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Abstract: We study a likelihood ratio test for the location of the mode of
a log-concave density. Our test is based on comparison of the log-likelihoods
corresponding to the unconstrained maximum likelihood estimator of a log-
concave density and the constrained maximum likelihood estimator where
the constraint is that the mode of the density is fixed, say at m. The con-
strained estimation problem is studied in detail in Doss and Wellner [2018].
Here the results of that paper are used to show that, under the null hy-
pothesis (and strict curvature of − log f at the mode), the likelihood ratio
statistic is asymptotically pivotal: that is, it converges in distribution to
a limiting distribution which is free of nuisance parameters, thus playing
the role of the χ2

1 distribution in classical parametric statistical problems.
By inverting this family of tests we obtain new (likelihood ratio based)
confidence intervals for the mode of a log-concave density f . These new
intervals do not depend on any smoothing parameters. We study the new
confidence intervals via Monte Carlo methods and illustrate them with two
real data sets. The new intervals seem to have several advantages over ex-
isting procedures. Software implementing the test and confidence intervals
is available in the R package logcondens.mode.
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1. Introduction and overview: inference for the mode

Let P denote the class of all log-concave densities f on R. It is well-known
since Ibragimov (1956) that all log-concave densities f are strongly unimodal,
and conversely; see Dharmadhikari and Joag-Dev [1988] for an exposition of
the basic theory. Of course, “the mode” of a log-concave density f may not
be a single point. It is, in general, the modal interval MI(f) ≡ {x ∈ R :
f(x) = supy∈R f(y)}, and to describe “the mode” completely we need to choose
a specific element of MI(f), for example M(f) ≡ inf{x ∈ MI(f)}. For a large
sub-class of log-concave densities the set reduces to a single point. Our focus here
is on the latter case and, indeed, on inference concerning M(f) based on i.i.d.
observations X1, . . . , Xn with density f0 ∈ P. We have restricted to log-concave
densities for several reasons:

(a) It is well known that the MLE over the class of all unimodal densities does
not exist; see e.g. Birgé (1997).

(b) On the other hand, MLE’s do exist for the class P of log-concave densities
if n ≥ 2: see, for example, Pal, Woodroofe and Meyer [2007], Rufibach
[2006], Dümbgen and Rufibach [2009].

(c) Moreover the MLE’s for the class of log-concave densities have remarkable
stability and continuity properties under model miss-specification: see e.g.
Dümbgen, Samworth and Schuhmacher [2011].

Before proceeding with our overview, it will be helpful to introduce some
notation for derivatives. (Further notation and terminology will be given in
Subsection 1.1.) In particular, we let f ′ denote the derivative of a differentiable
function f , and we write f ′′ for the second derivative. We also use the notation
f (i) for the ith derivative of f , particularly for higher derivatives.

Concerning estimation of the mode, Balabdaoui, Rufibach and Wellner [2009]
showed that if f0 = eϕ0 where the concave function ϕ0 has second derivative

ϕ
(2)
0 ≡ ϕ′′0 at the mode m0 = M(f0) of f0 satisfying ϕ

(2)
0 (m0) < 0, then the

MLE M(f̂n) satisfies

n1/5
(
M(f̂n)−M(f0)

)
→d

(
(4!)2f0(m0)

f
(2)

0 (m0)2

)1/5

M(H
(2)
2 ) (1.1)

where M(H
(2)
2 ) has a universal distribution (not depending on f0). Here {H2(t) :

t ∈ R} is the “invelope” process on R defined in terms of the “driving process”

{Y (t) : t ∈ R} defined by Y (t) = −t4 +
∫ t
0
W (s)ds for t ∈ R. Thus with

X(t) ≡ Y (1)(t) = −4t3 +W (t),

dX(t) = g0(t)dt+ dW (t), (1.2)

where W is two-sided Brownian motion on R and g0(t) ≡ −12t2. The process

H2 and its concave second derivative H
(2)
2 first appeared in Groeneboom, Jong-

bloed and Wellner [2001a,b] in the study of other nonparametric estimation
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problems involving convex or concave functions; see also Balabdaoui, Rufibach
and Wellner [2009].

The limit distribution (1.1) gives useful information about the behavior of

M(f̂n), but it is somewhat difficult to use for inference because of the constant

((4!)2f0(m0)/f
(2)
0 (m0)2)1/5 which involves the unknown density through the

second derivative f
(2)
0 (m0). This can be estimated via smoothing methods, but

because we wish to avoid the consequent problem of choosing bandwidths or
other tuning parameters, we take a different approach to inference here.

Instead, we first consider the following testing problem: test

H : M(f) = m versus K : M(f) 6= m

where m ∈ R is fixed. To construct a likelihood ratio test of H versus K we first
need to construct both the unconstrained MLE’s f̂n and the mode-constrained
MLE’s f̂0n. The unconstrained MLE’s f̂n are available from the results of Pal,
Woodroofe and Meyer [2007], Rufibach [2006], and Dümbgen and Rufibach
[2009] cited above. Corresponding results concerning the existence and prop-

erties of the mode-constrained MLE’s f̂0n are given in the companion paper
Doss and Wellner [2018]. Global convergence rates for both estimators are given

in Doss and Wellner [2016a]. Once both the unconstrained estimators f̂n and

the constrained estimators f̂0n are available, then we can consider the natural
likelihood ratio test of H versus K: reject the null hypothesis H if

2 log λn ≡ 2 log λn(m) ≡ 2nPn(log f̂n − log f̂0n) = 2nPn(ϕ̂n − ϕ̂0
n)

is “too large” where f̂n = exp(ϕ̂n), f̂0n = exp(ϕ̂0
n), Pn =

∑n
i=1 δXi

/n is the
empirical measure, and Pn(g) =

∫
gdPn. To carry out this test we need to know

how large is “too large”; i.e. we need to know the (asymptotic) distribution of
2 log λn when H is true. Thus the primary goal of this paper is to prove the
following theorem:

Theorem 1.1. If X1, . . . , Xn are i.i.d. f0 = eϕ0 with mode m where ϕ0 is

concave, twice continuously differentiable at m, and ϕ
(2)
0 (m) < 0, then

2 log λn →d D

where D is a universal limiting distribution (not depending on f0); thus 2 log λn
is asymptotically pivotal under the assumption ϕ

(2)
0 (m) < 0.

With Theorem 1.1 in hand, our likelihood ratio test with (asymptotic) size
α ∈ (0, 1) becomes: “reject H if 2 log λn > dα” where dα is chosen so that
P (D > dα) = α. Furthermore, we can then form confidence intervals for m by
inverting the family of likelihood ratio tests: let

Jn,α ≡ {m ∈ R : 2 log λn(m) ≤ dα}. (1.3)

Then it follows that for f0 ∈ Pm = {f ∈ P : M(f) = m} with (log f0)(2)(m) <
0, we have

Pf0(m ∈ Jn,α)→ P (D ≤ dα) = 1− α.
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This program is very much analogous to the methods for pointwise inference for
nonparametric estimation of monotone increasing or decreasing functions devel-
oped by Banerjee and Wellner [2001] and Banerjee [2007]. Those methods have
recently been extended to include pointwise inference for nonparametric estima-
tion of a monotone density by Groeneboom and Jongbloed [2015]. Theorem 1.1
says that 2 log λn is (asymptotically) pivotal over the class of all log-concave
densities f0 satisfying (log f0)(2)(m) < 0. (That log-likelihood ratios are fre-
quently asymptotically pivotal is sometimes known as the “Wilks phenomenon”
in honor of the classical result in this direction in regular parametric models by
Wilks [1938].) We can specify more about the form of the limit random variable
D; see Remark 4.1.

A secondary goal of this paper is to begin a study of the likelihood ratio
statistics 2 log λn under fixed alternatives. We leave the study of the log likeli-
hood ratio statistic under local (contiguous) alternatives for future work. Our
second theorem concerns the situation when f ∈ P has mode M(f) 6= m.

Theorem 1.2. Suppose that f0 ∈ P with m /∈MI(f0). Then

2

n
log λn(m) →p 2K(f0, f

0
m)

= 2 inf{K(f0, g) : g ∈ Pm} > 0 (1.4)

where f0m ∈ Pm achieves the infimum in (1.4) and

K(f, g) ≡

{ ∫
f(x) log f(x)

g(x)dx, if f ≺≺ g
∞, otherwise.

Here f ≺≺ g means f = 0 whenever g = 0 except perhaps on a set of Lebesgue
measure 0. The proof of Theorem 1.2 is given in Subsection 4.2, and relies
on the methods used by Cule and Samworth [2010] and Dümbgen, Samworth
and Schuhmacher [2011], in combination with the results of Doss and Wellner
[2016a]. Theorem 1.2 implies consistency of the likelihood ratio test based on
the critical values from Theorem 1.1. That is: let dα satisfy P (D > dα) = α for
0 < α < 1, and suppose we reject H : M(f) = m if 2 log λn(m) > dα.

Corollary 1.3. If the hypotheses of Theorem 1.2 hold, then the likelihood ratio
test “reject H if 2 log λn(m) > dα” is consistent: if f /∈ Pm, then

Pf (2 log λn(m) > dα)→ 1.

Here is an explicit example:

Example 1.4. Suppose that f is the Laplace density given by

f(x) = (1/2) exp(−|x|).

First we note that M(f) = 0 so that f /∈ P1. Thus for testing H : M(f) = 1
versus K : M(f) 6= 1, the Laplace density f satisfies f ∈ P \ P1. So we have
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(incorrectly) hypothesized that M(f) = 1 ≡ m. In this case the constrained

MLE f̂0n satisfies
∫
|f̂0n − f0|dx →a.s. 0 where f0 ≡ g∗ ∈ P1 is determined

by Theorem 4.2 which is the population analogue of Theorem 2.10 of Doss and
Wellner [2018]. It also satisfies (1.4) in Theorem 1.2. In the present case, g∗ = ga∗

where {ga : a ∈ (0, 1]} is the family of densities given by

ga(x) =


(1/2)ex, −∞ < x ≤ −a
(1/2)e−a, −a ≤ x ≤ 1,
(1/2)e−ae−c(x−1), 1 ≤ x <∞,

where c ≡ c(a) = 1/(2ea − (2 + a)) is chosen so that
∫
ga(x)dx = 1. Here it is

not hard to show that a∗ ≈ .490151 . . . satisfies c(a∗)2 = exp(−(a∗ − 1)), while
K(f, f0) = K(f, ga∗) ≈ 0.03377 . . ..

Although the basic approach here has points in common with the develop-
ments in Banerjee and Wellner [2001] and Banerjee [2007], the details of the
proofs require several new tools and techniques due to the relative lack of de-
velopment of theory for the mode-constrained log-concave MLEs. Furthermore,
the proof of Theorem 1.1 is significantly more complicated than correspond-
ing proofs in Banerjee and Wellner [2001], Banerjee [2007], or Groeneboom
and Jongbloed [2015]: in the present context, the mode-constrained estima-
tor and the unconstrained estimator are not identically equal to each other
away from the constraint, whereas in many monotonicity-based cases, the cor-
responding constrained and unconstrained estimators are indeed equal away
from the constraint. In the case of monotone density estimation studied by
Groeneboom and Jongbloed [2015], the constrained and unconstrained estima-
tors are not identically equal away from the constraint, but the differences can
be handled using the so-called min-max formula (see e.g., Lemma 3.2 of Groene-
boom and Jongbloed [2015]), which does not have an analog for concavity-based
problems. Thus, beyond being interesting in its own right, the proof of Theo-
rem 1.1 is useful for opening the door to the study of likelihood ratios in other
concavity/convexity-based problems. These could be likelihood ratios for lo-
cations of extrema or likelihood ratios for the values (heights) of functions in
concavity/convexity-based problems. We present some discussion of possible ex-
tensions in Section 6.

To prove Theorem 1.1 we first prepare the way by reviewing the local asymp-
totic distribution theory for the unconstrained estimators f̂n and ϕ̂n developed
by Balabdaoui, Rufibach and Wellner [2009] and asymptotic theory for f̂0n and
ϕ̂0
n developed by Doss and Wellner [2018]. These results are stated in Section 3.
Section 4 contains an outline of our proof of Theorem 1.1 and the full proof

of Theorem 1.2. The complete details of the long proof of Theorem 1.1 are
deferred to Subsections A.1 and A.2. In Subsection A.1 we treat remainder
terms in a local neighborhood of the mode m, while remainder terms away from
the mode are treated in Subsection A.2. Our proofs in Subsections A.1 and A.2
rely heavily on the theory developed for the constrained estimators in Doss and
Wellner [2018] and on the new uniform consistency results for the constrained
estimator presented in Section 2 (with proofs in Section A.4).
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In Section 5 we present Monte-Carlo estimates of quantiles of the distri-
bution of D and provide empirical evidence supporting the universality of the

limit distribution (under the assumption that ϕ
(2)
0 (m) < 0). We illustrate the

likelihood ratio confidence sets with Monte Carlo evidence demonstrating the
coverage probabilities of our proposed intervals are near the nominal levels. Fur-
ther simulation studies and application to two data sets can be found in Doss
and Wellner [2016b]. Section 6 gives a brief description of further problems and
potential developments. We also discuss connections with the results of Romano
[1988b], Romano [1988a], Donoho and Liu [1991], and Pfanzagl [1998, 2000]. In
Subsection 1.1 we discuss notation and terminology.

1.1. Notation and terminology

Several classes of concave functions will play a central role in this paper.

C := {ϕ : R→ [−∞,∞) | ϕ is concave, closed, and proper} (1.5)

and, for any fixed m ∈ R,

Cm := {ϕ ∈ C | ϕ(m) ≥ ϕ(x) for all x ∈ R}. (1.6)

Here proper and closed concave functions are as defined in Rockafellar [1970],
pages 24 and 50. We will follow the convention that all concave functions ϕ are
defined on all of R and take the value −∞ off of their effective domains dom(ϕ)
where dom(ϕ) := {x : ϕ(x) > −∞} (Rockafellar [1970], page 40). Recall
from the previous section that the classes of unconstrained and constrained
log-concave densities are then

P :=

{
eϕ :

∫
eϕdλ = 1, ϕ ∈ C

}
, and

Pm :=

{
eϕ :

∫
eϕdλ = 1, ϕ ∈ Cm

}
where λ is Lebesgue measure on R. We let X1, . . . , Xn be the observations,
independent and identically distributed with density f0 with respect to Lebesgue
measure. Here we assume throughout that f0 ∈ P and frequently that f0 =
eϕ0 ∈ Pm for somem ∈ R. We letX(1) < · · · < X(n) denote the order statistics of
the Xi’s, let Pn = n−1

∑n
i=1 δXi denote the empirical measure, and let Fn(x) =

n−1
∑n
i=1 1(−∞,x](Xi) denote the empirical distribution function. We define the

log-likelihood criterion function Ψn : C → R by

Ψn(ϕ) =
1

n

n∑
i=1

ϕ(Xi)−
∫
R
eϕ(x)dx = Pnϕ−

∫
R
eϕdλ (1.7)

where we have used the standard device of including the Lagrange term
∫
R e

ϕ(x)dx
in Ψn so that we can maximize Ψn over all concave functions C or Cm (rather
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than maximizing over classes corresponding to density functions). This is as in
Silverman [1982]. We will denote the unconstrained MLEs of ϕ0, f0, and F0 by

ϕ̂n, f̂n, and F̂n respectively. These exist uniquely by Proposition 1 of Walther
[2002]. The corresponding constrained estimators with mode m will be denoted

by ϕ̂0
n, f̂0n, and F̂ 0

n . These exist uniquely by Theorem 2.6 of Doss and Wellner
[2018] (or Lemma 2.0.3 of Doss [2013b]). Thus

ϕ̂n ≡ argmax
ϕ∈C

Ψn(ϕ), and ϕ̂0
n ≡ argmax

ϕ∈Cm
Ψn(ϕ).

