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Swimming in an anisotropic fluid: How speed depends on alignment angle
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Orientational order in a fluid affects the swimming behavior of flagellated microorgan-
isms. For example, bacteria tend to swim along the director in lyotropic nematic liquid
crystals. To better understand how anisotropy affects propulsion, we study the problem of
a sheet supporting small-amplitude traveling waves, also known as the Taylor swimmer,
in a nematic liquid crystal. For the case of weak anchoring of the nematic director at
the swimmer surface and in the limit of a minimally anisotropic model, we calculate the
swimming speed as a function of the angle between the swimmer and the nematic director.
The effect of the anisotropy can be to increase or decrease the swimming speed, depending
on the angle of alignment. We also show that elastic torque dominates the viscous torque
for small-amplitude waves and that the torque tends to align the swimmer along the local
director.
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I. INTRODUCTION

Propulsion mechanisms depend strongly on the nature of the ambient fluid. For swimming
microorganisms, a key property of water on the micron scale is that viscous effects dominate inertial
effects: Water is very viscous for the length and time scales characteristic of a swimming cell [1–3].
However, it is also common for swimming microorganisms to be found in complex fluids such
as polymer solutions and gels. These fluids have additional distinctive features. For example, the
effects of the elasticity of the polymers or the shear thinning of the viscosity on swimming speed in
these fluids have been the subject of several theoretical and experimental investigations (see, e.g.,
[4–11]). Recently, attention has turned toward bacteria in anisotropic fluids, such as biofilms [12],
where rodlike swimming bacteria tend to orient with the long axis parallel to aligned polymers
[13]. Bacteria also align in artificial environments, such as the chromonic liquid-crystal disodium
cromoglycate (DSCG) [14–16]. Bacteria in DSCG tend to swim along the local director, even
when the director pattern is nonuniform [16], and they are attracted to or repelled by the cores of
topological defects, depending on the sign of the defect [17]. These observations suggest that an
anisotropic medium can be used to guide natural and artificial swimmers alike [18]. In this article
we study how swimming speed depends on the angle between a swimmer and the director in a
nematic liquid crystal. The model we use is the Taylor swimmer [1], which is a sheet which deforms
via internally generated low-amplitude plane waves of fixed frequency and wavelength (Fig. 1).
We consider the two-dimensional case, in which there is no change in the sheet deformation, flow
field, or liquid-crystal configuration in the direction perpendicular to the xy plane. Our work is a
generalization of the problems treated in Refs. [19,20], where one of us studied the Taylor swimmer
aligned along one of the sixfold axes in a hexatic liquid crystal and along the director in a nematic
liquid crystal. Our work is also related to the work of Ref. [21], which was a study of the propulsion
of the Taylor swimmer in both passive and active transversely isotropic materials. The passive case of
the transversely isotropic fluid is the same as our model when our elastic terms and anchoring effects
are set to zero. Although the limiting value of our swimming speed when the elastic and anchoring
constants are taken to be small agrees with the swimming speed of Ref. [21] in their passive case,
we also find that this limit is singular. We show that when the full time dependences of the flow field
and the nematic director field are calculated to second order in swimmer deflection, the transversely
isotropic theory has a secular term arising because the aligning effects of the liquid-crystal Frank
elasticity are absent.
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FIG. 1. Taylor swimmer with wave vector q, amplitude b, and wave speed c in a two-dimensional liquid
crystal. The local tangent vector of the swimmer makes an angle φs with the x axis and N̂ is the outward pointing
normal for the region on the side of the swimmer with y > 0. The director n makes an angle θ with the x axis
and the director has a fixed angle φ for large |y|.

II. TAYLOR SWIMMER IN A NEMATIC LIQUID

Figure 1 shows the Taylor swimmer in a two-dimensional nematic liquid crystal. The swimmer
is an idealized model of planar flagellar beating and it consists of an infinite flexible sheet with
an internally generated transverse wave of amplitude b and wave number q, described by ys =
b sin(qx − ωt). Here ω = cq is the frequency and c is the wave speed. The amplitude is taken to
be small relative to the wavelength, bq � 1, and following Taylor we calculate the leading-order
swimming speed in an expansion in bq [1]. We work in the reference frame of the swimmer and
take the swimmer to be aligned with the x axis.

