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ROBUSTNESS OF SHAPE-RESTRICTED REGRESSION

ESTIMATORS: AN ENVELOPE PERSPECTIVE

QIYANG HAN AND JON A. WELLNER

Abstract. Classical least squares estimators are well-known to be ro-
bust with respect to moment assumptions concerning the error distri-
bution in a wide variety of finite-dimensional statistical problems; gen-
erally only a second moment assumption is required for least squares
estimators to maintain the same rate of convergence that they would
satisfy if the errors were assumed to be Gaussian. In this paper, we give
a geometric characterization of the robustness of shape-restricted least
squares estimators (LSEs) to error distributions with an L2,1 moment,
in terms of the ‘localized envelopes’ of the model.

This envelope perspective gives a systematic approach to proving
oracle inequalities for the LSEs in shape-restricted regression problems
in the random design setting, under a minimal L2,1 moment assumption
on the errors. The canonical isotonic and convex regression models, and
a more challenging additive regression model with shape constraints are
studied in detail. Strikingly enough, in the additive model both the
adaptation and robustness properties of the LSE can be preserved, up
to error distributions with an L2,1 moment, for estimating the shape-
constrained proxy of the marginal L2 projection of the true regression
function. This holds essentially regardless of whether or not the additive
model structure is correctly specified.

The new envelope perspective goes beyond shape constrained models.
Indeed, at a general level, the localized envelopes give a sharp charac-
terization of the convergence rate of the L2 loss of the LSE between the
worst-case rate as suggested by the recent work of the authors [25], and
the best possible parametric rate.

1. Introduction

1.1. Overview. 1 Suppose we observe (X1, Y1), . . . , (Xn, Yn) from the re-
gression model

Yi = f0(Xi) + ξi, 1 ≤ i ≤ n.(1.1)
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2 Q. HAN AND J. A. WELLNER

where the Xi’s are independent and identically distributed X -valued covari-
ates with law P , and the ξi’s are mean-zero errors independent of Xi’s. The
goal is to recover the true signal f0 based on the observed data {(Xi, Yi)}ni=1.

In the canonical setting where the errors ξi’s are Gaussian, perhaps the
simplest estimation procedure for the regression model (1.1) is the least

squares estimator (LSE) f̂n defined by

f̂n ∈ argmin
f∈F

n
∑

i=1

(Yi − f(Xi))
2,(1.2)

where F is a model chosen by the user. The use of the LSE in the Gaussian
regression model has been theoretically justified in the 1990s and the early
2000s, cf. [5, 6, 9, 27, 28, 33, 40, 43, 45]:

Theorem A. Suppose that:

(E) the errors {ξi} are sub-Gaussian (or at least sub-exponential);
(F) the model F satisfies an entropy condition with exponent α ∈ (0, 2)2.

Then

‖f̂n − f0‖L2(P ) = OP

(

n−
1

2+α
)

.(1.3)

Furthermore, the rate (1.3) is unimprovable under the entropy conditions
(F) in a minimax sense, see e.g. [47].

Although the condition (F) is widely accepted in the literature as a com-
plexity measurement of the model F , it is far from clear if the light-tailed
condition on the errors (E) is necessary for the theory. Recently, we showed
[25] that the condition (E) is actually more than a mere technicality:

Theorem B. Suppose that condition (E) in Theorem A is replaced by

(E’) the errors {ξi} have a finite Lp,1 moment (p ≥ 1)

and (F) holds. Then

‖f̂n − f0‖L2(P ) = OP

(

n−
1

2+α ∨ n−
1
2
+ 1

2p
)

.(1.4)

We also showed [25] that the rate (1.4) cannot be improved under (F)
alone. Comparing with (1.3), the rate in (1.4) clearly indicates that if the
model F only satisfies (F), the best possible moment condition on the errors
to guarantee the same rate of convergence of the LSE as in the case of
Gaussian errors is p ≥ 1 + 2/α.

The starting point for this paper originates from a remarkable result due
to Cun-Hui Zhang [48] in the context of isotonic regression. Zhang [48]
showed that the L2 loss of the isotonic LSE achieves the usual worst-case
(minimax) OP(n

−1/3) rate, and the adaptive rate OP(
√

log n/n) if the true
signal is, say, f0 equals a constant, under only a second moment assumption
on the errors.

2F satisfies an entropy condition with exponent α ∈ (0, 2) if either (i)
supQ log N (ε‖F‖L2(Q),F , L2(Q)) . ε−α, where the supremum is over all finitely discrete

measures Q on (X ,A); or (ii) log N[ ](ε,F , L2(P )) . ε−α.
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We view the first of these two properties established by Zhang as a “ro-
bustness property” of the LSE with respect to the distribution of the errors
{ξi}. We formalize this with the following definition:

Definition 1. We will say that the estimator sequence {f̂n} is L2-robust with

respect to the errors {ξi} in the model F (or just L2-robust), if f̂n converges
to f0 in L2(P ) at the same rate for zero mean 0 errors with ‖ξi‖2 <∞ as for
errors {ξi} that are Gaussian or sub-Gaussian. Similarly, if the same rate

holds for zero mean errors with ‖ξi‖2,1 <∞, we say that {f̂n} is L2,1-robust
with respect to the errors {ξi} in the model F .

Similarly, we view the second of the two properties established by Zhang
as an “adaptation property” of the LSE with respect to the model F :

Definition 2. We will say that the estimator sequence {f̂n} is adaptive to
a subset Gm of the model F if it achieves a nearly (up to factors of log n)
parametric rate of convergence at all points f ∈ Gm.

For the shape-constrained models we consider here the subsets Gm of F
are natural subclasses of extreme points of the class F : in the isotonic model
F the collections Gm consisting of m constant non-decreasing pieces, and in
the convex regression model Gm can be taken to be the piecewise linear
(convex) functions with at most m linear pieces.

Zhang’s work [48] has generated intensive research interest in further
understanding the adaptation properties of the isotonic and other shape-
restricted LSEs in recent years, cf. [7, 12, 13, 22, 23]. These papers share a
common theme: the shape-restricted LSEs are adaptive to certain subsets
{Gm} of the model F under a (sub-)gaussian assumption on the distribution
of the errors in the regression model.

Despite substantial progress in the adaptation properties of various shape-
restricted LSEs, there remains little progress in further understanding their
L2-robustness properties beyond the isotonic model studied by Zhang [48].
Indeed, the challenges involved here were noted in Guntuboyina and Sen [23]
(page 30) as follows: “......However the existing proof techniques for these
risk bounds strongly rely on the assumption of sub-Gaussianity. It will be
very interesting to prove risk bounds in these problems without Gaussianity.
We believe that new techniques will need to be developed for this”. One of
the goals of this paper is to provide new approaches and insights concerning
the L2 (or L2,1)-robustness of various shape-restricted LSEs.

Initially we had hoped to study this problem by appealing to the general
Theorem B. However, the theory in Theorem B requires at least a third
moment (note that here α = 1 for the isotonic model). This implies that the
isotonic shape constraint must contain more information than that provided
by the entropic structure alone, so that Theorem B fails to fully capture the
L2-robustness of the isotonic LSE.

One particular useful feature of the isotonic model is an explicit min-max
formula for the isotonic LSE in terms of partial sum processes; see e.g. [36].



4 Q. HAN AND J. A. WELLNER

Zhang’s techniques [48] make full use of the min-max representation, and
are therefore substantially of an analytic flavor. Similar techniques have also
been used in [12, 17], but have apparently not yet successful in dealing with
any other shape constrained models. The rigidity in this analytic approach
naturally motivates the search for other ‘softer’ properties of the isotonic
shape constrained model that explain the robustness of the LSE. These
considerations lead to the following question.

Question 1. What geometric aspects of the isotonic shape constrained model
give rise to the L2(or L2,1)-robustness property of the LSE?

To put this question into a more general setting, note that Theorem B
implies that the LSE can converge as slowly as OP(n

−1/4) for certain hard
models when the errors only have a second moment, while in the aforemen-
tioned isotonic regression case, it is possible that the LSE converges at a
nearly parametric rate OP(

√

log n/n) for certain special isotonic functions.
Therefore it seems more promising to search for a characterization of the
convergence rate of the L2 loss of the LSE in terms of some geometric feature
of the model F , when the errors have only an L2(or L2,1) moment.

The first main contribution of this paper is to shed light on Question 1
from an ‘envelope’ perspective at this general level. Roughly speaking, the
size of the ‘localized envelopes’ of the model F determines the convergence
rate of the L2 loss of the LSE when the errors only have an L2,1 moment.
More specifically, let F0(δ) be the envelope for F0(δ) ≡ {f ∈ F0 : Pf

2 ≤ δ2}
where F0 ≡ F − f0. We show that (cf. Theorem 1), under a certain uniform
entropy condition on the function class, if for some 0 ≤ γ ≤ 1, the localized
envelopes have the growth rate

‖F0(δ)‖L2(P ) ∼ δγ :(1.5)

then the convergence rate of the LSE in the L2 loss is no worse than

OP

(

n
− 1

2(2−γ)
)

.(1.6)

Furthermore, the rate (1.6) cannot be improved under the condition (1.5),
cf. Theorem 2. It is easily seen from (1.6) that, as the size of the localized
envelopes increases, the rate of the L2 loss of the LSE deteriorates from the
parametric rate OP(n

−1/2) to the worst-case rate OP(n
−1/4) as suggested by

Theorem B. For isotonic regression, we will see that the localized envelopes
of the model are small in the sense that γ ≈ 1 (up to logarithmic factors)
when f0 = 0, and hence the LSE converges at a nearly parametric rate under
an L2,1 moment assumption on the errors. For the hard models identified
in [25] (cf. Example 4 below), the localized envelopes are big in the sense
that γ = 0 so the LSE can only converge at the worst-case rate.

Addressing Question 1 from a geometric point of view is not only of
interest in its own right, but also serves as an important step in better un-
derstanding the robustness properties of other shape constrained models.
This is the context of the second main contribution of this paper: we aim
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at improving our understanding of the L2,1-robustness property of shape
restricted LSEs, by providing a systematic approach to proving oracle in-
equalities in the random design regression setting for these LSEs under an
L2,1 moment condition on the errors. This goal is achieved by exploiting the
idea of small envelopes from the solution to Question 1. The formulation of
the oracle inequality follows its fixed-design counterparts that highlight the
automatic rate-adaptive behavior of the LSE, cf. [7, 12]. More specifically,
we first prove the following oracle inequality that holds for the canonical
isotonic and convex LSEs in the simple regression models (cf. Theorem 3):
Suppose that ‖f0‖∞ < ∞ and the errors {ξi} are i.i.d. mean-zero with
‖ξ1‖2,1 <∞. Then for any δ ∈ (0, 1), there exists some constant c > 0 such
that with probability 1− δ,

‖f̂n − f∗0 ‖2L2(P ) ≤ c inf
m∈N

(

inf
fm∈Gm

‖fm − f∗0‖2L2(P ) +
m

n
· log2 n

)

,(1.7)

where f∗0 is the L2(P )-projection of f0 onto the space of square ntegrable
monotonic non-decreasing (resp. convex) functions, and Gm is the class of
piecewise constant non-decreasing (resp. linear convex) functions on [0, 1]
with at most m pieces in the isotonic (resp. convex) model. The oracle
inequality (1.7) is further verified for the shape-restricted LSEs in the ad-
ditive model (cf. Theorem 4), where now f0 is the marginal L2 projection
of the true regression function. One striking message of the oracle inequal-
ity for the shape-restricted LSEs in the additive model is the following:
both the adaptation and L2,1-robustness properties of the LSE can be pre-
served, up to error distributions with an L2,1 moment, for estimating the
shape-constrained proxy of the marginal L2 projection of the true regres-
sion function, essentially regardless of whether or not the additive structure
is correctly specified.

The proofs in this paper rely heavily on the new empirical process tools
and proof techniques developed in [25]. Although we will list relevant results,
readers are referred to [25] for more discussion of the new tools. Along the
way we also resolve the stochastic boundedness issue of convexity shape-
restricted LSEs at the boundary, which may be of independent interest (this
problem is in fact an open problem in the field, cf. [23]).

1.2. Notation. For a real-valued random variable ξ and 1 ≤ p < ∞, let

‖ξ‖p :=
(

E|ξ|p
)1/p

denote the ordinary p-norm. The Lp,1 norm for a random
variable ξ is defined by

‖ξ‖p,1 :=
∫ ∞

0
P(|ξ| > t)1/p dt.

It is well known that Lp+ε ⊂ Lp,1 ⊂ Lp holds for any underlying probability
measure, and hence a finite Lp,1 condition requires slightly more than a p-th
moment, but no more than any p + ε moment, see Chapter 10 of [29]. In
this paper, we will primarily be concerned with the case p = 2.



6 Q. HAN AND J. A. WELLNER

For a real-valued measurable function f defined on (X ,A, P ), ‖f‖Lp(P ) ≡
(

P |f |p)1/p denotes the usual Lp-norm under P , and ‖f‖∞ ≡ ‖f‖L∞
≡

supx∈X |f(x)|. f is said to be P -centered if Pf = 0. Lp(g,B) denotes the
Lp(P )-ball centered at g with radius B. For simplicity we write Lp(B) ≡
Lp(0, B).

Let (F , ‖·‖) be a subset of the normed space of real functions f : X → R.
Let N (ε,F , ‖·‖) be the ε-covering number, and let N[ ](ε,F , ‖·‖) be the ε-
bracketing number; see page 83 of [45] for more details. To avoid unnecessary
measurability digressions, we assume that F is countable throughout the
article. As usual, for any φ : F → R, we write ‖φ(f)‖F for supf∈F |φ(f)|.

Throughout the article ε1, . . . , εn will be i.i.d. Rademacher random vari-
ables independent of all other random variables. Cx will denote a generic
constant that depends only on x, whose numeric value may change from
line to line unless otherwise specified. a .x b and a &x b mean a ≤ Cxb
and a ≥ Cxb respectively, and a ≍x b means a .x b and a &x b [a . b
means a ≤ Cb for some absolute constant C]. For two real numbers a, b,
a ∨ b ≡ max{a, b} and a ∧ b ≡ min{a, b}. We slightly abuse notation by
defining log(x) ≡ log(x ∨ e).
1.3. Organization. Section 2 is devoted to a treatment of the relationship
between the size of the localized envelopes and the convergence rate of the
L2 loss of the least squares estimator. Section 3 is devoted to applications
to shape-restricted regression problems. Proofs are deferred to Sections 4
and 5.