2. Uniform consistency and rates

Here we recall the uniform rate-consistency theorem of Dümbgen and Rufibach
[2009], and give a partial analogue for the mode-constrained MLE. The new
result, given in Theorem 2.1 Part B below, is of interest in its own right for
describing the theoretical behavior of the mode-constrained MLE. Additionally,
the proof of Theorem 1.1 relies on (both parts of) Theorem 2.1. It should be
mentioned that Theorem 2.1 Part B is a non-trivial extension of the theorem of
Dümbgen and Rufibach [2009], with a fairly difficult proof.

To state the uniform results we define Hβ,L(I) to be the collection of real-
valued functions g on the closed interval I satisfying |g(y) − g(x)| ≤ L|y − x|
if β = 1 and |g′(y) − g′(x)| ≤ L|y − x|β−1 if β > 1, for all x, y ∈ I. We let
ρn ≡ n−1 log n.

Theorem 2.1. (Uniform consistency and rates of convergence.)

A. (Dümbgen and Rufibach [2009]) Suppose that f0 ∈ LC. If ϕ0 ∈ Hβ,L(K) for
some 1 ≤ β ≤ 2, L > 0, and K = [b, c] ⊂ int({f0 > 0}), then

sup
t∈K

(ϕ̂n − ϕ0)(t) = Op(ρ
β/(2β+1)
n ), and (2.1)

sup
t∈Kn

(ϕ0 − ϕ̂n)(t) = Op(ρ
β/(2β+1)
n ) (2.2)

where Kn ≡ [b + ρ
1/(2β+1)
n , c − ρ1/(2β+1)

n ]. These results remain true when

ϕ̂n is replaced by f̂n and ϕ0 by f0.

B. Suppose that f0 ∈ LCm, ϕ0 ∈ H2,L(K) for some L > 0, ϕ
(2)
0 (m) < 0, and

K = [b, c] ⊂ int({f0 > 0}). Then the results of Part A hold true with β = 2,

with ϕ̂n replaced by ϕ̂0
n and with f̂n replaced by f̂0n.

The proof of Theorem 2.1 is given in Appendix A.4.

3. Unconstrained and Constrained local limit processes

The limit distribution of 2 log λn, under the hypotheses of Theorem 1.1, depends
on the joint distribution of ϕ̂n(x) and ϕ̂0

n(x) at points x in n−1/5-neighborhoods
of m. In proving Theorem 1.1 it is also helpful to know that ϕ̂n(x) and ϕ̂0

n(x)
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are asymptotically equivalent at fixed x 6= m when ϕ′′0(x) < 0 and M(f0) = m.
Thus, in this section we recall the limit distributions of ϕ̂n and ϕ̂0

n from Theorem
2.1 of Balabdaoui, Rufibach and Wellner [2009] and Theorems 5.5 and 5.7 (see
also Theorem 5.8) of Doss and Wellner [2018]. The process giving the limit
distribution of ϕ̂n was first studied by Groeneboom, Jongbloed and Wellner
[2001a]. Here are the assumptions we will need.

Assumption 1. (Curvature at m) Suppose that X1, . . . , Xn are i.i.d. f0 = eϕ0 ∈
Pm and that ϕ0 is twice continuously differentiable at m with ϕ′′0(m) < 0.

Assumption 2. (Curvature at x0 6= m) Suppose that X1, . . . , Xn are i.i.d. f0 =
eϕ0 ∈ Pm and that ϕ0 is twice continuously differentiable at x0 6= m with
ϕ′′0(x0) < 0 and f0(x0) > 0.

Theorem 3.1 (Balabdaoui, Rufibach and Wellner [2009], Doss and Wellner
[2018]). A. (At a point x0 6= m). Suppose that ϕ0 and f0 satisfy Assumption 2.
Then (

n2/5(ϕ̂n(x0)− ϕ0(x0))
n2/5(ϕ̂0

n(x0)− ϕ0(x0))

)
→d

(
V
V

)
where V ≡ C(x0, ϕ0)H(2)(0), where H is described in Theorem 5.1 of Doss and
Wellner [2018], and where C(x0, ϕ0) is as given in (B.6) (but with m replaced
by x0):

C(x0, ϕ0) =

(
|ϕ(2)

0 (x0)|
4!f0(x0)2

)1/5

.

Consequently

n2/5(ϕ̂n(x0)− ϕ̂0
n(x0))→p 0.

B. (In n−1/5−neighborhoods of m) Suppose ϕ0 and f0 satisfy Assumption 1.
Define processes Xn and X0

n by

Xn(t) ≡ n2/5(ϕ̂n(m+ n−1/5t)− ϕ0(m))

X0
n(t) ≡ n2/5(ϕ̂0

n(m+ n−1/5t)− ϕ0(m)).

Then the finite-dimensional distributions of (Xn(t),X0
n(t)) converge in distribu-

tion to the finite-dimensional distributions of the processes

(ϕ̂a,σ(t), ϕ̂0
a,σ(t))

d
=

1

γ1γ22
(ϕ̂(t/γ2), ϕ̂0(t/γ2)) ≡ (X(t),X0(t))

where H,H0, H(2) = ϕ̂, and (H0)(2) = ϕ̂0 are as described in Theorems 5.1 and
5.2 of Doss and Wellner [2018], and γi, i = 1, 2, is described in Subsection B.1.
Furthermore, for p ≥ 1

(Xn(t),X0
n(t))→d (X(t),X0(t))

in Lp[−K,K]× Lp[−K,K] for each K > 0.
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4. Proof sketches for Theorems 1.1 and 1.2

Now we present proof sketches for our two main theorems (and make use of the
results in the previous two sections).

4.1. Proof sketch for Theorem 1.1

To begin our sketch of the proof of Theorem 1.1 we first give the basic de-
composition we will use. We begin by using

∫
R f̂n(u)du = 1 =

∫
R f̂

0
n(u)du to

write

2 log λn = 2nPn(ϕ̂n − ϕ̂0
n)

= 2n

∫
R

(ϕ̂n − ϕ̂0
n)dFn −

∫
R
(f̂n(u)− f̂0n(u))du

= 2n

∫
[X(1),X(n)]

(
ϕ̂ndF̂n − ϕ̂0

ndF̂
0
n

)
(4.1)

− 2n

∫
[X(1),X(n)]

(
eϕ̂n(u) − eϕ̂

0
n(u)

)
du

where we have used the characterization Theorems 2.2 and 2.8 of Doss and
Wellner [2018] with ∆ = ± ϕ̂n and ∆ = ± ϕ̂0

n respectively. As we will see,
inclusion of the second term in (4.1) will be of considerable help in the analysis.

Now we split the integrals in (4.1) into two regions: let Dn ≡ [t1, t2] for
some t1 < m < t2 and then let Dc

n ≡ [X(1), X(n)] \ Dn. The set Dn is the
region containing the mode m; here the unconstrained estimator ϕ̂n and the
constrained estimator ϕ̂0

n tend to differ. On the other hand, Dc
n is the union

of two sets away from the mode, and on both of these sets the unconstrained
estimator ϕ̂n and the constrained estimator ϕ̂0

n are asymptotically equivalent
(or at least nearly so). Sometimes we will take the ti, i = 1, 2, to be constant
in n, sometimes to be fixed or random sequences approaching m as n → ∞.
We will sometimes suppress the dependence of Dn ≡ Dn,t1,t2 on ti, and will
emphasize it when it is important. Now, from (4.1), we can write

2 log λn = 2n

{∫
Dn

(
ϕ̂ndF̂n − ϕ̂0

ndF̂
0
n

)
−
∫
Dn

(
eϕ̂n(u) − eϕ̂

0
n(u)

)
du

+

∫
Dc

n

(
ϕ̂ndF̂n − ϕ̂0

ndF̂
0
n

)
−
∫
Dc

n

(
eϕ̂n(u) − eϕ̂

0
n(u)

)
du

}

= 2n

{∫
Dn

(
(ϕ̂n − ϕ0(m))dF̂n − (ϕ̂0

n − ϕ0(m))dF̂ 0
n

)
−
∫
Dn

(
(eϕ̂n(u) − eϕ0(m))− (eϕ̂

0
n(u) − eϕ0(m))

)
du

}
+ 2n(Rn,1 +Rcn,1)
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where

Rn,t1,t2 ≡Rn,1 ≡
∫
Dn

ϕ0(m)(f̂n(x)− f̂0n(x))dx, (4.2)

Rcn,t1,t2 ≡R
c
n,1 ≡

∫
Dc

n

(
ϕ̂ndF̂n − ϕ̂0

ndF̂
0
n

)
−
∫
Dc

n

(
eϕ̂n(u) − eϕ̂

0
n(u)

)
du. (4.3)

Now we use an expansion of the exponential function to rewrite the second part
of the main term: since

eb − ea = ea{eb−a − 1} = ea{(b− a) +
1

2
(b− a)2 +

1

6
ea
∗
(b− a)3}

where |a∗ − a| ≤ |b− a|, we have∫
Dn

(
(eϕ̂n(u) − eϕ0(m))− (eϕ̂

0
n(u) − eϕ0(m))

)
du

=

∫
Dn

eϕ0(m)

(
(ϕ̂n(u)− ϕ0(m)) +

1

2
(ϕ̂n(u)− ϕ0(m))2)

)
du+Rn,2

−
∫
Dn

eϕ0(m)

(
(ϕ̂0
n(u)− ϕ0(m)) +

1

2
(ϕ̂0
n(u)− ϕ0(m))2)

)
du−R0

n,2

where

Rn,2 ≡
∫
Dn

1

6
f0(m)ex̃n,2(u)(ϕ̂n(u)− ϕ0(m))3du, (4.4)

R0
n,2 ≡

∫
Dn

1

6
f0(m)ex̃

0
n,2(u)(ϕ̂0

n(u)− ϕ0(m))3du. (4.5)

Thus

2 log λn (4.6)

= n

{
2

∫
Dn

(
(ϕ̂n(u)− ϕ0(m))(dF̂n(u)− f0(m)du)

− 2

∫
Dn

(ϕ̂0
n(u)− ϕ0(m))(dF̂ 0

n(u)− f0(m)du)

)
−
∫
Dn

(
(ϕ̂n(u)− ϕ0(m))2 − (ϕ̂0

n(u)− ϕ0(m))2
)
f0(m)du

}
+ 2n(Rn,1 +Rcn,1 +Rn,2 −R0

n,2).

Now we expand the first two terms in the last display, again using a two term
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expansion, eb − ea = (eb−a − 1)ea = ea{(b− a) + 1
2 (b− a)2ea

∗}, to find that∫
Dn

(ϕ̂n(u)− ϕ0(m))(dF̂n(u)− f0(m)du)

=

∫
Dn

(ϕ̂n(u)− ϕ0(m))(eϕ̂n(u)−ϕ0(u) − 1)f0(m)du

=

∫
Dn

(ϕ̂n(u)− ϕ0(m))

(
(ϕ̂n(u)− ϕ0(m)) + ex̃n,3(u)

1

2
(ϕ̂n(u)− ϕ0(m))2

)
f0(m)du

=

∫
Dn

(ϕ̂n(u)− ϕ0(m))2f0(m)du+Rn,3

where

Rn,3,t1,t2 ≡ Rn,3 =

∫
Dn

1

2
f0(m)ex̃n,3(u)(ϕ̂n(u)− ϕ0(m))3du. (4.7)

Similarly, ∫
Dn

(ϕ̂0
n(u)− ϕ0(m))(dF̂ 0

n(u)− f0(m)du)

=

∫
Dn

(ϕ̂0
n(u)− ϕ0(m))2f0(m)du+R0

n,3

where

R0
n,3,t1,t2 ≡ R

0
n,3 =

∫
Dn

1

2
f0(m)ex̃

0
n,3(u)(ϕ̂0

n(u)− ϕ0(m))3du. (4.8)

If we let t1 = tn,1 = m − bn−1/5 and t2 = tn,2 = m + bn−1/5 for b > 0, then
from (4.6) we now have

2 log λn = n

∫
Dn

f0(m)
{

(ϕ̂n(u)− ϕ0(m))2 − (ϕ̂0
n(u)− ϕ0(m))2

}
du

+ 2n
(
Rn,1 +Rcn,1 +Rn,2 −R0

n,2 +Rn,3 −R0
n,3

)
≡ Dn,b +Rn. (4.9)

Now we sketch the behavior of Dn,b. Let u = m + vn−1/5; with this change of
variables and the definition of tn,i, i = 1, 2, we can rewrite Dn,b as

Dn,b = f0(m)n4/5
∫ b

−b

{(
ϕ̂n(m+ n−1/5v)− ϕ0(m)

)2
−
(
ϕ̂0
n(m+ n−1/5v)− ϕ0(m)

)2}
dv.

By Theorem 3.1B this converges in distribution to

f0(m)

∫ b

−b

{
(ϕ̂a,σ(v))

2 −
(
ϕ̂0
a,σ(v)

)2}
dv, (4.10)
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where the processes (ϕ̂a,σ, ϕ̂
0
a,σ) are related to (ϕ̂, ϕ̂0) by the scaling relations

(B.1) and (B.2). We conclude that the limiting random variable in (4.10) is
equal in distribution to

f0(m)

∫ b

−b

{(
1

γ1γ22
ϕ̂(v/γ2)

)2

−
(

1

γ1γ22
ϕ̂0(v/γ2)

)2
}
dv

=
f0(m)

γ21γ
3
2

1

γ2

∫ b

−b

{
ϕ̂(v/γ2)2 − ϕ̂0(v/γ2)2

}
dv

=

∫ b/γ2

−b/γ2

{
ϕ̂(s)2 − ϕ̂0(s)2

}
ds (4.11)

in view of (B.5). This is not yet free of the parameter γ2, but it will become
so if we let b → ∞. If we show that this is permissible and we show that the
remainder term Rn in (4.9) is negligible, then the proof of Theorem 1.1 will be
complete. For details, see section A.