Experiments on swimming bacteria often employ a thin layer of nematic liquid crystal sandwiched
between two glass plates [17], each parallel to the xy plane of our Fig. 1 and with the plates treated to
prefer anchoring of the director n = x̂ cos θ + ŷ sin θ along a certain direction p = x̂ cos φ + ŷ sin φ.
We suppose uniform treatment of the plates so that the angle φ is constant. At the surface of the
swimmer, there is also an anchoring potential which we take to give a preference for the directors
to align parallel to the swimmer body. Far from the swimmer, the effects of the swimmer anchoring
potential die off and θ → φ. We model the alignment due to the anchoring potential at the plates by
an effective external field. The elastic energy cost is thus

Fel/D =
∫

dx dyF − W

4

∫
ds cos[2(θ − φs)], (1)

where D is the spacing between the plates. In Eq. (1), the elastic energy density is given by

F = K

2
∂αn · ∂αn − ξ

2
(p · n)2, (2)

where K is the Frank elastic modulus in the commonly used one-coupling constant approximation
[22], ξ is the effective aligning field due to the treatment of the glass plates, W is the anchoring
strength at the swimmer, s is the arc length along the swimmer, and φs is the angle the local swimmer
tangent vector makes with the x axis. The competition between Frank elasticity and the aligning
effect leads to a characteristic length �ξ ≡ √

K/ξ for the decay of the director field from the value
preferred by the anchoring potential near the swimmer to the value far preferred by the aligning
term.

The elastic torques that arise when the director field is not uniform or not aligned with the
direction preferred by the treated plates may be calculated from the free energy using the molecular
field H = −δFel/δn [23],

H = K
n + ξp(p · n), (3)
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where 
 denotes the Laplacian. Only the transverse part h of the molecular field contributes to the
elastic torque,

h = H − n(n · H) (4)

= Kn⊥
θ + ξ

2
n⊥ sin[2(φ − θ )], (5)

where n⊥ = −x̂ sin θ + ŷ cos θ is perpendicular to n. The boundary condition on the director at the
swimmer is

KN̂ · ∇θ + W

2
sin[2(θ − φs)] = 0, (6)

where φs is the angle the local tangent vector of the swimmer makes with the x axis.
The stress tensor corresponding to the elastic energy (2) is [23]

σ r
αβ = −K∂αnγ ∂βnγ − λ

2
(nαhβ + nβhα) + 1

2
(nαhβ − nβhα), (7)

where λ is a kinetic coefficient, positive for rodlike molecules and negative for disklike molecules.
The value λ = 1 is special; nematic liquid crystals with λ < 1 tend to have their directors
continuously rotate in a shear flow, whereas nematic liquid crystals with λ > 1 tend to have the
directors align at a fixed angle relative to the principal direction of shear. Note that the balance of
torques h = 0 implies the balance of forces −∂αpeq + ∂βσ r

αβ = 0, where the equilibrium pressure is
peq = −F [22]. The dynamic equation for the director is

∂tnα + u · ∇nα − 1
2 [(∇ × u) × n]α = λ(δαβ − nαnβ)Eβγ nγ + hα/γ, (8)

where u is the velocity field, Eαβ = (∂αuβ + ∂βuα)/2 is the strain rate tensor, and γ is the rotational
viscosity [23].

To complete the specification of the equations of motion, we need the viscous stress tensor

σ v
αβ = 2μEαβ + 2μ1nαnβnγ nδEγδ + μ2(nαEβγ nγ + nγ Eγαnβ), (9)

where μ is the shear viscosity and μ1 and μ2 are anisotropic shear viscosities. For the zero-Reynolds-
number limit appropriate for microscopic swimmers, the forces must balance,

−∂αp + ∂β

(
σ r

αβ + σ v
αβ

) = 0, (10)

where p is the pressure associated with the constraint of incompressibility ∂αuα = 0. The no-slip
boundary condition on the flow is

u(x,y = ys) = ŷ∂ys/∂t. (11)

Since our problem is two dimensional, it will be convenient to enforce incompressibility by using
the stream function ψ , defined such that u = ∇ × (ψ ẑ).

There are many terms in the governing equations, leading to complicated expressions for
swimming speed. To keep the calculation manageable and to illustrate only the essential physics, we
make several simplifying calculations. We have already noted that we use the one-coupling constant
approximation for the Frank energy. We assume that the anchoring strength is weak, W � qK , so
the angle between the director and the far-field director is always small: θ − φ � 1. In this limit,
the director never turns through a large angle, but the elastic torque can be nonzero. We set μ2 = 0
and assume that the remaining anisotropic viscosity is small μ1 � μ. Also, note that when γ = 0,
the elastic and the viscous parts of the problem become partially decoupled; inspection of Eq. (8)
reveals that when γ = 0, the molecular field vanishes, h = 0, and the director configuration is in
equilibrium for the instantaneous shape of the swimmer. Even with these simplifications, there are
still several small parameters. We reduce the number of small parameters by assuming that γ and μ1

are proportional to the same small dimensionless parameter δ. Finally, we limit our analysis to the
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special cases of λ = 0 and λ = 1. Thus we expand the angle field and flow velocity to second order
in dimensionless amplitude ε = bq, first order in dimensionless anchoring strength w = W/Kq,
and first order in anisotropy δ:

θ ≈ φ + wθ (010) + ε(θ (100) + δθ (101) + wθ (110) + wδθ (111))

+ ε2(θ (200) + δθ (201) + wθ (210) + wδθ (211)), (12)

ψ ≈ ε(ψ (100) + δψ (101) + wψ (110) + wδψ (111))

+ ε2(ψ (200) + δψ (201) + wψ (210) + wδψ (211)). (13)

Note that the superscript (abc) denotes ath order in ε, bth order in w, and cth order in δ. No
assumption is made about the relative smallness of ε, w, and δ. The final simplification is to measure
length in units of 1/q and time in units of 1/ω. The dimensionless number which characterizes
the ratio of typical viscous stresses to typical elastic stresses is known as the Ericksen number
Er = μω/Kq2 [24]. The Ericksen number appears in the dimensionless equations.

