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Abstract

Gaussian random fields are popular models for spatially varying uncertainties, aris-
ing for instance in geotechnical engineering, hydrology or image processing. A Gaus-
sian random field is fully characterised by its mean function and covariance operator.
In more complex models these can also be partially unknown. In this case we need
to handle a family of Gaussian random fields indexed with hyperparameters. Sam-
pling for a fixed configuration of hyperparameters is already very expensive due to
the nonlocal nature of many classical covariance operators. Sampling from multiple
configurations increases the total computational cost severely. In this report we em-
ploy parameterised Karhunen-Loeve expansions for sampling. To reduce the cost we
construct a reduced basis surrogate built from snapshots of Karhunen-Loeve eigen-
vectors. In particular, we consider Matérn-type covariance operators with unknown
correlation length and standard deviation. We suggest a linearisation of the covari-
ance function and describe the associated online-offline decomposition. In numerical
experiments we investigate the approximation error of the reduced eigenpairs. As
an application we consider forward uncertainty propagation and Bayesian inversion
with an elliptic partial differential equation where the logarithm of the diffusion co-
efficient is a parameterised Gaussian random field. In the Bayesian inverse problem
we employ Markov chain Monte Carlo on the reduced space to generate samples
from the posterior measure. All numerical experiments are conducted in 2D phys-
ical space, with non-separable covariance operators, and finite element grids with
~ 10* degrees of freedom.
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1. Introduction

Many mathematical models in science and engineering require input parameters
which are often not fully known or are perturbed by observational noise. In recent
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years it has become standard to incorporate the noise or lack of knowledge in a
model by using uncertain inputs. In this work we are interested in models based on
partial differential equations (PDEs) where the inputs are spatially varying random
functions. These so called random fields are characterised by a probability measure
on certain function spaces.

We consider two typical tasks in uncertainty quantification (UQ): (¢) the forward
propagation of uncertainty (forward problem) [22, 46], and (ii) the (Bayesian) in-
verse problem [14, 48]. In (i) we study the impact of uncertain model inputs on the
model outputs and quantities of interest. The mathematical task is to derive the
pushforward measure of the model input under the PDE solution operator. In (i)
we update a prior distribution of the random inputs using observations; this gives
the posterior measure. Mathematically, this amounts to deriving the conditional
measure of the inputs given the observations using a suitable version of Bayes’ for-
mula. Unfortunately, in most practical cases there are no analytical expressions for
either the pushforward or the posterior measure. We focus on sampling based mea-
sure approximations, specifically Monte Carlo (MC) for the forward problem, and
Markov chain Monte Carlo (MCMC) for the Bayesian inverse problem. Importantly,
MC and MCMC require efficient sampling procedures for the random inputs.

In this work we consider Gaussian random fields which are popular models e.g.
in hydrology. We recall the following sampling approaches for Gaussian random
fields. Factorisation methods construct either a spectral or Cholesky decomposition
of the covariance matrix. The major computational bottleneck is the fact that the
covariance operator is often nonlocal, and a discretisation will almost always result
in a dense covariance matrix which is expensive to handle. Circulant embedding
8, 16, 23] relies on structured spatial grids and stationary covariance operators. In
this case, the covariance matrix can be factorised using the Fast Fourier Transform.
Alternatively, we can approximate the covariance matrix by hierarchical matrices
and low rank techniques, see e.g. [2, 10, 15, 21, 32]. A pivoted Cholesky decomposi-
tion is studied in [26]. More recently, the so called SPDE-based sampling has been
developed in the works [5, 6, 36, 37, 43]. The major idea is to generate samples
of Gaussian fields with Matérn covariance operators by solving a certain discretised
fractional PDE with white noise forcing. The Karhunen-Loeve (KL) expansion
[31, 34] is another popular approach for sampling Gaussian random fields, however,
it also suffers from the nonlocal nature of many covariance operators. See e.g. the
works [4, 12, 32, 38, 44, 45, 53] for the efficient computation of the KL expansion.

Gaussian random fields are completely characterised by the mean function and
covariance operator, and are thus simple models of spatially varying functions. They
are also flexible; depending on the regularity of the covariance operator it is possible
to generate realisations with different degrees of smoothness. However, in some
practical situations the full information on the covariance operator might not be
available, e.g. the correlation length, smoothness, and point-wise variance of the
random field are not known. Of course, these model parameters can be fixed a
priori. However, the posterior measure of a Bayesian inverse problem is often very
sensitive to prior information. We illustrate this in the following simple example.



-3
True value Corr. len. 0.1 Corr. len. 0.3 Corr. len. 1.41 x10

0p 0 0 0
k 6
‘ )
0.5 0.5 0.5 0.5 g
-2
1.0 1.0 1.0 1.0 -4
0 05 10 0O 05 10 O 05 10 0 05 1.0

%1076

0 0 0
e :
05( ® ¥ & |05 0.5 2
“aen 1
1.0 1.0 — 10
0 0 05 10

0 0.5 1.0 0 0.5 1.

Figure 1.1: Estimation of a Gaussian random field. The top-left figure shows a realisation of the
true random field. The task is to estimate this field given 9 noisy point evaluations (black dots). The
three top-right (bottom-right) figures show the posterior mean (pointwise posterior variance) for
mean-zero Gaussian prior random fields with exponential covariance operator, standard deviation
o =1, and correlation lengths ¢ = 0.1,0.3,1.41.

Example 1.1 We consider a Gaussian random field with exponential covariance
operator on the unit square D = (0,1)2. The goal is to estimate the statistics of
this field given 9 noisy point observations using Bayesian inversion (cf. §2.4). In
Figure 1.1 we plot a realisation of the true field together with the posterior mean and
variance for three prior fields with a different (fixed) correlation length each.

We clearly see in Figure 1.1 that the posterior measure depends crucially on the
underlying prior measure and associated correlation length. If the assumed correla-
tion length is too small compared to the truth, then the posterior mean estimate is
only accurate close to the observation locations. If, on the other hand, the assumed
correlation length is too large, we obtain an overconfident posterior mean estimate.
Inaccurate, fixed prior random field parameters can substantially deteriorate the
estimation result in Bayesian inverse problems. We treat this problem by modelling
unknown hyperparameters as random variables.

In statistics, a model with multiple levels of randomness is called a hierarchical
model. In Bayesian statistics, this means that we work with parameterised prior mea-
sures (hyperpriors). Hierarchical models in forward and inverse UQ are discussed in
[52]. We also refer to [40, Ch.10] for general hierarchical Bayesian analyses. Finally,
hierarchical Bayesian inverse problems with spatially varying random fields are dis-
cussed in [5, 18, 30, 42, 47, 49]. In our work we consider parameterised Gaussian
random fields where the covariance operator depends on random variables. No-
tably, the resulting random field is not necessarily Gaussian, and we can thus model
a larger class of spatial variations. However, the greater flexibility of parameterised
Gaussian fields brings new computational challenges as we explain next.

Assume that we discretise a Gaussian random field by a KL expansion. The basis
functions in this expansion are the eigenfunctions of the covariance operator. For



fixed, deterministic hyperparameters it is sufficient to compute the KL eigenpairs
only once since the covariance operator is fixed. However, changing the hyperpa-
rameters changes the covariance and often requires to re-compute the KL eigenpairs.
The associated computational cost and memory requirement scales at least quadrat-
ically in the number of spatial unknowns. Hence it is often practically impossible
to use uncertain hyperparameters in a (Gaussian) random field model in 2D or 3D
physical space. To overcome this limitation we suggest and study a reduced basis
(RB) surrogate for the efficient computation of parameter dependent KL expansions.
In [47] the authors use a polynomial chaos surrogate for this task. In contrast, our
reduced basis surrogate approximates the KL eigenpairs by a linear combination
of snapshot eigenpairs associated with certain fixed values of the hyperparameters.
Since this requires the solution of eigenproblems in a small number of unknowns
(which is equal to the number of reduced basis functions) the computational cost
can be reduced significantly.

Reduced basis methods were introduced in [35], and are typically used to solve
PDEs for a large number of parameter configurations, see e.g. [27, 39]. In contrast,
parameterised eigenproblems have not been treated extensively with reduced basis
ideas. We refer to [28, 29| for applications and reviews of reduced basis surrogates to
parameterised eigenproblems with PDEs. For non-parametric KL eigenproblems we
mention that reduced basis methods have been combined with domain decomposi-
tion ideas. In this situation we need to solve several low-dimensional eigenproblems
on the subdomains in the physical space. It is then possible to construct an efficient
reduced basis by combining the subdomain solutions, see [12] for details.

We point out that many differential operators are local, and hence the associated
discretised operator is often sparse. Linear equations or eigenvalue problems with
sparse coefficient matrices can often be solved with a cost that scales linearly in the
number of unknowns. In contrast, the reduced linear system matrix is often dense
and the solution cost is at least quadratic in the number of unknowns. Hence, for
reduced basis methods to be cheaper compared to solves with the full discretised
PDE operator it is necessary that the size of the reduced basis is not too large com-
pared to the number of unknowns of the full system. Notably, in most cases the
discretised KL eigenproblem results in a dense matrix since the covariance integral
operator is nonlocal. Hence we expect a significant reduction of the total compu-
tational cost even if the size of the reduced basis is only slightly smaller than the
number of unknowns in the unreduced eigenspace.

The remainder of this report is organised as follows. In §2 we establish the math-
ematical theory for working with parameterised Gaussian random fields. In partic-
ular, we discuss the well-posedness of a hierarchical forward and inverse problem,
respectively, with an elliptic PDE where the coefficient function is a random field
with uncertain hyperparameters. In §3 we describe sampling algorithms to approx-
imate the solution of hierarchical forward and inverse problems. In §4 we propose
and study a reduced basis surrogate for the parametric KL eigenpairs which arise
from the sampling methods in §3. Specifically, we consider Matérn-type covariance
operators, and suggest a linearisation to enable an efficient offline-online decompo-
sition within the reduced basis solver. In §5 we introduce an efficient reduced basis



sampling, and analyse its computational cost and memory requirements. Finally,
we present results of numerical experiments in §6. We study the approximation
accuracy and speed-up of the reduced basis surrogate, and illustrate the use of the
reduced basis sampling for hierarchical forward and Bayesian inverse problems.

2. Mathematical framework

To begin, we introduce the notation and some key elements, in particular, Gaus-
sian and parameterised Gaussian measures. Next, we describe a general setting
for forward uncertainty propagation and an associated Bayesian inverse problem.
Importantly, we investigate the well-posedness of these problems if the uncertain
elements are modeled by parameterised Gaussian random fields. This is a neces-
sary extension of the by now well-established solution theory for Gaussian random
inputs.

2.1. Gaussian measures

Let (2, A,P) denote a probability space. We recall the notion of a real-valued
Gaussian random variable.

Definition 2.1 The random variable £ : 2 — R follows a non-degenerate Gaussian
measure, if

P@S$%:NWﬁWﬁwqﬂ%:[;@%ﬁ%wp(l£%93d% T ER,

for some a € R and b > 0. The Gaussian measure is degenerate, if b = 0. In this
case, we define N(a,0) := d,, the Dirac measure concentrated in a.

Let X denote a separable R-Hilbert space with Borel-o-algebra BX. We now intro-
duce Gaussian measures on X.