Remark 4.1. As is suggested by (4.11) (and proved in section A), the form of
the random variable D from Theorem 1.1 is

D =

∫ ∞
−∞

{
ϕ̂(u)2 − ϕ̂0(u)2

}
du.

The form of this random variable is the same as that found in Banerjee and
Wellner [2001] and Banerjee [2007], if we replace our ϕ̂ and ϕ̂0 with the corre-
sponding random functions studied in the monotone case.

4.2. Proof of Theorem 1.2

Recall Pm = {f ∈ P : M(f) = m}. We now assume that f ∈ P \ Pm. Let λ be
Lebesgue measure and let

f0m = argming∈Pm

{
−
∫

log gf0dλ

}
(4.12)

= argming∈Pm

∫
f0 (log f0 − log g) dλ = argming∈Pm

K(f0, g),

where we will make (4.12) rigorous later, in Theorem 4.1. Let Pn =
∑n
i=1 δXi/n

be the empirical measure and for a function g let Pn(g) =
∫
gdPn. We now have

n−1 log λn(m) = Pn(log f̂n/f̂
0
n) = Pn

{
log

f̂n
f0
· f0
f0m
· f

0
m

f̂0n

}

= Pn

{
log

f̂n
f0

}
+ Pn

{
log

f0
f0m

}
− Pn

{
log

f̂0n
f0m

}
. (4.13)
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From this we can conclude that as n→∞,

n−12 log λn(m) = Op(n
−4/5) + 2Pn

{
log

f0
f0m

}
− op(1)→p 2K(f0, f

0
m).

That Pn
{

log f̂n
f0

}
= Op(n

−4/5) follows from Doss and Wellner [2016a], Corollary

3.2, page 962. The convergence of 2Pn
{

log f0
f0
m

}
to K(f0, f

0
m) follows from the

weak law of large numbers. The indicated negligibility of the third term in (4.13)
follows from Theorem 4.3 below (which is a constrained analogue of Theorem
2.15 of Dümbgen, Samworth and Schuhmacher [2011]).

It remains to justify the definition given in (4.12), and to show that the
third term of (4.13) is op(1), under the assumptions of Theorem 1.2. We first
state three theorems. These are mode-constrained analogues of Theorems 2.2,
2.7, and 2.15 of Dümbgen, Samworth and Schuhmacher [2011], and are proved
with methods similar to the methods used in Dümbgen, Samworth and Schuh-
macher [2011]. The full proofs will be given in a separate work on estimation
and inference for modal regression functions.

Now we set

L(ϕ,Q) ≡
∫
ϕdQ−

∫
eϕdλ+ 1

and define

Lm(Q) ≡ sup
ϕ∈Cm

L(ϕ,Q)

where

Cm ≡ {ϕ : m ∈MI(ϕ), ϕ concave}

and recall MI(ϕ) ≡ {x ∈ R : ϕ(x) = supy∈R ϕ(y)}. If for fixed Q there exists
ψm ∈ Cm such that

L(ψm, Q) = Lm(Q) ∈ R,

then ψm will automatically satisfy
∫

exp(ψm(x))dx = 1: note that φ + c ∈ Cm
for any fixed φ ∈ Cm and c ∈ R. On the other hand,

∂

∂c
L(C + c,Q) =

∂

∂c

{∫
(φ+ c)dQ− ec

∫
eφdλ+ 1

}
= 1− ec

∫
eφdλ

if L(φ,Q) ∈ R. Thus L(φ+ c,Q) is maximal for c = − log
∫
eφdλ.

For the next theorem we need to define

csuppm(Q) =
⋂{

C ⊆ Rd : C closed, convex , Q(C) = 1,m ∈ C
}
.
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Theorem 4.1. Let Q be a measure on Rd. The value of Lm(Q) is real if and only
if
∫
|x|dQ(x) < ∞ and int(csuppm(Q)) 6= ∅. In that case there exists a unique

ψm ≡ ψm(·|Q) ∈ argmaxϕ∈CmL(ϕ,Q). This function ψm satisfies
∫
eψmdλ = 1

and
int(csuppm(Q)) ⊆ dom(ψm) ⊆ csuppm(Q)

where dom(ψm) ≡ {x ∈ Rd : ψm(x) > −∞}.

Theorem 4.1 justifies rigorously the definition given in (4.12), since f0 ∈ P
has a finite mean and is non-degenerate. Now, for ψm ∈ Cm, let

S(ψm) = {x ∈ dom(ψm) : ψm(x) > 2−1 (ψm(x− δ) + ψm(x+ δ)) for all δ > 0},

and

SL(ψm) = {x ∈ S(ψm) : ψ′m(x−) > 0} ⊆ (−∞,m],

SR(ψm) = {x ∈ S(ψm) : ψ′m(x+) < 0} ⊆ [m,∞).

It is possible for m to be an element of either of the sets SL(ψm) and SR(ψm)
without being a member of the other. The following theorem is the population
analogue of Theorem 2.10 of Doss and Wellner [2018].

Theorem 4.2. Let Q be a non-degenerate distribution on R with finite first
moment and distribution function G. Let Fm be a distribution function with
log-density ϕm ∈ Cm. Then ϕm = ψ(·|Q) if and only if∫ x

−∞
Fm(y)dy ≤

∫ x

−∞
G(y)dy for all x ≤ m, and (4.14)∫ ∞

x

(1− Fm(y))dy ≤
∫ ∞
x

(1−G(y))dy for all x ≥ m, (4.15)

with equality in (4.14) if x ∈ SL(ϕm) and equality in (4.15) if x ∈ SR(ϕm).

Thus, again much as in Dümbgen, Samworth and Schuhmacher [2011], for
x ∈ S(ψm(·|Q)), x ≤ m, and (small) δ > 0,

0 ≤ 1

δ

∫ x

x−δ
(Fm(y)−G(y))dy → Fm(x)−G(x−) as δ ↘ 0,

0 ≥ 1

δ

∫ x+δ

x

Fm(y)−G(y))dy → Fm(x)−G(x) as δ ↘ 0,

and hence G(x−) ≤ Fm(x) ≤ G(x) for all x ∈ R.
Now we need to understand the properties of the maps Q 7→ Lm(Q) and

Q 7→ ψm(·|Q) on Q1∩Q0,m, where we let Q1 =
{
Q :

∫
|x|dQ <∞

}
and Q0,m =
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{Q : int(csuppm(Q)) 6= ∅}. As in Dümbgen, Samworth and Schuhmacher [2011]
we show that these are both continuous with respect to Mallows distance D1:

D1(Q,Q′) ≡ inf
(X,X′)

E|X −X ′|

where the infimum is taken over all pairs (X,X ′) of random variables X ∼ Q and
X ′ ∼ Q′ on a common probability space. Convergence of Qn to Q in Mallows
distance is equivalent to having

∫
|x|dQn →

∫
|x|dQ and Qn ⇒ Q [Mallows,

1972].

Theorem 4.3. Let {Qn} be a sequence of distributions on Rd such that D1(Qn, Q)→
0 for some Q ∈ Q1. Then

Lm(Qn)→ Lm(Q).

If Q ∈ Q0,m ∩ Q1 the probability densities f0 ≡ exp(ψm(·|Q)) and f0n ≡
exp(ψm(·|Qn)) are well-defined for large n and satisfy

lim
n→∞,x→y

f0n(x) = f0(y) for all y ∈ Rd \ ∂{f0 > 0},

lim sup
n→∞,x→y

f0n(x) ≤ f0(y) for all y ∈ ∂{f0 > 0},∫
|f0n(x)− f0(x)|dx → 0.

We can now show that the third term of (4.13) is op(1) under the assump-
tions of Theorem 1.2. First note that Pn converges weakly to P , the measure
corresponding to f0 ∈ P, with probability 1 and Pn(|x|) = n−1

∑n
i=1 |Xi| →a.s.∫

|x|dP (x) by the strong law of large numbers. Thus D1(Pn, P ) →a.s. 0. It
follows from Theorem 4.3 that

log f̂0n = argmaxϕ∈Cm

{
Pnϕ−

∫
eϕdλ+ 1

}
= ψm(·|Pn) = ϕ̂0

n

where, by the last part of Theorem 4.3,
∫
|f̂0n − f0m|dλ →a.s. 0 and by the

continuity

Lm(Pn) = L(ψm(·|Pn),Pn) = Pn log f̂0n

→a.s. L(ψm(·|P ), P ) = P (log f0m). (4.16)

But then

Pn log
f̂0n
f0m

= Pn log f̂0n − P log f0m − (Pn log f0m − P log f0m)

→a.s. 0− 0 = 0

by (4.16) for the first term and the strong law of large numbers for the second
term (using that −∞ < Lm(P ) <∞ by Theorem 4.1).
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5. Simulations: some comparisons and examples

5.1. Monte Carlo estimates of the distribution of D

To implement our likelihood ratio test and the corresponding new confidence
intervals, we first conducted a Monte-Carlo study of the null-hypothesis limit
random variable, D. We did this by simulating M = 5× 103 samples of n = 104

from the following distributions satisfying the key hypothesis (ϕ′′0(m) < 0) of
Theorem 1.1: Gamma(3, 1), Beta(2, 3), Weibull(3/2, 1). The results are shown
in Figure 1. Figure 1 also includes: (i) a plot of the known d.f. of a chi-square
random variable with 1 degree of freedom, (which is the limiting distribution
of the likelihood ratio test statistic for testing a one-dimensional parameter in
a regular parametric model); (ii) a plot of the empirical distribution of 2 log λn
for M = 5 × 103 samples of size n = 104 drawn drawn from the Laplace
density 2−1 exp(−|x|) for which the assumption of Theorem 1 fails. In keep-
ing with Theorem 1.1, the empirical results for all the distributions satisfying
Theorem 1.1 are tightly clustered and in fact are almost visually indistinguish-
able, in spite of the fact that the various constants associated with these dis-
tributions are quite different, as shown in Table 1; in the next to last column

C(f0) ≡
(
(4!)2f0(m)/(f ′′0 (m))2)

)1/5
from (1.1), and in the last column SLC

stands for “strongly log-concave” (see e.g. Saumard and Wellner [2014]).

Table 1
Numerical characteristics of the distributions in the null hypothesis Monte-Carlo study

distribution m f0(m) f ′′0 (m) ϕ′′0 (m) C(f0) SLC

N(0,1) 0 (2π)−1/2 = .3989 . . . −(2π)−1/2 −1 4.28 Y

Gamma(3, 1) 2 2e−2 −e−2 −1/2 6.109 Y

Weibull(3/2, 1) 3−2/3 32/3

2e1/3
− 27

8e1/3
− 9·31/4

4
2.36 N

Beta(2, 3) 3−1 16
9

−24 − 27
2

1.12 Y

Logistic 0 1/4 −1/8 −1/2 6.207 N

Gumbel 0 e−1 −e−1 −1 4.3545 N

χ2
4 2 1

2e
− 1

8e
− 1

4
8.7091 N

Now for α ∈ (0, 1) let dα satisfy P (D > dα) = α. The following table gives
a few estimated values for dα: These are based on 350, 000 Monte Carlo simu-
lations each based on simulating 1× 106 observations from a standard normal.
These values, and the simulated critical values for all α ∈ (0, 1), are available in
the logcondens.mode package [Doss, 2013a] in R [R Core Team, 2016].
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Fig 1. Monte Carlo distributions of 2 log λn for four distributions, n = 104, M = 5 × 103

replications, together with the exact distribution function of χ2
1.

Table 2
Estimated critical values dα

α .25 .20 .15 .10 .05 .01
dα .40 .49 .61 .79 1.11 1.92

imsart-generic ver. 2012/08/31 file: P2.tex date: June 5, 2018



Doss and Wellner/Inference for the mode 19

Banerjee and Wellner [2001] study a likelihood ratio test in the context of
constraints based on monotonicity, and find a universal limiting distribution,
denote it Dmono, for their likelihood ratio test. Comparison of the values in
Table 2 with Table 2 of Banerjee and Wellner [2001] (particularly Method 2
in column 3 of that table) suggest, perhaps surprisingly, that P (2D ≤ t) ≈
P (Dmono ≤ t) for t ∈ R. It would be quite remarkable if this held exactly. We
do not have any explanation for this observed phenomenon.

5.2. Comparisons via simulations

Code to compute the mode-constrained log-concave MLE, implement a cor-
responding test, and invert the family of tests to form confidence intervals is
available in the logcondens.mode package [Doss, 2013a]. We can thus test our
procedure and compare it to alternatives.

Romano [1988a] proposed and investigated two methods of forming confi-
dence intervals for the mode of a unimodal density. His estimators of the mode
and confidence intervals were based on the classical kernel density estimators of
the density f going back to Parzen [1962]. One method, which Romano called
the “normal approximation method”, is based on the limiting normality of the
kernel density estimator of the mode, together with a plug-in estimator of the
asymptotic variance. Romano’s second method involved bootstrapping the mode
estimator, and involved the choice of two bandwidths, one for the initial estima-
tor to determine the mode, and a second (larger) bandwidth for the bootstrap
sampling. The abstract of Romano [1988a] states: “In summary, the results are
negative in the sense that a straightforward application of a naive bootstrap
yields invalid inferences. In particular the bootstrap fails if resampling is done
from the kernel density estimate.” That is, one must use a second (larger) band-
width for the bootstrap resampling to achieve valid inference. This thus neces-
sitates selection of two tuning parameters for the bootstrap procedure. Romano
[1988a] notes in summarizing his simulation results:

... but the problem of constructing a confidence interval for the mode for smaller sample
sizes remains a challenging one. In summary, the simulations reinforce the idea that gener-
ally automatic methods like the bootstrap need mathematical and numerical justification
before their use can be recommended.

The bootstrap simulations that Romano [1988a] refers to in the previous
quote are based on an underlying N(0, 1) or a χ2

4 distribution with a sample
size of n = 100. Romano [1988a] also performs simulations for the normal ap-
proximation method for the same underlying distributions and based on the
same sample size. For the normal approximation method, a grid of bandwidths
h are used for the simulation. For the bootstrap, a matrix of bandwidth pairs
(h, b) (one for estimation, one for resampling) are used. Monte Carlo estimates
of coverage probabilities are presented in Tables 1–4 of Romano [1988a].

In Figure 2 we consider the case of a true underlying χ2
4 distribution, and we

plot all the estimated coverage probabilities of Romano’s bootstrap CI’s (blue;
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Fig 2. Coverage probabilities, Romano’s Table 4 compared with LR coverage probabilities, χ2
4

data, Bootstrap confidence intervals (blue dots); LR confidence intervals (magenta triangles).
The green line is the nominal level.

these are from Romano [1988a]’s Table 4) together with the target (ideal) cover-
age (green line) and the estimated coverage probabilities of our likelihood ratio
(LR) based CI’s (magenta). As can be seen, the estimated coverage probabili-
ties of our LR-based procedure are reasonably close to the target values without
requiring any bandwidth choice.