A. Director field at zero amplitude

The expanded equations quickly get too complicated to display for the case of general λ and even
for λ = 1. Therefore, we will only display the final results for λ = 1; the method used to solve the
equations is the same for both λ = 0 and λ = 1. First consider the case in which the swimmer has
zero amplitude, b = 0. If the swimmer is not aligned with the far-field director field, then there will
be an aligning torque due to the Frank elasticity. There is a discussion of this torque in [22], which
we review here for completeness. To calculate the torque, we find the director field to zeroth order
in ε and first order in each of w and δ, i.e., O(ε0wδ). The director equation (8) at this order becomes


θ (001) − 1

q2�2
ξ

θ (001) = 0, (14)


θ (010) − 1

q2�2
ξ

θ (010) = 0, (15)


θ (011) − 1

q2�2
ξ

θ (011) = 0 (16)

and the boundary condition (6) leads to

∂yθ
(001)|y=0 = 0, (17)

− ∂θ (010)

∂y

∣∣∣∣
(x,y=0)

+ 1

2
sin(2φ) = 0, (18)

∂yθ
(011)|y=0 = 0. (19)

Thus we find that when ε = 0,

θ (001) = 0, (20)

θ (010) = −q�ξ

2
exp [−y/(q�ξ )] sin(2φ), (21)

θ (011) = 0. (22)

The director field for a zero-amplitude swimmer decays exponentially to its far-field value θ = φ

over a decay length �ξ .
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To calculate the torque, note that the boundary condition (6) amounts to the statement that the
torque per unit length exerted via the anchoring potential is equal to the elastic torque per unit length
on the liquid-crystal molecules. Thus, the dimensional torque per unit length of the swimmer, acting
on the swimmer (spanning a distance D between the glass plates in the direction perpendicular to
the xy plane), is τD = KN̂ · ∇θ |y=0, or [22]

τD = −W

2
sin(2φ). (23)

The torque on the swimmer vanishes when the swimmer is aligned with the liquid-crystal director
and also when the swimmer is perpendicular to the liquid-crystal director. Alignment of the swimmer
axis along the director is stable: When φ is small in magnitude, the torque tends to restore φ to zero.
Alignment of the swimmer axis perpendicular to the director is unstable: When φ is close to π/2, the
torque tends to rotate the swimmer away from the director. Since there is no flow when the swimmer
amplitude vanishes (b = 0), any hydrodynamic contribution to the torque will be at least of order ε.
Therefore, the elastic torque always dominates the viscous torque for the Taylor swimmer at small
amplitude.

B. Flow and angle field to first order in amplitude: Power dissipated

The order ε equations are complicated. The O(εw0δ0) equation for the stream function is the
same as that for Stokes flow, but there are increasingly more terms as we expand to first order in
w, δ, and wδ. The details are presented in Appendix A. As in the case of the Taylor swimmer in a
viscous fluid [1], the swimming speed vanishes to first order in ε. The O(ε) angle field also has no
mean part. The power dissipated by the flows and director deformations induced by the swimmer is
given by

2R/D =
∫

dx

∫ ∞

ys

dy
(
σ v

αβEαβ + h · h/γ
)
. (24)

To leading order, the power is O(ε2), but since Eαβ , σ v
αβ , and h are each O(ε), we can calculate the

leading-order power dissipated from the O(ε) expressions. To leading order in the anisotropy, the
dimensional contribution to the power generated in each wavelength of the swimmer (for λ = 0) is

2R/D = μω2b2

⎡
⎣1 + μ1 + Erγ

μ
+ wq2�2

ξ Er
γ

μ

⎛
⎝ q�ξ√

1 + q2�2
ξ

− 1

⎞
⎠ cos(2φ)

⎤
⎦. (25)

Since our approximation is that μ1/μ, γ /μ, and w are all small, the change in the power dissipated
due to the anisotropic medium is dominated by the power for the isotropic case. However, we can
see that the effect of the viscosity μ1 in this limit is always to increase the power dissipated and
that the rotational viscosity γ can lead to either increased or decreased dissipation, depending on
the alignment angle φ.