Definition 2.2 The X -valued random variable 6 : 2 — X has a Gaussian measure,
if TO follows a Gaussian measure for any T' € X* in the dual space of X. We write
0 ~ N(m,C), where

C = Cov(0) := E[(0 — m) ® (0 — m))].

In Definition 2.2 we distinguish two cases. If X is finite-dimensional, then we call
0 a (multivariate) Gaussian random variable with mean vector m and covariance
matrix C. If X is infinite-dimensional, then 6 is called Gaussian random field with
mean function m and covariance operator C.

We now discuss two options to construct a Gaussian measure with given mean
function m € X and covariance operator C : X — X. While any m € X can be used
as a mean function, we assume that C is a linear, continuous, trace-class, positive
semidefinite and self-adjoint operator. This ensures that C is a valid covariance



operator, see [1, 33]. We denote the set of valid covariance operators on X by
CO(X).

If dim X < oo, we can identify a Gaussian measure on X in terms of a probability
density function w.r.t. the Lebesgue measure.

Proposition 2.3 Let X :=RY m € X and C € CO(X) with full rank. Then
N(m, C)(B) = / n(0:m,C)d0, B e BX (2.1)
B

where
n(;m,C)(B) = det(27C) "/ exp (—=(1/2)(8 — m,C*(6 — m))) (2.2)

18 its probability density function.

If dim X = oo, we can construct a Gaussian measure on X using the so-called
Karhunen-Loéve (KL) expansion.

Definition 2.4 Let dim X = oo and let (\;, ¢;)52, denote the eigenpairs of C, where
()32, form an orthonormal basis of X. Let £ : Q@ — R™ be a measurable function.
Furthermore, let the components of & form a sequence (&), of independent and
identically distributed (i.i.d.) random wvariables, where & ~ N(0,1). Then, the
eTpanston

Oxr = m+ > VA
i=1

18 called KL expansion.

One can easily verify the following proposition, see [31, 34].

Proposition 2.5 0k, is distributed according to N(m,C).

In the remainder of this paper we assume that all eigenpairs are ordered descendantly
with respect to the absolute value of the associated eigenvalues. For illustration
purposes we give a example for a Gaussian measure on an infinite-dimensional,
separable Hilbert space.

Example 2.6 Let X := L2(D;R), where D CR? (d =1,2,3) is open, bounded and
connected. We define the exponential covariance operator with correlation length
¢ >0 and standard deviation o > 0 as follows,

exp exp

Cig X 5 X, o [ AP plade (23)
D
et 1D x D= R, (v,y) = o exp (—dist(z,y)) |

exp

where dist is the metric induced by the 2-norm.
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Figure 2.1: Samples of mean-zero Gaussian random fields with exponential covariance, ¢ = 1 and
¢€4{0.1,0.5,1.1}.

We now briefly discuss the implications of £ and ¢ on a (mean-zero) Gaussian mea-
sure with exponential covariance operator N (O,Céi’g)) as in (2.3). The correlation
length ¢ models the strength of the correlation between the random variables (x)
and 6(y) in two points 2,y € D in the random field 6§ ~ N(0, C.gﬁ’g)). If ¢ is small, the
marginals 0(x) and 6(y) are only strongly correlated if dist(z, y) is small. Otherwise,
if ¢ is large, then #(x) and 6(y) are also strongly correlated, if dist(z,y) is large. In
Figure 2.1, we plot samples of mean-zero Gaussian measures with exponential co-
variance and different correlation lengths. The pointwise standard deviation o is
constant for all x € D. One can show that the realisations of € are a.s. continuous,
independently of ¢ and o.

2.2. Parameterised Gaussian measures

We now construct parameterised measures. We denote the space of parameters
by R C RN® and assume that R is non-empty and finite-dimensional. Moreover, we
assume that (R, R) is a measurable space. In the following we denote an element
of R by 19 and a random variable taking values in R by 7 :  — R. We recall the
notion of a Markov kernel; this is a measure-theoretically consistent object for the
representation a parameterised probability measure.

Definition 2.7 A Markov kernel from (R, R) to (X,BX) is a function K : BX x
R — [0,1], where

1. K(B|-): R—[0,1] is measurable for all B € BX,
2. K(-|r) : BX — [0,1] is a probability measure for all 9 € R.

We consider Markov kernels where K (+|79) is a Gaussian measure for all 7y € R.

Hence, we define a parameterised Gaussian measure in terms of a Markov kernel
from (R,R) to (X, BX). Particularly, we define

R > 19— K(:|10) := N(m(m),C(m0)), (2.4)
where
m:R— X, C:R— CO(X)

are measurable functions. The family of Gaussian measures in (2.4) does not define
a valid parameterised measure yet, it remains to identify a measure on the parameter
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space R. To this end let 7 : Q2 — R be an R-valued random variable. We assume
that 7 is distributed according to some probability measure y'. Now, let 0 : Q — X
be an X-valued random variable. We assume that § ~ K(-|7). Then, the joint
measure of (7,0) : Q — R x X is given by

4= R®BX 5 B //B K(d0)r)(dr) < [0, 1]. (2.5)

The measure p in (2.5) models a two-step sampling mechanism. Indeed, to generate
a sample (7,0) € R x X with distribution u we proceed as follows:

1. Sample 7 ~ 1/,
2. Sample 6 ~ K (-|1).

Finally, let 1" be the marginal of y w.r.t. to 0, i.e.,
w1 (Bz) := u(R x By), B, € BX. (2.6)

Alternatively, 1/ can be defined in terms of the composition of ' and K, p" := /K.
Note that p” is a measure on X, and that the Markov kernel K is the parameterised
(Gaussian measure which we wanted to construct.

Remark 2.8 We point out that even if K(-|19) is a Gaussian measure for any o €
R, the marginal i” is not necessarily a Gaussian measure. We give two examples.

(a) Let R := X := R, let y' be a Gaussian measure and K(-|19) := N(1o,0?).
Then 1" is a Gaussian measure. Indeed, this construction models a family of
Gaussian random variables where the mean value is Gaussian.

(b) Let R be a finite set. Then u” is called Gaussian mizture and is typically not
Gaussian. See §1.1 and §2.1 in [20].

Now, we return to Example 2.6 and construct an associated Markov kernel.

Example 2.9 We consider again the exponential covariance operator that is given
in (2.3). Let £ >0 and@ > g > 0. For any { € [¢{,diam(D)] and o € [0,T], one can
show that CL2Y) € CO(X) is a valid covariance operator. The parameters T = (¢, 0)
are random variables on a non-empty set R := [{,diam(D)] x [¢,@|. The associated
probability measure p' is given by

p= g @ g

Here, 11, is given such that £~ ~ Unif[diam(D)~, £7'] and 1, is a Gaussian measure
that is truncated outside of [0,|. o models the standard deviation in every single
point 6(z), for any x € D. The measure i’ and the Markov kernel K(-|¢,0) =

N(O,Céﬁ’g)) induce a joint measure p. This can now be understood as follows:
1. Sample T from pu':
(a) Sample the correlation length € ~ pj,

8



(b) Sample the standard deviation o ~ p, .

2. Sample the random field 0 ~ K(-|¢,0) with exponential covariance operator,
standard deviation o and correlation length €.

Hence, we modelled a Gaussian random field with exponential covariance, where the
correlation length and standard deviation are unknown.

In the following sections we study parameterised Gaussian measures in the setting
of forward uncertainty propagation and Bayesian inversion.

2.3. Forward uncertainty propagation

We consider a classical model problem given by the elliptic partial differential
equation (PDE)

=V (exp(0(2))Vp(z)) = f(x)  VreD, (2.7)

plus suitable boundary conditions. The PDE in (2.7) models the stationary, single-
phase, incompressible flow of fluid in a permeable domain D C R¢?, combining
Darcy’s law and a mass balance equation. p is the fluid pressure, f is a source term,
and 6 is the spatially varying log-permeability of the fluid reservoir. We assume that
D is connected, open and bounded, and that # is an element of a separable Hilbert
space X. We define the PDE solution operator

S: X' — Hy(D), 0 p=3S8(0),

where X’ C X. If X = £%(D;R), a typical choice for X’ is the separable Banach
space of continuous functions C°(D) := {f|f: D — R continuous}.

We now consider 6 to be uncertain. We model the spatially varying uncertainty
in 6 by assuming that € is a (parameterised) Gaussian random field with continuous
realisations almost surely (a.s.). Forward propagation of uncertainty means in our
setting that we want to solve the elliptic PDE (2.7) with random coefficient function
6. For a well-posed problem the solution of (2.7) is a probability measure on H} (D).

We often consider a scalar-valued quantity of interest @ : Hj(D) — R instead
of the full space Hj(D). For convenience we define @ = @ o S which maps the
uncertain parameter directly to the quantity of interest. The forward propagation
of uncertainty is modeled by the push-forward measure

QF " = p"(Q € ) =P(Q(0) € -),

where 6 ~ u”. If p” is a Gaussian measure, the well-posedness and properties of
Q% 11" have been studied in e.g. in [9, 19]. In the following, we extend this theory and
discuss the existence of Q% with respect to the possibly non-Gaussian measure
1. Moreover, we also study the existence of moments of Q#4”. To this end we
make the following assumptions.

Assumptions 2.10 (a) Q7K (:|1y) == K(Q € ‘|n) := P(Q(0) € |7 = 79) is
well-defined for u'-almost every 7y € R.



(b) For some k € N it holds
my(70) == / Q(0)" K (df|) < oo

for ' -almost every 7o € R and [ my(7)p/(d7) < o0.

Theorem 2.11 Let Assumptions 2.10 hold. Then, the measure Q%" is well-
defined. Moreover, [ Q(0)*1"(df) < oo where k € N is as in Assumption 2.10(b).

Proof. By assumption, Q% K (-|ry) is well-defined and a probability measure for
p'-almost every 7y € R. Hence,

oy — /R K () (dr)

is well-defined and a probability measure. The finiteness of the moments can be
shown analogously. O

Typically, Q% i’ cannot be computed analytically. We discuss the approximation of
this measure by standard Monte Carlo in §3.3.

2.4. Bayesian inverse problem

Again, we consider the PDE (2.7) with a random coefficient § ~ po. First, we
assume that po is a Gaussian measure and discuss the standard (‘Gaussian’) case of
a Bayesian inverse problem.

Assume that we have collected noisy observational data. We want to use these
observations to learn the uncertain parameter 8. We proceed by the Bayesian ap-
proach to inverse problems and compute the conditional probability measure of 6
given the observations. This measure is called posterior measure - it reflects the
knowledge about # after observing the data. In contrast, the knowledge about 6
without observations is modelled by o, the prior measure.

Let O : H} — RYbs be a linear operator. It is called observation operator
and maps the PDE solution to the observations. G := O o S is called forward
response operator and maps the uncertain parameter 6 to the observations. Let
y € RNevs denote the observations. We assume that the observations y are perturbed
by additive Gaussian noise n ~ N(0,T), where I' € RNobs*Nobs i5 a symmetric and
positive definite matrix. 7 and 6 are statistically independent. The event that
occurs while we observe y is {G(6) + n = y} € BX. The posterior measure is given
by P(8 € -|G(8) +n = y). It can be derived using Bayes’ formula which we introduce
later in this section.