2. Convergence rate of the LSE: the envelope

characterization

2.1. Upper and lower bounds. Our first main result is the following.

Theorem 1. Suppose that ξ1, . . . , ξn are i.i.d. mean-zero errors independent
of i.i.d. covariates X1, . . . ,Xn with law P such that ‖ξ1‖2,1 < ∞. Further
suppose that F0 ≡ F − f0 is a VC-subgraph class, and the envelopes F0(δ)
of F0(δ) ≡ {f ∈ F0 : Pf

2 ≤ δ2} satisfy the growth condition

‖F0(δ)‖L2(P ) ≤ c · δγ , for all δ > 0(2.1)

for some constants 0 ≤ γ ≤ 1 and c > 0. If ‖f̂n − f0‖∞ = OP(1), then

‖f̂n − f0‖L2(P ) = OP

(

n
− 1

2(2−γ)
)

.

Remark 1. Some technical remarks are in order.

(1) If instead of ‖f̂n−f0‖∞ = OP(1) it is assumed that F0 ⊂ L∞(1), then
the conclusion of Theorem 1 can be strengthened to an expectation:

E‖f̂n − f0‖L2(P ) = O
(

n
− 1

2(2−γ)
)

.
(2) Condition (2.1) on the size of the localized envelopes can be modified

to incorporate logarithmic factors. In particular, if

‖F0(δ)‖L2(P ) ≤ c · δγ logτ (1/δ),
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then we may slightly modify the proof of Theorem 1 to see that the
convergence rate of the L2 loss of the LSE is given by

OP

(

n
− 1

2(2−γ) log
τ

2−γ n
)

.

(3) We assume that the errors are identically distributed for simplicity:
the case of mean-zero, independent but not necessarily identically
distributed errors follows from a minor modification of the proof.

Remark 2. Theorem 1 is actually proved for F0 under a more general uni-
form VC-type condition: F0 is said to be of uniform VC-type if there exists
some α ∈ [0, 2) and β ∈ [0,∞) 3 such that for any probability measure Q,
and any ε ∈ (0, 1), δ > 0,

logN
(

ε‖F0(δ)‖L2(Q),F0(δ), L2(Q)
)

. ε−α logβ(1/ε).(2.2)

The most significant examples for uniform VC-type classes are the VC-
subgraph classes (α = 0, β = 1). Other important examples include the VC-
major classes, which satisfy (2.2) up to a logarithmic factor (cf. Lemma 8).
As we will see in Section 3, the canonical examples of VC-major classes that
satisfy (2.2) considered in this paper are the classes of bounded monotonic
non-decreasing and convex functions on [0, 1].

Remark 3. From a purely probabilistic point of view, the condition (2.1) is
related to Alexander’s capacity function [1, 2, 3] defined for VC class of sets
that gives relatively sharp asymptotic local moduli of weighted empirical
processes indexed by such classes. Results in a similar vein can be found in
[18] who generalized this notion to bounded VC-subgraph function classes.

So far we have derived an upper bound for the convergence rate of the L2

loss of the LSE under the condition (2.1). It is natural to wonder if such an
upper bound is sharp in an appropriate sense.

Theorem 2. Let P be the uniform distribution on [0, 1]. For any γ ∈ (0, 1],

there exists some uniformly bounded VC-subgraph class F̃ on [0, 1] and some

f0 ∈ F̃ such that F̃0 ≡ F̃−f0 satisfies (2.1), and the following property holds:
for each ε ∈ (0, 1/2), there exist some constants cε,γ > 0, p > 0 and some
law for ξ1 with ‖ξ1‖2(1−ε) < ∞ such that, for n large enough depending on
ε, γ, there exists a LSE f∗n whose L2 loss satisfies

‖f∗n − f0‖L2(P ) ≥ cε,γ · n−
1

2(2−γ)
−c′γε

with probability at least p > 0. The constant c′γ can be taken to be 2/γ.

Theorem 2 shows that our upper bound Theorem 1 cannot be improved
substantially under (2.1): the size of the localized envelopes drives the con-
vergence rate of the L2 loss of the LSE over VC-subgraph models (or more
generally, models of uniform VC-type) in the heavy-tailed regression setting
where the errors only admit (roughly) a second moment. Since the median

3We can also allow α = 2, β < −2 but we are not aware of any such examples.
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regression estimator over VC-subgraph models achieves a nearly paramet-
ric rate OP(

√

log n/n) at least when the errors are symmetric and admit
smooth densities; cf. Section 3.4.4 of [45], Theorem 2 illustrates a genuine
deficiency of the LSE in VC-subgraph models when the envelopes of the
model are not small. We remark that the case γ = 0 is excluded mainly for
simplicity of presentation; similar conclusions hold under a slightly weaker
formulation, cf. Theorem 5 of [25].

The proofs of Theorems 1 and 2 are based on recent developments on the
equivalence between the convergence rate of the L2 loss of the LSE and the
size of the multiplier empirical process, cf. [11, 25, 44]. For the upper bound,
our proofs rely heavily on a new multiplier inequality developed in [25]. The
lower bound, on the other hand, is based on an explicit construction of
F̃ that witnesses the desired rate within uniformly bounded VC-subgraph
classes satisfying (2.1).

2.2. Examples. In this section, we use Theorem 1 to examine the conver-
gence rate of the L2 loss of the LSE in several important examples.

Example 1 (Linear model). Let F ≡ {fβ(x) ≡ β⊤x : β ∈ R
d} and let P

be the uniform distribution on [0, 1]d . This is the simplest linear regression
model. A second moment assumption on the errors ξi’s yields a closed-form

LSE with a parametric convergence rate: ‖f̂n − f0‖L2(P ) ≍ ‖β̂n − β0‖2 =

OP(n
−1/2). This rate is obviously much faster than the worst-case rate

OP(n
−1/4) as suggested by Theorem B. Thus the LSE sequence {f̂n} is L2-

robust for the model F by a direct argument while our Theorem 1 very
nearly recovers this: it shows that {f̂n} is L2,1-robust for the model F .

For simplicity of discussion, we assume d = 1 in the sequel. We may
also restrict the model to be {fβ : β ∈ [−1, 1]}; this is viable since the LSE

localizes in the sense that ‖f̂n‖∞ = |β̂n| = OP(1). Moreover, it is clear that
the model is a VC-subgraph class. For any δ > 0, ‖fβ‖L2(P ) ≤ δ implies

that |β| ≤
√
3δ, and thus

F (δ)(x) = sup
β∈[−

√
3δ,

√
3δ]

|βx| =
√
3δ|x|,

which in turn yields ‖F (δ)‖L2(P ) = δ. Hence Theorem 1 applies with γ = 1

to recover the usual parametric rate OP(n
−1/2) for the L2 loss of the LSE.

Our approach here should be compared with the common practice of using
local entropy to recovery the exact parametric rate for parametric models—
but the latter does not extend directly to the heavy-tailed regression setting,
cf. pages 152-153 of [43].

Example 2 (Isotonic model). Let F be the class of monotonic non-decreasing
functions on [0, 1] and let P be the uniform distribution on [0, 1]. It is shown
in a related fixed design setting (cf. [12, 17, 48]) that a second moment con-
dition on the errors ξi is sufficient for the isotonic LSE to achieve the nearly
parametric adaptive rate OP(

√

log n/n) in the discrete ℓ2 loss, when the
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true signal is f0 = 0. This naturally suggests a similar rate for the L2 loss of
the isotonic LSE in the random design setting. Apparently, this (suggested)

nearly parametric rate is far from the worst-case rate OP(n
−1/4).

In this model, since the univariate isotonic LSE localizes in L∞ norm
(cf. Lemma 5), we may assume without loss of generality that F ≡ {f :
non-decreasing, ‖f‖∞ ≤ 1}. The entropy condition (2.2) can be verified
using the VC-major property of F up to a logarithmic factor (cf. Lemma
8). On the other hand, for any δ > 0, by monotonicity and the L2 constraint,
we can take

F (δ)(x) ≡ δ ·
(

x−1/2 ∨ (1− x)−1/2
)

∧ 1.

Evaluating the integral we see that ‖F (δ)‖L2(P ) . δ
√

log(1/δ). Then an ap-
plication of Theorem 1 along with Remarks 1 (2) and 2, we see that the L2

loss of the LSE f̂n converges at a parametric rate up to logarithmic factors
when the truth f0 is a constant function and the errors are L2,1. The obser-
vation concerning the role of the localized envelopes in the isotonic model
here is the starting point for a systematic development of oracle inequalities
for shape-restricted LSEs in Section 3.

Example 3 (Single change-point model). Let F ≡ {1[a,1] : a ∈ [0, 1]} be
the model containing signals on [0, 1] with a single change point. Let P be
the uniform distribution on [0, 1].

This model is contained in the isotonic model—from here we already
know by Example 2 that the localized envelopes of F are small, and hence
the LSE converges at a rate no worse than a nearly parametric rate under
an L2,1 moment assumption on the errors. We can do better: since the
localized envelopes are exactly given by F (δ) = 1[1−δ2,1], it follows that
‖F (δ)‖L2(P ) = δ, and hence by Theorem 1 with γ = 1 we see that the

LSE converges exactly at the parametric rate OP(n
−1/2) even if the errors

only admit an L2,1 moment. This is in stark contrast with the multiple
change-points model detailed below.

Example 4 (Multiple change-points model). Consider the following multi-
ple change-points model:

Fk ≡
{ k
∑

i=1

ci1[xi−1,xi] : |ci| ≤ 1,

0 ≤ x0 < x1 < . . . < xk−1 < xk ≤ 1

}

, k ≥ 1.

It is shown in [25] that the L2 loss of the LSE over (a subset of) Fk can-

not converge at a rate faster than OP(n
−1/4) for some errors ξi with only

(roughly) a second moment. The LSE fails to be rate-optimal in this model:
if the errors are Gaussian (or even bounded), the convergence rate of the L2

loss of the LSE (over VC-subgraph classes) is no worse than OP(
√

log n/n).
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Note that in this model, the localized envelopes are given by F (δ) ≡ 1
for any δ > 0 and hence ‖F (δ)‖L2(P ) = 1. Applying Theorem 1 with γ = 0

recovers the correct rate OP(n
−1/4) for the L2 loss of the LSE in this model.

Example 5 (Unimodal model). Let F contain all (bounded) unimodal func-
tions on [0, 1], i.e. all f : [0, 1] → R such that there exists some x∗ ∈ [0, 1]
with f |[0,x∗] non-decreasing and f |[x∗,1] non-increasing. [13] and [7] con-
sidered the performance of the LSE in a fixed-design unimodal Gaussian
regression setting, where similar adaptive behavior as in the isotonic case
(cf. [48]) is derived. Since the class of (bounded) unimodal functions on
[0, 1] contains the class of multiple change-points model F1 as studied in
Example 4, our results here imply that the unimodal shape constraint does
not inherit the L2 (or L2,1)-robustness property as in the isotonic shape con-

straint in Example 2: the worst-case OP(n
−1/4) is attained by the LSE in

the unimodal regression model for some errors ξi’s with (roughly) a second
moment.

3. Shape-restricted regression problems

As briefly mentioned in the Introduction, it is well-known that in the
fixed design regression setting, the isotonic least squares estimator (LSE)
only requires a second moment condition on the errors to enjoy an oracle
inequality, cf. [12, 17, 48]. The proof techniques used therein rely crucially
on (i) some form of representation of the isotonic LSE in terms of partial sum
processes, and (ii) martingale inequalities. Unfortunately, such an explicit
representation does not exist beyond the isotonic LSE, and hence these
techniques do not readily extend to other problems.

Our goal here is to give a systematic treatment of the robustness prop-
erties of shape-restricted LSEs in a random design setting, up to error dis-
tributions with an L2,1 moment. The examples we examine are (i) the
canonical isotonic and convex regression models, and (ii) additive regression
models with monotonicity and convexity shape constraints. As we will see,
the ‘smallness’ of the localized envelopes, along with their special geometric
properties, play a central role in our approach.

Henceforth, the isotonic (resp. convex) model refers to the regression
model based on the class of monotonic non-decreasing (resp. convex) func-
tions on [0, 1].

3.1. Prologue: the canonical problems. We start by considering the
‘canonical’ problems in the area of shape restricted regression: the isotonic

and convex regression problems. Note that a generic LSE f̂n in (1.2) is
only well-defined on the design points X1, . . . ,Xn. Our results below hold

for the canonical LSEs: for the isotonic (respectively convex) model, f̂n is
defined to be the unique left-continuous piecewise constant (resp. linear)
function on [0, 1] with jumps (respectively kinks) at (potentially a subset

of) {f̂n(Xi)}ni=1.
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Some further notation: letMm ≡ Mm([0, 1]) (respectively Cm ≡ Cm([0, 1]))
be the class of all non-decreasing piecewise constant functions (respectively
convex piecewise linear functions) on [0, 1] with at most m pieces. Let P
denote the uniform distribution on [0, 1] for simplicity of exposition.

Theorem 3. Consider the regression model (1.1). Let F be either the
isotonic or convex model. Suppose that ‖f0‖∞ < ∞, and the errors are
i.i.d. mean-zero with ‖ξ1‖2,1 < ∞. Then for any δ ∈ (0, 1), there exists
c ≡ c(δ, ‖ξ‖2,1, ‖f0‖∞,F) > 0 such that with probability 1− δ, the canonical

LSE f̂n defined above satisfies

‖f̂n − f∗0 ‖2L2(P ) ≤ c inf
m∈N

(

inf
fm∈Gm

‖fm − f∗0 ‖2L2(P ) +
m

n
· log2 n

)

,

where f∗0 = argming∈F∩L2(P )‖f0 − g‖L2(P ), and Gm = Mm for the isotonic
model and Gm = Cm for the convex model.

The isotonic regression problem, included here mainly for sake of later
development in the additive model, is a benchmark example in the family of
shape-restricted regression problems. Even in this simplest case, the above
oracle inequality in L2(P ) loss seems new4.

For the more interesting convex regression problem, our oracle inequality
here confirms for the first time both the adaptation and robustness prop-
erties of the convex LSE up to error distributions with an L2,1 moment.
Previous oracle inequalities for the convex LSE exclusively focused on the
fixed-design setting under a (sub-)Gaussian assumption on the errors [7, 12];
see also Section 3 of [23] for a review.

Remark 4. Two technical comments on the formulation of the oracle in-
equality in Theorem 3:

(1) The oracle inequality holds for the projection f∗0 of f0 to F ∩L2(P )
and hence allows for model mis-specification: the only assumption
on f0 is boundedness: ‖f0‖∞ <∞. The same comment also applies
to the oracle inequality in the additive model below.