C. Flow and angle field to second order in amplitude: Swimming speed

Next we consider the flow fields and angle field to second order in amplitude O(ε2). Since
there are even more terms than in the first-order expansion, we only consider the O(ε2) equations
averaged over a period in x. We denote the average over one spatial period by angular brackets:
〈F (x,y,t)〉 = ∫ 2π

0 dx F/2π . This averaging procedure eliminates terms which are oscillatory in
x − t , which are by far the majority of the terms. However, as we discuss below, in a separate
calculation (for the case λ = 0) we included the full t dependence to verify that there are no
secular terms (e.g., of the form t cos[2(x − t)]) at O(ε2). Physically, we expect that the aligning
field and Frank elasticity prevent the director fields from rotating continuously, as it does in the
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FIG. 2. Dimensionless change in swimming speed as a function of the angle φ between the swimmer and
the nematic direction, for λ = 0 and various values of the dimensionless penetration depth q�ξ : q�ξ = 0.5
(blue, bottom curve at φ = π/2), q�ξ = 1 (red, middle curve), and q�ξ = 10 (green, top curve at φ = π/2).
The q�ξ = 10 curve is indistinguishable from the q�ξ = ∞ curve.

transversely isotropic case without these aligning effects (Appendix B). This calculation with the
full t dependence is too unwieldy to include in this article.

Although the calculation of the averaged quantities is much simpler, some of the equations have
many terms and we again put the details in the Appendix. The final result is that the dimensionless
swimming speed is

U = ε2

2
+ 
U, (26)

where 
U is given by


U (λ = 0) = ε2wδ cos(2φ)[V1 + V2 cos(4φ)], (27)

V1 = −
γ
[
2q�ξ

(
2 + 3q2�2

ξ

) + (
1 + 6q2�2

ξ

)√
1 + q2�2

ξ

]
2μ

√
1 + q2�2

ξ

(
q�ξ +

√
1 + q2�2

ξ

)4
, (28)

V2 =
μ1q�ξ

(
1 + 2q2�2

ξ + 2q�ξ

√
1 + q2�2

ξ

)
μ

√
1 + q2�2

ξ

(
q�ξ +

√
1 + q2�2

ξ

)4
. (29)

III. DISCUSSION AND CONCLUSION

Figures 2 and 3 show the dimensionless correction to the swimming speed for λ = 0 and λ = 1,
respectively, as a function of the alignment angle φ. The swimming speed is symmetric under
φ �→ φ + π , in accord with the nematic symmetry. First let us focus on the case of λ = 0. When
the swimmer is aligned with the director field, the effect of the nematic liquid crystal is to reduce
the propulsion speed from its isotropic value. For π/4 < φ < 3π/4 (and 5π/4 < φ < 7π/4), the
swimming speed is enhanced (Fig. 2). The limit of zero anchoring field is problematic, since in
this limit �ξ → ∞, causing several of the fields (θ (010), θ (101), ψ (111), etc.) to diverge. Nevertheless,
the �ξ → ∞ limit of the correction to the swimming speed is well behaved for λ = 0 and already
attained by the time q�ξ = 10; therefore the large �ξ limit is relevant even if �ξ is not numerically
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FIG. 3. Dimensionless change in swimming speed as a function of the angle φ between the swimmer and
the nematic direction, for λ = 1 and various values of the dimensionless penetration depth q�ξ : q�ξ = 0.5
(blue, bottom curve at φ = π/2), q�ξ = 1 (red, middle curve), and q�ξ = 2 (green, top curve at φ = π/2).

large. The change in the swimming speed for weak alignment is

lim
�ξ →∞


U (λ = 0) = 1

8
wδε2 cos(2φ)

[
2
μ1

μ
cos(4φ) − 3

γ

μ

]
. (30)

We can check one limit of this expression with previously published results. When μ1 = 0 and
φ = 0, we have the situation of a swimmer in a hexatic liquid crystal with weak anchoring. This
limit (30) agrees with the weak-anchoring, low-Ericksen-number limit studied in [19]. Note that
it has previously been pointed out that a sufficiently large rotational viscosity γ can reverse the
direction of swimming when the swimmer is aligned with the order [19]. Equation (30) suggests
that whether or not γ can reverse the swimming direction depends on the alignment angle φ.

Turning now to the case of λ = 1, Fig. 3 shows that the φ dependence of 
U is qualitatively
similar to that of λ = 0, with enhancement for φ near π/2 and reduction for φ ≈ 0. However, the
points at which 
U = 0 depend on the value of �ξ for λ = 1. A more important difference between
λ = 0 and λ = 1 is that the correction to the swimming speed increases linearly with �ξ for large �ξ

for λ = 1, diverging in the limit of zero aligning field:


U (λ = 1) ∼ γ

8
wδε2q�ξ [1 − cos(4φ)]. (31)

Although the corrections to the swimming speed are small since we work in the limit of weak
anchoring strength, weak coupling, and weak anisotropy, the strong dependence of the correction
on the orientation shown in Figs. 2 and 3 suggests that the swimming speed will have a strong
dependence on orientation when the couplings are not small.