If Assumptions A.2 (that are identical to Assumption 2.6 from [48]) hold, and if
the prior measure i is Gaussian, then one can show that a posterior measure exists,
that it is uniquely defined and that it is locally Lipschitz-continuous w.r.t the data
y € RNevs. These statements refer to the space of probability measures on (X, BX)
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that are absolutely continuous w.r.t. ug. This space, equipped with the Hellinger
distance, is a metric space. We denote it by (P(X, BX, o), dge), where

der (1, v2) = / ( 3—:}(9) — \/j—z(ﬁ)) po(do).

Hence, the problem of finding a posterior measure on P(X, BX 1) is well-posed in
the sense of Hadamard [25]. We give more details in Appendix A.

The choice of the prior measure jy has a considerable impact on the posterior.
We discussed this in §1, see also Figure 1.1. However, it is often not possible
to determine the prior sufficiently. Hence it is sensible to assume that the prior
measure is (partially) unknown. pyg is then called hyperprior and can be modelled
by a Markov kernel (see §2.2). Here, we consider pug(-|7) := K(:|7) where 7 is a
random variable and p’ is the prior measure of 7. The posterior measure in this
so-called hierarchical Bayesian inverse problem is then

p’ =P((r,0) € -|G(0) +n=y). (2.8)

It can be determined using Bayes’ formula

w(B) =7, [ exp(=a(0)alablr @) (29)

where

B e R®BX,
Zo= [ ex(-ate)utaslnnan)
2(6) = S IT(G(0) )}

We will now show that the posterior measure based on a hyperprior is well-defined
and that the Bayesian inverse problem in this setting is well-posed.

Theorem 2.12 Let u?™ be the posterior measure of the Bayesian inverse problem
G(0) +n=v,

using po(-|m0) as a prior measure, where 19 € R is fized. In particular, let

pm(B) = 7 /B exp(—®(0))po(d0lm), B € BX,

Y,70
Zymy 1= [ expl-2(6))o(d]m)
X

We assume that the computation of u¥™ is well-posed for u'-almost every 19 € R
and that a constant L(r, 1) € (0,00) exists for y'-almost all 79 € R, such that

dpe (7, ™) < L(r, 10) ||ly1 — y2ll2, (2.10)

11



for any two datasets yi,y2, where max{||lyi|l2, ||yz]2 } < r. Moreover, we assume
that L(r,-) € L2*(R,R;R) for all v > 0, and that Z,y € L'(R,R;R). Then, the
computation of p¥ is well-posed.

Proof. By Bayes’ Theorem, the posterior measure p¥ = [ f ¥ 7 (dO) ' (dr) is well-
defined and unique if the normalising constant Z, is pos1t1ve and ﬁmte By assump-
tion it holds Z, .y € (0,00). Hence,

Z, = / Zy, p(dr) > 0.
—

>0

Furthermore, also by assumption we have
2= [ Zyent(dr) = 12,01 < oc.

Let y1,72 € R be a two datasets and let 7y € R. By assumption, a constant
L(7) € (0,00) exists, such that

dae (7, p#27) < L(70) ly1 — y2|2- (2.11)

Now, we have

2
dpuvr duyz2
dua(p = [ ( o 0.r) [ (9,7)) u(dr, do),

dp?
dp

where
——(0,7) = Z exp(—=®(9)), v € {112}
This density is constant in 79. Let y € {y1,92}. The dens1ty (9 Tp) is identical

to the density in the Bayesian inverse problem using po(+|m) as a prior with a fixed
7o € R. The latter is given by d—d“y—o)(G). Hence,

po(v7o

:
sl = [ <\/di’:yl|; e>—\/%w>> u(dr. o)
< / dyro (7, 724 (dr)
< [ L@ - vl
— [ Ll @l -l < oo,

The right-hand side is finite, since L is square integrable. This implies that the
computation of p¥ is well-posed. O

12



3. Computational framework

In this section we discuss the sampling from parameterised Gaussian measures
and the respective Markov kernels. We begin with non-parameterised Gaussian
measures though. We briefly discuss the spatial discretisation of random fields
using finite elements. Once the spatial discretisation is fixed we only need to sample
from a (high-dimensional) multivariate Gaussian measure. We review how this can
be done using the Cholesky decomposition, (truncated) KL expansion and circulant
embedding. Then, we analyse the computational costs when using the truncated
KL expansion to sample from a parameterised Gaussian random field. We conclude
this section by revisiting the forward and inverse problem, respectively, and describe
sampling based methods to approximate their solutions. Both these methods require
repeated sampling from a family of Gaussian random fields with different means and
covariance operators each.

3.1. Sampling of Gaussian random fields

Consider a Gaussian random field N(m, C) on (X, BX). For practical computa-
tions the infinite-dimensional parameter space X must be discretised. Here, we use
finite elements. Let By, := (¢; : i = 1,..., N) € X" denote an N-dimensional basis
of a finite element space. We approximate X by X}, := span(B;). Note that we can
identify X, = RY.

Let (-,-) denote the Euclidean inner product on RY. Note that R" is a separable
Hilbert space with inner product (-, )y = (-, M-), where M = BB, is the Gramian
matrix associated with the finite element basis Bj. The Gaussian measure N(m, C)
on (X,BX) can then be represented on RY by the measure N(B;m, BiCBy,) with
mean vector By m and covariance matrix B;CBy,.

From now on assume that X := R¥ is a finite dimensional (and thus separable)
Hilbert space with inner product (-,-)x. Moreover, we assume that the Gaussian
measure N(m,C) is mean-zero, that is m = 0. A simple sampling strategy uses
the Cholesky decomposition LL* of C. Let £ ~ N(0,Idy). Then, it is easy to
see that L& ~ N(0,C). The computational cost of a Cholesky decomposition is
O(N3; N — o0).

Alternatively, we can use the KL expansion (see Definition 2.4)

N
i=1

where (\;, )Y, are the eigenpairs of C. Recall that the eigenvectors form an or-
thonormal basis of X and that & ~ N(0,Idy). Computing the spectral decom-
position of a symmetric matrix is typically more expensive than computing the
Cholesky decomposition. However, there are cases when the spectral decomposition
can be computed cheaply. Here, we briefly describe circulant embedding, see [16].
Assume that C is Toeplitz (in 1D space) or block Toeplitz with Toeplitz blocks (in
2D space). Then, C can be embedded into a positive definite circulant matrix (in
1D) or into a positive definite block circulant with circulant blocks matrix (in 2D)
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Ceire € RNeirexNeire - The eigenvectors of this matrix are given by the discrete Fourier
transform. Hence, eigenvectors and eigenvalues can be computed by the FFT in
O(Ncirc IOg Ncirc)-

The KL expansion offers a natural way to reduce the stochastic dimension of an
X-valued Gaussian random variable by simply truncating the expansion. This can
be interpreted as dimension reduction from a high-dimensional to a low-dimensional
stochastic space. A reduction from an infinite-dimensional to a finite-dimensional
stochastic space is also possible. Let Ng, € N, Ny, < N and consider the truncated

KL expansion
Nsto

oo = kit
=1

The remaining eigenvalues of the truncated KL expansion give an error bound in

£2

N
E[l6w - oiclx] = >

i:Nsto+1

Furthermore, the truncated KL expansion solves the minimisation problem

_min B[ - 011% ]
e L?(RNsto; X)

for any given Ng, € N. Hence, the truncated KL expansion 0%}0 is the optimal

Ngio-dimensional function which approximates fky,. In the statistics literature this

method is known by the name principal component analysis.

Observe that 685 is a Gaussian random field on X with covariance operator

Nsto

CNoto =y "N (1 ® ). (3.1)
=1

This covariance operator has rank < Ng, < N. Sampling with the truncated KL
expansion requires only the leading N, eigenpairs. We assume that this reduces
the computational cost asymptotically to O(N?Nyo; N — o0). We discuss this in
more detail in §3.2. In the remainder of this report, we generate samples with the
truncated KL expansion.

3.2. Sampling of parameterised Gaussian random fields

We will use sample-based techniques to approximate the pushforward and poste-
rior measure in the forward and Bayesian inverse problem, respectively. To this end
we require samples (71,61), ..., (TNuwps ONowy) ~ #- We assume that sampling from
i’ is accessible and inexpensive. However, for any sample 7, ~ p’ we also need to
sample 0, ~ po(+|7,). This requires the assembly of the (dense) covariance matrix
C(1n), and its leading Ny, eigenpairs. We abbreviate this process by the function
€igs(C(7n), Nato) Which returns ¥ := (] / 2 (1) 1hi(13))¥ote . We give the full procedure
in Algorithm 1.
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The cost for the assembly of the covariance matrix is of order O(N*; N —
o0). We assume that the cost of a single function call eigs(-, Ng,) is of order
O(N? - Nyo; N — 00). This corresponds to an Implictly Restarted Lanczos Method,
where p = O(Ngo). See [7, 24] for details. Thus, the total computational cost of
Algorithm 1 is O(Ngnp + (N? - (Ngto +1)); N — o0). The largest contribution to the
computational cost is the repeated computation of the leading eigenpairs of C(7,).
We can avoid this cost in certain special cases. See e.g. the work by Dunlop et al.
[18] where a family of covariance operators with identical eigenfunctions is consid-
ered. The associated eigenvalues can be computed analytically. However, in this
paper we focus on parameterised covariance operators where the full eigenproblems
have to be solved numerically for all parameter values.

Algorithm 1: Sampling from parameterised Gaussian measure u
for n € {1, ..., Ngnp} do
Sample 7, ~ 1
U, < eigs(C(7), Nsto)
Sample £ ~ N(0, Idy,,, )
O, < mo(Th) + V.8
end

3.8. Monte Carlo for forward uncertainty propagation

First, we return to the forward uncertainty propagation problem (see §2.3). A
straightforward way to approximate the pushforward measure Q7" is a Monte
Carlo method. In particular, we draw Ng,, € N independent samples from the
parameterised Gaussian measure i,

(T17 01)7 ctty (TNsmp7 eNsmp) ~ /'L

Then, we evaluate the quantity of interest Q(6,), ..., Q(fn,.,,)- Finally, we construct

the discrete measure
1 Nsmp

Q#M// — N Z 6Q(9n)'
smp S —)

The Glivenko-Cantelli Theorem (see [51, §5]) implies that @ — Q%" weakly,
as Ngmp — 00.

3.4. Markov Chain Monte Carlo for Bayesian inverse problems

Since sampling independently from the posterior measure is in general not pos-
sible we use Markov Chain Monte Carlo (MCMC). Meaning that we construct an
ergodic Markov chain which has the posterior measure as a stationary measure. The
samples

(7—17 91)7 ) (TNsmp’ QNsmp) ~ [j’y

can then be used to approximate integrals with respect to the posterior measure.
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In our setting the prior measure is a parameterised Gaussian measure on a (dis-
cretised) function space. Following [18] we suggest to use a Metropolis-within-Gibbs
sampler. This allows us to sample 7 and # in an alternating way using two different
proposal kernels, one for 6 and one for 7.