Corresponding comparison plots based on Tables 1,2, and 3 of Romano [1988a],
as well as tables of the simulated coverage probabilities, are given in Doss and
Wellner [2016b]. We do not include them here due to space constraints. Doss
and Wellner [2016b] also includes a Monte Carlo simulation study of lengths of
the CI’s in some settings.

Methods of bandwidth selection for various problems have received consid-
erable attention in the period since Romano [1988a]; see especially Léger and
Romano [1990], Mammen and Park [1997], Härdle, Marron and Wand [1990],
Hall and Johnstone [1992], Ziegler [2001], Hazelton [1996a], Hazelton [1996b],
and Samworth and Wand [2010]. Although bandwidth selection in connection
with mode estimation is mentioned briefly by Léger and Romano [1990] (see their
last paragraph, page 734), we are not aware of any specific proposal or detailed
study of bandwidth selection methods in the problem of confidence intervals
for the mode of a unimodal density. For this reason, we have not undertaken
a full comparative study of possible methods here. Further comparisons of our
LR based confidence intervals with methods based on kernel density estimates
of the type studied by Romano [1988a] but incorporating current state of the
art bandwidth selection procedures will be of interest.
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Fig 3. 1006 S&P 500 daily log returns for the years 2003–2006

5.3. Comparisons via data examples

We used our procedure for formation of modal confidence intervals (CI’s) on two
real data sets, the rotational velocities of stars from the Bright Star Catalogue
[Hoffleit and Warren, 1991] and daily log returns for the S&P 500 stock market
index. To see the former, see Section 5.3 of Doss and Wellner [2016b]. Here we
discuss the 1006 daily log returns for the S&P 500 stock market index from
January 1, 2003 to December 29, 2006. In Figure 3 we plot the data, a kernel
density estimate with bandwidth .13 [Sheather and Jones, 1991], the log-concave
MLE, and the 95% confidence interval for the mode given by our likelihood ratio
statistic. We also plot the maximum likelihood Gaussian density estimate, for
comparison. The sample mean is 0.04, the sample median is 0.081, and the log-
concave mode estimate is 0.17. A 95% CI’s for the mean is [−0.004, 0.09] and a
95% CI for the median is [.037, .122], [Hogg and Craig, 1970, pages 539–540]. Our
likelihood ratio CI for the mode is [0.10, 0.21]. Note that our confidence interval
for the mode excludes 0 and does not intersect with the CI for the mean. Thus,
our procedure highlights some interesting features of the data and provides
evidence for its non-normality. Also note that the lengths of the mean, median,
and our LR-based mode CI are 0.094, 0.085, and 0.11. Thus, despite the fact
that our mode estimator does not generally have a n−1/2 rate of convergence,
the three confidence intervals are of fairly similar length on a dataset with 1006
observations, which is encouraging for our mode CI procedure and for any future
extensions (e.g., mode regression CI’s).

6. Further Problems and potential developments

6.1. Uniformity and rates of convergence

There is a long line of research giving negative results concerning nonparamet-
ric estimation, starting with Bahadur and Savage [1956], Blum and Rosenblatt
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[1966], Singh [1963, 1968], and continuing with Donoho [1988] and Pfanzagl
[1998, 2000]. In particular, Pfanzagl [2000] considers a general setting involv-
ing estimators or confidence limits with optimal convergence rate n−ρ with
0 < ρ < 1/2. He shows, under weak additional conditions, that: (i) there do
not exist estimators which converge locally uniformly to a limit distribution;
and (ii) there are no confidence limits with locally uniform asymptotic coverage
probability. As an example he considers the mode of probability distributions P
on R with corresponding densities p having a unique mode M(p) and continuous
second derivative in a neighborhood of M(p). Pfanzagl [2000] also reproves the
result of Has’minskii [1979] to the effect that the optimal rate of convergence
of a mode estimator for such a class is n−1/5. In this respect, we note that
Balabdaoui, Rufibach and Wellner [2009] established a comparable lower bound
for estimation of the mode in the class of log-concave densities with continuous
second derivative at the mode; they obtained a constant which matches (up to
absolute constants) the pointwise (fixed P ) behavior of the plug-in log-concave
MLE of the mode. Romano [1988b] gives a detailed treatment of minimax lower
bounds for estimation of the mode under smoothness and curvature assump-
tions: assuming a bounded derivative of order p in a neighborhood of the mode
M(f0), Romano shows in his Theorem 3.1 that the minimax rate for estimation
of M(f0) is n−r where r = (p− 1)/(2p+ 1). He also shows that when p = 3, the
rate n−2/7 can be achieved by a kernel density estimator.

Our approach here has been to construct reasonable confidence intervals with
pointwise (in P or density p) correct asymptotic coverage without proof of any
local uniformity properties. In view of the recent uniform rate results of Kim and
Samworth [2016] we suspect that our new confidence intervals will (eventually)
be shown to have some uniformity of convergence in their coverage probabilities
over appropriate subclasses of the class of log-concave densities, but we leave
the uniformity issues to future work.

6.2. Some further directions and open questions

But we now turn to discussion of some difficulties and potential for further work.

6.2.1. Relaxing the second derivative assumption:

As noted in the previous subsection, most of the available research concerning
inference for M(f) has assumed f ∈ C2(m, loc) and f (2)(M(f)) < 0. Second
derivative type assumptions of this type are made in Parzen [1962], Has’minskii
[1979], Eddy [1980], Donoho and Liu [1991], Romano [1988a,b], and Pfanzagl
[2000]. Exceptions include Müller [1989], Ehm [1996], Herrmann and Ziegler
[2004], Balabdaoui, Rufibach and Wellner [2009].

What happens if the second derivative curvature assumption does not hold,
but instead is replaced by something either stronger or weaker, such as

f(m)− f(x) ≤ C|x−m|r
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for some C where 1 ≤ r < 2 (in the “stronger” case) or 2 < r < ∞ (in
the “weaker” case)? It is natural to expect that it is easier to form confidence
intervals for m when 1 ≤ r < 2 holds, but that it is harder to form confidence
intervals for m when 2 < r < ∞. In fact, Balabdaoui, Rufibach and Wellner
[2009] page 1313 gives the following result: if f = exp(ϕ) with ϕ concave and
where ϕ(j)(m) = 0 for j = 2, . . . , k − 1 but ϕ(k) exists and is continuous in a
neighborhood of m with ϕ(k)(m) 6= 0, then

n1/(2k+1)(M̂n −m)→d Ck(f(m), ϕ(k)(m))M(H
(2)
k ).

Thus the convergence rate of the log-concave MLE of the mode is slower as k
increases. [On the other hand, by Theorem 2.1 of Balabdaoui, Rufibach and

Wellner [2009], page 1305, the convergence rate of the MLE f̂n of f at m (and
in a local neighborhood of m) is faster:

nk/(2k+1)(f̂n(m)− f(m))→d ck(m, f)H
(2)
k (0).]

Furthermore the sketch of the proof of the limiting distribution of the likelihood
ratio statistic in Section 4.1 (ignoring any remainder terms) together with the
results of Balabdaoui, Rufibach and Wellner [2009], suggest that 2 log λn →d Dk
under f ∈ Pm ∩ Zk where

Zk = {f ∈ P : ϕ(j)(m) = 0, j = 2, . . . , k − 1, ϕ(k)(m) 6= 0, ϕ ∈ Ck(m, loc)}

and where with ϕk and ϕ0
k denoting the local limit processes in the white noise

model (1.2) with drift term g0(t) = −12t2 replaced by −(k + 2)(k + 1)|t|k,

Dk ≡
∫
{(φ̂k(v))2 − (φ̂0k(v))2}dv.

We provide Monte Carlo evidence in support of this conjecture, by simulating
2 log λn based on some parent distributions with k 6= 2. The results are given
in Figure 4. Figure 4 contains empirical distributions of 2 log λn (with n = 104

and M = 5 × 103) for 9 parent distributions, as well as a plot of the df of a
χ2
1 random variable; all of the curves from Figure 1 are present, including Fχ2

1
,

the Laplace (with k = 1), the standard normal, Gamma(3, 1), Beta(2, 3), and
Weibull(1.5, 1) (all four having k = 2). We also add four parent distributions
with k > 2. We include parent densities proportional to exp

{
−|x|j/j

}
for x ∈ R,

labelled “Subbotin(j),” j = 3, 4 (having k = j). We also include parent densities
proportional to 1 − |x|j for x ∈ [−1, 1], labelled “Bump(j),” j = 3, 4 (with
k = j). The (Monte Carlo estimators of) dfs based on the parent distributions
with k = 3 (estimating D3) are grouped together, and the dfs based on the
parent distributions with k = 4 (estimating D4) are similarly grouped together.
Note that the (Monte Carlo estimator of) the distribution of D3 seems to be
stochastically larger than the (Monte-Carlo estimator) of the distribution of
D2 ≡ D, and that the distribution of D4 is apparently stochastically larger than
that of D3. This raises several possibilities:
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Fig 4. Empirical distributions of 2 log λn for f ∈ Pm ∩ Zk, k ∈ {2, 3, 4} with n = 104 and
M = 5× 103 replications.

Option 1: It seems likely that by choosing a critical value from the distribu-
tion of D6 (say), that the resulting confidence intervals will have correct
coverage for f ∈ P ∩ Z6 with conservative coverage if we happen to have
f ∈ P∩Z2 (in which case critical points from D = D2 would have sufficed),
and anti-conservative coverage if the true f belongs to P ∩ (Zk \ Z6) for
some k ≥ 8.

Option 2: Try to construct an adaptive procedure which first estimates k (the

degree of “flatness”) of the true f ∈ P (by k̂ say), and then choose a
critical point from the distribution of Dk̂.

We leave the investigation of both of these possibilities to future work.

6.2.2. Relaxing the assumption of log-concavity

It would also be of interest to relax the assumption of log-concavity used in the
developments here. It would be very desirable to allow f0 to be a completely
arbitrary unimodal density, and allow the smoothness at the mode M(f0) to
vary as noted in the previous subsection. As a more realistic replacement for
this ambitious goal, we might instead consider enlarging from the class of log-
concave densities to some class of s−concave densities, Ps with −1 < s < 0; i.e.

densities of the form f0 = φ
1/s
0 with φ0 > 0 convex; see e.g. Koenker and Mizera

[2010], Doss and Wellner [2016a], and Han and Wellner [2016]. Extensions in
this direction will likely require further study of the Rényi divergence estimators
studied in Han and Wellner [2016] and mode-constrained versions thereof. An
interesting possible connection is that for the classes of α−stable densities Sα
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with 0 < α ≤ 2, we know that f0 ∈ Sα is unimodal. Moreover, it is also known
from Hall [1984] that for the symmetric α−stable distributions f ′′0 exists in a
neighborhood of the mode m = M(f0), and f ′′0 (m) < 0. It is apparently not
known if the α−stable densities are s−concave for some s ∈ (−1, 0], even though
this obviously holds in the (few) examples for which an explicit formula for the
density f0 ∈ Sα is available: for example for f0 = Cauchy, f0 ∈ S1∩P−1/2, while
for Lévy’s completely asymmetric stable law, f0 ∈ S1/2 ∩ P−2/3, and of course,
for f0 = Gaussian, f0 ∈ S2 ∩ P0.

6.2.3. Mode inference in other contexts

The methods developed in this paper raise several questions about other settings
in which inference about a convex function may be of interest.

(a) Can we do inference for the maxima or minima in the contexts of estimation
of intensity functions, of (bathtub-shaped) hazard functions [Jankowski and
Wellner, 2009], or of regression functions? For instance, let Yi = r(xi) + εi
where εi are mean zero i.i.d. observations and xi are fixed numbers in R.
If we assume r to be convex, then much is known about the least-squares
estimator r̂n of r; see, e.g., Hildreth [1954], Hanson and Pledger [1976],
Mammen [1991], and Groeneboom, Jongbloed and Wellner [2001a,b]. Can
an argmin-constrained estimator r̂0n be developed, in analogy with the es-

timator f̂0n, and used to develop likelihood ratio-based (or rather, residual
sum-of-squares) tests and intervals for the location of the minimum of r?
In such a problem, we conjecture that the universal component of the limit
distribution of r̂0n(m) will be the same as that studied in Theorem 1.1.

(b) Can the techniques used here be applied to form tests and intervals for
the value (or height) of a concave function, f0, rather than argmax? Here,
f0 could be a log-concave density or a concave regression function (and
other settings could be of interest). That is, can we develop an estimator

f̂0n based on the constraint that f satisfies f(x0) = y0 for x0, y0 fixed, and

use f̂0n with an unconstrained estimator f̂n to form a likelihood ratio test
for f0(x0)? In the case where f0 is a concave regression function, such a
program has recently been studied by Doss [2018]. Can this be extended
to the density case, where f0 is log-concave?

(c) Can inference for the mode be extended to semiparametric settings? For ex-
ample can we form tests/intervals for the location of the minimum of an un-
known convex “link” function m0 in a single index model, Y = m0(θ′0X)+ε,
where X ∈ Rd, Y ∈ R, E(ε|X) = 0, and m0 is assumed to be con-
vex [Kuchibhotla, Patra and Sen, 2017; Chen and Samworth, 2016]? Can
we form tests/intervals for a modal regression function, i.e. for m0 where
Y = m0(X) + ε where ε has mode 0?
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6.2.4. Beyond dimension d = 1:

It seems natural to consider generalizations of the present methods to the case
of multivariate log-concave and s−concave densities. While there is a consid-
erable amount of work on estimation of multivariate modes, mostly via kernel
density estimation, much less seems to be available in terms of confidence sets or
other inference tools. For some of this, see e.g. Tsybakov [1990], Abraham, Biau
and Benôıt [2003], Kim [1994], Klemelä [2005], Konakov [1973], Sager [1978],
Samanta [1973]. On the other hand apparently very little is known about the

multivariate mode estimator M(f̂n) where f̂n is the log-concave density esti-
mator for f on Rd studied by Cule, Samworth and Stewart [2010] and Cule
and Samworth [2010]. Further study of this estimator will very likely require
considerable development of new methods for study of the pointwise and local
properties of the log-concave density estimator f̂n when d ≥ 2.
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Appendix A: Proofs

We now deal with the remainder terms defined in (4.9) in the course of our
“proof sketch” for Theorem 1.1. We first deal with the “local” remainder terms
Rn,j , R

0
n,j with j ∈ {2, 3} in Subsection A.1. The analysis of these local remain-

der terms depends crucially on Theorem 2.1. Subsection A.2 is dedicated to the
proofs for the “non-local” remainder terms.

For a function f : R → R, we let ‖f‖ := supx∈R |f(x)|, and for a set J ⊂ R
we let ‖f‖J := supx∈J |f(x)|.

A.1. The local remainder terms Rn,j, R
0
n,j, j ∈ {2, 3}

We first deal with the (easy) local remainder terms.