We can also compare our expression to the passive transversely isotropic fluid considered in [21].
The transversely isotropic fluid does not have elastic moduli or anchoring terms; setting w = 0 in
our formula leads to 
U = 0, in agreement with the results of [21]. However, our previous results
on swimming in a hexatic liquid crystal indicated that the limit of zero elastic moduli is a singular
limit, such that the swimming speed in a hexatic liquid crystal with zero elastic modulus is not the
same as the limit of the swimming speed in a hexatic liquid crystal as the elastic modulus goes to
zero [19]. Thus, although we agree with the final results of [21] for a swimmer in a passive medium
with no elastic moduli, our calculations are in disagreement; we find a nonzero correction to the
isotropic swimming speed, as a function of φ in the transversely isotropic fluid model. We discuss
this subtle issue in Appendix B.
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To conclude, we studied the problem of a swimmer with a prescribed gait in a nematic liquid
crystal, allowing the swimmer to be oriented at an arbitrary angle to the direction of nematic order.
In the limit of weak anchoring of the liquid crystal at the surface of the swimmer, small rotational
viscosity, small anisotropic shear viscosity, and small amplitude, we found that the elastic torque
dominates the viscous torque and tends to align the swimmer with the direction of order. We also
found that if the swimmer is held at a fixed angle φ relative to the nematic director, the swimmer
tends to swim slower than it would in an isotropic viscous liquid if it is held with its axis close
to alignment and faster if it is held with its axis close to perpendicular to the nematic directors.
Computing the trajectory of a swimmer that is torque-free and reorienting to align with the directors
is a transient problem like the startup problem studied in [25]; due to the complexity arising from
the anisotropy, the torque-free problem is likely best addressed with numerical methods.
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APPENDIX A: DETAILS OF THE CALCULATION FOR λ = 0

We calculate the angle field and flow to first order in ε. At O(εw0δ0), the governing equations are


θ (100) − θ (100)/�2
ξ = 0, (A1)


2ψ (100) = 0. (A2)

The boundary conditions at this order are ∂θ (100)/∂y|y=0 = 0 and −∂ψ (100)/∂y = ∂ys/∂t , leading to
θ (100) = 0 and ψ (100) = (1 + y) exp(−y) sin(x − t), just as in the Taylor problem for a viscous fluid
[1].

At O(εw0δ) we find


θ (101) − θ (101)/�2
ξ + Er

γ

μ
exp(−y) sin(x − t) = 0, (A3)

μ
2ψ (101) + 2μ1(2 − y) exp(−y) sin(x − t + 4φ) = 0. (A4)

The parameter δ does not enter the boundary condition for the angle field, implying that
∂θ (101)/∂y|y=0 = 0 and

θ (101) = Erγ q2�2
ξ

⎡
⎣exp(−y) − q�ξ√

1 + q2�2
ξ

exp

⎛
⎝−

y

√
1 + q2�2

ξ

q�ξ

⎞
⎠

⎤
⎦ sin(x − t). (A5)

Likewise, since δ does not enter the no-slip boundary condition, ψ (101)(x,y = 0) = 0 and

ψ (101) = μ1

12μ
y3 exp (−y) sin(x − t + 4φ). (A6)

At O(εwδ0), the equation for the angle field is again homogeneous,


θ (110) − θ (110)/�2
ξ = 0, (A7)

with the boundary condition

∂θ (110)/∂y + cos(2φ) cos(x − t) = 0. (A8)
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Solving yields

θ (110) = q�ξ√
1 + q2�2

ξ

exp

⎡
⎣−

y

√
1 + q2�2

ξ

q�ξ

⎤
⎦ cos(2φ) cos(x − t). (A9)

The force balance equation at O(εwδ0) is simply that ψ (110) is biharmonic, 
2ψ (110) = 0. Since δ

does not enter the no-slip boundary condition, ψ (110) = 0 everywhere.
At O(εwδ), the angle equation is


θ (111) − 1

q2�2
ξ

θ (111) + f = 0, (A10)

where

f = f1 sin(2φ) cos(x − t) + f2 cos(2φ) sin(x − t), (A11)

f1 = γ Er

2μ
(1 + y)e−y−y/q�ξ , (A12)

f2 = − γ Er

μ

√
1 + q2�2

ξ

q�ξ e
−y

√
1+q2�2

ξ /q�ξ . (A13)

Since the boundary condition for the angle field is independent of w and δ, we have ∂yθ
(111)|y=0 = 0.