In most cases, the hyperparameter space R will be low dimensional. Hence,
various Metropolis-Hastings proposals can be used to efficiently propose samples of
7. We denote the conditional density of this Metropolis-Hastings proposal by ¢z :
R x R — R. On the other hand, 6 is a X-valued random variable where X is high-
dimensional or possibly infinite-dimensional. Therefore, we suggest a preconditioned
Crank-Nicholson (pCN) proposal. Combining the Metropolis-Hastings and the pCN
proposal we arrive at the MCMC method in Algorithm 2.

Some comments are in order. In Algorithm 2 we require dim X < oo. See §3.1 for
the discretisation of the space X. In this case, the Gaussian measure N(m(g),C(7))
has a probability density function (see Proposition 2.3), and we use this probability
density function to compute the acceptance probability agr for the Gibbs move of
7. It is however possible to compute ar without access to the probability density
function. In this case one can also define an algorithm for an infinite dimensional
space X. We refer to [18] for a rigorous introduction of the infinite-dimensional
version.

Algorithm 2: Metropolis-within-Gibbs to sample from the posterior mea-
sure of (7,6)

Let (79, 6p) be the initial sample of the Markov chain.
for n € {1,..., Nymp} do

Sample 7 ~ qg(-|Tn-1)

g : ar(Tn—1]7*) _ n(@n_1;m(7*),C(T*))
aR(Tn—lv T ) < min {1’ qr(7*|Tn—1) n(@nfl;m(Tnfl),C(Tnfl))}

Sample Ug ~ Unif]0, 1]
if Ur < agr then
| T T"

else
| Tn < Tn—-1

end
Sample 6* ~ N(y/1 — 20,1, BC(7))
(B 1307) = min{1, exp(—D(6°) + (0, 1))}
Sample Ux ~ Unif|0, 1]
if Ux < ax then
| On < 0"
else
‘ Qn <— Qn_l
end

end

It can be proved that Algorithm 2 is valid to sample from pY. We summarise
this in the following Proposition and refer to §3 of [18] for a similar statement and
proof.
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Proposition 3.1 Algorithm 2 defines a Markov kernel MK from (X x R,BX ® R)
to (X x R,BX ® R) that has p¥ as a stationary measure. In particular,

MK = 1Y = /MK(B|T, p’(dr,df) = p?(B) (B € BX ®R).

4. Reduced basis approach to parameterised eigenproblems

In §3.2 we discuss the sampling from parameterised Gaussian random fields.
The largest contribution to the computational cost in this sampling procedure is
the repeated computation of eigenpairs of the associated parameterised covariance
matrix C(7y) for multiple parameter values 75 € R. Reduced basis (RB) methods
construct a low-dimensional trial space for a family of parameterised eigenproblems.
This is the cornerstone in our fast sampling algorithm. To begin we explain the basic
idea behind reduced basis (RB) approaches for eigenproblems. There are multiple
ways to construct a reduced basis, such as the proper orthogonal decomposition
(POD), as well as single- and multi-choice greedy approaches. POD and greedy
approaches for parameterised eigenproblems are discussed and compared in [28]. In
this paper we focus on the POD.

RB algorithms consist of two parts, an offline or preprocessing phase and an on-
line phase. The construction of the reduced basis is the offline phase. In the online
phase the reduced basis is used to solve a large number of low-dimensional eigen-
problems. Finally, in §4.3, we discuss the offline-online decomposition for Matérn-
type covariance operators. To be able to implement the RB approach efficiently
we approximate the full covariance operators by linearly separable operators. We
explain how this can be done, and finally analyse the proposed class of approximate
operators.

4.1. Basic idea
Let C : R — CO(X) be a measurable map, where (X, (,)x) := (RN, (-,)5/) is a
finite-dimensional space (see §3.1). In Algorithm 1 we need to solve the generalised

eigenproblem associated with C(7y) for multiple parameter values 79 € R. That is,
we want to find (A\;(70), ¥i(70)) ¥ € (R x X)Nsto, such that

C(m0)vi(10) = Ni(70) Mpi(70). (4.1)

X is in general high-dimensional, which results in a large computational cost for
solving the eigenproblems. However, it is often not necessary to consider the full
space X. If we assume that the eigenpairs corresponding to different parameter
values are closely related, then the space

span{;(m0) : i =1,..., Ngto, 70 € R} C X

can be approximated by a low dimensional subspace Xgp, where Ngp := dim Xgp <
N. We point out that the truncated KL expansion requires Ny, eigenpairs by
assumption. However, the reduced operators are Nrp X Nrp matrices with Ngg
eigenpairs. Hence, Nrg > Ny, is required.
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Now, let W € ngB be an orthonormal basis of Xgp with respect to the inner
product (-,-)xps = (- )x = (-, )m. W is called reduced basis and Xgp is called
reduced space. We can represent any function ¢ € Xy by a coefficient vector
w € RM®B_ such that ¢ = Ww. The reduced eigenproblem is obtained by a Galerkin
projection of the full eigenproblem in (4.1), and is again a generalised eigenproblem.
The task is to find (ARB(75), wkB (7))t € (R x RVrB)Nsto guch that

CRB<T())’(UZ'(T0> = )\?B(To)MRBwZ’(T()), = 1, ceey Nsto- (42)

In (4.2) we have the reduced operator CRB(ry) := W*C(m0)W, and the reduced
Gramian matriz MR8 .= W* MW , that are both Ngg X Nrg matrices. The eigen-
vectors in Xgp can then be recovered by ¥EB (1) = Ww;(7g), i = 1, ..., Nyto-

4.2. Offline-online decomposition

A reduced basis method typically has two phases. In the offline phase the re-
duced basis W is constructed. In the online phase the reduced operator CRB(7)
is assembled, and the reduced eigenproblem (4.2) is solved for selected parameter
values 7 € R. To be able to shift a large part of the computational cost from the
online to the offline phase we assume that the following offline-online decomposition
is available for the family of parameterised covariance operators.

Assumptions 4.1 Let Ny, € N. We assume that there are functions F : R — R
and linear operators Cy, k =1, ..., Niin, such that

Nin
C(TQ) = ZFk(TO)Clm 70 - R

k=1

In this case, C(19) is called a linearly separable operator.

4.2.1. Offline phase

We use snapshots of the full eigenvectors to construct the reduced basis. Meaning
that we choose a vector 75" € R™=a» and solve the full eigenproblem (4.1) for all
elements of 7°"*P. We then have

Wsnap = (wi(,]_ssnap) 5= 17 "'7Nsnapai = 17 "'aNsto)a

and define the reduced space Xgp := span(Wsp,p). Next, we construct an orthonor-
mal basis for this vector space. One option to do this is the proper orthogonal
decomposition. Note that the POD is in fact equivalent to a principal component

analysis of the ‘covariance operator’ Ws(fa)lp i= WanapWanap- As result of the POD we

obtain a spectral decomposition of Ws(fgp of the form
W), = QAQ",
where A = diag(A]™", ..., A\Y"™") is a diagonal matrix containing the eigenvalues of

2 . . .
Ws(n;p and each column of () contains the associated orthonormal eigenvectors. We
use the eigenvectors with non-zero eigenvalues as basis vectors of Xgg, that is,

W= (Q.;: X > 0,i=1,....N).
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The magnitude of the eigenvalues of Ws(n?p is an indicator for the error when the
corresponding eigenvectors are not included in W. See the discussion in §3.1. Ne-
glecting eigenvectors however is beneficial due to the smaller dimension of the re-
duced basis. Depending on the pay-off of the dimension reduction compared to the
approximation accuracy of the reducd basis one can choose a threshold A > 0 and
work with the basis

W:=(Q : N"">\i=1,..,N).

Remark 4.2 In this paper we compute the singular value decomposition (SVD)
of Wanap instead of the spectral decomposition of stap This is possible since the
squares of the singular values of Wenay, are tdentical to the eigenvalues of Wsnap

There are many ways to choose the snapshot parameter values 75"*. In our appli-
cations 7 is a random variable with probability measure p’. Hence, a straightforward
method is to sample independently 75" ~ 1/ (s = 1, ..., Ngnap). Alternatively, one
can select deterministic points in R, e.g. quadrature nodes. We will come back to
this question in §6 where we discuss the numerical experiments.

4.2.2. Online phase

In the online phase we iterate over various hyperparameter values 75 € R. In
every step, we assemble the operator C®B(7y), and then we solve the associated
eigenproblem (4.2). By Assumptions 4.1, it holds

Min

7'0) = Z Fk(To)Ck

Hence, the reduced operator can be assembled efficiently as follows,

Niin Niin Niin
CRB(r) =W~ ZF T)ICW = ZFk YW CW =Y Fi(r)Ci®
k=1

The reduced operators CRF® (k = 1,..., Nji,) can be computed in the offline phase
and stored in the memory. In the online phase, we then only need to compute a
certain linear combination of (CRB)NI‘" This reduces the computational cost of the
assembly of the reduced operator significantly. After the assembly step we solve the
reduced eigenproblem (4.2) and obtain the eigenvectors ¥XB(7) 1= Wuw;(rg) € X
and eigenvalues AFB(7),i =1, ..., Nyo.

4.3. Matérn-type covariance operators

Matérn-type covariance operators are widely used in spatial statistics and uncer-
tainty quantification. They are particularly popular for modelling spatially variable
uncertainties in porous media. We are interested in solving the KL eigenproblem
with Matérn covariance operators with hyperparameters e.g. the correlation length.
Unfortunately, the Matérn-type covariance operators are not linearly separable with
respect to the hyperparameters of interest (see Assumptions 4.1). For this reason
we introduce and analyse a class of linearly separable covariance operators which
can approximate Matérn-type covariance operators with arbitrary accuracy.

19



Definition 4.3 Let D C RY,d = 1,2, 3 be an open, bounded and connected domain,
and let X := L*(D;R). Furthermore, let { € (0,diam(D)),v € (0,00],0 € (0,0).
Define the covariance kernel ¢(v,l,0) : [0,00) — [0,00) as

21—1/ v
zc(vl,o)(z) = 02@ (\/ 2V%) K, (\/ 2V§> ,
where K, is the modified Bessel function of the second kind. Then, the Matérn-type
covariance operator with smoothness v, standard deviation o and correlation length
¢ 1s given by

Cvlyo): X - X, — /Dga(x)c(l/,f,cr)(dist(x, -))dzx,

where dist : D x D — [0,00) is the Fuclidean distance in D.

Remark 4.4 The exponential covariance operator which we discuss in Eramples
2.0 and 2.9 is a Matérn-type covariance operator. Indeed, C(1/2,¢,0) = Céf;’g).

In Example 2.9 we discussed the possibility of using the standard deviation
o and the correlation length ¢ as hyperparameters in a Matérn-type covariance
operator. What are the computational implications for the KL expansion? Changing
o only rescales the KL eigenvalues, and does not require a re-computation of the KL.
However, changing the correlation length clearly changes the KL eigenfunctions. We
can see this in Figure 4.1. However, the good news is that the KL eigenfunctions for
different correlation lengths are very similar, for example, the number and location
of extrema is preserved. This suggests that we might be able to construct a useful
reduced basis from selected snapshots of KL eigenpairs corresponding to different
correlation lengths. To be able to construct and use the reduced basis efficiently
requires the linear separability of the covariance operator, see Assumptions 4.1.
The Matérn operator is linearly separable with respect to ¢. On the other hand
it is not linearly separable with respect to ¢, since the covariance function c(v, ¢, o)
is not linearly separable. However, it is possible to approximate C(v, ¢, o) with any
precision by a linearly separable operator. We show this in the remainder of this
section.