(2) The oracle inequality cannot be strengthened to an expectation, in
view of a counterexample discovered in [4] in the convex model: the

convex LSE f̂n has infinite L2 risk in estimating f0 = 0 even if the
errors are bounded: E‖f̂n − 0‖L2(P ) = ∞.

3.1.1. Proof strategy of Theorem 3. The proof of Theorem 3 contains two
major steps.

4An oracle inequality in L2(Pn) loss follows immediately from [12] (with a second
moment assumption on the errors) since the monotone cone does not change with the
design points. See [24] for different techniques in the multivariate isotonic regression
problem when the errors are Gaussian.



12 Q. HAN AND J. A. WELLNER

δ ց 0

Envelopes F (δ)’s

10

5

Figure 1. Envelopes for isotonic model with c = 1 in (3.2).
From top to bottom: δ = 0.7, 0.5, 0.3, 0.1.

(Step 1) We first localize the shape-restricted LSEs in L∞ norm. This step
requires some understanding of the boundary behavior of the shape-
restricted LSEs under a second moment assumption on the errors.
The case for isotonic regression is relatively straightforward, while
the case for convex regression is much more difficult. Here we resolve
this issue in Lemma 5.

(Step 2) After the localization in Step 1, the problem essentially reduces to
controlling a multiplier empirical process of the form

E sup
f∈F :f−f∗

0∈L2(δn)∩L∞(B)

∣

∣

∣

∣

1√
n

n
∑

i=1

ξi(f − f∗0 )(Xi)

∣

∣

∣

∣

.(3.1)

A sharp bound for (3.1) is inspired by the observation in Example
2, where the (untruncated) localized envelopes of the isotonic model
take the form

F (δ)(x) ≡ cδ ·
(

x−1/2 ∨ (1− x)−1/2
)

(3.2)

for some absolute constant c > 0. The envelopes for the convex
model also take the same form (3.2), cf. Lemma 9. On the other
hand, the localized envelopes (3.2) are centered at 0, while the mul-
tiplier empirical process (3.1) in question is centered at f∗0 . By ex-
ploiting the exact form of (3.2), we perform a ‘change-of-center argu-
ment’ on (3.1) by shifting f∗0 to an arbitrary piecewise simple signal
fm ∈ Gm ∩ L∞(‖f∗0 ‖∞), cf. Lemma 6, thereby reducing the control
of (3.1) to control of several multiplier empirical processes centered
at 0. The effect of the heavy-tailed ξi’s is then accounted for, via
the multiplier inequality developed in [25], by a uniform estimate for
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the corresponding empirical processes in terms of the L2 size of the
localized envelopes (3.2).

Remark 5. Currently our oracle inequality comes with a log2 n term. It is
known in (i) the fixed design isotonic model with a second moment assump-
tion on the errors, and (ii) the fixed design convex model with sub-Gaussian
errors, that the power of the logarithmic factor can be reduced to 1. The ad-
ditional logarithmic factor in Theorem 3 occurs due to the use of VC-major
property for the isotonic and convex models in the random design setting:
the entropy estimate of bounded VC-major classes comes with logarithmic
factors that involve the L2 size of the envelopes (cf. Lemma 8).

3.2. Additive regression model with shape constraints. Consider fit-
ting (x, z) 7→ φ0(x, z), the conditional mean of the regression model

Yi = φ0(Xi, Zi) + ξi, 1 ≤ i ≤ n,(3.3)

by additive models of the form {(x, z) 7→ f(x) + h(z)}f∈F ,h∈H, where F ,H
are two function classes on [0, 1]. To capture the mathematical essence of
the problem, we assume that the covariates {(Xi, Zi)}ni=1 are i.i.d. from
the uniform law P on [0, 1]2 and are independent of the errors {ξi}. We
use PX , PZ to denote the marginal distributions of P . For identifiability we
assume that H is centered.

Additive models of the type have a long history; see e.g. [26, 38]. When
the additive model is well specified (i.e. φ0(x, z) = f0(x) + h0(z) with
f0 ∈ F , h0 ∈ H), and the nonparametric components enjoy smoothness
assumptions, standard methods such as iterative backfitting, e.g. [30] and
penalized LSE (smooth spline), e.g. [46], can be used to estimate f0 and h0.

Instead of computational issues, we will be interested here in certain struc-
tural aspects of the additive LSE f̂n defined via:

(f̂n, ĥn) ∈ argmin
(f,h)∈F×H

n
∑

i=1

(

Yi − f(Xi)− h(Zi)
)2
.(3.4)

Since the true regression function φ0 need not have an additive structure, one
may naturally expect that f̂n and ĥn estimate the marginal L2 projections
x 7→ f0(x) ≡ PZφ0(x,Z) and z 7→ h0(z) ≡ PXφ0(X, z)−Pφ0 (cf. Appendix
4, page 439 of [8]). Our primary structural question on the behavior of the

additive LSE f̂n concerns the situation in which the model F involves shape
constraints:

Question 2. Does the additive LSE f̂n over the shape constrained model F
enjoy similar robustness and adaptation properties as in the univariate case
(treated in Theorem 3)?

The next theorem gives an affirmative answer to Question 2.

Theorem 4. Suppose that (Xi, Zi, Yi), i = 1, . . . , n, are i.i.d. with values in
[0, 1]× [0, 1]×R and satisfy (3.3) where ‖φ0‖∞ <∞, and the errors {ξi} are
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i.i.d. mean zero with ‖ξ1‖2,1 < ∞. Let F be either the isotonic or convex
model. Further suppose that H ⊂ L∞(2‖φ0‖∞) satisfies the following L∞
covering bound: for some γ ∈ (0, 2)

logN (ε,H, L∞) . ε−γ , for all ε ∈ (0, 1).(3.5)

Then for any δ ∈ (0, 1), there exists c ≡ c(δ, ‖ξ‖2,1, ‖φ0‖∞,F ,H) > 0 such

that with probability 1− δ, the canonical LSE f̂n in (3.4) satisfies

‖f̂n − f∗0 ‖2L2(P ) ≤ c inf
m∈N

(

inf
fm∈Gm

‖fm − f∗0 ‖2L2(P ) +
m

n
· log2 n

)

,

where f∗0 = argming∈F∩L2(P )‖f0 − g‖L2(P ) with f0 = PZφ0(·, Z), and Gm =
Mm for the isotonic model and Gm = Cm for the convex model.

There is very limited theoretical understanding of the properties of shape-
restricted estimators when additive models are used. [34] investigated identi-
fiability issue for the additive LSE in the fixed design setting. [31] considered
pointwise performance of the LSE where both F and H are monotonic with
errors admitting exponential moments. [15] gives an extension to a semi-
parametric setting assuming the same moment condition on the errors, still
considering pointwise performance of the LSEs for the isotonic components.
[14] proved consistency of the MLEs for a generalized class of additive and in-
dex models with shape constraints, without rate considerations. A common
feature of all these works is that the model is required to be well-specified.

To the best knowledge of the authors, Theorem 4 is the first oracle in-
equality for shape-restricted LSEs in regression using an additive model,
and moreover, allowing for model mis-specification: not only the regression
function class F can be mis-specified, but the additive model itself may also
be mis-specified. Our result here therefore gives a strong positive answer
to Question 2: both the adaptation and robustness properties of additive
shape-restricted LSEs can be preserved in estimating the shape constrained
proxy of the marginal L2 projection of the true regression function, up to
error distributions with an L2,1 moment, essentially regardless of whether or
not the additive structure is correctly specified.

3.2.1. Examples under correct specification of the additive structure. Now
we consider the important situation when φ0 has an additive structure:

φ0(x, z) ≡ f0(x) + h0(z).

In such a scenario, our result here is related to the recent work [42], who
asserted that the rate optimality nature of the (penalized) LSE over F in the
Gaussian regression setting can be preserved regardless of the smoothness
level of H. Our Theorem 4 reveals a further structural property of the LSEs:
the robustness and adaptation merits due to shape constraints can also be
preserved, regardless of the choice of H under the entropy condition (3.5).

To further illustrate this point, we consider some examples.
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• (Parametric model) H ≡ {fβ(z) ≡ β(z − 1/2) : β ∈ [−1, 1]}. In this
case (3.3) becomes the semiparametric partially linear model.

• (Smooth model) H is the class of centered uniformly bounded α-
Hölder (α > 1/2) continuous functions on [0, 1] with uniformly
bounded derivatives (cf. Theorem 2.7.1 of [45]).

• (Shape constrained model) H is the class of centered uniformly Lip-
schitz convex functions on [0, 1] (cf. Corollary 2.7.10 of [45]).

3.2.2. Proof strategy of Theorem 4. The basic strategy in our proof of Theo-
rem 4 is similar to that of Theorem 3. First, we need to localize the LSEs in
L∞ norm under a second moment assumption on the errors and PZH

2 <∞,
cf. Lemma 13. Next, in addition to the multiplier empirical process (3.1),
the major additional empirical process we need to control is

E sup
f∈F :f−f∗

0∈L2(δn)∩L∞(B)
h∈H

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − f∗0 )(Xi)(h − (φ0 − f0))(Xi, Zi)

∣

∣

∣

∣

.

(3.6)

where the εi’s are i.i.d. Rademacher random variables. One notable feature
in (3.6) is that the supremum over H need not be localized when the interest

is in the behavior of f̂n, cf. Proposition 4. In other words, no apriori infor-
mation on the behavior of ĥn (other than the assumption (3.5)) is needed

in order to understand the behavior of f̂n.
The entropy condition (3.5) serves as a sufficient condition for a sharp

estimate for (3.6) (and thereby for the oracle inequality in Theorem 4), but
is apparently not necessary; we make such a choice here to cover the above
common examples. A case-by-case study is possible as long as (3.6) can be
well-controlled. For instance, it is not hard to verify a similar bound for (3.6)
as in Lemma 10 (and hence the oracle inequality for shape-restricted LSEs

f̂n) when the additive structure is correctly specified, and H is the class
of centered indicator functions over closed intervals on [0, 1] and h0 = 0
(note that this class fails to satisfy (3.5) since H is not totally bounded in

L∞). This is a difficult case: although the L2 loss of the LSE ĥn is known

to converge at a worst-case rate OP(n
−1/4) (cf. Example 4), Theorem 4

tells us that the bad behavior of ĥn has no effect on the good (robust and

adaptive) performance of f̂n, at least under reasonable assumption on the
distribution of the covariates (X,Z).

4. Proofs of the main results

In this section we outline the main steps in proving the main results of
the paper, namely:

(1) Theorems 1 and 2 characterizing the geometric feature of the model
that determines the actual convergence rate of the L2 loss of the
least squares estimator, and
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(2) Theorems 3 and 4 highlighting oracle inequalities in shape restricted
regression models with a L2,1 moment assumption on the errors.

Proofs of many technical intermediate results will be deferred to Section
5.

4.1. Preliminaries. In this subsection we collect the empirical process tools
that will be needed in the proofs to follow. Our first ingredient is a sharp
multiplier inequality proved in [25].

Lemma 1 (Theorem 1 in [25]). Suppose that ξ1, . . . , ξn are i.i.d. mean-zero
random variables independent of i.i.d. X1, . . . ,Xn. Let F1 ⊃ · · · ⊃ Fn be a
non-increasing sequence of function classes. Assume further that there exist
non-decreasing concave functions {ψn} : R≥0 → R≥0 with ψn(0) = 0 such
that

E

∥

∥

∥

∥

k
∑

i=1

εif(Xi)

∥

∥

∥

∥

Fk

≤ ψn(k)(4.1)

holds for all 1 ≤ k ≤ n. Then

E

∥

∥

∥

∥

n
∑

i=1

ξif(Xi)

∥

∥

∥

∥

Fn

≤ 4

∫ ∞

0
ψn

(

n · P(|ξ1| > t)
)

dt.

Lemma 1 controls the first moment of the multiplier empirical process.
For higher moments, the following moment inequality is useful.

Lemma 2 (Proposition 3.1 of [19]). Suppose X1, . . . ,Xn are i.i.d. with law
P and ξ1, . . . , ξn are i.i.d. mean-zero random variables with ‖ξ1‖2 <∞. Let
F be a class of measurable functions such that supf∈F Pf

2 ≤ σ2. Then for
any q ≥ 1,

E sup
f∈F

∣

∣

∣

∣

n
∑

i=1

ξif(Xi)

∣

∣

∣

∣

q

≤ Kq

[(

E sup
f∈F

∣

∣

∣

∣

n
∑

i=1

ξif(Xi)

∣

∣

∣

∣

)q

+ qq/2(
√
n‖ξ1‖2σ)q + qqE max

1≤i≤n
|ξi|q sup

f∈F
|f(Xi)|q

]

.

Here K > 0 is a universal constant.

To use Lemma 1, we need to control the size of the empirical process. Let

J(δ,F , L2) ≡
∫ δ

0
sup
Q

√

1 + logN
(

ε‖F‖L2(Q),F , L2(Q)
)

dε(4.2)

denote the uniform entropy integral, where the supremum is taken over all
discrete probability measures.

We will frequently use the following Koltchinskii-Pollard maximal inequal-
ity.
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Lemma 3 (Theorem 2.14.1 of [45]). Let F be a class of measurable functions
with measurable envelope F , and X1, . . . ,Xn are i.i.d. random variables with
law P . Then

E

∥

∥

∥

∥

n
∑

i=1

εif(Xi)

∥

∥

∥

∥

F
.

√
nJ(1,F , L2)‖F‖L2(P ).

Our last technical ingredient is Talagrand’s concentration inequality [39]
for the empirical process in the form given by [32]:

Lemma 4. Let F be a class of measurable functions such that supf∈F‖f‖∞ ≤
b. Then

P

(

sup
f∈F

|Gnf | ≥ 2E sup
f∈F

|Gnf |+
√
8σ2x+ 34.5b

x√
n

)

≤ e−x,

where σ2 ≡ supf∈F VarP f , and Gn ≡ √
n(Pn − P ).

4.2. Proof of Theorem 1.

Proof of Theorem 1. We only prove the case F0 ⊂ L∞(1) as in Remark 1 (1).

The proof for the case ‖f̂n−f0‖∞ = OP(1) follows with only minor modifica-
tions. We also work with the more general uniform VC-type condition as in

Remark 2. Let δn ≡ n
− 1

2(2−γ) . By the proof of Proposition 2 of [25], we only
need to estimate for each t ≥ 1, with F0(r) = {f ∈ F − f0 : ‖f‖L2(P ) ≤ r},

E

(

sup
f∈F0(2j tδn)

∣

∣

∣

∣

1√
n

n
∑

i=1

ξif(Xi)

∣

∣

∣

∣

)2

, E

(

sup
f∈F0(2jtδn)

∣

∣

∣

∣

1√
n

n
∑

i=1

εif
2(Xi)

∣

∣

∣

∣

)2

.