Solving for θ (111) yields

θ (111) = θ1 sin(2φ) cos(x − t) + θ2 cos(2φ) sin(x − t), (A14)

where

θ1 = γ q�ξ Er

4μ

⎡
⎣2 + q�ξ (2 + q�ξ )√

1 + q2�2
ξ

e−y
√

1+q2�2
ξ /q�ξ − (2 + y + q�ξ )e−y−y/q�ξ

⎤
⎦, (A15)

θ2 = −γ �2
ξ Er e−y

√
1+q2�2

ξ /q�ξ

2μ(1 + q2�ξ )3/2

{
y

√
1 + q2�2

ξ + q�ξ

[
3 + 2q�ξ

(
q�ξ −

√
1 + q2�2

ξ

)]}
. (A16)

This solution for the angle field leads to the stream function equation


2ψ (111) + g = 0, (A17)

where

g = g1 sin(2φ) cos(x − t) + g2 cos(2φ) sin(x − t) + g3 sin(2φ) cos(x − t + 4φ), (A18)

g1 = − γ

4μq2�2
ξ

e−y−y/q�ξ (1 + y + 2yq�ξ ), (A19)

g2 = − 2γ

4μq�ξ

√
1 + q2�2

ξ

e−y
√

1+q2�2
ξ /q�ξ , (A20)

g3 = μ1

μq�ξ

√
1 + q2�2

ξ

e−y−y/q�ξ [y + 2(y − 1)�ξ ]. (A21)
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Since w and δ do not enter the no-slip boundary condition, we have (∂yψ
(111), − ∂xψ

(111))|y=0 = 0
and the stream function takes the form

ψ (111) = ψ
(111)
1 cos(x − t) + ψ

(111)
2 sin(x − t), (A22)

where

ψ
(111)
1 = − q�ξ

4(1 + 2q�ξ )

[
γ

μ
b1 + μ1

μ
b2 cos(4φ)

]
sin(2φ), (A23)

b1 = e−y−y/q�ξ q�ξ (1 + y + 2q�ξ ) + e−y[y + (y − 1)q�ξ − 2q2�ξ ], (A24)

b2 = −4e−y−y/q�ξ q2�2
ξ (1 + 2q�ξ )[y + e−y(y − 2q�ξ ) + 2q�ξ ], (A25)

ψ
(111)
2 = q2�2

ξ

2

[
γ

μ
c1 cos(2φ) + μ1

μ
c2 sin(2φ) sin(4φ)

]
, (A26)

c1 = q�ξ√
1 + q2�2

ξ

e−y
√

1+q2�2
ξ /q�ξ + e−y

⎡
⎣y − (1 + y)q�ξ√

1 + q2�2
ξ

⎤
⎦, (A27)

c2 = −2e−y−y/q�ξ q�ξ [y(1 + ey/q�ξ ) + 2q�ξ ] sin(4φ). (A28)

Turning now to the second order in ε, at O(ε2w0δ0) we find

d2〈θ (200)〉
dy2

− 1

q2�2
ξ

〈θ (200)〉 = 0, (A29)

d2
〈
u(200)

x

〉
dy2

= 0, (A30)

with boundary condition d〈θ (200)〉/dy|y=0 = 0 and 〈u(200)
x 〉|y=0 = 1/2. Therefore, 〈θ (200)〉 = 0 and

〈u(200)
x 〉 = 1/2, just as in the isotropic viscous case [1]. At the next order O(ε2w0δ), the governing

equations are

d2〈θ (201)〉
dy2

− 1

q2�2
ξ

〈θ (201)〉 = 0, (A31)

d2
〈
u(200)

x

〉
dy2

+ 2
μ1

μ
cos φ sin3 φ

d2
〈
u(200)

y

〉
dy2

= 0. (A32)

Note, however, that the incompressibility condition implies ∂xu
(200)
x + ∂yu

(200)
y = 0, which leads

to d〈u(200)
y 〉/dy = 0. Thus, Eq. (A32) reduces to d2〈u(200)

x 〉/dy2 = 0. The O(ε2w0δ) boundary
conditions are

d〈θ (201)〉
dy

∣∣∣∣
y=0

− γ

2μ
Er q2�2

ξ

⎛
⎝1 − q�ξ√

1 + q2�2
ξ

⎞
⎠ = 0, (A33)

〈
u(201)

x

〉|y=0 = 0, (A34)
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leading to

〈θ201〉 = γ q3�3
ξ Er

2μ
e−y/q�ξ

⎛
⎝1 − q�ξ√

1 + q2�2
ξ

⎞
⎠, (A35)

〈
u(201)

x

〉 = 0, (A36)

〈
u(201)

y

〉 = 0. (A37)

The O(ε2wδ0) equations are

d2〈θ (210)〉
dy2

− 1

q2�2
ξ

〈θ (210)〉 = 0, (A38)

d2
〈
u(210)

x

〉
dy2

= 0, (A39)

with boundary conditions

d〈θ (210)〉
dy

∣∣∣∣
y=0

+ 3

8
sin(2φ) = 0, (A40)

〈u(210)
x 〉 = 0 (A41)

and solutions

〈θ (210)〉 = 3
8q�ξ e

−y/q�ξ sin(2φ), (A42)

〈
u(210)

x

〉 = 0. (A43)

Again, the constraint of incompressibility yields 〈u(210)
y 〉 = 0.