Proposition A.1. Let tn,1 = m−Mn−1/5 and tn,2 = m+Mn−1/5 for M > 0.
Then the remainder terms Rn,2, R0

n,2, Rn,3, and R0
n,3 satisfy nRn,j = op(1) and

nR0
n,j = op(1) for j ∈ {2, 3}.

Proof. Recall that the remainder terms Rn,2, R0
n,2, Rn,3, and R0

n,3 given by
(4.4), (4.5), (4.7), and (4.8) are all of the form a constant times

R̃n ≡
∫
Dn

ex̃n(u)(ϕ̂n(u)− ϕ0(m))3du, or

R̃0
n ≡

∫
Dn

ex̃
0
n(u)(ϕ̂0

n(u)− ϕ0(m))3du,
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where Dn is a (possibly random) interval of length Op(n
−1/5) and x̃n,j converges

in probability, uniformly in u ∈ Dn, to zero. But by Assumption 1 and by
Theorem 2.1 Part A it follows that for any M > 0 we have

sup
|t|≤M

|ϕ̂n(m+ n−1/5t)− ϕ0(m)|

≤ sup
|t|≤M

{
|ϕ̂n(m+ n−1/5t)− ϕ0(m+ n−1/5t)|+ |ϕ0(m+ n−1/5t)− ϕ0(m)|

}
= Op((n

−1 log n)2/5) +O(n−2/5) = Op((n
−1 log n)2/5),

and hence

n|R̃n| = nOp((n
−1 log n)6/5 · n−1/5) = Op(n

−2/5(log n)6/5) = op(1),

By Assumption 1 and by Theorem 2.1 Part B it follows that for any M > 0 we
have

n|R̃0
n| = nOp((n

−1 log n)6/5 · n−1/5) = Op(n
−2/5(log n)6/5) = op(1).

Note that the op terms do not depend on M , by Theorem 2.1. This completes
the proof of negligibility of the local error terms Rn,j , R

0
n,j , j ∈ {2, 3}.

A.2. The global remainder terms Rn,1 and Rc
n,1

Recall that the remainder terms Rn,1 and Rcn,1 are given by (4.2) and (4.3).
Note that the integral in the definition of (4.3) is over [X(1), X(n)] \ Dn, and
hence this term in particular has a global character. We will see later that Rn,1
also can be seen as having a global nature.

Outline: From now on, we will focus our analysis on the portion of Rcn,1,t1,t2
given by integrating over the left side, [X(1), t1]. Arguments for the integral over
[t2, X(n)] are analogous. Thus, by a slight abuse of notation, define the one-sided
counterpart to Rcn,1,t1,t2 from (4.3) for any t < m by

Rcn,1,t ≡
∫
[X(1),t]

ϕ̂ndF̂n − ϕ̂0
ndF̂

0
n −

∫
[X(1),t]

(eϕ̂n − eϕ̂
0
n) dλ. (A.1)

Here λ is Lebesgue measure (and is unrelated to the likelihood ratio λn). The
analysis of Rcn,1,t is the greatest difficulty in understanding 2 log λn. The proof

that Rcn,1,tn is op(n
−1) when b→∞ where tn = m−bn−1/5 is somewhat lengthy

so we provide an outline here.

1. Step 1, Decomposition of Rcn,1,t: Decompose Rcn,1,t, to see that

Rcn,1,t = A1
n,t + E1

n,t − T 1
n,t = A2

n,t + E2
n,t + T 2

n,t, (A.2)

where the summands Ain,t, E
i
n,t, T

i
n,t are defined below (see (A.11) and the

preceding text).
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2. Step 2, Global Op(n
−1) conclusion: In this section we use the fact

that away from the mode, the characterizations of ϕ̂n and ϕ̂0
n are iden-

tical to study T in, i = 1, 2, which are related to
∫
[X(1),t]

(ϕ̂n − ϕ̂0
n)2f̂ndλ.

and
∫
[X(1),t]

(ϕ̂n − ϕ̂0
n)2f̂0ndλ. We will show T in = Op(n

−1), i = 1, 2. Note

Op(n
−1) would be the size of the integral if it were over a local interval of

length Op(n
−1/5) (under our curvature assumptions), but here the integral

is over an interval of constant length or larger, so this result is global in
nature.

3. Step 3, Convert global Op to local op to global op: Convert the global
Op(n

−1) conclusion over T in into an op(n
−1) conclusion over a interval of

length Op(n
−1/5) local to m. Feed this result back into the argument

in Step 2, yielding T in,t = op(n
−1), i = 1, 2. Apply Lemma C.2 to show

additionally that there exist knots of ϕ̂n and ϕ̂0
n that are op(n

−1/5) apart in

an Op(n
−1/5) length interval on which ‖ϕ̂0

n−ϕ̂n‖ = op(n
−2/5), ‖f̂0n−f̂n‖ =

op(n
−2/5), and ‖F̂ 0

n − F̂n‖ = op(n
−3/5).

4. Step 4, Concluding arguments: Return to the decomposition of Rcn,1,t
given in Step 1; the terms given there depend on ϕ̂0

n − ϕ̂n, f̂0n − f̂n, and

F̂ 0
n − F̂n. Thus, using the results of Step 3 we can show nRcn,1,t = op(1) as

desired.

To finalize the argument, in Section A.3, we take tn = m − bn−1/5, but we
also need to let b → ∞. Thus, the Op and op statements above need to hold
uniformly in b.

A.2.1. Decomposition of Rcn,1,t

We begin by decomposing Rcn,1,t for fixed t < m. By (C.2) with ϕ1n = ϕ̂n and
ϕ2n = ϕ̂0

n, we see that

Rcn,1,t =

∫
[X(1),t]

(
ϕ̂nf̂n − ϕ̂0

nf̂
0
n −

(
ϕ̂n − ϕ̂0

n +
(ϕ̂n − ϕ̂0

n)2

2
eε

1
n

)
f̂0n

)
dλ

=

∫
[X(1),t]

(
ϕ̂nf̂n − ϕ̂nf̂0n −

(ϕ̂n − ϕ̂0
n)2

2
eε

1
n f̂0n

)
dλ

=

∫
[X(1),t]

(
ϕ̂n(f̂n − f̂0n)− (ϕ̂n − ϕ̂0

n)2

2
eε

1
n f̂0n

)
dλ, (A.3)
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where λ is Lebesgue measure and ε1n(x) lies between 0 and ϕ̂n(x)−ϕ̂0
n(x). Again

applying (C.2) now with ϕ1n = ϕ̂0
n and ϕ2n = ϕ̂n, we see that

Rcn,1,t =

∫
[X(1),t]

(
ϕ̂nf̂n − ϕ̂0

nf̂
0
n +

(
eϕ̂

0
n−ϕ̂n − 1

)
f̂n

)
dλ

=

∫
[X(1),t]

(
ϕ̂nf̂n − ϕ̂0

nf̂
0
n +

(
ϕ̂0
n − ϕ̂n +

(ϕ̂0
n − ϕ̂n)2

2
eε

2
n

)
f̂n

)
dλ

=

∫
[X(1),t]

(
ϕ̂0
n(f̂n − f̂0n) +

(ϕ̂0
n − ϕ̂n)2

2
eε

2
n f̂n

)
dλ, (A.4)

where ε2n lies between 0 and ϕ̂0
n(x) − ϕ̂n(x). For a function f(x), recall the

notation fs(x) = f(x) − f(s) for x ≤ s and fs(x) = 0 for x ≥ s. Now define
Ain,t ≡ Ain, i = 1, 2 by

A1
n ≡

∫
[X(1),t]

ϕ̂n,t d
(
Fn − F̂ 0

n

)
and A2

n ≡
∫
[X(1),t]

ϕ̂0
n,td

(
F̂n − Fn

)
(A.5)

and define E1
n,t ≡ E1

n to be∫
(τ,t]

ϕ̂n,t d
(
F̂n − Fn

)
+ ϕ̂n(t)(F̂n(t)− F̂ 0

n(t))

+ (ϕ̂n(τ)− ϕ̂n(t))(F̂n(τ)− Fn(τ))

(A.6)

and E2
n,t ≡ E2

n to be∫
(τ0,t]

ϕ̂0
n,td

(
Fn − F̂ 0

n

)
+ ϕ̂0

n(t)(F̂n(t)− F̂ 0
n(t))

+ (ϕ̂0
n(τ0)− ϕ̂0

n(t))(Fn(τ0)− F̂ 0
n(τ0)),

(A.7)

where τ ≡ τ−(t) = supS(ϕ̂n) ∩ (−∞, t] and τ0 ≡ τ0−(t) = supS(ϕ̂0
n) ∩ (−∞, t].

We will assume that
τ ≤ τ0

without loss of generality, because the arguments are symmetric in ϕ̂n and ϕ̂0
n,

since we will be arguing entirely on one side of the mode.
Our next lemma will decompose the first terms in (A.3) and (A.4), into

Ain+Ein, i = 1, 2. The crucial observation is that A1
n ≤ 0 and A2

n ≥ 0, by taking
∆ = ϕ̂n,t and ∆ = ϕ̂0

n,t in the characterization theorems for the constrained and
unconstrained MLEs, Theorem 2.2 A and B of Doss and Wellner [2018]. Note
that since t ≤ m, ϕ̂n,t has modal interval containing m.

Lemma A.2. Let all terms be as defined above. We then have∫
[X(1),t]

ϕ̂n(f̂n − f̂0n)dλ = A1
n,t + E1

n,t (A.8)

and ∫
[X(1),t]

ϕ̂0
n(f̂n − f̂0n)dλ = A2

n,t + E2
n,t. (A.9)
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Proof. We first show (A.8). We can see
∫
[X(1),t]

ϕ̂n(f̂n − f̂0n) equals∫
[X(1),t]

(ϕ̂n,τ− + ϕ̂n − ϕ̂n,τ−)f̂ndλ−
∫
[X(1),t]

(ϕ̂n,t + ϕ̂n − ϕ̂n,t)f̂0ndλ,

and since
∫
ϕ̂n,τ− d

(
Fn − F̂n

)
= 0, this equals∫

[X(1),τ−]

ϕ̂n,τ−dFn +

∫
[X(1),τ−]

(ϕ̂n − ϕ̂n,τ−)f̂ndλ+

∫
(τ−,t]

ϕ̂nf̂ndλ

−

(∫
[X(1),t]

ϕ̂n,tf̂
0
ndλ+ ϕ̂n(t)F̂ 0

n(t)

)

=

∫
[X(1),t]

ϕ̂n,tdFn +

∫
[X(1),τ−]

(ϕ̂n,τ− − ϕ̂n,t)dFn −
∫
(τ−,t]

ϕ̂n,tdFn

+

∫
[X(1),τ−]

ϕ̂n(τ−)f̂ndλ+

∫
(τ−,t]

ϕ̂nf̂ndλ−
(∫

ϕ̂n,tf̂
0
ndλ+ ϕ̂n(t)F̂ 0

n(t)

)
=

∫
[X(1),t]

ϕ̂n,t d
(
Fn − F̂ 0

n

)
+ (ϕ̂n(t)− ϕ̂n(τ−))Fn(τ−)−

∫
(τ−,t]

ϕ̂ndFn

+ ϕ̂n(t)(Fn(t)− Fn(τ−)) + ϕ̂n(τ−)F̂n(τ−) +

∫
(τ−,t]

ϕ̂nf̂ndλ− ϕ̂n(t)F̂ 0
n(t),

which equals∫
ϕ̂n,td

(
Fn − F̂ 0

n

)
+

∫
(τ−,t]

ϕ̂nd
(
F̂n − Fn

)
+ ϕ̂n(t)(Fn(t)− F̂ 0

n(t)) + ϕ̂n(τ−)(F̂n(τ−)− Fn(τ−))

which equals∫
ϕ̂n,td

(
Fn − F̂ 0

n

)
+

∫
(τ−,t]

ϕ̂n,td
(
F̂n − Fn

)
+ ϕ̂n(t)(F̂n(t)− F̂ 0

n(t)) + (ϕ̂n(τ−)− ϕ̂n(t))(F̂n(τ−)− Fn(τ−)),

as desired.
Now we show (A.9). We see

∫
[X(1),t]

ϕ̂0
n(f̂n − f̂0n)dλ equals∫

[X(1),t]

(
ϕ̂0
n,t + ϕ̂0

n − ϕ̂n,t
)
f̂ndλ−

∫
[X(1),t]

(
ϕ̂0
n,τ0
−

+ ϕ̂0
n − ϕ̂0

n,τ0
−

)
f̂0ndλ

and since
∫
ϕ̂0
n,τ0
−
d(Fn − F̂ 0

n) = 0, this equals∫
[X(1),t]

ϕ̂0
n,tf̂ndλ+ ϕ̂0

n(t)F̂n(t)−
[ ∫

ϕ̂0
n,τ0
−
dFn +

∫
[X(1),τ

0
−]

ϕ̂0
n(τ0−)f̂0ndλ

+

∫
(τ0
−,t]

ϕ̂0
nf̂

0
ndλ

]
,
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which equals∫
[X(1),t]

ϕ̂0
n,tf̂ndλ+ ϕ̂0

n(t)F̂n(t)−
[ ∫

[X(1),t]

ϕ̂0
n,tdFn

+

∫
[X(1),t]

(ϕ̂0
n,τ0
−
− ϕ̂0

n,t)dFn + ϕ̂0
n(τ0−)F̂ 0

n(τ0−) +

∫
(τ0
−,t]

ϕ̂0
nf̂

0
ndλ

]
which equals∫

[X(1),t]

ϕ̂0
n,td(F̂n − Fn) + ϕ̂0

n(t)F̂n(t)−
[ ∫

[X(1),τ
0
−]

(ϕ̂0
n(t)− ϕ̂0

n(τ0−))dFn

−
∫
(τ0,t]

ϕ̂0
ndFn +

∫
(τ0
−,t]

ϕ̂0
n(t)dFn + ϕ̂0

n(τ0−)F̂ 0
n(τ0−) +

∫
(τ0
−,t]

ϕ̂0
nf̂

0
ndλ

]
which equals∫

[X(1),t]

ϕ̂0
n,td(F̂n − Fn) +

∫
(τ0
−,t]

ϕ̂0
nd(Fn − F̂ 0

n) + ϕ̂0
n(t)F̂n(t) + ϕ̂0

n(τ0−)Fn(τ0−)

− ϕ̂0
n(t)Fn(τ0−)− ϕ̂0

n(t)(Fn(t)− Fn(τ0−))− ϕ̂0
n(τ0−)F̂ 0

n(τ0−)

which equals∫
[X(1),t]

ϕ̂0
n,td(F̂n − Fn) +

∫
(τ0
−,t]

ϕ̂0
nd(Fn − F̂ 0

n)

+ ϕ̂0
n(t)(F̂n(t)− Fn(t)) + ϕ̂0

n(τ0−)(Fn(τ0−)− F̂ 0
n(τ0−))

which equals∫
[X(1),t]

ϕ̂0
n,td

(
F̂n − Fn

)
+

∫
(τ0
−,t]

ϕ̂0
n,td

(
Fn − F̂ 0

n

)
+ ϕ̂0

n(t)(F̂n(t)− F̂ 0
n(t))

+ (ϕ̂0
n(τ0−)− ϕ̂0

n(t))(Fn(τ0−)− F̂ 0
n(τ0−)),

as desired.