Assumptions 4.5 The correlation length { satisfies 0 < £ < € with fixed (.

Lemma 4.6 Let v € (0,00], and let Assumption 4.5 hold. Then, there is a linearly
separable operator

C(v,l,0,Np) : X = X
consisting of Nyn € 2N terms, such that asymptotically

||C<I/7 g, g, Nlin) — C(V, g, 0) HX S O(l/(Nhn'), Nlin — OO) (43)

Proof. See Appendix B. O
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Figure 4.1: Eigenfunctions 1, 11 and 94 of the Matérn-type covariance operator with correlation
lengths £ =0.01,0.1,1 and v = 1/2.

The covariance operator approximation brings new issues. The Matérn-type covari-
ance operators C(v, ¢, o) are valid covariance operators in CO(X). However, this is
not necessarily the case for C(v, ¢, o, Nyi,). One can easily verify the following.

Lemma 4.7 The operator 5(1/, 0,0, Ny) is self-adjoint, trace-class and continuous.
Proof. See Appendix B. O

However, C (1/ 0,0, Nyy) is not necessarlly positive definite. Under weak assumptions
we can cure this by replacing C (V ¢, 0, Ny,) by an operator Co(l/ ¢, 0, Ny,) which has
the exact same eigenfunctions and positive eigenvalues as C (V, l,0, Ny ), however,
all negative eigenvalues are set to zero. Formally, we define 50(% 0,0, Nyn) by

&)(Va E? g, Nhn = Z wz & wz) (44)
=1;A>

where (\;, 1;)22, are eigenpairs of C(v, {, o, Nii) and the eigenfunctions are orthonor-
mal. Note that the same technique has been applied in [11] to remove the degeneracy
of multilevel sample covariance estimators. Fortunately, we can show that the ap-
proximation error of Cy(v, £, o, Ny, ) is of the same order as the error of C(v, ¢, o, Ny ).
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Lemma 4.8 The Matérn-type covariance operator C(v,¢,0) and the approximate
operator Co(v, {, o, Nyiy) in (4.4) satisfy

Hévo(yv ‘67 g, Nlin) - C<V7 67 O-)HX S 2H5(V7 ga g, Nlin) - C(V7 g? O-)HX'
Proof. See Appendix B. O

We summarise the results in Lemma 4.6-4.8 as follows.

Proposition 4.9 Let v € (0,00). Under Assumption 4.5 there is a linearly sep-
arable, valid covariance operator Co(v,l, 0, Ny) € CO(X) consisting of Ny, € 2N
terms, such that asymptotically

Hév(](ya f, g, Nlin) - C(l/7€> J)HX S O<1/(Nhn|)7 Nlin — OO)

The expansion in (4.4) has infinitely many terms. We truncate this expansion and
retain only the leading Ny, terms, denoting the resulting covariance operator by
CO(V, g, g, Nlina Nsto)-

Finally, we discuss the sample path continuity. Samples of Gaussian random
fields with Matérn-type covariance operators are almost surely continuous functions.

In the following proposition we show that this also holds for the realisations of
N(O7 CO(V7 Ea g, Nlina Nsto))-

Proposition 4.10 Let 6 ~ N (0,50(1/,6, o, Nlin,NStO)>, where v € (0,00). Then it
holds 6 € C°(D).

Proof. We consider the random field in terms of its (finite) KL expansion,

Nsto
9= =Y \JAdig
=1

where (Xz, zzz)fitf are the eigenpairs of 50(% 0,0, Nyin, Nsio) with positive eigenvalues.

Then, 6 is a continuous function, if (1;)t° is a family of continuous functions. This

however is clear by the definition of (z@)fvzgo Indeed, let ¢ = 1,..., Ng,. Then it
holds

~ 1 ~
Gly) = 1 [ Bt st s,y e D,
i JD

By definition, ¢®4oNi)(dist(-,-)) is a continuous function. Hence, one can easily
verify that the right-hand side is continuous. O

5. Reduced basis sampling

In §3.2 we discuss sampling from a Markov kernel, or, equivalently, a parame-
terised Gaussian measure

K(:|7) := N(m(),C(7)),
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where 7 ~ p/. Now, to reduce the computational cost, we combine Algorithm 1
and reduced bases in §5.1. We discuss the computational cost of the offline and the
online phase of the suggested reduced basis sampling in §5.2. Finally, in §5.3 we
explain how the reduced basis induces an alternative expansion for the parameterised
Gaussian random field.

5.1. Algorithm

First we describe the offline phase of the reduced basis sampling. We use a POD
approach to compute a reduced basis W for C(-). Here, it is important that the
dimension of Xgp = span(W) is larger than Ny,. Furthermore, we assume that C(-)
fulfils Assumptions 4.1, i.e., it has the linearly separable form

Min

C(-):=>_ Fu(-)Cs

Having constructed the reduced basis W, we compute CR® = W*C,W, k = 1, ..., Nyp.
Then, we proceed with the online phase (see Algorithm 3). We iterate over n =

Algorithm 3: Reduced basis sampling from the parameterised Gaussian
measure
for n € {1, ..., Ngmp} do
Sample 7, ~ 1
CP(r,) + 0 By () O
URB(7 ) < eigs(CRB(7,), Nito)
U, (1,) < WURB(7,)
Sample £ ~ N(0, Idy,,, )
On <— m(1,) + Vo (70)€
end

1, ..., Nymp- In each step we first sample 7,, ~ 1. Then, we evaluate the reduced co-
variance operator CRP(7,,), compute the eigenpairs (AR (7,,), wiB(7,)) Yt of CRB(7,,),

and return UEB(7,) := ( ARB(r ) wBB(7,) i =1, ..., Nm). Next, we compute the
representation of WEB(7,) on the full space X, that is, ¥, (7,) := WURB(7,)). Fi-
nally, we proceed as in Algorithm 1: We sample a multivariate standard Gaussian
random variable with Ny, components and return m(7,) + ¥, (7,)&.

5.2. Computational cost

We assume again that X = RY. The number of solves of the full eigenproblem
in the offline phase is Ngap. We assume that Ngp,p is much smaller than the number
of samples Ngnp we want to generate. Furthermore, we assume that the dimension
of the reduced basis dim(Xgrg) = Ngp is smaller than the dimension of the full
problem N, and that C(7) and C®B(7) are both dense matrices.

The computational cost of the tasks in the offline phase is given in Table 1.
The total offline cost is O(NgnapN? + Nenap N? Neto + Nanap N2 Nito; N — 00). Since
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Task

Computational Cost

Construct the full operator
Solve the full eigenproblem
POD

O(NgnapN?)
O(NsnapNstto>
O(NsnapN2Nsto)

Table 1: Computational cost of the offline phase.

Nsnap < Ngmp the offline cost is asymptotically much cheaper than the cost of
Algorithm 1 where we solve the full eigenproblem for each sample.

The computational cost of the tasks in the online phase is given in Table 2.
The total online cost is O(Nanp N Nin + Namp Vi Nsto + Nemp N N; N — 00). In

Task

Computational Cost

Construct the reduced operator

Solve the reduced eigenproblem

O(NompNizp Niin)
O(NsmpNFz{BNstO)

Map the reduced solution to the full space | O(NgmpNrsN)

Table 2: Computational cost of the online phase.

the online phase we solve the covariance eigenproblems in the reduced space. The
high-dimensional full space X is only required when we map the reduced sample
to X. The cost of these steps is linear in the dimension N of X, and quadratic in
the dimension of the reduced basis Nrp for every sample. In constrast, the cost of
Algorithm 1 is at least quadratic in NV, for every sample. Hence, for every sample, we
need to solve an O(N; N — oo) problem using RB, but an O(N?; N — oo) problem
in the full space. This clearly demonstrates the advantages of RB sampling.

5.3. Reduced basis random field expansion

In Algorithm 3 we describe sampling from the full random field §. However, this

can be inefficient for two reasons:

1. In some applications, e.g. the Bayesian inverse problem, the random field
samples need to be stored and kept in memory. This is often impossible due

to memory limitations.

2. In some methods, e.g. the MCMC method in Algorithm 2, we need to assess
random fields with respect to some covariance operators. Hence, not only the
random fields have to be kept in memory but also at least one covariance

operator. This requires one order of magnitude more memory than a single
random field, that is, O(N?; N — oo) compared to O(N; N — 00).

The reduced basis enables a natural compression of the full random field 6. Let
0 ~ K(:|m9) for some 75 € R. The reduced basis implies the representation

0 = m(1o) + Wo(10)§ = m(10) + W‘PORB(TO>§
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for some & ~ N(0,Idy,,, ). We can represent 6 in terms of Ogp := (VFB(7)¢) € RVes
which gives
0 = m(To) + W@RB, (51)

the reduced basis expansion of the random field 6. Note that Org ~ N(0,CRB(7))
is a Gaussian random field on the reduced space. In contrast to a KL expansion
the random field expansion in (5.1) is not necessarily optimal when we compare the
number of terms Nrp required to achieve a certain approximation accuracy in the
mean-square error. We comment on the KL expansion of the non-Gaussian random
field 6 ~ u” in the following.

Let

Z::/RC(T)M(dT)

denote the covariance operator of 6 ~ u” and 7 := [ m(r)y/(d7) denote its mean.
We assume that m and C are well-defined. Based on m and C we obtain the KL

expansion
i=1

where (\;,1;)2, are eigenpairs of C, and ()32, is a family of countably many
uncorrelated scalar random variables. These random variables are typically neither
standard Gaussian nor stochastically independent. One can show that Oxp, ~ p”.
The truncated KL expansion associated with (5.2) satisfies a best approximation

property. Let
Nsto

Oy = m + Z \/i%@
i=1

Then, 9%54“’ solves the minimisation problem

0eL2(RNsto; X)
There are many alternative random field expansions depending on the choice of the
basis. One could for instance use eigenpairs (X\;(79), %i(70)):2, for a fixed 7y € R.

Various approaches for random field expansions have been proposed and compared
in [47]. We advocate the reduced basis random field expansion for two reasons:

1. The KL expansion associated with p” requires the construction of C and the
computation of its eigenpairs.

2. The offline-online decomposition has been computed for the basis W. A ba-
sis change requires the computation of new reduced operators C*B(r) and

(C}}B)ffg, resp.

Observe that the covariance of 6 for a fixed 7y can be fully described by CRB(7) €
RNrexNes - Hence, we can sample 6 cheaply, and we can also represent the covariance
of # by a low dimensional matrix. This is particularly useful in Bayesian inverse
problems as we explain next.
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Consider a Bayesian inverse problem with parameterised prior random field and
assume that m(7y) € Xgp, 70 € R. If this is not the case, one can either add
m(7o) for the required 7y € R to Xgp or project m(7) orthogonally onto Xgp. In
Algorithm 2 we need the full random field # as input for the potential ® to compute
the acceptance probability of the pCN-MCMC proposal. Moreover, to compute the
acceptance probability of the 7-proposal, again we need to construct the full precision
operator of the proposed 7" € R. The computational cost of this construction is
of order O(N; N — o0). However, since frp already contains the full covariance
information, we can replace C(7*)~' by C®B(7*)~1. Then, the computational cost
of the Gibbs step in 7-direction is independent of N. We summarise the associated
Reduced Basis MCMC method in Algorithm 4.