With all these solutions in hand we may find the O(ε2wδ) equations. For the angle field we find

d2〈θ (211)〉
dy2

− 1

q2�2
ξ

〈θ (211)〉 − γ Er cos(2φ)

2μ

⎡
⎣1 + y + yq�ξ√

1 + q2�2
ξ

⎤
⎦ exp

⎡
⎣−y −

y

√
1 + q2�2

ξ

q�ξ

⎤
⎦ = 0,

(A44)
with boundary condition

d〈θ (211)〉
dy

∣∣∣∣
y=0

+ Erq3�3
ξ

γ

μ
cos(4φ)H1 = 0, (A45)

where

H1 =
3 − 2q3�3

ξ + 2
√

1 + q2�2
ξ − 2q�ξ

(
1 +

√
1 + q2�2

ξ

) + 2q2�2
ξ

(
1 +

√
1 + q2�2

ξ

)
4
(
1 + q2�2

ξ

)3/2 . (A46)

The solution for the averaged angle field at this order is

〈θ (211)〉 = γ

μ
q�ξ Er cos(2φ)

[
a1 exp

(−y − y

√
1 + q2�2

ξ /q�ξ

) + a2 exp(−y/q�ξ )
]
, (A47)
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where

a1 = {
2 + 3q�ξ

(
q�ξ +

√
1 + q2�2

ξ

) + y
[
1 + 2q�ξ

(
q�ξ +

√
1 + q2�2

ξ

)]}/
a0, (A48)

a2 =
−4q�ξ − 5q3�3

ξ + 2q4�4
ξ + 2q6�6

ξ + (
2q5�5

ξ + 2q3�3
ξ − 6q2�2

ξ − 2
)√

1 + q2�2
ξ

a0
(
1 + q2�2

ξ

) , (A49)

a0 = 4
√

1 + q2�2
ξ

(
q�ξ +

√
1 + q2�2

ξ

)2
. (A50)

Finally, the equation for ux at O(ε2wδ) is

d2u(211)
x

dy2
+ Er

4q�ξ

exp
( − y − y

√
1 + q2�2

ξ /q�ξ

)
H2, (A51)

where

H2 = − cos(2φ)

⎡
⎣2yq�ξ

γ

μ
+ γ (1 + y)

(
1 + 2q2�2

ξ

)
μ

√
1 + q2�2

ξ

− 4μ1(y − 1)q2�2
ξ cos(4φ)

μ

√
1 + q2�2

ξ

⎤
⎦

+ μ1

μ
yq�ξ csc(2φ) sin(8φ). (A52)

At this order the no-slip boundary condition takes the form

〈
u(211)

x

〉∣∣
y=0 +

2q�ξ

√
1 + q2�2

ξ − 2q2�2
ξ − 1

4μ

√
1 + q2�2

ξ

q�ξ cos(2φ) = 0. (A53)

Solving yields a 〈u(211)〉 as the sum of a term exponentially decaying in y and a constant 
U (211),
where


U (211) = cos(2φ)[V1 + V2 cos(4φ)], (A54)

V1 = −
γ
[
2q�ξ

(
2 + 3q2�2

ξ

) + (
1 + 6q2�2

ξ

)√
1 + q2�2

ξ

]
2μ

√
1 + q2�2

ξ

(
q�ξ +

√
1 + q2�2

ξ

)4
, (A55)

V2 =
μ1q�ξ

(
1 + 2q2�2

ξ + 2q�ξ

√
1 + q2�2

ξ

)
μ

√
1 + q2�2

ξ

(
q�ξ +

√
1 + q2�2

ξ

)4
. (A56)

The expression 
U (211) is the desired correction to the Taylor swimming speed arising from the
liquid-crystal nature of the medium.

APPENDIX B: THE TRANSVERSELY ISOTROPIC LIMIT

The governing equations for the transversely isotropic fluid are a special case of the nematic
liquid-crystal equations, with K and h each set to zero, λ = 1, and ξ = 0. For simplicity, we will
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also set μ2 = 0, as we did in the main text. The governing equations are thus

∂βσαβ = 0, (B1)

∂αuα = 0, (B2)

∂nα

∂t
+ uβ∂βnα = nβ∂βuα − nαnβ(∂βuγ )nγ , (B3)

where

σαβ = −pδαβ + 2μEαβ + 2μ1nαnβnγ Eγδnδ. (B4)

We use the same dimensional conventions as in the main text and define μ1 = δμ. Again we work
to second order in ε and first order in δ:

u = ε
[
u(1)

0 + δu(1)
1

] + ε2
[
u(2)

0 + δu(2)
1

]
, (B5)

θ = φ + ε
[
θ

(1)
0 + δθ

(1)
1

] + ε2
[
θ

(2)
0 + δθ

(2)
1

]
. (B6)