By the contraction principle for Rademacher processes and the moment
inequality Lemma 2, we only need to estimate the sum of

(I) ≡
(

E sup
f∈F0(2jtδn)

∣

∣

∣

∣

1√
n

n
∑

i=1

ξif(Xi)

∣

∣

∣

∣

)2

+

(

E sup
f∈F0(2jtδn)

∣

∣

∣

∣

1√
n

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

)2

(4.3)

and

(II) ≡
(

2jtδn(‖ξ1‖2 ∨ 1)
)2

+ n−1 · E max
1≤i≤n

(|ξi| ∨ 1)2 · ‖F0(2
jtδn)‖2L2(P ).

(4.4)

For the first summand (4.3), by the Koltchinskii-Pollard maximal inequality
for empirical processes (cf. Lemma 3), since F is of uniform VC-type, it
follows that

max
1≤k≤n

E sup
f∈F0(2jtδn)

∣

∣

∣

∣

1√
k

k
∑

i=1

εif(Xi)

∣

∣

∣

∣

≤ CF‖F0(2
jtδn)‖L2(P ) ≤ C ′

F (2
jt)γδγn.
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Wemay apply the multiplier inequality Lemma 1 with ψn(k) ≡
√
kC ′

F (2
jt)γδγn

to see that

E sup
f∈F0(2jtδn)

∣

∣

∣

∣

1√
n

n
∑

i=1

ξif(Xi)

∣

∣

∣

∣

≤ 4C ′
F (2

jt)γ‖ξ1‖2,1δγn.

Hence,

(4.3) ≤ CF ,ξ(2
jtδn)

2γ .(4.5)

(4.4) is easy to handle by noting that Emax1≤i≤n(|ξi| ∨ 1)2 . n under the
assumption that ‖ξ1‖2 <∞, which entails that

(4.4) ≤ Cξ

(

(2jtδn)
2 + (2jtδn)

2γ
)

.(4.6)

Combining (4.5) and (4.6) and the arguments in the proof of Proposition 2
of [25], we have

P
(

‖f̂n − f0‖L2(P ) ≥ tδn
)

≤ CF ,ξ

∑

j≥0:2jtδn≤2

(2jtδn)
2 + (2jtδn)

2γ .

(22jt2
√
nδ2n)

2

≤ C ′
F ,ξ

(

nδ2(2−γ)
n

)−1
∑

j≥0

1

(2jt)4−2γ
≤ C ′′

F ,ξt
−2,

where the last inequality follows from the choice of δn. Now the claim of the
theorem (in the form of Remark 1 (1) and under the more general condition
as in Remark 2) follows by integrating the above tail estimate. �

4.3. Proof of Theorem 2. The basic device we will use to derive a lower
bound for the risk of the least squares estimator is the following.

Proposition 1 (Proposition 6 of [25]). Let

Fn(δ) ≡ sup
f∈F−f0:Pf2≤δ2

(Pn − P )(2ξf − f2)− δ2 ≡ En(δ)− δ2.

Suppose that 0 < δ1 < δ2 are such that En(δ1) < Fn(δ2). Then there exists
a LSE f∗n such that ‖f∗n − f0‖L2(P ) ≥ δ1.

The key ingredient in applying the above device is the following.

Proposition 2. For any γ ∈ (0, 1], there exists some VC-subgraph class

F̃ satisfying (2.1) with the following property: for each ε ∈ (0, 1/2), there
exists some law for ξ1 with ‖ξ1‖2(1−ε) <∞ such that

(1) for any ϑ ≥ 4, there exists some p > 0, with δ2 ≡ ϑn
− 1

2(2−γ) ,

P

(

Fn(δ2) ≥
1

2
c1ϑ

γn−
1

2−γ τn(ε, γ)

)

≥ 2p,

holds for n large enough depending on ε, ϑ, γ. Here c1 depends on

ε, γ, and τn(ε, γ) ≡ n
1−γ
2−γ

· ε
2−ε .
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(2) for any ρ > 0, with δ1 ≡ ρn
− 1

2(2−γ)
−βε,

P

(

En(δ1) ≤ p
−1Cε,ξρ

γn
− 1

2−γ ωn(ε, γ)
)

≥ 1− p.

Here ωn(ε, γ) = n
−γβε+

ε
2(1−ε) .

In (1)-(2) above, Fn(δ) ≡ supf∈F̃ :Pf2≤δ2(Pn−P )(2ξf−f2)−δ2 ≡ En(δ)−δ2.
The proof of Proposition 2 relies on a delicate construction of a tree-

structured F̃ , and a sequence of technical arguments including concentration
of empirical processes, the Paley-Zygmund moment argument, and an exact
characterization of the size of the maxima of summations. To ease reading,
a formal proof of Proposition 2 will be given in Section 5.

Proof of Theorem 2. Let f0 = 0. In order to apply Proposition 1, we only
need to require an order in the exponent of τn(·, ·) and ωn(·, ·) in Proposition
2, by making a good choice of βε. To this end, it suffices to require

−γβε +
ε

2(1 − ε)
<

1− γ

2− γ

ε

2− ε
⇔ βε >

ε

γ

[

2− εγ

(2− ε)(2− γ)(2 − 2ε)

]

.

Since ε ∈ (0, 1/2) and γ ∈ (0, 1], we may choose βε = (2/γ) · ε, along with
any ϑ ≥ 4 and ρ > 0 small enough to conclude. �

4.4. Proof of Theorem 3. The proof of Theorem 3 follows from a more
principled oracle inequality presented below—it captures the essential geo-
metric property in the model that accounts for both the adaptation and
robustness property of the shape-restricted LSE up to error distributions
with an L2,1 moment.

4.4.1. The general oracle inequality. First some definitions.

Definition 3. F is said to satisfy a convexity-based shape constraint (under
P ) if F is convex, and F(δ) = {f ∈ F : Pf2 ≤ δ2} admits a convex envelope
F (δ).

Definition 4. G ⊂ F is said to be a basic adaptive subset of F if F−G ⊂ F .
Gm is said to be an m-th order adaptive subset of F if for any gm ∈ Gm,
there is an interval partition {Ij}mj=1 of X = [0, 1] and elements g̃j ∈ G such

that gm =
∑m

i=1 1Ij g̃j ∈ F .

Before stating the general oracle inequality, recall that a function class F
defined on X = [0, 1] is called VC-major if the sets {x ∈ X : f(x) ≥ t} with
f ranging over F and t over R form a VC-class of sets.

Theorem 5. Consider the regression model (1.1) and the LSE f̂n in (1.2).
Suppose that ‖f0‖∞ ∨ ‖f∗0 ‖∞ <∞, and that ξ1, . . . , ξn are mean zero errors
independent of i.i.d. covariates Xi’s with ‖ξ1‖2,1 < ∞. Further assume
that: (i) F satisfies a convexity-based shape constraint, and F ∩ L∞(B) is

a VC-major class for any B > 0, and (ii) ‖f̂n‖∞ = OP(1). Then for any



20 Q. HAN AND J. A. WELLNER

δ ∈ (0, 1), there exists c ≡ c(δ, ‖ξ‖2,1,F , ‖f0‖∞, ‖f∗0 ‖∞) > 0 such that with
probability 1− δ,

‖f̂n − f∗0 ‖2L2(P ) ≤ c inf
m∈N

(

inf
fm∈Gm∩L∞(‖f∗

0 ‖∞)
‖fm − f∗0 ‖2L2(P ) +

m

n
· log2 n

)

,

where f∗0 = argming∈F∩L2(P )‖f0−g‖L2(P ), and Gm is an m-th order adaptive
subset of F .

The proof of Theorem 5 will be deferred to the next subsection. We first
use it to prove Theorem 3. To this end, we only need to check: (i) the
convexity-based shape constraint and VC-major condition of the isotonic
and convex models; and (ii) the stochastic boundedness condition for the

corresponding LSEs f̂n.

Proof of Theorem 3. For the isotonic model F , F is clearly convex, and
(3.2) is an envelope for F(δ) by the L2 constraint and monotonicity of the
function class. Furthermore, it is clear by definition that F ∩ L∞(B) is
VC-major. Similarly we can verify that the convex model satisfies both the
convexity-based shape constraint with the envelope (3.2) (cf. Lemma 9) and
the VC-major condition.

The stochastic boundedness of the isotonic and convex LSEs is established
in the following lemma:

Lemma 5. If ‖f0‖∞ <∞ and ‖ξ1‖2 <∞, then both the canonical isotonic

and convex LSEs are stochastically bounded: ‖f̂n‖∞ = OP(1).

For the isotonic LSE, we use an explicit min-max representation (cf. [36])
to prove this lemma, while for the convex LSE, the explicit characterization
of the convex LSE derived in [21] plays a crucial role. The details of the
proof of this lemma can be found in Section 5. Now the claim of Theorem
3 follows from Theorem 5, by noting that ‖f∗0 ‖∞ < ∞ under ‖f0‖∞ < ∞,
and that inffm∈Gm∩L∞(‖f∗

0 ‖∞)‖fm − f∗0 ‖2L2(P ) = inffm∈Gm‖fm − f∗0‖2L2(P ) for

isotonic model, and the same holds for the convex model when L∞(‖f∗0 ‖∞
is replaced by L∞(C‖f∗0 ‖∞) for some large enough C > 0. �

4.4.2. Proof of Theorem 5. The first ingredient of the proof is the follow-
ing proposition relating the convergence rate of f̂n to the size of localized
empirical processes.

Proposition 3. Consider the regression model (1.1) and the least squares

estimator f̂n in (1.2). Suppose that ξ1, . . . , ξn are mean-zero random vari-
ables independent of X1, . . . ,Xn, and F is convex with F − f∗0 ⊂ L∞(1).
Further assume that

E sup
f∈F :‖f−f∗

0 ‖L2(P )≤δ

∣

∣

∣

∣

1√
n

n
∑

i=1

ξi(f − f∗0 )(Xi)

∣

∣

∣

∣

. φn(δ),

E sup
f∈F :‖f−f∗

0 ‖L2(P )≤δ

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − f∗0 )(Xi)

∣

∣

∣

∣

. φn(δ),(4.7)
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E sup
f∈F :‖f−f∗

0 ‖L2(P )≤δ

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − f∗0 )(Xi)(f0 − f∗0 )(Xi)

∣

∣

∣

∣

. φn(δ),

hold for some φn such that δ 7→ φn(δ)/δ is non-increasing. Then

‖f̂n − f∗0‖L2(P ) = OP(δn) holds for any δn such that φn(δn) ≤
√
nδ2n.

Proof. This is a special case of Proposition 4, the proof of which will be
given therein. �

By Proposition 3, we only need to control the size of the empirical pro-
cesses (4.7) centered at f∗0 . The following lemma will be useful in this regard
by approximating f∗0 via arbitrary fm ∈ Gm.

Lemma 6. Suppose that the hypotheses of Theorem 5 hold. Let {δn}n∈N
be a sequence of positive real numbers such that δn ≥ 1/n. Then for any
fm ∈ Gm ∩ L∞(‖f∗0 ‖∞) and B > 0,

max

{

E sup
f∈F :f−f∗

0∈L2(δn)∩L∞(B)

∣

∣

∣

∣

1√
n

n
∑

i=1

ξi(f − f∗0 )(Xi)

∣

∣

∣

∣

,

E sup
f∈F :f−f∗

0∈L2(δn)∩L∞(B)

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − f∗0 )(Xi)

∣

∣

∣

∣

,

E sup
f∈F :f−f∗

0∈L2(δn)∩L∞(B)

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − f∗0 )(Xi)(f0 − f∗0 )(Xi)

∣

∣

∣

∣

}

≤ CF ,‖f0‖∞,‖f∗

0 ‖∞,B · ‖ξ1‖2,1
√

log(1/δn)L̄n · (δn ∨ ‖fm − f∗0 ‖L2(P ))
√
m,

where L̄n ≡ √
log n.

To prove Lemma 6, we need the following form of a multiplier inequality
proved in Proposition 1 of [25].

Lemma 7. Suppose that ξ1, . . . , ξn are i.i.d. mean-zero random variables
independent of i.i.d. X1, . . . ,Xn. Then for any function class F ,

E

∥

∥

∥

∥

n
∑

i=1

ξif(Xi)

∥

∥

∥

∥

F
≤ E

[

n
∑

k=1

(|η(k)| − |η(k+1)|)E
∥

∥

∥

∥

k
∑

i=1

εif(Xi)

∥

∥

∥

∥

F

]

(4.8)

where |η(1)| ≥ · · · ≥ |η(n)| ≥ |η(n+1)| ≡ 0 are the reversed order statistics for

{|ξi − ξ′i|}ni=1 with {ξ′i} being an independent copy of {ξi}.
The following entropy estimate for bounded VC-major classes will be

useful.

Lemma 8. Let F0 ⊂ L∞(1) be a VC-major class defined on X . Then there
exists some constant C ≡ CF0 > 0 such that for any F ⊂ F0, and any
probability measure Q, the entropy estimate

logN
(

ε‖F‖L2(Q),F , L2(Q)
)

≤ C

ε
log

(

C

ε

)

log

(

1

ε‖F‖L2(Q)

)

, for all ε ∈ (0, 1)

holds for any envelope F of F .
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The proof of this lemma essentially follows from page 1171-1172 of [18]
with a minor modification. We include some details in Section 5 for the
convenience of the reader.

We also need the following lemma concerning the envelope of a convex
function given constraints on its L2 size. The proof can be found in Lemma
7.3 of [22].

Lemma 9. If f is a convex function on [0, 1] with
∫ 1
0 |f(x)|2 dx ≤ 1, then

|f(x)| ≤ 2
√
3
(

x−1/2 ∨ (1− x)−1/2
)

for all x ∈ (0, 1).

Proof of Lemma 6. In the proof we omit the dependence on L∞(B) if there
is no confusion. All three empirical processes can be handled in essentially
the same way so we focus on the most difficult first one (with ξi’s only
admitting a L2,1 moment). We will apply Lemma 7 in the following form:

E sup
f∈F :f−f∗

0∈L2(δn)

∣

∣

∣

∣

1√
n

n
∑

i=1

ξi(f − f∗0 )(Xi)

∣

∣

∣

∣

(4.9)

≤ 3‖ξ1‖2,1 max
1≤k≤n

E sup
f∈F :f−f∗

0∈L2(δn)

∣

∣

∣

∣

1√
k

k
∑

i=1

εi(f − f∗0 )(Xi)

∣

∣

∣

∣

.