Algorithm 4: Reduced Basis Markov Chain Monte Carlo

Let (70, 0rp,0) € RM5FL be the initial state of the Markov chain.
for n € {1, ..., Nynp} do
Sample 7* ~ qg(+|Tm_1)

anlriori ) min {1 SR e S ot
Sample Ug ~ Unif][0, 1]
if Ugr < ag then

| T T

else
| Tn ¢ Tno1

end
Sample 055 ~ N(v/1 — B20rp. 1, BCEB(1,))
aX(QRB,nfﬁ GEB) < min{l, exp(—@(W@ﬁB) + q)(WeRB,nfl))}
Sample Ux ~ Unif[0, 1]
if Uy < ax then
‘ QRB,TL — ei?k{B
else
| OrBn < ORBn—1
end

end

6. Numerical experiments

In this section we illustrate and verify the reduced basis sampling for use with for-
ward and Bayesian inverse problems. We start by measuring runtime and accuracy
of the reduced basis approximation to the parametric KL eigenproblems. In Exam-
ple 6.1, we consider a forward and a Bayesian inverse problem in a low-dimensional
test setting. This allows us to compare the reduced basis sampling with the sam-
ples obtained by using the full, unreduced KL eigenproblems. We then move on to
high-dimensional estimation problems in Examples 6.2-6.4. In Examples 6.2-6.3 we
consider the elliptic PDE

=V - (exp(0(2))Vp(z)) = f(x)  (z € D) (6.1)
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on the unit square domain D = (0, 1)? together with suitable boundary conditions.
The PDE (6.1) is discretised with linear, continuous finite elements on a uniform,
triangular mesh. The coefficient function 6 is a parameterised Gaussian random field
with exponential covariance operator, and random correlation length and standard
deviation, respectively (see Example 2.9). The spatial discretisation of 6 is done with
piecewise constant finite elements on a uniform, rectangular mesh. The evaluation of
the covariance operator on this finite element space requires to evaluate an integral.
We approximate this integral using a composite midpoint rule, with one quadrature
node in each finite element.

We further discretise 6 by a truncated KL expansion where we retain the leading
Ngio terms. The parameter Ny, is selected such that the truncated KL captures
at least 90% of the total variance. We list the random field parameters for Exam-
ples 6.1-6.4 in Table 3. We introduce the estimation problems in more detail in the
following subsections. Note that we solve the test problems in Examples 6.1-6.4
using the reduced basis samplers presented in §5.

Example 6.1 Example 6.2 Example 6.3 Example 6.4
o 1 0.1 0.5 0.1
T 1 1 0.5 1
My 1 0.5 0.5 0.5
o2 0 0.1 0 0.1
l 0.3 0.3 0.3 0.1
Nsto 200 100 100 800

Table 3: Random field parameters in Examples 6.1-6.4.

6.1. Accuracy and speed up

First we assess the accuracy and time consumption of the reduced basis ap-
proximation. We measure the quality of the reduced basis surrogate by comparing
reduced basis eigenvalues with full eigenvalues in a simplified setting. The full ma-
triz is the finite element approximation of Céﬁ’;) with 100 x 100 piecewise constant
finite elements. The goal is to compute the leading 100 eigenpairs of Céﬁ’pl) for se-
lected values £ € [0.1,/2]. We compute reference solutions for ¢ = 0.1, 0.5, 1.4 using

the full matrix. The reduced basis is constructed using 10 snapshots
e — (@12, 27+ )T @ )L @ 9,

We compute the leading 100 eigenpairs for all correlation lengths in P and as-
semble the associated eigenvectors in a single matrix. Then we apply the POD
and retain Ngg = 2!,...,2!% orthonormal basis vectors. Recall that the offline-
online decomposition requires a linearisation of the covariance operator (see §4.3).
Throughout this section (§6) we use Ny, = 39 linearisation terms.

We plot the relative error of the reduced compared to the exact eigenvalue in
Figure 6.1 for various reduced basis dimensions Ngg. Note that it is not possible
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Figure 6.1: Relative reduced basis error of the eigenvalues A1(€), A10(£), A100(¢) for correlation
lengths ¢ = 0.1,0.5, 1.4 and reduced basis dimensions Ngp = 21, ..., 23,

to compute eigenvalues with an index larger than Ngg. For ¢ = 0.1 the relative
reduced basis error stagnates at a level that is not smaller than 107, In further
experiments not reported here we observed that this stagnation is caused by the
relatively large linearisation error of the covariance kernel (recall that we use only
Nyin = 39 terms). We remark that the root mean square error of the MC and MCMC
estimation results in this section is of order O(1072). Hence, an eigenvalue error of
magnitude 107° is acceptable. We point out, however, that a full error analysis
of the reduced basis samplers (including the linearisation and RB error) is beyond
the scope of this study. For £ = 0.5 and ¢ = 1.4 we achieve the accuracy O(107°)
for Nrg ~ 128. For Ngp > 128 the relative errors are of the size of the machine
epsilon. This error unnecessarily outperforms the sampling error mentioned above
and introduces a higher computational cost in the online phase. Hence, in our test
problems Ngp = 128 would be a sufficient choice.

To get an idea about the speed-ups that are possible with reduced basis sampling
we repeat the experiment. This time we vary the dimension of the finite element
space and use N = 4% ...,47. The dimension of the reduced basis is fixed with
Ngrp = 256. We plot the test results in Figure 6.2. The time measurements corre-
spond to serial simulations in MATLAB with an Intel i7 (2.6 Ghz) CPU and 16 GB
RAM memory. The dashed lines show the theoretical asymptotic behaviour, that
is, O(N; N — o0) for the reduced basis sampling and O(N? N — oo) for the full
sampling. We see that the theoretical and observed timings for the full sampling
are almost identical. In contrast, the observed timings for RB sampling are smaller
than predicted by the theory. This is caused by the fact that the dimension N of the
finite element space is quite small. As N increases we observe a massive speed-up of
the reduced basis sampling compared to the full sampling. For example, for N = 47
the reduced basis sampling requires less than 10~! seconds, while the full sampling
requires several minutes. In this case the speed-up in the online phase is of order
O(10%).

For the estimation problems in Examples 6.1-6.4 we use Monte Carlo and Markov
Chain Monte Carlo with 10% up to 1.5 - 10° samples and a random field resolution
with N = 256 x 256 finite elements in space. In these cases, MC and MCMC
estimations based on the full KL eigenproblem would take a couple of days up to
a couple of years to terminate. In contrast, the (serial) run-time of the reduced
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Figure 6.2: Timings for the full and reduced problem with different FE resolutions and correlation
lengths. The elapsed time is shown as solid line, and the asymptotic behaviour is shown as dashed
line.

basis sampling is ~ 15 minutes in Example 6.2 and ~ 18 hours in Example 6.4. Of
course, standard Monte Carlo simulations are trivially parallelisable. MCMC is a
serial algorithm by design, and parallelisation is not trivial, see e.g. [50] for suitable
strategies. Our experiments show that RB sampling can reduce the computational
cost without the need for parallelisation.

6.2. Verification of reduced basis sampling

Next, we test the accuracy of RB sampling using coarse spatial discretisations.
This allows us to obtain reference solutions in a reasonable amount of time.

Example 6.1 Let p be the joint probability measure from Example 2.9 together with
the parameter values given in Table 3. We discretise the random field 0 ~ p using
322 finite elements. The test problems are as follows.

(a) Forward uncertainty propagation: We consider a flow cell in 2D with log-
permeability 0. See Example 6.2 for the definition of the flow cell. Given the
random coefficient 6 we want to estimate the probability distribution of the
outflow over the boundary Q(). We discretise the PDE with 2 - 16* finite

elements.

(b) Bayesian inverse problem: We observe a random field realisation on D =
(0,1)% at the centre point (0.5,0.5). Given this (noisy) observation y = 0.1
we want to reconstruct the random field. The prior measure is | as specified
above. The likelihood is given by

exp (—1/(2-107%)||ly — 6(0.5,0.5)[%) .

We want to estimate the posterior mean and variance of the correlation length
¢ given the data y. In addition, we compute the model evidence.

We solve the test problems in Example 6.1(a)—(b) with Monte Carlo. In part (b) we
use importance sampling with samples from the prior as proposal. We solve (a) and
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(b) with reduced basis sampling as well as standard sampling based on the full (dis-
cretised) eigenvectors of the parameterised covariance operator. The standard sam-
pling serves as reference solution for the reduced basis sampling. The reduced basis is
constructed using the snapshot correlation lengths £"*P = (0.322,0.433,0.664, 1.414);
these are simply the inverses of four equidistant points in the interval [1/4/2,3.11]
including the boundary points. This choice clusters snapshots near zero which is
desirable due to the singularity of the exponential covariance at ¢ = 0. We apply the
POD to construct three reduced bases with different accuracies A := 10~1,107°,107°.
For each of the settings we run 61 Monte Carlo simulations with 10* samples
each to estimate the mean and the variance of the pushforward measure p”(Q € -)
in part (a), as well as the posterior mean, posterior variance and model evidence
in the Bayesian inverse setting in part (b). We compute a reference solution for all
those quantities using 6.15 x 10° samples. With respect to the reference solutions
we compute the relative error of the 61 estimates in each setting. In Table 4 we give
the means and the associated standard deviations (StD) of the relative errors. We
observe that the (mean of the) relative error is of order O(1072) up to O(1073).

A 1071 (StD) 1075 (StD) 1079
Pushforward mean 0.0055 (0.0041) 0.0057 (0.0051) 0.0054 (
Pushforward variance | 0.0451 (0.0262) 0.0442 (0.0352) 0.0321 (0.0282

( ( (

( ( (

( (

) )

) )
Evidence 0.0169 (0.0116) 0.0156 (0.0129) 0.0265

) )

) )

Posterior mean 0.0098 (0.0076) 0.0077 (0.0059) 0.0093

Posterior variance 0.0914 (0.0706) 0.0720 (0.0554

0.0867 (0.0623

Table 4: Relative errors in the Monte Carlo estimation of the mean and variance of the push-
forward measure, and posterior mean, posterior variance and model evidence in the Bayesian
inverse problem (Example 6.1). Each error value is the mean taken over 61 simulations with 10
samples each. The simulations are performed with reduced basis sampling with POD accura-
cies A = 1071,1075,107°. The relative errors are computed with respect to a reference solution
computed with 6.15 x 10° samples based on the full eigenproblem.

6.3. Forward uncertainty propagation

Next we study the forward uncertainty propagation of a hierarchical random
field through an elliptic PDE.

Example 6.2 Consider a flow cell problem on D = (0,1)? where the flow only takes
place in the x1-direction. The boundary conditions are as follows,

p(x) =0 (ze {1} x[0,1]),
1 (v e {0} x0,1)),

5@ =0 (z€(0,1)x{0,1}).

There are no sources within the flow cell (f = 0). The random field 0 is as in
Ezxample 2.9 with the parameters given in Table 3. The PDE is discretised with
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2x 1282 finite elements, and the random field with 256* finite elements. The quantity
of interest is the outflow over the (western) boundary Loy := {0} x [0,1]. It can be
approximated by

Q) .= — /D k(0)Vp - Vipdz,

where Y| p\r,,, = 0 and Y|r,,, = 1 (see e.qg. [17]). We discretise the outflow using
a piecewise linear, continuous finite element function b on the same mesh that we
used for the PDE discretisation.