We again define the stream function ψ such that ∇ × (ψ ẑ) = u.
To first order in ε and zeroth order in δ, the governing equations for the flow field are


2ψ
(1)
0 = 0, (B7)

∂tθ
(1)
0 + cos2(φ)∂2

xψ
(1)
0 + 2 cos φ sin(φ)∂x∂yψ

(1)
0 + sin2(φ)∂2

yψ
(1)
0 = 0. (B8)

The stream function at this order obeys the Stokes equation with the same no-slip boundary conditions
considered by Taylor [1] and is therefore given by

ψ
(1)
0 = (1 + y)e−y sin(x − t). (B9)

The angle field is computed from Eq. (B8) by integrating over time:

θ
(1)
0 = e−y[cos(x − t) + y cos(x − t + 2φ)]. (B10)

At O(εδ), the governing equations are


2ψ
(1)
1 + 2(1 − y)e−y sin(x − t + 4φ) = 0, (B11)

∂tθ
(1)
1 + [

cos2(φ)∂2
xψ

(1)
1 + 2 cos φ sin(φ)∂x∂yψ

(1)
1 + sin2(φ)∂2

yψ
(1)
1

] = 0. (B12)

Since the no-slip boundary condition does not involve δ, the no-slip boundary condition at this order
is u(1)

1 = 0 and the stream function is given by

ψ
(1)
1 = 1

12y3e−y sin(x − t + 4φ). (B13)

Solving the director equation at this order yields

θ
(1)
1 = ye−y

24
[(3 − 6y + 2y2) cos(x − t + 6φ) + (6y − 6) cos(x − t + 4φ) + 3 cos(x − t + 2φ)].

(B14)
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Turning now to the second order in ε, we again find that the O(ε2δ0) stream function obeys the
Stokes equation


2ψ
(2)
0 = 0, (B15)

with the boundary condition (∂xψ
(2)
0 , − ∂yψ

(2)
0 )|y=0 = (1/2 − cos[2(x − t)],0). The solution is

ψ
(2)
0 = y

2
− y

2
e−2y cos[2(x − t)]. (B16)

The equation for the angle at this order is

∂tθ
(2)
0 + cos2(φ)∂2

xψ
(2)
0 + 2 sin φ cos(φ)∂x∂yψ

(2)
0 + sin2(φ)∂2

yψ
(2)
0 + F = 0, (B17)

where

F = 1
2e−2y[F0 + F1], (B18)

F0 = 2[1 − 2y(y − 1)] sin2 φ, (B19)

F1 = cos[2(x − t)] − 2y2 cos[2(x − t + 2φ)] − (1 + 2y) cos[2(x − t + φ)]. (B20)

Using the solution ψ
(2)
0 and integrating (B17) with respect to t , we find

θ
(2)
0 = t[2y(y − 1) − 1]e−2y sin2 φ − 1

4 (3 − 2y)e−2y sin[2(x − t + φ)]

− 1
2y2e−2y sin[2(x − t + 2φ)] + 3

4e−2y sin[2(x − t)]. (B21)

Note the secular term in (B21), increasing without bound as t increases and eventually spoiling the
assumption that θ is close to φ. The secular term arises because there is no aligning potential or
Frank elasticity to prevent the director from rotating continuously in the transversely isotropic fluid
model. Due to the secular term, the regular perturbation theory described in this appendix is only
valid for times which are small compared to the beating period of the sheet. Continuing nevertheless
with the calculation, the stream function at O(εδ) satisfies


2ψ
(2)
1 = [2 + 4y(y − 2)]e−2y cos(2φ) − 4(1 − y)e−2y cos(4φ) + 8e−2y cos[2(x − t + 2φ)]

+ [2 − 16y(y − 1)]e−2y cos[2(x − t + 3φ)]. (B22)

FIG. 4. Dimensionless correction to swimming speed as a function of alignment angle for weak anisotropic
viscosity in the transversely isotropic fluid model.
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Solving (B22) with the no-slip boundary condition yields

ψ
(2)
1 = y

4
[cos(2φ) + cos(4φ)] + e−2y

24
[(9 + 12y + 6y2) cos(2φ) + 6(1 + y) cos(4φ)]

+ e−2y

24
{2y4 cos[2(x − t + 3φ)] + 6y2 cos[2(x − t + 2φ)]}. (B23)

Far from the swimmer, where y → ∞, there is a steady streaming flow


U
(2)
1 = 1

4 [cos(2φ) + cos(4φ)], (B24)

corresponding to the correction to the swimming speed (Fig. 4). Thus, in contradiction with the work
of [21], we find that the swimming speed depends on the alignment angle for Ericksen’s passive
transversely isotropic fluid. The angle field θ

(2)
1 at this order has an expression which is too lengthy

to display; it also has secular terms proportional to t .
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