise

Figure 2. (left) Template estimation in the form (4.1) aims at find-
ing a single descriptor η for the population average of the observed
shapes n1, . . . , nk (red dots) in the non-linear shape space N . The
variational principle (4.1) corresponds to assuming ni arise from geo-
desic perturbations of η. (center) Geodesic regression models a pop-
ulation trend as a geodesic nt. Observations at different time points
(nit1 red, nit2 green) arise as perturbations of the points nt1 and nt2 by
random geodesics. (right) Stochastic metamorphosis models the evo-
lution of the population trend nt deterministically while observations
nitj = ntj(ω

i) appear from individual noise realizations ωi. The per-
turbations are time continuous and apply to each case i individually
making the model natural for modelling longitudinal evolutions with
noise.

Longitudinal analysis aims at capturing the average time evolution of the brain
shape caused by the disease [22, 23]. A common approach here is to estimate a
general deterministic trend that is perturbed by noise at discretely observed time
points in order to describe the observed images [9]. For example, the noise can
take the form of random initial velocity vectors for geodesics emanating from the
deterministic trajectory.

The stochastic metamorphosis framework proposed here combines deterministic
longitudinal evolution of the template in both shape, represented by the defor-
mations gt, and in the template image, nt = gt.ηt. We can assume longitudinal
observations nitj , i = 1, . . . , k, j = 1, . . . , tl at l time points are realizations of the
stochastic model with time-continuous noise process drawn for each subject i. The
stochastic perturbations are thus tied to each subject affecting the dynamics simul-
taneously with the evolution of the deterministic flow. The relation between this
model, geodesic regression models, and atlas estimation is illustrated in Figure 2.

Because of the randomness, algorithms for inference of the template η and its
evolution nt = gt.ηt from data can naturally be formulated by matching statistics
of the data, e.g. by matching moments or by maximum-likelihood as done for the
landmark case of stochastic EPDiff equations in [3]. Development of such inference
schemes constitutes natural future research directions.

4.2. Phase and Amplitude in Functional Data Analysis. While images ex-
hibit variations in both intensity and shape of the image domain, signals in functional
data analysis often exhibit combined variation in amplitude and phase. For a signal
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(a) tempate signal η (b) phase variation (φ) (c) amplitude varia-
tion (ν)

(d) phase and ampli-
tude variation

Figure 3. A template signal (a) can be perturbed by (b) variation
in phase, in (4.2) denoted φ; (c) variation in amplitude, ν in (4.2); (d)
phase and amplitude simultaneously.

f : I → N defined on an interval I, amplitude variations refer to variations of the
values f(s) in N for each fixed s ∈ I while phase variation covers changes in the
parametrization of the domain I. This is illustrated with N = R in Figure 3. An
example of such combined phase and amplitude variations is provided in the growth
curves of children and young adults; in which phase variation is connected to the
absolute height of the subject while phase variation arise from growth and growth
spurts occurring at different ages for different children.

Recent literature covers multiple approaches for identifying, separating and per-
forming inference in situations with combined phase and amplitude variation [19,25,
32]. One example of a generative model in this settings is the mixed-effects model
[18,25]

f(s) = η(φ−1(s)) + ν(s) + ε , s ∈ I , (4.2)

where the average signal η is deformed in phase by the action φ.η = η ◦ φ−1 of a
deformation φ of the interval I, and in amplitude by the additive term ν. Here η is
considered a fixed, non-random effect while both φ and ν are random. Illustrated
with the growth curve case above, η models the population average growth curve
for each age s, while φ controls the timing of the growth process for the individual
children and ν the absolute height difference to the population average. One observes
that the model (4.2) is non-linear, because of the coupling between φ and η. In
addition, a model for the deformations φ is needed, and the randomness appearing
in both φ and ν must be specified.

Whereas the LDDMM model is widely used in image analysis, this framework
has not yet seen many applications for modelling deformations in functional data
analysis, such as the phase variation appearing in (4.2). Instead, works such as
[25] use a small-deformation model φ(s) = s + v(s) with random vector field v
modelling displacements on I. On the other hand, large-deformation flow models
such as LDDMM traditionally have not integrated random variation directly into
the dynamics. Natural families of probability distributions and generative models
taking values in non-linear spaces such as deformation spaces are generally non-
trivial to construct. However, the model proposed in this paper achieves exactly
that.
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A direct metamorphosis equivalent of the mixed-effects model (4.2) has η = η0

the population average η, sets u0 = ν0 = 0 and encodes the random effects φ and
ν in (4.2) in the stochastic increments dut and dνt. The action of gt on the signal
is the right action gt.f = f ◦ g−1

t as in (4.2). Now dνt models pure amplitude
variation, dut phase variation, and the combined stochastic evolution of the signal
is dft = dnt. We then assume the observed signal is f = fT for a fixed end time T of
the stochastic process. Spatial correlation in both the deformation increments dut
and the amplitude increments dνt is encoded in the fields σul and σνk respectively.

In the above model, the template is stationary in time when disregarding the
stochasticity. However, allowing non-zero initial momenta u0 and ν0 in both phase
and amplitude allows the template to vary with time and thereby gives a non-linear
generalization of a standard multivariate regression model with one latent variable
for phase and one for amplitude. This in particular allows modelling of trends over
populations where subjects are affected by both the population trend and individual
stochastic perturbations.

4.3. Statistical nonlinear modelling. It may initially seem overly complicated to
use the metamorphosis framework for a simple regression model. However, statistical
models that in linear space seem completely standard are often inherently difficult to
generalize to non-linear spaces. In general, the lack of vector space structure makes
distributions and generative models hard to specify, see e.g. [26,27] for examples of
the geometric complexities of generalizing the Euclidean normal distribution.

In Euclidean space, random vectors can model random perturbations. In non-
linear spaces, the lack of vector space structure prevents this and random pertur-
bations are often most naturally expressed with sequences of infinitesimal steps.
Vectors are thus replaced with tangent bundle valued sequences that, when inte-
grated over time, give rise to stochastic flows. When modelling both deterministic
and random variations, stochasticity generally couples non-trivially with the deter-
ministic evolution. In addition, perturbations and correlation structure must be
specified with respect to a frame of reference. While Euclidean space provides a
global coordinate system allowing this, a model of transport must be specified in
non-linear spaces. The stochastic metamorphosis model is an example of a model
coupling deterministic and stochastic evolution and using right-invariance to pro-
vide reference frames for the perturbations and correlation structure. An example
of a related but different approach is [17] where parallel transport is used to link
covariance between tangent spaces.
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