Define T in,t ≡ T in, i = 1, 2, by

T 1
n =

∫
[X(1),t]

(ϕ̂n − ϕ̂0
n)2

2
eε

1
n f̂0ndλ and T 2

n =

∫
[X(1),t]

(ϕ̂n − ϕ̂0
n)2

2
eε

2
n f̂ndλ,

(A.10)

so that
Rcn,1,t = A1

n,t + E1
n,t − T 1

n,t = A2
n,t + E2

n,t + T 2
n,t. (A.11)

by (A.3) and (A.4). Recall (from page 29) that A1
n ≤ 0 ≤ A2

n. Thus

E1
n − E2

n ≥ E1
n − E2

n − T 2
n − T 1

n = A2
n −A1

n ≥

{
A2
n ≥ 0,

−A1
n ≥ 0.

(A.12)
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To see thatRcn,1 = Op(n
−1) we need to see that Ein, A

i
n, and T in are eachOp(n

−1)
(for, say, i = 1). We can see already that E1

n−E2
n = Op(n

−1) (by direct analysis
of the terms in E1

n − E2
n from (A.6) and (A.7)), which yields that A1

n and A2
n

are both Op(n
−1). However, it is clear that we also need to analyze T 1

n + T 2
n

to understand Rcn,1. We need to show that T 1
n,t + T 2

n,t is Op(n
−1) to see that

Rcn,1,t = Op(n
−1); but we will also be able to use that T 1

n,t + T 2
n,t = Op(n

−1)
to then find t∗ values such that T 1

n,t∗ + T 2
n,t∗ = op(n

−1), which will allow us
to argue in fact that E1

n,t∗ + E2
n,t∗ = op(n

−1) (rather than just Op(n
−1)), and

thus that Rcn,1,t∗ = op(n
−1), as is eventually needed. Thus, we will now turn

our attention to studying T 1
n + T 2

n . Afterwards, we will study

Rcn,1,t = (A1
n,t + E1

n,t − T 1
n,t +A2

n,t + E2
n,t + T 2

n,t)/2, (A.13)

from (A.11). From seeing T 1
n,t∗ + T 2

n,t∗ = op(n
−1), we will be able to conclude

that A1
n,t∗ + A2

n,t∗ and E1
n,t∗ + E2

n,t∗ are also op(n
−1), as desired. Then we can

conclude Rcn,1,t∗ = op(n
−1).

A.2.2. Show T in = Op(n
−1), i = 1, 2

The next lemma shows that terms that are nearly identical to T in are Op(n
−1).

The difference between the integrand in the terms in the lemma and the inte-
grand defining T in is that εin is replaced by a slightly different ε̃in. Previously, we
considered t to be fixed, whereas now we will have it vary with n.

Lemma A.3. Let tn < m be a (potentially random) sequence such that

tn ≤ max
(
S(ϕ̂n) ∪ S(ϕ̂0

n)
)
∩ (−∞,m). (A.14)

Let

T̃ 1
n,t =

∫
[X(1),tn]

(
ϕ̂0
n − ϕ̂n

)2
eε̃

1
n f̂0ndλ and T̃ 2

n,t =

∫
[X(1),tn]

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ,

(A.15)
where ε̃1n(x) lies between ϕ̂n(x)− ϕ̂0

n(x) and 0, and ε̃2n(x) lies between ϕ̂0
n(x)−

ϕ̂n(x) and 0, and are defined in (A.23) in the proof. Then we have

T̃ in,tn = Op(n
−1) for i = 1, 2. (A.16)

Proof. For a function f(x), recall the notation fs(x) = f(x) − f(s) for x ≤ s
and fs(x) = 0 for x ≥ s. Let τ ∈ S(ϕ̂n) and τ0 ∈ S(ϕ̂0

n), and assume that

τ ≤ τ0 < m. (A.17)

(The argument is symmetric in ϕ̂n and ϕ̂0
n, so we may assume this without loss

of generality.) We will show the lemma holds for the case tn = τ0, and then the
general tn ≤ τ0 case follows since the integral is increasing in tn. Now, because
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ϕ̂0
n,τ is concave, for ε ≤ 1, the function ϕ̂n(x) + ε(ϕ̂0

n,τ (x)− ϕ̂n,τ (x)) is concave.
So, by Theorem 2.2, page 43, of Dümbgen and Rufibach [2009], we have∫

(ϕ̂0
n,τ − ϕ̂n,τ )d(Fn − F̂n) ≤ 0. (A.18)

Similarly, if τ0 is a knot of ϕ̂0
n and is less than the mode, then since ϕ̂0

n(x) +

ε
(
ϕ̂n,τ0(x)− ϕ̂0

n,τ0(x)
)

is concave with mode at m for ε small (since ϕ̂n,τ0(x)−
ϕ̂0
n,τ0(x) is only nonzero on the left side of the mode), by the characterization

Theorem 2.2 B of Doss and Wellner [2018], we have∫
(ϕ̂n,τ0 − ϕ̂0

n,τ0)d(Fn − F̂ 0
n) ≤ 0.

Then setting IILn,τ0 :=
∫
[X(1),τ0]

(
ϕ̂n − ϕ̂0

n

)
d
(
Fn − F̂ 0

n

)
, we have

0 ≥
∫
[X(1),τ0]

(
ϕ̂n,τ0 − ϕ̂0

n,τ0

)
d
(
Fn − F̂ 0

n

)
(A.19)

= IILn,τ0 −
(
ϕ̂n(τ0)− ϕ̂0

n(τ0)
) (

Fn(τ0)− F̂ 0
n(τ0)

)
. (A.20)

And setting ILn,τ0 :=
∫
[X(1),τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
Fn − F̂n

)
, we have

ILn,τ0 =

∫
[X(1),τ ]

(
ϕ̂0
n(u)− ϕ̂0

n(τ)
)
d
(
Fn − F̂n

)
(u)

−
∫
[X(1),τ ]

(ϕ̂n(u)− ϕ̂n(τ)) d
(
Fn − F̂n

)
(u)

+
(
ϕ̂0
n(τ)− ϕ̂n(τ)

) ∫
[X(1),τ ]

d
(
Fn − F̂n

)
+

∫
(τ,τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
Fn − F̂n

)
,

(A.21)

and, since the first two summands together yield the left hand side of (A.18),
we have

ILn,τ0 ≤
(
ϕ̂0
n(τ)− ϕ̂n(τ)

) ∫
[X(1),τ ]

d
(
Fn − F̂n

)
+

∫
(τ,τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
Fn − F̂n

)
.

(A.22)
Now, we apply (C.1) of Lemma C.1 to see that

ILn,τ0 + IILn,τ0 =

∫
[X(1),τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
F̂ 0
n − F̂n

)

=


∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

1
n f̂0ndλ ≥ 0,∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≥ 0,

(A.23)
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where ε̃2n(x) lies between ϕ̂0
n(x)− ϕ̂n(x) and 0 and ε̃1n(x) lies between ϕ̂n(x)−

ϕ̂0
n(x) and 0. By (A.20) and (A.22), (A.23) is bounded above by

(
ϕ̂0
n(τ)− ϕ̂n(τ)

) ∫
[X(1),τ ]

d
(
Fn − F̂n

)
+

∫
(τ,τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
Fn − F̂n

)
+
(
ϕ̂n(τ0)− ϕ̂0

n(τ0)
) (

Fn(τ0)− F̂ 0
n(τ0)

)
.

(A.24)

By Proposition 7.1 of Doss and Wellner [2018] and Lemma 4.5 of Balabdaoui,
Rufibach and Wellner [2009], supt∈[τ,τ0]

∣∣ϕ̂0
n(t)− ϕ̂n(t)

∣∣ = Op(n
−2/5). By Corol-

lary 2.5 of Dümbgen and Rufibach [2009],∣∣∣∣∣
∫
[X(1),τ ]

d
(
Fn − F̂n

)∣∣∣∣∣ ≤ 1/n,

so the first term in the above display is Op(n
−7/5). Similarly, by Corollary 2.7B

of Doss and Wellner [2018],
∣∣∣Fn(τ0)− F̂ 0

n(τ0)
∣∣∣ ≤ 1/n, so the last term in the

previous display is Op(n
−7/5). We can also see that the middle term in the

previous display equals

(ϕ̂0
n − ϕ̂n)(τ0)(Fn − F̂n)(τ0)− (ϕ̂0

n − ϕ̂n)(τ)(Fn − F̂n)(τ)

−
∫
(τ,τ0]

(Fn − F̂n)(ϕ̂0
n − ϕ̂n)′dλ.

(A.25)

Now the middle term in the previous display is Op(n
−7/5). For the last two

terms, we apply Lemma C.4 taking I = [τ, τ0] to see that

sup
t∈(τ,τ0]

n3/5

∣∣∣∣∣
∫
(τ,t]

d
(
Fn − F̂n

)∣∣∣∣∣ = Op(1).

Thus, using Proposition 7.1 of Doss and Wellner [2018] and Lemma 4.5 of Bal-
abdaoui, Rufibach and Wellner [2009], we have∫

(τ,τ0]

(Fn − F̂n)(ϕ̂0
n − ϕ̂n)′dλ = Op(n

−4/5)

∫
(τ,τ0]

dλ = Op(n
−1), (A.26)

so we have now shown that (A.25) is Op(n
−1), so the middle term in (A.24)

is Op(n
−1). Thus, (A.24) is Op(n

−1), and since (A.24) bounds (A.23) we can
conclude that∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

1
n f̂0ndλ =

∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ = Op(n

−1), (A.27)

and so we are done.
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Remark A.1. Note that if we computed the integrals in (A.27) over an interval
of length Op(n

−1/5), by using that the corresponding integrand is Op(n
−4/5)

(under smoothness/curvature assumptions), the integrals would be Op(n
−1).

However, (A.27) shows that the integrals are Op(n
−1) over a larger interval

whose length is constant or larger, with high probability. Thus we can use (A.27)
to show that ϕ̂0

n− ϕ̂n must be of order smaller than Op(n
−2/5) somewhere, and

this line of reasoning will in fact show that T 1
n,t and T 2

n,t are op(n
−1) for certain

t values.

Remark A.2. Having shown (A.16), it may seem that we can easily find a subin-
terval over which the corresponding integrals are op(n

−1) (or smaller), and that
this should allow us to quickly finish up our proof. There is an additional dif-
ficulty, though, preventing us from naively letting |t| → ∞: we need to control
the corresponding integrals actually within small neighborhoods of m (of order
Op(n

−1/5)), not just arbitrarily far away from m. This is because our asymptotic
results for the limit distribution take place in n−1/5 neighborhoods of m.

To connect the result about T̃ in to the title of this section (which states
T in = Op(n

−1)), note that by Lemma C.5, 0 ≤ T in ≤ 2T̃ in = Op(n
−1).

A.2.3. Local and Global op(n
−1) Conclusion

We will now find a subinterval I such that∫
I

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ = op(n

−1).

We will argue by partitioning a larger interval over which the above integral is
Op(n

−1) into smaller subintervals. Let ε > 0. Let L > 0 be such that intervals
of length Ln−1/5 whose endpoints converge to m contain a knot from each of
ϕ̂n and ϕ̂0

n with probability 1 − ε. Also let δ > 0 and ζ = δ/L which we take
without loss of generality to be the reciprocal of an integer. By Proposition 7.3
of Doss and Wellner [2018], fix M ≥ L large enough such that with probability
1− εζ for any random variable ξn →p m, [ξn −Mn−1/5, ξn +Mn−1/5] contains
knots of both ϕ̂n and of ϕ̂0

n, when n is large enough. Now, each of the intervals

Ijn := (τ0 −Mjn−1/5, τ0 −M(j − 1)n−1/5] for j = 1, . . . , 1/ζ

contains a knot of ϕ̂n and of ϕ̂0
n by taking ξn to be τ0−Mjn−1/5. There are 1/ζ

such intervals so the probability that all intervals contain a knot of both ϕ̂n and

ϕ̂0
n is 1−ε. Now, let K = Op(1) be such that

∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≤ Kn−1

for τ0 < m, by Lemma A.3. In particular,∫
Ij∗

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ := min

j=1,...,1/ζ

∫
Ij

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≤ ζKn−1.

(A.28)
We next conclude by Lemma C.2, since ζ = δ/L, that there exists a subinterval
J∗ ⊂ Ij∗ containing knots η ∈ S(ϕ̂n) and η0 ∈ S(ϕ̂0

n), such that

sup
x∈J∗

|ϕ̂n(x)− ϕ̂0
n(x)| ≤ cδ1n−2/5 and |η0 − η| ≤ cδ1n−1/5 (A.29)
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for a universal constant c > 0 and where δ1 → 0 as δ → 0.
We can now re-apply the proof of Lemma A.3, this time taking as our knots η

and η0, and again assuming without loss of generality η ≤ η0. We again see that
(A.23) is bounded above by (A.24), and the middle term of (A.24) is bounded
by (A.25). Using (A.29), we can conclude by (A.26) that (A.25) is bounded by
δ2Op(n

−1), so (A.24) is also, and so (A.23) is also, where δ2 → 0 as δ → 0. We
can conclude ∫ η0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≤ δ̃n−1.

Now η0 ≥ τ0 −Mn−1/5/ζ, the endpoint of I1/ζ,n. Thus, take bn−1/5 ≥ τ0 −
Mn−1/5/ζ, let tn = m − bn−1/5 and now let J∗ = [tn − L̃n−1/5, tn] where

L̃ = max(L, 8D/ϕ
(2)
0 (m)), chosen so that we can apply Lemma C.2. Then∫ tn

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≤ δ̃n−1 (A.30)

with high probability. Analogously,∫ tn

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

1
n f̂0ndλ ≤ δ̃n−1 (A.31)

as n→∞ with high probability. And we can apply Lemma C.2 to the interval
J∗ to see

‖ϕ̂n − ϕ̂0
n‖J∗ = δOp(n

−2/5), ‖f̂n − f̂0n‖J∗ ≤ δKn−2/5, (A.32)

‖F̂n − F̂ 0
n‖J∗ ≤ δKn−3/5, and |τ − τ0| ≤ δKn−1/5, (A.33)

where τ ∈ S(ϕ̂n) ∩ J∗ and τ0 ∈ S(ϕ̂0
n) ∩ J∗, and

‖(ϕ̂n − ϕ̂0
n)′‖[max(τ,τ0)+δOp(n−1/5),tn−δOp(n−1/5)] = δKn−1/5; (A.34)

here, K = Op(1) and depends on ε and L̃ ≡ L̃ε, but not on δ or tn. Thus when

we eventually let δ̃ → 0, so b ≡ bδ̃ →∞, we can still conclude δ̃K → 0. We also
continue to assume, without loss of generality, that

τ ≤ τ0.