To see this, note that the right hand side of (4.8) can be bounded by

E

[ n
∑

k=1

√
k(|η(k)| − |η(k+1)|)

]

· max
1≤k≤n

E

∥

∥

∥

∥

1√
k

k
∑

i=1

εif(Xi)

∥

∥

∥

∥

F

where E
[
∑n

k=1

√
k(|η(k)| − |η(k+1)|)

]

≤ √
n‖η1‖2,1 ≤ 3

√
n‖ξ1‖2,1. The first

inequality follows from similar lines as in the proof of Theorem 1 of [25]
and the second inequality uses Problem 2 on page 186 of [45]. This proves
(4.9). Note that any fm ∈ Gm has a representation fm =

∑m
j=1 gj1Ij , where

{Ij = [xj , xj+1]}mj=1 is a partition of X = [0, 1] with x1 = 0, xm+1 = 1 and
gj ∈ G. Then for any fm ∈ Gm, the empirical process localized at f∗0 can be
controlled via

E sup
f∈F :f−f∗

0∈L2(δn)∩L∞(B)

∣

∣

∣

∣

1√
k

k
∑

i=1

εi(f − f∗0 )(Xi)

∣

∣

∣

∣

(4.10)

≤ E sup
f∈F :‖f−fm‖L2(P )≤δn+‖fm−f∗

0 ‖L2(P ),

‖f‖∞≤B+‖f∗

0 ‖∞

∣

∣

∣

∣

1√
k

k
∑

i=1

εi(f − fm)(Xi)

∣

∣

∣

∣

+ ‖f∗0 − fm‖L2(P ),

where the second term holds because the collection {f∗0 − fm} consists of
just one element. The first term in the above term can be further bounded
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by

m
∑

j=1

E

[

√

kj√
k
E

[

sup
f∈F :‖f−fm‖L2(P )≤δn+‖fm−f∗

0 ‖L2(P ),

‖f‖∞≤B+‖f∗

0 ‖∞

∣

∣

∣

∣

1
√

kj

∑

Xi∈Ij
εi(f − gj)(Xi)

∣

∣

∣

∣

(4.11)

∣

∣

∣

∣

kj(X) = kj

]]

≤
m
∑

j=1

E

[

√

kj√
k
E

[

sup
f |Ij∈F|Ij :

‖f‖∞≤B+2‖f∗

0 ‖∞,

P f2≤(δn+‖fm−f∗

0 ‖L2(P ))
2

∣

∣

∣

∣

1
√

kj

∑

Xi∈Ij
εif |Ij(Xi)

∣

∣

∣

∣

∣

∣

∣

∣

kj(X) = kj

]]

where kj(X) =
∑k

i=1 1Ij(Xi), and in the second line we used the definition

of a basic adaptive subset (cf. Definition 4). From now on we write δ̃n ≡
δn + ‖fm − f∗0 ‖L2(P ) and B0 ≡ B + 2‖f∗0 ‖∞ for notational convenience.

Since
(

F ∩ L∞(B0)
)

|Ij is VC-major, so is its subset FIj(δ̃n) ≡ {f |Ij ∈
(

F ∩L∞(B0)
)

|Ij : Pf2 ≤ δ̃2n}. It follows by Lemma 8 that there exists some
C ≡ CF ,B0 > 0 such that for any probability measure Q on Ij, and any
ε ∈ (0, 1),

logN
(

ε‖FIj (δ̃n)‖L2(Q),FIj (δ̃n), L2(Q)
)

≤ C

ε
log

(

C

ε

)

log

(

1

ε‖FIj (δ̃n)‖L2(Q)

)

,

where FIj(δ) is any envelope for FIj (δ). This enables us to apply the
Koltchinskii-Pollard maximal inequality to see that the summand (=condi-
tional expectation) in the second line of (4.11) can be bounded by (further
conditioning on which Xi’s lie in the interval Ij, each case corresponds to
i.i.d. uniforms on Ij)

∫ 1

0

√

C

ε
log

(

C

ε

)

log

(

1

ε infQ‖FIj (δ̃n)‖L2(Q)

)

dε ·
√

PIjF
2
Ij
(δ̃n),(4.12)

where PIj is the uniform distribution on Ij.
In order to evaluate (4.12), note that by the definition of convexity-based

shape constraint and Lemma 9, the envelopes FIj(δ)’s can be taken as the
restrictions of the global envelope

F (δ)(x) ≡
(

δ√
x
∨ δ√

1− x

)

∧B0

to the Ij ’s. Without loss of generality we assume: (i) B0 = 1, (ii) δ̃2n < 1/2

and (iii) δ̃2n and 1 − δ̃2n are one of the endpoints of some intervals in {Ij}
(otherwise, we may take an alternative representation of fm ∈ Gm+2 by
adding these two points).
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Note that infQ‖FIj (δ̃n)‖L2(Q) ≥
√
2δ̃n > 1/n by the assumption δn ≥ 1/n,

and hence the integral term in (4.12) can be bounded by

∫ 1

0

√

C

ε
log

(

C

ε

)

log

(

n

ε

)

dε .
√

log n ≡ L̄n.

To handle the
√

PIjF
2
Ij
(δ̃n) term in (4.12), define the index sets J1 ≡ {1 ≤

j ≤ m : Ij ⊂ [0, δ̃2n]},J2 ≡ {1 ≤ j ≤ m : Ij ⊂ [δ̃2n, 1 − δ̃2n]} and J3 ≡ {1 ≤
j ≤ m : Ij ⊂ [1 − δ̃2n, 1]}. It is easy to see that J1 ∪ J2 ∪ J3 = {1, . . . ,m}.
Clearly for j ∈ J1 ∪ J3,

PIjF
2
Ij (δ̃n) = |Ij |−1

∫

Ij

F 2
Ij (δ̃n)(x) dx ≤ 1,

and for j ∈ J2,

PIjF
2
Ij (δ̃n) ≤ |Ij |−1δ̃2n

∫ xj+1

xj

(

1

x
∨ 1

1− x

)

dx

≤ |Ij |−1δ̃2n

[

log

(

xj+1

xj

)

∨ log

(

1− xj
1− xj+1

)]

.

Summarizing the above discussion shows that we can further bound (4.11)
by a O(L̄n) multiple of

∑

j∈J1∪J3

E

[

√

kj
k

· 1
]

+
∑

j∈J2

δ̃n · E
[

√

kj
k

·
√

log(xj+1)− log(xj)

xj+1 − xj

]

(4.13)

+
∑

j∈J2

δ̃n · E
[

√

kj
k

·
√

log(1− xj)− log(1− xj+1)

(1− xj)− (1− xj+1)

]

≡ (I) + (II) + (III).

The first term of (4.13) is easy to handle: by the Cauchy-Schwarz inequality,

(I) ≤
√

√

√

√k−1

(

E

∑

j∈J1∪J3

kj(X)

)

· |J1 ∪ J3| ≤
√

∑

j∈J1∪J3

|Ij | ·
√
m . δ̃n

√
m.

The second and third terms of (4.13) can be handled in a similar fashion;
we only consider the second term of (4.13). Again by the Cauchy-Schwarz
inequality,

(II) ≤ δ̃n
√
m ·

√

√

√

√E

[

∑

j∈J2

kj(X)

k
· log(xj+1)− log(xj)

xj+1 − xj

]

= δ̃n
√
m

√

∑

j∈J2

(

log(xj+1)− log(xj)
)

.
√
m · δ̃n

√

log(1/δ̃n).



ROBUSTNESS OF SHAPE-RESTRICTED LSES 25

Collecting the above estimates, we see that (4.11) can be bounded by a

constant multiple of
√
m · δ̃n

√

log(1/δ̃n)L̄n. Thus, (4.10) yields that

max
1≤k≤n

E sup
f∈F :f−f∗

0∈L2(δn)

∣

∣

∣

∣

1√
k

k
∑

i=1

εi(f − f∗0 )(Xi)

∣

∣

∣

∣

≤ C ′√m · δ̃n
√

log(1/δ̃n)L̄n.

Combined with (4.9), the claim of the lemma follows. �

Proof of Theorem 5. The proof follows easily from the reduction scheme
Proposition 4 and Lemma 6 by solving a quadratic inequality. We pro-
vide some details below. Abusing notation, we let fm ∈ argmingm∈Gm

‖gm −
f∗0‖L2(P ) and m be the index attaining the infimum of the oracle inequality
in the statement of the theorem. We only need to choose δn such that

√
m(δn + ‖fm − f∗0 ‖L2(P ))

√

log(1/δn)L̄n ≤ cδ,F ,‖f∗

0 ‖∞,‖ξ‖2,1
√
nδ2n.

Suppose log(1/δn) . log n. Then we can easily solve for the zeros for qua-
dratic forms to see that the inequality in the last display holds if

δ2n &
mL̄2

n log n

n
+

√

mL̄2
n log n

n
‖fm − f∗0‖L2(P ).

The assumption log(1/δn) . log n apparently holds. The right hand side of

the above display can be further bounded up to a constant by mL̄2
n logn
n +

‖fm− f∗0 ‖2L2(P ) by the basic inequality ab ≤ (a2+ b2)/2, thereby completing

the proof of Theorem 5. �

4.5. Proof of Theorem 4. The proof of Theorem 4 follows a similar strat-
egy as that of Theorem 5. First we need the following reduction scheme.

Proposition 4. Consider the additive model (3.3) and the least squares es-

timator f̂n in (3.4). Suppose that ξ1, . . . , ξn are mean-zero random variables
independent of (X1, Z1), . . . , (Xn, Zn), and F is convex with F−f∗0 ⊂ L∞(1).
Further assume that all three parts of (4.7) and

E sup
f∈F :‖f−f∗

0 ‖L2(P )≤δ

h∈H

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − f∗0 )(Xi)(h− (φ0 − f0))(Xi, Zi)

∣

∣

∣

∣

. φn(δ),

(4.14)

hold for some φn such that δ 7→ φn(δ)/δ is non-increasing. Then

‖f̂n − f∗0‖L2(P ) = OP(δn) holds for any δn such that φn(δn) ≤
√
nδ2n.

Proof. Recall that f0 = PZφ0(·, Z). By the definition of the LSE,

Pn(φ0 + ξ − f̂n − ĥn)
2 ≤ Pn(φ0 + ξ − f∗0 − ĥn)

2

⇔ Pn(f
∗
0 − f̂n)

(

2φ0 + 2ξ − f̂n − f∗0 − 2ĥn
)

≤ 0

⇔ Pn(f
∗
0 − f̂n)

2 + 2Pn(f
∗
0 − f̂n)

(

φ0 + ξ − f∗0 − ĥn
)

≤ 0

⇔ −Pn(f
∗
0 − f̂n)

2 − 2Pn(f
∗
0 − f̂n)ξ − 2Pn(f

∗
0 − f̂n)(f0 − f∗0 )
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− 2Pn(f
∗
0 − f̂n)(φ0 − f0 − ĥn) ≥ 0

⇔ −(Pn − P )

[

(f∗0 − f̂n)
2 − 2ξ(f∗0 − f̂n)

]

− P (f∗0 − f̂n)
2

− 2(Pn − P )(f∗0 − f̂n)(f0 − f∗0 )− 2P (f∗0 − f̂n)(f0 − f∗0 )

− 2(Pn − P )(f∗0 − f̂n)(φ0 − f0 − ĥn) ≥ 0.

The last equivalence holds since

P (f∗0 − f̂n)(X)(φ0 − f0 − ĥn)(X,Z)

= P

[

(f∗0 − f̂n)(X)P
[

(φ0 − f0 − ĥn)(X,Z)
∣

∣X
]

]

= P

[

(f∗0 − f̂n)(X)
(

P
[

φ0(X,Z)
∣

∣X
]

− f0(X)− Pĥn(Z)
)

]

= 0,

where we used (i) P [φ0(X,Z)|X] = f0(X), and (ii) Ph = 0 for all h ∈ H.
Now since f∗0 ∈ argming∈F∩L2(P )‖f0− g‖L2(P ), it follows from the convexity

of F that P (f∗0 − f̂n)(f0 − f∗0 ) ≥ 0 [more specifically, for each ε > 0, since

(1 − ε)f∗0 + εf̂∗n ∈ F ∩ L2(P ) by convexity of F , the definition of f∗0 yields

that P (f0 − f∗0 )
2 ≤ P (f0 − (1 − ε)f∗0 − εf̂n)

2 = P (f0 − f∗0 + ε(f∗0 − f̂n))
2.

The claim follows by expanding the square and taking ε→ 0]. This implies
that, with Sj(δn) ≡ {f ∈ F : 2j−1δn < ‖f − f∗0‖L2(P ) ≤ 2jδn}, on the event

{2j−1δn < ‖f̂n − f∗0 ‖L2(P ) ≤ 2jδn}, it holds that

sup
f∈Sj(δn)

|(Pn − P )(f − f∗0 )
2|+ 2 sup

f∈Sj (δn)
|(Pn − P )ξ(f − f∗0 )|

+ 2 sup
f∈Sj (δn)

|(Pn − P )(f − f∗0 )(f0 − f∗0 )|

+ 2 sup
f∈Sj (δn),h∈H

|(Pn − P )(f − f∗0 )(h− (φ0 − f0))|

≥ −(Pn − P )

[

(f∗0 − f̂n)
2 − 2ξ(f∗0 − f̂n)

]

− 2(Pn − P )(f∗0 − f̂n)(f0 − f∗0 )− 2(Pn − P )(f∗0 − f̂n)(φ0 − f0 − ĥn)

≥ 22j−2δ2n.

Hence by symmetrization, the contraction principle for Rademacher pro-
cesses and the assumptions we see that

P
(

‖f̂n − f∗0 ‖L2(P ) > 2M−1δn
)

≤
∑

j≥M

P

(

sup
f∈Sj(δn)

|(Pn − P )(f − f∗0 )
2|+ 2 sup

f∈Sj (δn)
|(Pn − P )ξ(f − f∗0 )|

+ 2 sup
f∈Sj (δn)

|(Pn − P )(f − f∗0 )(f0 − f∗0 )|
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+ 2 sup
f∈Sj(δn),h∈H

|(Pn − P )(f − f∗0 )(h− (φ0 − f0))| ≥ 22j−2δ2n

)

.
∑

j≥M

(

22j
√
nδ2n

)−1
(

E‖Gn‖F0(2jδn) ∨ E‖Gn‖F0(2jδn)⊗ξ

∨ E‖Gn‖F0(2jδn)⊗(f0−f∗

0 )
∨ E‖Gn‖F0(2jδn)⊗(H−(φ0−f0))

)

≤ C
∑

j≥M

φn(2
jδn)

22j
√
nδ2n

≤ C
∑

j≥M

φn(δn)

2j
√
nδ2n

.
∑

j≥M

2−j → 0

as M → ∞. Here we denote F0 ≡ F − f∗0 , and in the last sequence of
inequalities we used the assumption that δ 7→ φn(δ)/δ is non-decreasing and
the definition of δn. This completes the proof. �

By Proposition 4, apart from the empirical processes in Lemma 6, we also
need to control the empirical process (4.14) indexed by a suitably localized
subset of F⊗(H−(φ0−f0)) ≡ {f(x)

(

h(z)−φ0(x, z)−f0(x)
)

: f ∈ F , h ∈ H}.
In a related work, [41] derived bounds for similar empirical processes under
L∞-type entropy conditions for both F and H (cf. Theorem 3.1 of [41]),
which apparently fail for shape constrained classes.