The log-permeability is modelled as a parameterised Gaussian random field. We
employ the reduced basis sampling with Ngg = 191. We construct the reduced basis
analogously to the simple test setting in §6.2. However, now we let Ny, = 100, and
remove vectors from the POD where the corresponding eigenvalue is smaller than
A =107 (see also §4.2.1).

We estimate the mean and variance of the output quantity of interest. We
compare 24 estimations by computing the associated coefficient of variation (CoV)
for the mean and variance estimator, respectively. The CoV is defined as the ratio
of the standard deviation of the estimator and the absolute value of its mean. We
present the estimation results in Table 5. The small CoVs tell us that Ny, =

Mean  (CoV)  Variance (CoV)
MC estimate | 157.286  (0.0028) 3012.2  (0.0355)

Table 5: Mean and variance estimates with 10* samples (Example 6.2). We compare these estimates
to 23 further simulation results by computing the coefficient of variation within the 24 estimates.

10* samples were sufficient to estimate the pushforward measure of the quantity of
interest, as well as its mean and variance. Note that with the reduced basis sampling
a single Monte Carlo simulation run took about 18 minutes.

6.4. Hierarchical Bayesian inverse problem

We consider two hierarchical Bayesian inverse problems based on random fields.
Note that we use again 2562 finite elements to discretise the random fields in both
problems and 2 x 128 finite elements to discretise the elliptic PDE in Example 6.3.

Example 6.3 Consider the Bayesian estimation of a random field which is propa-
gated through the elliptic PDE (2.4) together with Dirichlet boundary conditions

p(x) =0 (ze€dD),

and 9 Gaussian-type source terms

3
f@)= )" n(x1;0.25n,0.001) - n (x2;0.25m,0.001) .

n,m=1
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Figure 6.3: Synthetic solution p observed in the Bayesian inverse problem (Example 6.3). The black
lines indicate the measurement locations. The figures show the model output for a log-permeability
with correlation length ¢ = 0.5 (left) and ¢ = 1.1 (right), respectively.

We observe the solution p at 49 locations. In particular, the observation operator is
given by
O(p) .= (p(n/8,m/8) :n,m=1,....7).

The (synthetic) observations are generated with log-permeability fields that are sam-
ples of a Gaussian random field with exponential covariance operator with { €
{0.5,1.1} and o = \/m We show the corresponding PDE outputs and the mea-
surement locations in Figure 6.3. The Gaussian random fields have been sampled
with the full (unreduced) Ngo = 100 leading KL terms. FEwvery observation is per-
turbed with i.5.d. Gaussian noise n, ~ N(0,107%). We use the measure p in Example
2.9 with parameter values given in Table 3 as prior measure.

Example 6.4 Consider the Bayesian estimation of a Gaussian random field to-
gether with its standard deviation and correlation length. We asssume that we can
observe the field directly, however, the observations are again noisy. We perform
estimations with two data sets that have been generated with fized hyperparameters
¢ €{0.2,1.1} and 0 = 1/(\/2 - 256). We have set ¢ = 1/v/2 and rescaled the KL
eigenfunctions by 1/256. We discretise the random field using an Ny, = 800 dimen-
sional full (unreduced) KL basis. We observe the random field at 2500 positions.
FEach observation is perturbed by i.i.d. Gaussian noise n; ~ N(0,107%). As prior we
consider the measure p in FExample 2.9 with parameter values given Table 3.

We remark that in Examples 6.3-6.4 we use the same PDE and random field
discretisation for the generation of the data and the estimation problem. The reason
is that we are mainly interested in the reduced basis error, and not in the recon-
struction error of the inverse problem. Note further that in Examples 6.3-6.4 the
standard deviation o = \/1/_2 is fixed a priori, and is not estimated. The hierarchical
Bayesian inverse problems in Example 6.3-6.4 are well-posed since the associated
Bayesian inverse problem with fixed, deterministic hyperparameters is well-posed
(see [13]), and since the hyperparameter set R is compact.
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6.4.1. Observations from PDE output

We consider Example 6.3 and the settings in Table 3. We employ the Reduced
Basis MCMC method presented in Algorithm 4 to sample from the posterior mea-
sure. We use correlation lengths ¢ € [0.3,+/2]. Since this is the same range as in
Example 6.2 we reuse the reduced basis computed for Example 6.2. Recall that
the standard deviation o = 1/ V2 of the random field 6 is fixed and not estimated.
Moreover, we assume that the observational noise is given by n ~ N(0,107Id). This
corresponds to a noise level of vV1073/||y|ly ~ 0.6%.

We perform experiments for two synthetic data sets with ¢ = 0.5 and ¢ = 1.1,
respectively. For both data sets we compute a Markov chain of length Ny, = 10°.
To avoid burn-in effects we choose initial states close to the true parameter values
for the Markov chains. In a setting with real world data it is often possible to obtain
suitable initial states with Sequential Monte Carlo (see [3]).

Correlation length True random field
T T T T T T

Posterior mean estimate

0.5

RB mode 100 x10*
. : .

L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10 0 0.5 1
4
x10

Figure 6.4: Results of the MCMC estimation (Example 6.3, £ = 0.5). The top-right plot shows the
synthetic truth together with the measurement locations (black dots). Below we plot the posterior
mean estimate computed with MCMC. The four path plots on the left side of the figure show
the Markov chains for the correlation length ¢, and the reduced basis modes (6rgp)1, (frB)10, and
(0rB)100, respectively. The red lines mark the truth.

We show the estimation results in Figure 6.4 and Figure 6.5. We observe in
both figures that the Markov chain for ¢ mixes very fast, however, it takes some
time for the Markov chains of the reduced basis modes to explore the whole space.
To investigate this further we conduct a heuristic convergence analysis. To this
end we consider multiple Markov chains (see §12.1.2 in [41] for a review of MCMC
convergence analysis with multiple Markov chains). For each of the two test data
sets we compute 4 additional Markov chains starting at different initial states. In
results not reported here we observed a similar mixing and coverage of the parameter
space of the additional chains. Given these mixing properties, it can reasonably be
assumed that the Markov chains have reached the stationary regime.
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Figure 6.5: Results of the MCMC estimation (Example 6.3, £ = 1.1). The top-right plot shows the
synthetic truth together with the measurement locations (black dots). Below we plot the posterior
mean estimate computed with MCMC. The four path plots on the left side of the figure show
the Markov chains for the correlation length ¢, and the reduced basis modes (6rp)1, (frB)10, and
(OrB)100, respectively. The red lines mark the truth.

Moreover, we have computed posterior mean and posterior variance of the cor-
relation length parameter ¢ for each of the 5 Markov chains. We assess the accuracy
of these estimates by computing the coefficient of variation (CoV) within these five
estimates. We tabulate the posterior mean and variance estimates for ¢ of a single
Markov chain as well as the associated CoVs in Table 6. The single Markov chains
in this table are the ones shown in Figures 6.4-6.5. The coefficients of variation of
the posterior mean and variance estimates are considerably small. This tells us that
the posterior mean and variance estimates are reasonably accurate.

Mean (CoV)  Variance (CoV)
MCMC £ given y (Truth: ¢ =0.5) | 0.4105 (0.0040) 0.0081  (0.3235)
MCMC £ given y (Truth: £ = 1.1) | 0.4403 (0.0524) 0.0157  (0.2346)

Table 6: Estimation results of the Bayesian inverse problem with observations from PDE output
(Example 6.3). We tabulate the posterior mean and variance estimates of the correlation length £
of one Markov chain each and the CoVs within the estimates of 5 different Markov chains.

Discussion of the estimation results. The correlation length is underestimated in
both cases. In the first case, where the true parameter is given by ¢ = 0.5, the
posterior mean is close to the true parameter. The relative distance between truth
and posterior mean is about 18%. In the second setting, where in truth ¢ = 1.1,
the posterior mean is far away from the true parameter. Here, the relative distance
between truth and posterior mean is about 60%. In both cases, we conclude that the
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data likelihood was not sufficiently informative to estimate the correlation length
more accurately. However, we note that the succession of the estimates is correct:
The posterior mean estimate in the problem with the larger true correlation is larger
than the posterior mean estimate in the other case. Hence we observe a certain
consistency with the data in the estimation.

6.4.2. Observations from a random field

Finally, we consider Example 6.4. Here, we allow for much smaller correlation
lengths ¢ € [0.1, \/5] This requires more KL terms for an accurate approximation,
in particular, we use the 800 leading KL terms. This also means that we cannot
reuse the reduced basis computed in Example 6.2. Instead, we construct a reduced
basis as follows. We solve the KL eigenproblem for 5 snapshots

"% = (0.1148,0.1491,0.2124,0.3694, 1.4142)

of the correlation length. The rationale behind this choice is explained in §6.3.
Given the collection of snapshot KL eigenvectors we apply a POD and retain only
the basis vectors with ;" > X\ = 10710

Recall that in this example the observational noise is given by 1 ~ N(0, 10741d).
This corresponds to a noise level of v10=4/||y|ly =~ 6.6%. We employ the Reduced
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Figure 6.6: Results of the MCMC estimation given random field observations (Example 6.4, ¢ = 0.2,
o = 1/+/2). In the top-right corner we plot the positions and values of the noisy observations (left),
the synthetic truth (middle), and the posterior mean (right). The five path plots show the Markov
chains for £ and o, and the reduced basis modes (0rg)1, (0rB)10, (0rRB)100, respectively. The red
lines mark the truth.

Basis MCMC sampler in Algorithm 4 to generate Ny, = 1.5 X 10° samples of the
posterior measure. We present the Markov chains and estimation results in Figure
6.6 and in Figure 6.7. We observe a fast mixing of the Markov chains. To conduct
a heuristic convergence assessment we again compute 4 additional Markov chains
with Ngmp = 1.5 x 10° samples each and different initial states. We found that the
additional Markov chains mix similarly compared to the Markov chains shown in
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Figures 6.6-6.7. They also cover the same area of the parameter space. Hence, it
can reasonably be concluded that the Markov chains reached a stationary regime.

Mean (CoV)  Variance (CoV)
MCMC ¢ given y (Truth: ¢ =0.2) 0.2847 (0.0465) 0.0064 (0.1520)
MCMC o given y (Truth: o = 1/v/2) | 0.6438 (0.0077) 0.0042 (0.0207)
MCMC ¢ given y (Truth: ¢ =1.1) 0.7248 (0.0161) 0.0575 (0.1308)
MCMC o given y (Truth: o = 1/v/2) | 0.5484 (0.0096) 0.0052 (0.0453)

Table 7: Estimation results of the Bayesian inverse problem with observations from a random
field (Example 6.4). We tabulate the posterior mean and variance of the correlation length ¢ and
standard deviation o.

In addition we present in Table 7 the posterior mean and posterior variance
estimates of £ and o associated with the Markov chains given in Figures 6.6-6.7. To
assess the accuracy of these estimates we compare them with the posterior mean
and variance estimates of the 4 other Markov chains by computing the coefficients
of variations of the estimators. Again, the coefficients of variation are reasonably
small.