Thus, here is the sense in which we mean op, for the remainder of the proof:

if we say, e.g., E1
n,tn − E

2
n,tn = op(n

−1) we mean for any δ̃ > 0, we may set

tn = m− bn−1/5 and choose b large enough that |E1
n,tn−E

2
n,tn | ≤ δ̃Kn

−1 where
K does not depend on tn.

We can now conclude that

T̃ in,tn = op(n
−1) for i = 1, 2, (A.35)

The difference in the definitions of T in (defined in (A.10)) and T̃ in (defined in

(A.15)), for i = 1, 2, is only in the eε
i
n ’s and eε̃

i
n ’s. These arise from Taylor
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expansions of the exponential function. The definition of T in arises from the
expansions of Rcn,1,t (see (A.3) and (A.4)). Thus, if we let ex = 1+x+2−1x2eε(x)

we can see that ε1n(x) = ε(ϕ̂n(x) − ϕ̂0
n(x)) and ε2n(x) = ε(ϕ̂0

n(x) − ϕ̂n(x)).
Let ex = 1 + xeε̃(x). Then we can see that ε̃1n(x) = ε̃(ϕ̂n(x) − ϕ̂0

n(x)) and
ε̃2n(x) = ε̃(ϕ̂0

n(x)− ϕ̂n(x)). Now, by Lemma C.5, for all x ∈ R, eε(x) ≤ 2eε̃(x), so
that

0 ≤ T in,tn ≤ 2T̃ in,tn = op(n
−1), for i = 1, 2, (A.36)

by (A.35).

A.2.4. Return to Rcn,1,t

We take tn and J∗ as defined at the end of the previous section. Now, if we could
show that E1

n,tn − E
2
n,tn = op(n

−1) then from (A.12) we could conclude that

Ain,tn , i = 1, 2, are both op(n
−1). If, in addition, we can show E1

n,tn + E2
n,tn =

op(n
−1), then since

Rcn,1,tn = (E1
n,tn + E2

n,tn +A1
n,tn +A2

n,tn + T 2
n,tn − T

1
n,tn)/2 (A.37)

by (A.11), we could conclude Rcn,1,tn = op(n
−1). Unfortunately it is difficult to

get any results about E1
n,tn −E

2
n,tn . We can analyze E1

n,tn +E2
n,tn , though. The

next lemma shows that the difficult terms in E1
n,tn + E2

n,tn are op(n
−1).

Lemma A.4. Let all terms be as defined above. For any t < m let F 1
n,t =∫

(τ,t]
ϕ̂n,td(F̂n − Fn) and F 2

n,t =
∫
(τ0,t]

ϕ̂0
n,td(Fn − F̂ 0

n). Then

F 1
n,tn + F 2

n,tn = op(n
−1).

Proof. For the proof, denote t ≡ tn and recall that we assume τ ≤ τ0. We see∫
(τ,t]

ϕ̂n,td(F̂n − Fn) +

∫
(τ0,t]

ϕ̂0
n,td(Fn − F̂ 0

n)

=

∫
(τ0,t]

ϕ̂n,td(F̂n − Fn) +

∫
(τ,τ0]

ϕ̂n,td(F̂n − Fn)

−

(∫
(τ0,t]

ϕ̂n,td(F̂ 0
n − Fn) +

∫
(τ0,t]

(ϕ̂0
n,t − ϕ̂n,t)d(F̂ 0

n − Fn)

)

which equals∫
(τ0,t]

ϕ̂n,t(f̂n − f̂0n)dλ−
∫
(τ0,t]

(ϕ̂0
n,t − ϕ̂n,t)d(F̂n − Fn) +

∫
(τ,τ0]

ϕ̂n,td(F̂n − Fn).

(A.38)

Note ‖ϕ̂0
n,t‖J∗ = Op(n

−2/5). This follows because n1/5(τ0 − t) = Op(1) by

Proposition 7.3 of Doss and Wellner [2018], and because ‖(ϕ̂0
n)′‖J∗ = n−1/5Op(1)

by Corollary 7.1 of Doss and Wellner [2018], since ϕ′0(m) = 0. In both cases the
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Op(1) does not depend on tn. Thus, the first term in (A.38) is op(n
−1), since

‖f̂n − f̂0n‖J∗ = op(n
−2/5). We will rewrite the other two terms of (A.38) with

integration by parts. The negative of the middle term,
∫
(τ0,t]

(ϕ̂0
n,t− ϕ̂n,t)d(F̂n−

Fn), equals

((F̂n − Fn)(ϕ̂0
n,t − ϕ̂n,t))(τ0, t]−

∫
(τ0,t]

(F̂n − Fn)((ϕ̂0
n)′ − ϕ̂′n)dλ. (A.39)

Note ‖F̂n − Fn‖J∗ = Op(n
−3/5) by Lemma C.4. Thus the first term in (A.39)

is op(n
−1) because ‖ϕ̂0

n − ϕ̂n‖J∗ = op(n
−2/5). The second term in (A.39) is

op(n
−1) because (A.34) implies that

∫
[τ0,t]

|(ϕ̂n − ϕ̂n)′|dλ = op(n
−2/5), and, as

already noted, ‖F̂n − Fn‖J∗ = Op(n
−3/5). Thus (A.39) is op(n

−1).
We have left the final term of (A.38). This can be bounded by∣∣∣∣∣(F̂n − Fn)(ϕ̂n,t)(τ, τ

0]−
∫
(τ,τ0]

(F̂n − Fn)ϕ̂′ndλ

∣∣∣∣∣ , (A.40)

and the second term above bounded by ‖F̂n−Fn‖[τ,τ0]ϕ̂
′
n(τ+)(τ0−τ) = op(n

−1)

because ‖F̂n−Fn‖J∗ = Op(n
−3/5), ϕ̂′n(τ+) = Op(n

−1/5) (since ϕ′0(m) = 0, and
recall ϕ̂n is linear on [τ, τ0]), and (τ0− τ) = op(n

−1/5). The first term of (A.40)

is op(n
−1) because in fact ‖F̂n − Fn‖[τ,τ0] = op(n

−3/5), by Lemma C.4 (since

|τ − τ0| = op(n
−1/5)), and ‖ϕ̂n,t‖[τ,τ0] = Op(n

−2/5). Thus (A.38) is op(n
−1) so

we are done.

For t < m, define

G1
n,t = ϕ̂n(t)(F̂n(t)− F̂ 0

n(t)) + (ϕ̂n(τ)− ϕ̂n(t))(F̂n(τ)− Fn(τ))

and

G2
n,t = ϕ̂0

n(t)(F̂n(t)− F̂ 0
n(t)) + (ϕ̂0

n(τ0)− ϕ̂0
n(t))(Fn(τ0)− F̂ 0

n(τ0)),

so that Gin,tn = Ein,tn − F
i
n,tn for i = 1, 2 (recalling the definitions of Ein,tn in

(A.6) and (A.7)). The key idea now is that the first term in Gin,t matches up
with Rn,1,t1,t2 . To make this explicit, we need to define a one-sided version of

Rn,1,t1,t2 . Since both f̂n and f̂0n integrate to 1, note for any t1 ≤ m ≤ t2, that

Rn,1,t1,t2 = −ϕ0(m)

∫
Dc

n,t1,t2

(f̂n − f̂0n)dλ;

thus, define
Rn,1,t1 = −ϕ0(m)(F̂n(t1)− F̂ 0

n(t1)). (A.41)

The corresponding definition for the right side is −ϕ0(m)
∫X(n)

t2
(f̂n − f̂0n)dλ,

which when summed with (A.41) yields Rn,1,t1,t2 .
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Lemma A.5. Let all terms be as defined above. We then have for i = 1, 2,

Gin,tn +Rn,1,tn = op(n
−1).

Proof. The second terms in the definitions of Gin,tn , i = 1, 2, are both Op(n
−7/5)

since ϕ̂n(τ) − ϕ̂n(t) and ϕ̂0
n(τ0) − ϕ̂0

n(t) are both Op(n
−2/5) by Lemma 4.5 of

Balabdaoui, Rufibach and Wellner [2009] and Corollary 5.4 of Doss and Wellner

[2018], and the terms F̂n(τ)− Fn(τ) and F̂ 0
n(τ0)− Fn(τ0) are both Op(n

−1) by
Corollary 2.4 and Corollary 2.12 of Doss and Wellner [2018].

Thus we consider the first terms of Gin,tn , in sum with Rn,1,tn . Consider the
case i = 1; we see that

ϕ̂n(tn)(F̂n(tn)−F̂ 0
n(tn))+Rn,1,tn = (ϕ̂n(tn)−ϕ0(m))(F̂n(tn)−F̂ 0

n(tn)), (A.42)

and (ϕ̂n(tn)−ϕ0(m)) = Op(n
−2/5) by Lemma 4.5 of Balabdaoui, Rufibach and

Wellner [2009] since ϕ′0(m) = 0. Crucially, we are not making a claim that ϕ̂n is
close to ϕ0(m) uniformly over an interval, just a claim at the point tn satisfying

tn → m, so the Op statement does not depend on b. Since F̂n(tn) − F̂ 0
n(tn) =

op(n
−3/5) by (A.33), we conclude that (A.42) is op(n

−1). Identical reasoning
applies to the case i = 2, using Corollary 5.4 of Doss and Wellner [2018]. Thus
we are done.

Thus by Lemmas A.4 and A.5,

Rn,1,tn + (E1
n,tn + E2

n,tn)/2 = op(n
−1). (A.43)

Now we decompose the Ain,tn terms. Let

B1
n,tn =

∫
ϕ̂n,τd(Fn − F̂ 0

n),

B2
n,tn =

∫
ϕ̂0
n,τ0d(F̂n − Fn).

where τ and τ0 are as previously defined (on page 36) and

C1
n,tn =

∫
ϕ̂′n(tn−)(x− tn)− d(Fn − F̂ 0

n)

C2
n,tn =

∫
(ϕ̂0
n)′(tn−)(x− tn)− d(F̂n − Fn).

Then, for i = 1, 2, by the definitions of τ and τ0,

Ain = Bin + Cin,

and note that

B1
n,tn =

∫
(ϕ̂n,τ−ϕ̂0

n,τ0)d(Fn−F̂ 0
n) and B2

n,tn =

∫
(ϕ̂0
n,τ0−ϕ̂n,τ )d(F̂n−Fn),

(A.44)
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by the characterization theorems, Theorem 2.2 of Doss and Wellner [2018] with
∆ = ±ϕ̂0

n,τ0 and Theorem 2.8 of Doss and Wellner [2018] with ∆ = ±ϕ̂n,τ .

Perhaps strangely, it seems it is easier to analyze B1
n − B2

n than B1
n + B2

n, and
C1
n + C2

n rather than C1
n − C2

n. Perhaps more strangely, this will suffice. Again
by Theorem 2.2 of Doss and Wellner [2018] with ∆ = ϕ̂n,τ and Theorem 2.8 of
Doss and Wellner [2018] with ∆ = ϕ̂0

n,τ0 , B1
n,tn ≤ 0 and B2

n,tn ≥ 0, so

B1
n,tn −B

2
n,tn ≤

{
−B2

n,tn ≤ 0

B1
n,tn ≤ 0.

(A.45)

Thus, if we can show B1
n,tn − B

2
n,tn = op(n

−1) then Bin,tn = op(n
−1), i = 1, 2,

so B1
n,tn +B2

n,tn = op(n
−1). We do this in the following lemma.

Lemma A.6. With all terms as defined above,

B1
n,tn −B

2
n,tn = op(n

−1),

and thus
B1
n,tn +B2

n,tn = op(n
−1).

Proof. Now by (A.44)

B1
n,tn −B

2
n,tn =

∫
(ϕ̂n,τ − ϕ̂0

n,τ )d(F̂n − F̂ 0
n) +

∫
(ϕ̂0
n,τ − ϕ̂0

n,τ0)d(F̂n − F̂ 0
n)

which equals∫
(ϕ̂n,τ−ϕ̂0

n,τ )d(F̂n−F̂ 0
n)+(ϕ̂0

n(τ0)−ϕ̂0
n(τ))(F̂n−F̂ 0

n)(τ)+

∫ τ0

τ

ϕ̂0
n,τ0d(F̂n−F̂ 0

n).

(A.46)
The first term in (A.46) equals, applying (C.1),∫ τ

X(1)

(ϕ̂n − ϕ̂0
n)2eε̃

1
n f̂0ndλ− ((ϕ̂n − ϕ̂0

n)(F̂n − F̂ 0
n))(τ), (A.47)

where ε̃1n is identical to ε̃1n in Lemma A.3, and thus by (A.30) the first term
in (A.47) is op(n

−1). The second term is also op(n
−1) since ‖ϕ̂n − ϕ̂0

n‖J∗ =

op(n
−2/5) and ‖F̂n − F̂ 0

n‖J∗ = op(n
−3/5). This also shows that the middle

terms in (A.46) is op(n
−1). To see the last term is op(n

−1), recall ‖ϕ̂0
n,τ0‖J∗ =

Op(n
−2/5) by Corollary 5.4 of Doss and Wellner [2018], using that ϕ′0(m) = 0.

Since |τ0 − τ | = op(n
−1/5) and ‖f̂n − f̂0n‖J∗ = op(n

−2/5) we see the last term of
(A.46) is op(n

−1), so (A.46) is op(n
−1), so B1

n,tn −B
2
n,tn = op(n

−1). By (A.45),
B1
n,tn +B2

n,tn = op(n
−1), so we are done.

We now turn our attention to C1
n,tn + C2

n,tn .

Lemma A.7. With all terms as defined above,

C1
n,tn + C2

n,tn = op(n
−1).
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Proof. Note that C1
n,tn + C2

n,tn equals∫
(ϕ̂′n(tn−)− (ϕ̂0

n)′(tn−))(x− tn)− d(Fn − F̂ 0
n)

+

∫
(ϕ̂0
n)′(tn−)(x− tn)− d(Fn − F̂ 0

n) +

∫
(ϕ̂0
n)′(tn−)(x− tn)− d(F̂n − Fn)

which equals∫
(ϕ̂′n(tn−)−(ϕ̂0

n)′(tn−))(x−tn)− d(Fn−F̂ 0
n)+

∫
(ϕ̂0
n)′(tn−)(x−tn)− d(F̂n−F̂ 0

n).