Lemma 10. Suppose that the hypotheses of Theorem 4 hold. Let {δn}n∈N
be a sequence of positive real numbers such that δn ≥ 1/n. Then for any
fm ∈ Gm ∩ L∞(‖f∗0 ‖∞), and B > 0,

E sup
f∈F :f−f∗

0∈L2(δn)∩L∞(B)
h∈H

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − f∗0 )(Xi)(h − h0)(Xi, Zi)

∣

∣

∣

∣

≤ CH,F ,‖φ0‖∞,‖f∗

0 ‖∞,B ·
√

log(1/δn)L̄n · (δn ∨ ‖fm − f∗0 ‖L2(P ))
√
m.

Here L̄n ≡ √
log n.

We need some technical lemmas. Recall PX , PZ are the marginal proba-
bility distributions of (X,Z), i.e. uniform distribution on [0, 1].

Lemma 11. Let H be a class of measurable functions defined on [0, 1], and
let f ∈ L2(PX), g ∈ L2(P ). Then for any probability measure Q on [0, 1]2,

N
(

ε‖f ⊗ 1‖L2(Q), f ⊗
(

H− g
)

, L2(Q)
)

≤ N
(

ε,H, L∞
)

.

Lemma 12. Suppose the conditions on H in Theorem 4 hold and F is the
class of monotonic non-decreasing or convex functions on [0, 1]. Then for
any F ′ ⊂ F ∩ L∞(1) and any probability measure Q on [0, 1]2, the entropy
estimate

logN
(

ε‖F ′ ⊗ 1‖L2(Q),F ′ ⊗ (H− (φ0 − f0)), L2(Q)
)

.
1

ε
log

(

1

ε

)

log

(

1

ε‖F ′ ⊗ 1‖L2(Q)

)

∨ ε−γ , for all ε ∈ (0, 1)
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holds for any envelope F ′ of F ′. The constant in the above estimate does
not depend on the choice of F ′ or Q.

The proofs of Lemmas 11 and 12 are standard. We include the details in
Section 5 for completeness.

Proof of Lemma 10. The proof follows the same strategy as that of Lemma
6. We only prove the isotonic case Gm = Mm; the convex case follows by
similar arguments. As in the proof of Lemma 6, we will omit the explicit
dependence on L∞(B) if no confusion arises. Note that

E sup
f∈F :f−f∗

0∈L2(δn),h∈H

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − f∗0 )(Xi)(h− (φ0 − f0))(Xi, Zi)

∣

∣

∣

∣

(4.15)

≤ E sup
f∈F :‖f−fm‖L2(P )≤δn+‖fm−f∗

0 ‖L2(P ),

h∈H

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(f − fm)(Xi)(h − (φ0 − f0))(Xi, Zi)

∣

∣

∣

∣

+ E sup
h∈H

∣

∣

∣

∣

1√
n

n
∑

i=1

εi(fm − f∗0 )(Xi)(h − (φ0 − f0))(Xi, Zi)

∣

∣

∣

∣

≡ (I) + (II).

We first handle (II) in (4.15). The entropy assumption on H coupled with
Lemma 11 entails that the uniform entropy integral for the class (fm−f∗0 )⊗
(

H− (φ0− f0)
)

converges. By Theorem 2.14.1 of [45], we have the following
estimate

(II) ≤ CH‖fm − f∗0 ‖L2(P ).

For the first term (I) in (4.15), we mimic the proof strategy in Lemma 6:
any piecewise constant fm ∈ Mm has a representation fm =

∑m
j=1 gj1Ij ,

where {Ij = [xj , xj+1]}mj=1 is a partition of [0, 1] with x1 = 0, xm+1 = 1 and
gj takes constant values on the intervals Ij. Then for such fm ∈ Mm, write

Ĩj = Ij × [0, 1], we have

m
∑

j=1

E

[√
nj√
n
E

[

sup
f∈F :f−fm∈L2(δ̃n)

h∈H

∣

∣

∣

∣

1
√
nj

∑

(Xi,Zi)∈Ĩj

εi(f − gj)(Xi)(h − (φ0 − f0))(Xi, Zi)

∣

∣

∣

∣

∣

∣

∣

∣

nj(X,Z) = nj

]]

≤
m
∑

j=1

E

[√
nj√
n
E

[

sup
f |Ij∈F|Ij :

‖f‖∞≤B+2‖f∗

0 ‖∞,

PXf2≤δ̃2n,h∈H

∣

∣

∣

∣

1
√
nj

∑

(Xi,ZI)∈Ĩj

εif ⊗ (h− (φ0 − f0))|Ĩj (Xi, Zi)

∣

∣

∣

∣

∣

∣

∣

∣

nj(X,Z) = nj

]]
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where δ̃n ≡ δn + ‖fm − f∗0 ‖L2(P ). Here nj(X,Z) =
∑n

i=1 1Ĩj (Xi, Zi) and

in the second line we used the fact that (f − fm)|Ij ∈ F|Ij . By Lemma
12 and the Koltchinskii-Pollard maximal inequality, each summand of the
above display can be bounded up to a constant (depending on F ,H, ‖φ0‖∞)
by

∫ 1

0

√

1

ε
log

(

1

ε

)

log

(

1

ε‖FIj (δ̃n)⊗ 1‖L2(Q)

)

∨ ε−γ dε

×
(

PĨj
F 2
Ij(δ̃n)

)1/2
. L̄n ·

√

PIjF
2
Ij
(δ̃n),

where PĨj
is the uniform distribution on Ĩj and FIj (δ) is the envelope for

(

F ∩ L∞(B + 2‖f∗0 ‖∞) ∩ L2(δ)
)

|Ij , and the inequality in the above display
follows from similar arguments as in the proof of Lemma 6. From here the
proof proceeds along the same lines as that of the proof for Lemma 6. �

Proof of Theorem 4. The proof of Theorem 4 follows the arguments of the
proof of Theorem 5 by using Proposition 4 along with Lemmas 6 and 10,
combined with the stochastic boundedness of the LSE:

Lemma 13. Suppose that the hypotheses of Theorem 4 hold (except that H is
only required to have a continuously square integrable envelope PZH

2 <∞).
Then both the canonical isotonic and convex LSEs in the additive regression
model (3.4) are stochastically bounded: ‖f̂n‖∞ = OP(1).

The proof of this lemma will be detailed in Section 5, and hence completes
the proof of Theorem 4. �

5. Proofs of technical results

In this section, we collect the proofs for technical results in three groups:

(1) the key Proposition 2 used in the proof of Theorem 2;
(2) entropy results in Lemmas 8, 11 and 12;
(3) stochastic boundedness for shape-restricted LSEs in Lemmas 5 and

13.

5.1. Proof of Proposition 2. In the next few subsections, we will prove
Proposition 2 step by step.

5.1.1. Construction of F̃ . First consider the case γ ∈ (0, 1). We will do the

construction iteratively. For l = 1, since [0, 1] contains
⌊

2
1

1−γ

⌋

many equal-

length intervals (with length
(

2
1

1−γ
)−1

), we can pick 2 intervals among them;

this is denoted C̃1. For l = 2, each interval in C̃1 contains
⌊

2
1

1−γ

⌋

many

equal-length subintervals with length
(

2
1

1−γ
)−2

, we can pick 2 subintervals

among each of the interval; this is denoted C̃2. In this way we can define
iteratively C̃l for any l ∈ N. Let F̃l ≡ {1I : I ∈ C̃l}. Clearly |F̃l| = 2l
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and contains indicators over intervals in [0, 1] with length
(

2
1

1−γ
)−l

. Now

let F̃ ≡ ∪l∈NF̃l ∪ {0} where 0 denotes a mapping taking identical value 0.

Next, for γ = 1, let F̃ ≡ {1[0,δ] : 0 ≤ δ ≤ 1}.
We show that the constructed F̃ satisfies the desired growth condition

(2.1). Recall P is the uniform distribution on [0, 1].

Lemma 14. It holds that

‖F̃ (δ)‖L2(P ) ≤
√
2δγ ,

where F̃ (δ) denotes the envelope for F̃(δ).

Proof. The claim is trivial for γ = 1. For γ ∈ (0, 1), since each element in

C̃l+1 is contained in some element in C̃l, we only need to count the number
of intervals for the smallest level l(δ) such that the length of intervals in

F̃l(δ) is no more than δ2. In other words, l(δ) is the integer for which

(

2
1

1−γ
)−l(δ) ≤ δ2,

(

2
1

1−γ
)−l(δ)+1

> δ2.

Hence the number of intervals in F̃l(δ) is N(δ) = 2l(δ) ∈ [δ−(2−2γ), 2δ−(2−2γ)],
from which the claim of the lemma holds. �

5.1.2. Proof of claim (1) of Proposition 2. The following standard Paley-
Zygmund lower bound will be used.

Lemma 15 (Paley-Zygmund). Let Z be any non-negative random variable.

Then for any ε > 0, P(Z > εEZ) ≥
(

(1−ε)EZ

(EZq)1/q

)q′

, where q, q′ ∈ (1,∞) are

conjugate indices: 1/q + 1/q′ = 1.

We need the following exact characterization concerning the size of max-
ima of a sequence of independent random variables due to [20], see also
Corollary 1.4.2 of [16].

Lemma 16. Let ξ1, . . . , ξn be a sequence of independent non-negative ran-
dom variables such that ‖ξi‖r < ∞ for all 1 ≤ i ≤ n. For λ > 0, set
δ0(λ) ≡ inf {t > 0 :

∑n
i=1 P(ξi > t) ≤ λ}. Then

1

1 + λ

n
∑

i=1

Eξri 1ξi>δ0 ≤ E max
1≤i≤n

ξri ≤ 1

1 ∧ λ
n
∑

i=1

Eξri 1ξi>δ0 .

Proof of Proposition 2, claim (1). (Case 1: 0 < γ < 1). Recall δ2 ≡
ϑn

− 1
2(2−γ) . Then by the proof of Lemma 14, we see that there exists some

level l(δ2) ∈ N such that the N(δ2) many intervals {Il}N(δ2)
l=1 in F̃l(δ2) have

length at most δ22 and at least 2−1/(1−γ)δ22 , while the number of intervals

satisfies ϑ−(2−2γ)n
1−γ
2−γ ≤ N(δ2) ≤ 2ϑ−(2−2γ)n

1−γ
2−γ . Let En be the event that

all intervals {Il}N(δ2)
l=1 contain at least 2

− 2−γ
1−γ ϑ2n

1−γ
2−γ of the Xi’s and at most
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5
4ϑ

2n
1−γ
2−γ of the Xi’s. Then by a union bound and Bernstein’s inequality (cf.

(2.10) of [10]),

P(Ec
n) ≤ P

(

max
1≤l≤N(δ2)

∣

∣

∣

∣

n
∑

i=1

1Il(Xi)− n|Il|
∣

∣

∣

∣

> 2
− 2−γ

1−γ ϑ2n
1−γ
2−γ

)

(5.1)

≤ 2ϑ−(2−2γ)n
1−γ
2−γ exp

(

− cγϑ
2n

1−γ
2−γ

)

.

Let Il ≡ {Xi ∈ Il} for 1 ≤ l ≤ N(δ2) and {ξ(l)i }i,l≥1 be i.i.d. random
variables with the same law as ξ1. Then for some tn > 0 to be determined
later,

P

(

sup
f∈F̃ :Pf2≤δ22

∣

∣

∣

∣

n
∑

i=1

ξif(Xi)

∣

∣

∣

∣

≥ tn

)

≥ EX

[

Pξ

(

max
1≤l≤N(δ2)

∣

∣

∣

∣

n
∑

i=1

ξi1Il(Xi)

∣

∣

∣

∣

≥ tn

)

1En

]

(5.2)

= EX

[

Pξ

(

max
1≤l≤N(δ2)

∣

∣

∣

∣

|Il|
∑

i=1

ξ
(l)
i

∣

∣

∣

∣

≥ tn

)

1En

]

.

Our goal now is to make a good choice of the law for ξ
(·)
· ’s so that we

may obtain a good estimate for tn and thereby using the Paley-Zygmund
argument. Let ξ1 be distributed according to the symmetric αε ≡ 2 − ε
stable law, i.e. the characteristic function of ξ1 is ϕξ1(t) = exp(−|t|αε).

Apparently, k−1/αε
∑k

i=1 ξ
(l)
i has the same law as that of ξ1, and hence we

can take

tn =
1

2

(

2−
2−γ
1−γ ϑ2n

1−γ
2−γ

)1/αε

Eξ max
1≤l≤N(δ2)

|ξl|.(5.3)

Then the conditional probability in the last line of (5.2) can be bounded
from below by

Pξ

(

max
1≤l≤N(δ2)

|ξl| ≥
1

2
Eξ max

1≤l≤N(δ2)
|ξl|

)

≥
(

Eξ max1≤l≤N(δ2)|ξl|
2
(

Eξ max1≤l≤N(δ2)|ξl|r
)1/r

)r′
(5.4)

for some conjugate indices (r, r′) ∈ (1,∞)2. (5.2) and (5.4) suggest that we
need to derive a lower bound for Eξ max1≤l≤N(δ2)|ξl| and an upper bound
for Eξ max1≤l≤N(δ2)|ξl|r. This can be done via the help of Lemma 16: since

P(|ξ1| > t) ≍ Cε
1+tαε (cf. Property 1.2.15, page 16 of [37]), we can choose

λ ≡ 1 and δ0 ≍ε N(δ2)
1/αε to see that

Eξ max
1≤l≤N(δ2)

|ξl|r ≍
N(δ2)
∑

l=1

E|ξl|r1ξl>δ0

= N(δ2)

(

P (|ξ1| > δ0)

∫ δ0

0
rur−1 du
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+

∫ ∞

δ0

rur−1
P (|ξ1| > u) du

)

≍ε,r N(δ2)
r/αε .