Discussion of the estimation results. While the likelihood was rather uninformative
in the PDE-based Bayesian inverse problem, we see overall more consistent estimates
in Example 6.4. For the short correlation length ¢ = 0.2 the relative distance between
posterior mean and truth is 42%. The long correlation length ¢ = 1.1 is again
underestimated. The relative distance between truth and posterior mean is 34%
in this case. This result could be explained by the uncorrelated noise that has an
influence on the observation of the correlation structure In particular we actually
observe a random field ¢’ := 6 + 1/, where 6 ~ N(0,C%7) ) and ' ~ N(0,02 - Idx),
for some 02 > 0. In this situation, the random field 7' can be understood as a
random field with correlation length 0. This might explain the underestimation of
the correlation lengths. The standard deviations are slightly underestimated and
some of the reduced basis modes are overestimated — this is a consistent result. The
posterior mean random fields appear to be smoother than the true random fields.
This might be due to the high noise level.

7. Conclusions

We developed a mathematical and computational framework for working with
parameterised Gaussian random fields arising from hierarchical forward and inverse
problems in uncertainty quantification. Under weak assumptions we proved the
well-posedness of the associated hierarchical problems. We discretised the family of
parameterised Gaussian random fields by (parametric) KL expansions. We showed
how the overall discretisation cost can be reduced substantially by a reduced basis
surrogate for the parametric KL eigenpairs. Moreover, we developed a reduced basis
sampler for use with Monte Carlo and Markov chain Monte Carlo. For Matérn-type
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Figure 6.7: Results of the MCMC estimation given random field observations (Example 6.4, ¢ = 1.1,
o = 1/4/2). In the top-right corner we plot the positions and values of the noisy observations (left),
the synthetic truth (middle), and the posterior mean (right). The five path plots show the Markov
chains for ¢ and o, and the reduced basis modes (0rg)1, (0rB)10, (0rB)100, respectively. The red
lines mark the truth.

covariance operators with uncertain correlation length we suggested and analysed
a linearisation technique to enable an efficient offline-online decomposition for the
reduced basis solver. We illustrated the accuracy and speed-up of the reduced basis
surrogate and RB sampling in simple low-dimensional test problems. Finally, we
applied the reduced basis sampling to more realistic, high-dimensional, forward and
Bayesian inverse test problems in 2D physical space. The test results illustrate that
the parametric KL eigenproblem can be approximated with acceptable accuracy by
a reduced basis surrogate. Moreover, the RB sampling gives acceptable accuracies
compared to the full, unreduced sampling. This enables an efficient hierarchical
uncertainty quantification with parameterised random fields. Of course, the size of
the acceptable error level is heavily problem dependent, and our numerical experi-
ments are a proof-of-concept. A rigorous error analysis of the reduced basis samplers
including the RB error and the linearisation error is beyond the scope of this study.

A. Well-posed Bayesian inverse problem

In §2.4 we discuss the well-posedness of the Bayesian inverse problem for hyper-
priors. We recall the well-posedness definition by Hadamard [25].

Definition A.1 A problem is well-posed in the sense of Hadamard, if the following
holds;

1. the problem has a solution,
2. the solution is unique,
3. the solution depends continuously on the inputs.
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If the problem is a parameter identification or inverse problem, then the third as-
sumption in Definition A.1 postulates that the solution depends continuously on
the observations. Under certain assumptions on the likelihood and prior it can be
proved that Bayesian inverse problems are well-posed. We state and explain these
assumptions, following and summarising the results in [48].

Let X denote a separable Hilbert space and let X’ C X denote a separable
Banach space. The operator G : X’ — Y is called forward-response operator. It
maps a feasible parameter @ to the observation space Y := RMebs. The observations
y € Y are given by y = G(6) + n, where n ~ N(0,I") is non-degenerate Gaussian
noise.

Let 1o be a Gaussian measure on (X,BX) that is concentrated on X', i.e.
to(X’) = 1. We assume that the parameter 6 is distributed according to the prior
measure po. The solution of the Bayesian inverse problem is the posterior measure

p =P €-G(0) +n=y).

It can be written in terms of a Radon-Nikodym derivative w.r.t. the prior measure
1o as follows:

where ®(0;y) := L|T7Y2(G(0) —y)||%, and Z, := [ exp(—®P(0;y))dpo. The operator
® is a so-called potential. If the potential satisfies certain conditions, then the
associated Bayesian inverse problem is well-posed.

Assumptions A.2 (Potential) Consider a potential ®' : X x Y — R which sat-
isfies the following conditions:

1. For every e,r > 0 there is a constant M (e,r) € R such that

O'(0:y) = M(e,r) —ellflk. (0 € X,yeY, where |lylly <)
2. For every r > 0 there is a constant K(r) > 0 such that

Y (0;y) < K(r). (0 € X,y €Y, where max{||0|x, |lyllyv} <)
3. For every r > 0 there is a constant L(r) > 0 such that

1®7(01;y) — (65 9)| < L(r)||61 — 0] x. (61,02 € X,y €Y, where
max{ |01 || x, |02l x, |ylly} <)

4. For every e,r > 0 there is a constant C(e,r) € R such that

17(6; 1) — 7(6; y2)| < exp(e]|0||% + Cle, 7)) lys — v2lly. (0 € X,y1,92 €,
where max{||y1|ly, [|y2lly} <)
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Theorem A.3 Assume that the potential ® satisfies Assumptions A.2. Then pY
is a well-defined probability measure on (X,BX) for any y € Y. Moreover, the

function
Yol - ll2) >y = p¥ € (P(X, BX, o), dper)

15 locally Lipschitz-continuous. Hence, the Bayesian inverse problem is well-posed
in this setting.

Proof. See Theorems 4.1 and 4.2 in [48]. 0

B. Proofs of auxiliary results

Lemma B.1 Let v € (0,00|, and let Assumption 4.5 hold. Then, there is a linearly
separable operator

C(v,l,0,Np,) : X - X
consisting of Ny, € 2N terms, such that asymptotically

IC(v, €, 0, Niin) — C(v, £, 0)||x < O(1/(Nin!); Njjn — 00). (B.1)
Proof. Let v € (0,00)\N. Consider the function
f(zz) : [O7OO> — [0,00), C’—)CVK,,(C)

It holds f(,)(v/2vz/t) = const(v,o)c(v, £, 0)(z), where const(v,o) > 0 is a constant
that does not depend on the correlation length ¢. Moreover, we assume that we
work in a bounded computational domain D, and that ¢ is bounded from below by
a fixed positive constant £ > 0 (see Assumption 4.5). Now, for v € (0,00)\N the
function f(,) can be written in terms of a series

 mese(Tr) 1 ¢ k
fan(€) = 5 g <22kz—ur(k —v+ Dk 20T (k4 v+ l)k!) ¢

If we truncate the series after the first 1 + N,/2 terms we obtain the following
function:

_ mese(mv) 1 ¢ 2k
fomm (Q) = 9 Z <22k—u1“(k — v+ 1)k! B 226+ (k + v + 1)k:!) ¢

This (truncated) series expansion is associated with the integral operator C(v, ¢, o, Ny, )
that is given by the kernel

C(V7 l, o, Nlin)(Z) = f(Vlein)(\/EZ/€>

const(v, o)

. (B.2)
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Now, we bound the asymptotic truncation error, and assume w.l.o.g. that Ny, > v.
Note that then I'(k — v 4+ 1) > 1. Moreover, { > 0. Then,

[e.9]

Z ( - CQV ) CQk
2Tk — v + D]

k=Njn+1

SW(HC% i <F(k—i+1)k!) (g)%

k=Nin+1

Tl o 3 (4) ()"

k=Nin+1

m|ese(mv)|
2

| fwnim) (€) = fuy ()] <

using the triangular inequality. The infinite sum on the right-hand side can be
bounded by the remainder term of a Taylor series approximation of the exponential
function with Ny, terms at ( = 0. Hence,

7| ese(mv)| 2 (2Mint2

o © = Fa (@]« TGN 14 yexp (o) L

mlese(mv))| y x| G
< T 0F fnax)e’(p( 1) W 7y oSt (i),

where (pax = 2222 Finally, let ¢ € X. Then it holds

||5(V>€70> Niw)p — C(v, £, 0)p||%
— /D (/D@u,z,a,zvun)(dist(w,y)) —c(v, ¢, O’)(dist(iﬂ,y)))gp(gp)dx) dy

< [ ([ tom it - oot o)t e) - ([ otaras)ay
< Leb(d)(D)? - const!(Niw)? - I

by the Cauchy-Schwarz inequality. Taking the square root on both sides and dividing
by ||¢||x proves the error bound for the case v € (0,00)\N. We now comment on
the cases ¥ € N and v = 0o. Let n € NU {oo}. The function fn) = limyqy, f) is
analytic and its truncated power series can be used to construct a linearly separable
operator analogously to the proof given above. a

Lemma B.2 The operator C(v,{, 0, Ni,) is self-adjoint, trace-class and continuous.

Proof. The integral operator C(v, ¢, o, Ny, ) is self-adjoint since the associated ker-
nel function is symmetric. The operator is trace-class since D is a bounded domain,
and [, ¢(v, 4, 0, Nyy)(dist(z, z))dz = &(v, ¢, 0, Njiy ) (0) - Leb(d) (D) < co. The bound-
edness of D also implies the continuity of the operator. O

Lemma B.3 The Matérn-type covariance operator C(v,f,c) and the approximate
operator Co(v, ¢, o, Nyiy) in (4.4) satisfy

H(’ZVO(V7 ‘ga g, Nlin) - C<V7 67 O-)HX S 2HC(V7 ga g, Nlin) - C(V7‘€7O-)||X-
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Proof. Let (X;)22, denote the eigenvalues of the operator C(v,¢, 0, Nyw). Without
loss of generality, we assume that the spectrum of C (1/ ¢, 0, Njin) contains a negative
cigenvalue. Since C(v, ¢, o, Nin) is trace-class, it holds IX;| = 0 for i — co. Hence,
there is an eigenpair ()\max, z/JmaX) which realises the maximum in the expression

max | \. (B.3)
i€N: \; <0
Thus,
ICo(v, 6,0, Niw) = C(v. 6,0, Niw)lx = || > Nithi @ Whillx = [Aunad.
i=1;1;<0
Moreover, since C(v, ¢, o) is positive definite, we have ¢maX (1/ l, o, Nlm)wmax >0>

ne
max

C(v, ¢, J)¢max Hence, we obtain

|’5(V7€70.7 Nlin) _C<I/7 67 O-)HX Z Wmax(c(’/ g g, Nhn) - C<V7 67 U))lzmax’
v,

= w:n C( g U)wmax &:naxg(ya g? g, Nlin)&max
= 1/);; C(V E U)¢max - )\maxw;axwmax
> | Ammax|

This gives the bound
||50(V7 6) a, Nlin) - 5(”7 Ea g, Nlin) ||X S ||5(V) 67 g, Nlin) - C(Va 67 J) ||X
Finally, using the triangular inequality, we arrive at

1Co(v, £, 0, Niw) — C(v, £, )| x
< [1Co(v. €,0, Niw) = C(0,£,0, Nin) | x + (v, £,0, Niw) = C(v£,0)|x
< 2H5<V7£> g, Nlin) - C(V, g, O')HX
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