Now as long as ε < 1/2, we may choose r > 1 close enough to 1, e.g. r = 1.1,
to conclude that there exists p1 ∈ (0, 1/8) that only depends on ε such that

Left hand side of (5.4) ≥ 8p1.(5.5)

Combining (5.1), (5.2) and (5.5), and the fact that tn = c1
(

ϑγn
1−γ
2−γ

)2/αε for
some constant c1 depending on ε, γ only, we have that for n large enough
depending on ϑ, γ,

P

(

sup
f∈F̃ :Pf2≤δ22

∣

∣

∣

∣

n
∑

i=1

ξif(Xi)

∣

∣

∣

∣

≥ c1
(

ϑγn
1−γ
2−γ

)2/αε

)

≥ 4p1.(5.6)

On the other hand, by Talagrand’s concentration inequality (cf. Lemma
4) and the contraction principle for Rademacher processes, we have with
probability at least 1− 2p1,

sup
f∈F̃ :Pf2≤δ22

|Gn(f
2)| ≤ C

(

E sup
f∈F̃ :Pf2≤δ22

|Gnf |+ δ2
√

log(1/2p1) + log(1/2p1)/
√
n
)

(5.7)

≤ Cε · δ2
√

log(1/δ2) ≤ Cε,γϑn
− 1

2(2−γ)
√

log n.

Combining (5.6)-(5.7), we see that with probability at least 2p1,

sup
f∈F̃ :Pf2≤δ22

(Pn − P )(2ξf − f2)

≥ 2c1
(

ϑγn
1−γ
2−γ

)2/αε · n−1 − Cε,γϑn
− 1

2(2−γ)
− 1

2
√

log n

≥ 2c1ϑ
γn

− 1
2−γ · τn(ε, γ) − Cε,γϑn

− (3−γ)/2
(2−γ)

√

log n ≥ c1ϑ
γn

− 1
2−γ · τn(ε, γ)

for n large enough depending on ε, ϑ, γ, where τn(ε, γ) ≡ n
1−γ
2−γ

· ε
2−ε . Hence

with the same probability estimate,

Fn(δ2) = sup
f∈F̃ :Pf2≤δ22

(Pn − P )(2ξf − f2)− δ22

≥ c1ϑ
γn−

1
2−γ τn(ε, γ) − ϑ2n−

1
2−γ ≥ 1

2
c1ϑ

γn−
1

2−γ τn(ε, γ)

holds for n large enough depending on ε, ϑ, γ, completing the proof for the
claim for 0 < γ < 1.
(Case 2: γ = 1). Recall δ2 = ϑn−1/2, and there exists one interval I
with length δ22 . It is easy to see that P

(

|∑n
i=1 1I(Xi) − ϑ2| > ϑ2/2

)

≤
2 exp(−ϑ2/10). For ϑ ≥ 4, we see that with probability at least 0.5, there
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are O(1) points Xi ∈ I. Denote this event E1. Let

Zn ≡ sup
f∈F̃ :Pf2≤δ22

(

2

n
∑

i=1

ξif(Xi)− n (Pn − P ) (f2)

)

.

Note we can use the absolute value in the suprema in the above display.
Since E|(Pn − P ) (1I)|2 ≤ ϑ2n−2, we see that on an event with probability
at least 0.96, |n (Pn − P ) (1I)| ≤ 25ϑ. Denote this event by E2. Then for
any ξ such that E|ξ| ≥ 25ϑ, let t = E|ξ| − 25ϑ, and NI ≡

∑n
i=1 1I(Xi),

P (Zn ≥ t) ≥ EX

[

Pξ

(
∣

∣

∣

∣

2

n
∑

i=1

ξi1I(Xi)− n (Pn − P ) (1I)

∣

∣

∣

∣

≥ t

)

1E1∩E2

]

≥ EX

[

Pξ

(∣

∣

∣

∣

NI
∑

i=1

ξi

∣

∣

∣

∣

> (t+ 25ϑ)/2

)

1E1∩E2

]

≥ EX

[

Pξ

(
∣

∣

∣

∣

NI
∑

i=1

ξi

∣

∣

∣

∣

>
1

2
Eξ

∣

∣

∣

∣

NI
∑

i=1

ξi

∣

∣

∣

∣

)

1E1∩E2

]

where in the last inequality we used Jensen’s inequality. Let η be a sym-
metric random variable given by P(|η| > t) = 1/(1 + t2), then it is easy to
calculate that E|η| = π/2, and E|η|r ≡ cr < ∞ for r < 2. Let ξ ≡ 50ϑ2 · η.
Then E|ξ| = 25πϑ2 > 25ϑ, and hence choosing r > 1 close enough to 1 in
the Paley-Zygmund Lemma 15 yields that

P
(

Zn ≥ 25πϑ2 − 25ϑ
)

≥ 2p2

for some constant p2 > 0 depending only on ϑ (through the estimate on NI

on the event E1). Hence with probability at least 2p2,

Fn(δ2) ≥ (25πϑ2 − 25ϑ)n−1 − ϑ2n−1 ≥ 285ϑn−1.

This completes the proof. �

5.1.3. Proof of claim (2) of Proposition 2.

Proof of Proposition 2, claim (2). Recall δ1 ≡ ρn
− 1

2(2−γ)
−βε . Note that by

Koltchinskii-Pollard maximal inequality for empirical processes (cf. Theo-
rem 2.14.1 of [45]), we have

max
1≤k≤n

E sup
f∈F̃ :Pf2≤δ21

∣

∣

∣

∣

1√
k

k
∑

i=1

εif(Xi)

∣

∣

∣

∣

. ‖F̃ (δ1)‖L2(P ) ≤ C1δ
γ
1 .

Hence we may take ψn(k) ≡ C1k
1/(2−2ε)δγ1 in the multiplier inequality

Lemma 1 to see that

E sup
f∈F̃ :Pf2≤δ21

∣

∣

∣

∣

n
∑

i=1

ξif(Xi)

∣

∣

∣

∣

≤ 4

∫ ∞

0
ψn

(

nP(|ξ1| > t)
)

dt

≤ 4C1δ
γ
1n

1/2(1−ε)‖ξ1‖2(1−ε),1.
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On the other hand, again by the Koltchinskii-Pollard maximal inequality
and the contraction principle for Rademacher processes,

E sup
f∈F̃ :Pf2≤δ21

|Gn(f
2)| . E sup

f∈F̃ :Pf2≤δ21

∣

∣

∣

∣

1√
n

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

. δγ1 .

Combining the above estimates, we arrive at

EEn(δ1) ≤ 8C1δ
γ
1n

−1 · n1/2(1−ε)‖ξ1‖2(1−ε),1 + C2n
−1/2δγ1

≤ Cε,ξρ
γn

− 1
2−γ ωn(ε, γ).

The claim (2) of Proposition 2 now follows from Markov’s inequality and
hence the proof of Theorem 2 is complete. �

5.2. Proof of entropy results.

5.2.1. Proof of Lemma 8.

Proof of Lemma 8. Let tj ≡ (1 + ε)−j and m(ε) be the smallest integer j
such that tj ≤ ε‖F‖L2(Q). Now for any f ∈ F , define

fε ≡
m(ε)
∑

j=1

(

tj1tj<f≤tj−1
+ (−tj−1)1−tj−1<f≤−tj

)

.

Then if x ∈ X is such that

(1) tj < f(x) ≤ tj−1 for some j ≤ m(ε),

0 ≤ f(x)− fε(x) ≤ tj−1 − tj ≤ εtj ≤ εf(x) ≤ εF (x).

(2) −tj−1 < f(x) ≤ −tj for some j ≤ m(ε),

0 ≤ f(x)− fε(x) ≤ −tj − (−tj−1) ≤ εtj ≤ ε
(

− f(x)
)

≤ εF (x).

(3) −tm(ε) < f(x) ≤ tm(ε),

|f(x)− fε(x)| ≤ tm(ε) ≤ ε‖F‖L2(Q).

Combining the above discussion we arrive at ‖f − fε‖2L2(Q) ≤ 3ε2‖F‖2L2(Q).

Let Fε ≡ {fε : f ∈ F}. Then since the sets
{

(x, t) : fε(x) ≥ t
}

= ∪m(ε)
j=1

{

x : f(x) ≥ tj
}

× (tj, tj−1]
⋃

∪m(ε)
j=1

{

x : f(x) ≥ −tj−1

}

× (−tj−1,−tj]
⋃

{

x : f(x) ≥ −tm(ε)

}

× (−tm(ε), tm(ε)]

as fε ranges over Fε is the union of at most 2m(ε)+1 VC-classes with disjoint
supports, and hence the VC-dimension of Fε is no larger than V m(ε), where
V ∈ (0,∞) only depends on F0. The rest of the proof proceeds along the
same lines as in page 1172 of [18]. �
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5.2.2. Proof of Lemma 11.

Proof of Lemma 11. Let {hi}Ni=1 be a minimal ε-covering set ofH under L∞.
For any probability measure Q on [0, 1]2, and any f ⊗ (h− g) ∈ f ⊗

(

H− g
)

,
take hi such that ‖h− hi‖∞ ≤ ε. Then

‖f ⊗ (hi − g)− f ⊗ (h− g)‖2L2(Q) ≤ ‖f‖2L2(Q)ε
2 = ‖f ⊗ 1‖2L2(Q)ε

2.

completing the proof. �

5.2.3. Proof of Lemma 12.

Proof of Lemma 12. Since F ′ ⊂ F ∩ L∞(1) is VC-major, Lemma 8 yields
that for any probability measure Qx on [0, 1] and any ε > 0,

logN
(

ε‖F ′‖L2(Qx),F ′, L2(Qx)
)

≤ C

ε
log

(

C

ε

)

log

(

1

ε‖F ′‖L2(Qx)

)

.

Now for any discrete probability measure Q = n−1
∑n

i=1 δ(xi,zi) on [0, 1]2,

let Qx ≡ n−1
∑n

i=1 δxi be the (marginal) probability measure on [0, 1]. Take
a minimal ε‖F ′‖L2(Qx)-cover of F ′ under L2(Qx), namely {fk}, the log-
cardinality of which is no more than

C

ε
log

(

C

ε

)

log

(

1

ε‖F ′‖L2(Qx)

)

.

Further take a minimal ε-cover of H under L∞, namely {hl}, the log-
cardinality of which is at most a constant multiple of ε−γ . Consider the
set {fk ⊗ hl}, the log-cardinality of which is at most a constant multiple of

1

ε
log

(

1

ε

)

log

(

1

ε‖F ′ ⊗ 1‖L2(Q)

)

∨ ε−γ .

For every f ⊗ (h− (φ0 − f0)) ∈ F ′ ⊗ (H− (φ0 − f0)), let f̃k, h̃l be such that

‖f − f̃k‖L2(Qx) ≤ ε‖F ′‖L2(Qx) and ‖h− h̃l‖∞ ≤ ε. Then

‖f ⊗ (h− (φ0 − f0))− f̃k ⊗ (h̃l − (φ0 − f0))‖2L2(Q)

=
1

n

n
∑

i=1

(

f(xi)
(

h(zi)− (φ0(xi, zi)− f0(xi))
)

− f̃k(xi)
(

h̃l(zi)− (φ0(xi, zi)− f0(xi))
)

)2

. ‖h− h̃l‖2∞‖F ′‖2L2(Qx)
+ ‖φ0‖2∞‖f − f̃k‖2L2(Qx)

. (1 ∨ ‖φ0‖2∞)ε2‖F ′‖2L2(Qx)
= (1 ∨ ‖φ0‖2∞)ε2‖F ′ ⊗ 1‖2L2(Q),

as desired. �

5.3. Proof of stochastic boundedness of shape-restricted LSEs.
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5.3.1. Proof of Lemma 5.

Proof of Lemma 5, isotonic case. The isotonic least squares estimator f̂n
has a well-known min-max representation [36]:

f̂n(Xj) = min
v≥j

max
u≤j

1

v − u+ 1

v
∑

i=u

Yi(5.8)

where we slightly abuse the notation Xi’s so that X1 ≤ · · · ≤ Xn denote
the ordered covariates and Yi denotes the corresponding observed response

at Xi. Since f̂n is non-decreasing, we only need to consider

αn ≡ f̂n(X1) = min
v≥1

1

v

v
∑

i=1

Yi, βn ≡ f̂n(Xn) = max
u≤n

1

n− u+ 1

n
∑

i=u

Yi.

Note that

E|αn| ∨ E|βn| ≤ Emax
k≤n

∣

∣

∣

∣

1

k

k
∑

i=1

ξi

∣

∣

∣

∣

+ ‖f0‖∞.

The first term is O(1) by a simple blocking argument and a Lévy-type
maximal inequality due to Montgomery-Smith [35] (see also Theorem 1.1.5
of [16]); we include some details for the convenience of the reader: suppose
without loss of generality that log2 n is an integer, then for any t ≥ 1,

P

(

max
1≤k≤n

∣

∣

∣

∣

1

k

k
∑

i=1

ξi

∣

∣

∣

∣

> t

)

≤
log2 n
∑

j=1

P

(

max
2j−1≤k<2j

∣

∣

∣

∣

1

k

k
∑

i=1

ξi

∣

∣

∣

∣

> t

)

+ P

(
∣

∣

∣

∣

n
∑

i=1

ξi

∣

∣

∣

∣

> nt

)

≤
log2 n
∑

j=1

P

(

max
2j−1≤k<2j

∣

∣

∣

∣

k
∑

i=1

ξi

∣

∣

∣

∣

> 2j−1t

)

+
‖ξ1‖22
nt2

≤ 9

log2 n
∑

j=1

P

(
∣

∣

∣

∣

2j
∑

i=1

ξi

∣

∣

∣

∣

> 2j−1t/30

)

+
‖ξ1‖22
nt2

≤ C‖ξ1‖22
( log2 n

∑

j=1

1

2jt2
+

1

nt2

)

≤ C ′‖ξ1‖22t−2,

completing the proof. �

The proof of stochastic boundedness of the convex least squares estimator
crucially uses the characterization developed in Lemma 2.6 of [21]. Note that
the characterization is purely deterministic.

Lemma 17. f̂n is a convex least squares estimator if and only if for all
j = 2, . . . , n,

j−1
∑

k=1

Rk(Xk+1 −Xk) ≥
j−1
∑

k=1

Sk(Xk+1 −Xk),
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with inequality holds if and only if f̂n has a kink at Xj. Here Rk =
∑k

i=1 f̂n(Xi)

and Sk =
∑k

i=1 Yi, where we abuse the notation Xi’s for the ordered covari-
ates such that X1 ≤ . . . ≤ Xn, and Yi’s are the corresponding observed
responses at Xi.

Proof of Lemma 5, convex case. By symmetry we only consider the behav-
ior of f̂n(0). Let τn denote the first kink of f̂n away from 0. Then it follows
from the characterization Lemma 17 that

τn−2
∑

k=1

Rk(Xk+1 −Xk) ≥
τn−2
∑

k=1

Sk(Xk+1 −Xk),

τn−1
∑

k=1

Rk(Xk+1 −Xk) =

τn−1
∑

k=1

Sk(Xk+1 −Xk).

The above two (in)equalities necessarily entail that

Rτn−1(Xτn −Xτn−1) ≤ Sτn−1(Xτn −Xτn−1).

Hence with probability 1 we have Rτn−1 ≤ Sτn−1, i.e.

τn−1
∑

i=1

f̂n(Xi) ≤
τn−1
∑

i=1

Yi.(5.9)

Since f̂n is linear on [0,Xτn ], we can write

f̂n(x) =

(

1− x

Xτn

)

f̂n(0) +
x

Xτn

f̂n(Xτn).(5.10)

Combining (5.9) and (5.10) we see that

[ τn−1
∑

i=1

(

1− Xi

Xτn

)]

f̂n(0) +

[ τn−1
∑

i=1

Xi

Xτn

]

f̂n(Xτn) ≤
τn−1
∑

i=1

Yi,

and hence

f̂n(0) ≤
(

1

1− βτn

)

·
∑τn−1

i=1 Yi
τn − 1

+
βτn

1− βτn

∣

∣ inf
x∈[0,1]

f̂n(x)
∣

∣,(5.11)

where

βk =

(

1

k − 1

k−1
∑

i=1

Xi

)

· 1

Xk
.

By (5.11), we need to handle three terms:

(i) (1− βτn)
−1,

(ii)
∑τn−1

i=1 Yi

τn−1 , and

(iii) |infx∈[0,1] f̂n(x)|.
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We first handle term (i). We claim that for some universal constant C > 0,
it holds that

P
(

max
2≤k≤n

(1− βk)
−1 ≥ t

)

≤ Ct−1.(5.12)

To see this, note that for each k ≤ n, conditional onXk, X1/Xk, . . . ,Xk−1/Xk

are distributed as the order statistics for k− 1 uniform random variables on
[0, 1]. Let U1, . . . , Un be an i.i.d. sequence of uniformly distributed random
variables on [0, 1], and 0 ≤ Un

(1) ≤ . . . ≤ Un
(n) ≤ 1 be their associated order

statistics. Then by using a union bound, the probability in (5.12) is bounded
by

n
∑

k=2

P

(

1

k − 1

k−1
∑

i=1

Xi

Xk
≥ 1− t−1

)

≤
n−1
∑

k=1

E

[

P

(

1

k

k
∑

j=1

Uk
(j) ≥ 1− t−1

)∣

∣

∣

∣

Xk+1

]

.

For t ≥ 3, the probability in the bracket equals P
(
∑k

j=1 Uj ≤ kt−1
)

=
(kt−1)k

k! by volume computation: |{∑k
j=1 xj ≤ a}| = ak/k!. Now combining

the probability estimates we arrive at

P
(

max
2≤k≤n

(1− βk)
−1 ≥ t

)

≤
∑

k≥1

(kt−1)k

k!
≤

∑

k≥1

(kt−1)k

(k/e)k
≤ Ct−1,

proving the claim (5.12) for t ≥ 3. For t < 3, it suffices to increase C.
The second term (ii) can be handled along the same lines as in the proof

for the isotonic model, assuming ‖f0‖∞ <∞ and ‖ξ1‖2 <∞.

Finally we consider the third term (iii) |infx∈[0,1] f̂n(x)|. We claim that
with probability 1,

lim sup
n→∞

sup
x∈[1/4,3/4]

|f̂n(x)| ≤ Cξ,f0 .(5.13)

The claim will be verified in the proof of Lemma 13 below in a more general
setting. In particular, (5.13) implies that supx∈[1/4,3/4]|f̂n(x)| = OP(1).
Hence for any ε > 0, there exists a constant Kε > 0 such that for all n large
enough, with probability at least 1−ε, supx∈[1/4,3/4]|f̂n(x)| ≤ Kε. This event

is denoted Eε. Now by convexity of f̂n, it follows that |infx∈[0,1] f̂n(x)| ≤ 2Kε

on Eε. To see this, we only need to consider the case where the minimum
of f̂n is attained in, say, [0, 1/4]: then the line connecting (1/4, f̂n(1/4))

and (3/4, f̂n(3/4)) minorizes f̂n on [0, 1/4], which is bounded from below

by −2Kε and hence the same lower bound holds for infx∈[0,1] f̂n(x) on the

event Eε. An upper bound for infx∈[0,1] f̂n(x) is trivial: infx∈[0,1] f̂n(x) ≤
supx∈[1/4,3/4] f̂n(x) ≤ Kε on Eε. These arguments complete the proof for

|infx∈[0,1] f̂n(x)| = OP(1).

The claim that ‖f̂n‖∞ = OP(1) follows by combining the discussion of

the three terms above and (5.11) which proved |f̂n(0)|∨|f̂n(1)| = OP(1) and

|infx∈[0,1] f̂n(x)| = OP(1). �



ROBUSTNESS OF SHAPE-RESTRICTED LSES 39

5.3.2. Proof of Lemma 13.

Proof of Lemma 13, isotonic case. The proof essentially follows the isotonic
case of Lemma 5 by noting that the least squares estimator f̂n for F in the
additive model has the following representation:

f̂n(Xj) = min
v≥j

max
u≤j

1

v − u+ 1

v
∑

i=u

(

Yi − ĥn(Zi)
)

where X1 ≤ · · · ≤ Xn denote the ordered Xi’s, Yi’s are the observed re-
sponses at the corresponding Xi’s, and Zi’s are the corresponding Zi’s fol-
lowing the ordering of the Xi’s. The rest of the proof proceeds along the
same lines as in the isotonic case of Lemma 5 by noting that

max
1≤k≤n

sup
h∈H

∣

∣

∣

∣

1

k

k
∑

i=1

(

φ0(Xi, Zi)− h(Zi)

∣

∣

∣

∣

(5.14)

≤ ‖φ0‖∞ + max
1≤k≤n

(

1

k

k
∑

i=1

H(Zi)

)

= OP(1),

where the stochastic boundedness follows from the same arguments using
Lévy-type maximal inequality as in the isotonic case of Lemma 5, since we
have assumed PZH

2 <∞. �

Proof of Lemma 13, convex case. We use the same strategy as the convex
case of Lemma 5 by replacing Yi with Yi − ĥn(Zi), and handling terms (i),
(ii) and (iii) as in the proof of the convex case of Lemma 5 . Term (i) can
be handled using the same arguments as in the proof of the convex case of
Lemma 5 ; term (ii) can be handled similar to (5.14). Hence it remains to

handle (iii). Let φ̂n(x, z) ≡ f̂n(x) + ĥn(z). We claim that there exists some
M > 0 such that

P

(

inf
(x,z)∈[1/4,3/4]2

|φ̂n(x, z)− φ0(x, z)| > M i.o.

)

= 0.(5.15)

Once (5.15) is proved, the event E ≡ ∪m≥1 ∩n≥m {infx∈[1/4,3/4]|f̂n(x)| ≤
M̄} happens with probability 1, where M̄ ≡ M + sup(x,z)∈[1/4,3/4]2 H(z) +

‖φ0‖∞ < ∞. Let xn ∈ argminx∈[1/4,3/4] f̂n(x) and Mn ≡ |f̂n(xn)|. On

the event E , for all n large enough, there exists x∗n ∈ [1/4, 3/4] such that

|f̂n(x∗n)| ≤ 2M̄ . The key observation is the following: if Mn > 10M̄ , then

inf
x∈[1/16,1/8]

f̂n(x) ∨ inf
x∈[7/8,15/16]

f̂n(x) ≥
1

4

(

Mn − 10M̄
)

.(5.16)

To see this, we only consider the case 1/4 ≤ xn < x∗n ≤ 3/4, and derive

a lower bound for infx∈[7/8,15/16] f̂n(x); the other case follows from similar

arguments. Note that the line L connecting (xn, f̂n(xn)) and (x∗n, f̂n(x
∗
n))

minorizes f̂n on [7/8, 15/16]. SinceMn > 10M̄ > 2M̄ , f̂n(xn) < 0 and hence
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the line L has a positive slope sL bounded below by (Mn−2M̄)/(3/4−1/4) =
2(Mn − 2M̄). This implies that for any x ∈ [7/8, 15/16],

f̂n(x) ≥ f̂n(7/8) ≥ L(7/8) = L(x∗n) + sL(7/8 − x∗n)

≥ f̂n(x
∗
n) + 2(Mn − 2M̄) · (7/8 − 3/4)

≥ (−2M̄ ) +
1

4
(Mn − 2M̄ ) =

1

4

(

Mn − 10M̄
)

,

proving (5.16). Now we assume without loss of generality that infx∈[1/16,1/8] f̂n(x) ≥
(Mn − 10M̄ )/4. Let I ≡ [1/16, 1/8] × [0, 1]. Since

1

n

n
∑

i=1

(

Yi − φ̂n(Xi, Zi)
)2

=
1

n

n
∑

i=1

(

ξi + φ0(Xi, Zi)− ĥn(Zi)− f̂n(Xi)
)2

≥ 1

n

∑

(Xi,Zi)∈I

(

f̂n(Xi)−
(

H(Zi) + ‖φ0‖∞ + |ξi|
))2

+

≥ 1

2n

∑

(Xi,Zi)∈I
f̂2n(Xi)−

1

n

∑

(Xi,Zi)∈I

(

3H2(Zi) + 3‖φ0‖2∞ + 3ξ2i
)

≥
(

(Mn − 10M̄ )2

32
− 3‖φ0‖2∞

) |{i ∈ [1 : n] : (Xi, Zi) ∈ I}|
n

− 3

n

∑

(Xi,Zi)∈I
H2(Zi)−

3

n

∑

(Xi,Zi)∈I
ξ2i .

Hence by the law of large numbers, on an event with probability 1, if Mn >
10M̄ ,

lim sup
n→∞

1

n

n
∑

i=1

(

Yi − φ̂n(Xi, Zi)
)2

(5.17)

≥ (lim supn→∞Mn − 10M̄ )2

16 · 32 − 3

16

(

‖φ0‖2∞ + PZH
2 + Eξ21

)

.

On the other hand, since φ̂n is the least squares estimator, for any h′ ∈ H,

lim sup
n→∞

1

n

n
∑

i=1

(

Yi − φ̂n(Xi, Zi)
)2

(5.18)

≤ lim sup
n→∞

1

n

n
∑

i=1

(

Yi − h′(Zi)
)2 ≤ 3Eξ21 + 3‖φ0‖2∞ + 3PZH

2.

Combining (5.17) and (5.18), it follows that on an event with probability 1,

lim sup
n→∞

Mn ≤ C
(

‖ξ1‖2 + ‖H‖L2(PZ ) + ‖φ0‖∞ + M̄
)

,
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holds for some absolute constant C > 0, thus proving that with probability
1,

lim sup
n→∞

∣

∣ inf
x∈[1/4,3/4]

f̂n(x)
∣

∣ ≤ Cξ,H,φ0,M .

That

lim sup
n→∞

∣

∣ sup
x∈[1/4,3/4]

f̂n(x)
∣

∣ ≤ C ′
ξ,H,φ0,M

with probability 1 can be proved in a completely similar manner by noting
that the supremum of f̂n over [1/4, 3/4] is taken either at 1/4 or 3/4. These
claims show that with probability 1,

lim sup
n→∞

sup
x∈[1/4,3/4]

|f̂n(x)| ≤ C ′′
ξ,H,φ0,M .

Note that we have also verified the announced claim (5.13) in the convex
case of Lemma 5 by taking φ0(x, z) ≡ f0(x) and H ≡ {0}. The rest of proof
for handling term (iii) proceeds along the same lines as in the proof of the
convex case of Lemma 5, modulo the unproved claim (5.15). Below we prove

that (5.15) holds for M >
√

32
(

‖ξ1‖22 + ‖φ0‖2∞ + PZH2
)

. To this end, first
we prove

P

(

E1 ≡
{

inf
(x,z)∈[1/4,3/4]2

(

φ̂n(x, z)− φ0(x, z)
)

> M i.o.
}

)

= 0.(5.19)

On the event E1 intersecting a probability-one event, there exists a subse-
quence {nk}k≥1 such that

lim inf
k→∞

1

nk

nk
∑

i=1

(

Yi − φ̂nk
(Xi, Zi)

)2
(5.20)

≥ lim inf
k→∞

1

2nk

∑

(Xi,Zi)∈[1/4,3/4]2

(

φ0 − φ̂nk

)2
(Xi, Zi)− lim

k→∞
1

nk

nk
∑

i=1

ξ2i

≥M2/8− Eξ21 ,

and thus by (5.18), M2 ≤ 32
(

‖ξ1‖22 + ‖φ0‖2∞ + PZH
2
)

. Hence E1 must be a
probability-zero event, which proves (5.19). Using the same arguments we
can prove

P

(

sup
(x,z)∈[1/4,3/4]2

(

φ̂n(x, z) − φ0(x, z)
)

< −M i.o.

)

= 0.(5.21)

The claim (5.15) now follows from (5.19) and (5.21). This completes the
proof. �
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[16] V. H. de la Peña and E. Giné. Decoupling. Probability and its Applications (New
York). Springer-Verlag, New York, 1999. From dependence to independence, Ran-
domly stopped processes. U -statistics and processes. Martingales and beyond.

[17] C. Gao, F. Han, and C.-H. Zhang. Minimax risk bounds for piecewise constant models.
arXiv preprint arXiv:1705.06386, 2017.
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[29] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Classics in Mathematics.
Springer-Verlag, Berlin, 2011. Isoperimetry and processes, Reprint of the 1991 edition.

[30] E. Mammen, O. Linton, and J. Nielsen. The existence and asymptotic properties of
a backfitting projection algorithm under weak conditions. Ann. Statist., 27(5):1443–
1490, 1999.

[31] E. Mammen and K. Yu. Additive isotone regression. In Asymptotics: particles, pro-
cesses and inverse problems, volume 55 of IMS Lecture Notes Monogr. Ser., pages
179–195. Inst. Math. Statist., Beachwood, OH, 2007.

[32] P. Massart. About the constants in Talagrand’s concentration inequalities for empir-
ical processes. Ann. Probab., 28(2):863–884, 2000.
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