(A.48)

Since (F̂n − F̂ 0
n)(X(1)) = 0, the second term in (A.48) equals

− (ϕ̂0
n)′(tn−)

∫ tn

−∞
(F̂n − F̂ 0

n)dλ = −(ϕ̂0
n)′(tn−)

∫ tn

υ

(F̂n − F̂ 0
n)dλ (A.49)

for a point υ ∈ [τ, τ0] which exists by the proof of Proposition 2.13 of Doss and
Wellner [2018]. By (A.33), since tn − υ = Op(n

−1/5),∫ tn

υ

(F̂n − F̂ 0
n)dλ = op(n

−4/5). (A.50)

Since tn → m, by Corollary 5.4 of Doss and Wellner [2018], (ϕ̂0
n)′(tn−) =

Op(1)n−1/5. As in previous cases, by taking tn = ξn and C = 0 in that corollary,
the Op(1) does not depend on tn. Thus we have shown (A.49) is op(n

−1).

Since Fn(−∞)− F̂ 0
n(−∞) = 0, the first term in (A.48) equals

−(ϕ̂n − ϕ̂0
n)′(tn−)

∫ tn

X(1)

(Fn − F̂ 0
n)dλ,

which equals

− (ϕ̂n − ϕ̂0
n)′(tn−)

∫ tn

τ0

(Fn − F̂ 0
n)dλ (A.51)

because Ĥ0
n,L(τ0) = Yn,L(τ0) by Theorem 2.10 of Doss and Wellner [2018]. The

absolute value of (A.51) is bounded above by

|ϕ̂′n(tn−)− (ϕ̂0
n)′(tn−)|(tn − τ0) sup

u∈[τ0,tn]

|Fn(u)− F̂ 0
n(u)|. (A.52)

We know |ϕ̂′n(tn−)− (ϕ̂0
n)′(tn−)| = Op(n

−1/5) but unfortunately it is not nec-
essarily op(n

−1/5). However,

|ϕ̂′n(tn−)− (ϕ̂0
n)′(tn−)|(tn− τ0) = |(ϕ̂n− ϕ̂0

n)(tn)− (ϕ̂n− ϕ̂0
n)(τ0)| = op(n

−2/5),

so (A.52) is op(n
−1), and thus so also is (A.48); that is, C1

n,tn +C2
n,tn = op(n

−1).
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Thus we have shown that C1
n,tn + C2

n,tn = op(n
−1) and B1

n,tn + B2
n,tn =

op(n
−1), so we can conclude

A1
n,tn +A2

n,tn = op(n
−1).

Together with (A.43), (A.36), and (A.37), we can conclude that

Rn,tn +Rcn,1,tn = op(n
−1). (A.53)

A.3. Proof completion / details: the main result

The preceding one-sided arguments apply symmetrically to the error terms on
the right side of m. Thus, we now return to handling simultaneously the two-
sided error terms. We have thus shown for any δ > 0 we can find a b ≡ bδ, such
that, letting tn,1 = m− bn−1/5, tn,2 = m+ bn−1/5, we have

|Rn,1,tn,1,tn,2
+Rcn,1,tn,1,tn,2

| ≤ δKn−1 (A.54)

where K = Op(1) does not depend on b (i.e., on δ). Now by Proposition A.1

|Rn,2,tn,1,tn,2 |+ |R0
n,2,tn,1,tn,2

|+ |Rn,3,tn,1,tn,2 |+ |R0
n,3,tn,1,tn,2

| = op(n
−1).

Let

Rn,tn,1,tn,2
≡ 2n(Rn,1,tn,1,tn,2

+Rcn,1,tn,1,tn,2
+Rn,2,tn,1,tn,2

−R0
n,2,tn,1,tn,2

+Rn,3,tn,1,tn,2
−R0

n,3,tn,1,tn,2
).

Then by (4.9), write 2 log λn = Dn,tn,1,tn,2 + Rn,tn,1,tn,2 (slightly modifying the
form of the subscripts). Now fixing any subsequence of {n}∞n=1, we can find a
subsubsequence such that Rn,tn,1,tn,2

→d δR for a tight random variable R by

(A.54). For b > 0 let Db ≡
∫ b/γ2
−b/γ2(ϕ̂2(u) − (ϕ̂0)2(u))du, as in (4.11), which lets

us conclude that

2 log λn = Dn,tn,1,tn,2
+Rn,tn,1,tn,2

→d Db + δR (A.55)

along the subsubsequence. Taking say δ = 1 shows that there exists a (tight)
limit random variable, which we denote by D. Then, since R does not depend
on δ, we can let δ ↘ 0 so bδ ≡ b↗∞, and see that limb→∞Db = D, which can
now be seen to be pivotal. Thus along this subsubsequence, 2 log λn →d D. This
was true for an arbitrary subsubsequence, and so the convergence in distribution
holds along the original sequence. Thus,

2 log λn →d D as n→∞.
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A.4. Proofs for global consistency

Proof of Theorem 2.1 Part B. We now indicate the changes to the arguments
of Dümbgen and Rufibach [2009] which are needed to prove an analog of Theo-
rem 4.1 of Dümbgen and Rufibach [2009] for ϕ̂0

n. Note that our Theorem 2.1 part
B is only a partial analogue of Theorem 2.1 part A since we only consider the case
β = 2 and require m to be unique. We assume f0 ∈ Pm := {eϕ :

∫
eϕ(x)dx = 1,

ϕ ∈ Cm} where for m fixed Cm is the class of concave, closed, proper functions
withm as a maximum. We need to study the allowed ‘caricatures’ of the Lemmas
A.4 and A.5 of Dümbgen and Rufibach [2009], which differ for ϕ̂0

n from those
for ϕ̂n. Let ρn ≡ n−1 log n. Note, we define here a function ∆ to be “piecewise
linear (with q knots)” to mean that

R may be partitioned into q + 1 non-degenerate intervals (A.56)

on each of which ∆ is linear.

In particular, ∆ may be discontinuous. Let Dk be the family of piecewise linear
functions on R with at most k knots. Let

M̂ := {x ∈ R : (ϕ̂0
n)′(x) = 0} and N̂ := [τL, τR], (A.57)

where τL is the greatest knot of ϕ̂0
n strictly smaller than m and τR is the smallest

knot of ϕ̂0
n strictly larger than m. Note that M̂ , the (closed) modal interval of

ϕ̂0
n, is contained in N̂ , and may or may not be strictly contained in N̂ . Let
Sn(ϕ̂0

n) denote the set of knots of ϕ̂0
n.

Lemma A.8. Let M̂ be as in (A.57). Let ∆ : R→ R be piecewise linear in the
sense of (A.56), such that

∆1
M̂

+ (−∞)× 1
M̂c is concave with mode at m, (A.58)

and assume for each knot q of ∆ that one of the following holds:

q ∈ Sn(ϕ̂0
n) \ {m} and ∆(q) = lim inf

x→q
∆(x) (A.59)

∆(q) = lim
r→q

∆(r) and ∆′(q−) ≥ ∆′(q+) (A.60)

q = m,∆(q) = lim
r∈M̂,r→q

∆(r) and ∆(q) = lim inf
x→q

∆(x). (A.61)

Then ∫
∆dFn ≤

∫
∆dF̂ 0

n . (A.62)

Note that if m is not a knot of ϕ̂0
n, so is interior to M̂ , then (A.61) implies

that ∆ must be continuous at m and (A.58) implies that m is a local mode of
∆. If m is, e.g., a right knot of ϕ̂0

n so (ϕ̂0
n)′(m+) < 0, then (A.61) allows ∆ to

be discontinuous at m but forces ∆(m−) ≤ ∆(m+).
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Proof. We show we can construct a sequence ∆k converging pointwise to ∆,
with |∆k| ≤ |∆|, and such that ϕ̂0

n + ε∆k is concave with mode at m for small

enough ε. We first show this holds on the interval N̂ .
If m is not a knot of ϕ̂0

n then by (A.58) ϕ̂0
n + ε∆ is concave with mode at

m on N̂ . Now if m is a knot of ϕ̂0
n, either (A.60) holds or (A.61) holds. In the

former case, again for ε > 0 small enough, ϕ̂0
n + ε∆ is concave with mode at m

on N̂ .
Thus assume (A.61) holds. For concreteness, assume m is a left knot of ϕ̂0

n, so
(ϕ̂0
n)′(m−) < 0 = (ϕ̂0

n)′(m+). For x ∈ [m−1/k,m] define ∆k(x) to be the linear
function connecting ∆(m) to ∆(m− 1/k) for k = 1, . . . , and let ∆k(x) = ∆(x)

for x ∈ N̂ \ [m− 1/k,m]. Then for k large,

ϕ̂0
n + ε∆k is concave with mode m (A.63)

on N̂ , and ∆k(x) is monotonically increasing to ∆(x) (again, for k ≥ some K),
by (A.61).

For knots q of ∆ with q 6= m, similar arguments can be made; one can define
∆k(x) such that |∆k(x)| ≤ |∆(x)| where the knots qk of ∆k are either knots of
ϕ̂0
n or satisfy ∆′k(qk−) > ∆′k(q+) so that for ε > 0 small (A.63) holds globally.

Thus, by the dominated convergence theorem, and the characterization theorem
for F̂ 0

n , ∫
∆dFn = lim

k→∞

∫
∆kdFn ≤ lim

k

∫
∆kdF̂

0
n =

∫
∆dF̂ 0

n .

For the next lemma, we define for a function ∆ : R→ R,

W (∆) = sup
x∈R

|∆(x)|
1 ∨ |ϕ0(x)|

and σ2(∆) =

∫
R

∆2(x)dF0(x).

Also, for a point x ∈ R, let τ0+(x) = minSn(ϕ̂0
n)∩[x,∞) and τ0−(x) = maxSn(ϕ̂0

n)∩
(−∞, x].

Lemma A.9. Let T = [A,B] be a compact subinterval strictly contained in
{f0 > 0}. Let ϕ0 − ϕ̂0

n ≥ ε or ϕ̂0
n − ϕ0 ≥ ε on some interval [c, c+ δ] ⊂ T with

length δ > 0 and suppose X(1) < c and X(n) > c + δ. Suppose [τ0−(c), τ0+(c +

δ)] ∩ N̂ = ∅. Then there exists a piecewise linear function ∆ with at most three
knots, each of which satisfies one of conditions (A.59) or (A.60) and a positive
constant K ′ = K ′(f0, T ) such that

|ϕ0 − ϕ̂0| ≥ ε|∆|, (A.64)

∆(ϕ0 − ϕ̂0) ≥ 0, (A.65)

∆ ≤ 1, (A.66)∫ c+δ

c

∆2(x)dx ≥ δ/3, (A.67)

W (∆) ≤ K ′δ−1/2σ(∆). (A.68)
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Proof. The proof is identical to the proof of Lemma A.5 in Dümbgen and Ru-
fibach [2009]; the condition [τ0−(c), τ0+(c+ δ)] ∩ N̂ = ∅ allows us to use identical
perturbations for ϕ̂0

n that one can use for ϕ̂n.

Next, we need an adaptation of the above lemma for the more difficult case
where we have to accomodate the modal constraint. We assume here that the
length of N̂ is shorter than δ, which will be true with high probability when
we apply the lemma to the case where N̂ is of order n−1/5 and δ of order
(log n/n)1/5.

Lemma A.10. Let T = [A,B] be a compact interval strictly contained in {f0 >
0}. Let ϕ0 − ϕ̂0

n ≥ ε or ϕ̂0
n − ϕ0 ≥ ε on some interval [c, c + δ] ⊂ T with

length δ > 0 and suppose that X(1) < c and X(n) > c + δ. Suppose also that

[τ0−(c), τ0+(c + δ)] ∩ N̂ 6= ∅ and |N̂ |, the length of N̂ , is no larger than δ/4,
and suppose T \ [c,∞) and T \ (−∞, c + δ] both contain a knot of ϕ̂0

n. Then
there exists a piecewise linear (in the sense of (A.56)) function ∆ with at most
4 knots, satisfying the conditions of Lemma A.8, and there exists a positive
K ′ ≡ K ′(f0, T ) such that

|ϕ0 − ϕ̂0
n| ≥ ε|∆|, (A.69)

∆(ϕ0 − ϕ̂0
n) ≥ 0, (A.70)

∆ ≤ 1 (A.71)∫ c+δ

c

∆2(x)dx ≥ δ/6, (A.72)

W (∆) ≤ K ′δ−1/2σ(∆). (A.73)

Proof. We argue by several different cases. We focus only on the cases where N̂
is near to [c, c+ δ] in the sense that we now assume that either N̂ ∩ [c, c+ δ] 6= ∅
or there are no knots of ϕ̂0

n between N̂ and [c, c+δ]. In any other case, the proof
Lemma A.5 of Dümbgen and Rufibach [2009] applies without modification.

We begin with the cases where ϕ̂0
n − ϕ0 ≥ ε on [c, c+ δ]. There are separate

subcases depending on how N̂ relates to [c, c + δ] and the (non-)existence of
other knots in [c, c+ δ]. In all cases, we will first verify conditions (A.69)–(A.72)
and put off verifying (A.73) until later.

Case 1.1 Assume ϕ̂0
n−ϕ0 ≥ ε on [c, c+ δ] and N̂ ⊂ [c, c+ δ]. Let ∆ ∈ D4 be

continuous (and piecewise linear) with knots at c, τL, τR, and c + δ, and let ∆

be equal to −1 on N̂ and 0 on [c, c+ δ]c. Thus ∆ satisfies conditions (A.58) and
(A.60) of Lemma A.8. Then |∆| ≤ 1 on [c, c+ δ] and is 0 on [c, c+ δ]c, so (A.69)
is satisfied, and so is (A.70). Since ∆ is always nonpositive, (A.71) is trivially
satisfied. We see that∫ c+δ

c

∆2(x)dx ≥
∫ x0

0

(
x

x0

)2

dx+

∫ δ

x0

(
δ − x
δ − x0

)2

dx (A.74)

=
x0
3

+
δ − x0

3
=
δ

3
,
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so (A.72) is satisfied.

The next two cases assume ϕ̂0
n−ϕ0 ≥ ε on [c, c+ δ] and N̂ 6⊂ [c, c+ δ]. Recall

N̂ = [τL, τR].

Case 1.2 Assume ϕ̂0
n − ϕ0 ≥ ε on [c, c+ δ] and N̂ 6⊂ [c, c+ δ]. Additionally,

assume there exists τ ∈ Sn(ϕ̂0
n)∩ ([c, c+ δ]\ N̂). We now again let ∆ ∈ D3 ⊂ D4

be continuous, now with ∆(τ) = −1. If τR < c + δ, then set the knots of ∆ at
c ∨ τR, τ, and c+ δ, and set ∆ to be 0 on [c ∨ τR, c+ δ]c. If τL > c, then set the
knots at c, τ, and (c + δ) ∧ τL and set ∆ to be 0 on [c, (c + δ) ∧ τL]c. Consider

the case where τR < c + δ, and the other case is identical. Since N̂ 6⊂ [c, c + δ]

and |N̂ | ≤ δ/4, τR− c < δ/4. Again, ∆ satisfies conditions (A.58) and (A.60) of
Lemma A.8. Conditions (A.69)–(A.71) can be immediately verified, as before.
Condition (A.72) can be verified as in the previous case, replacing δ by 3δ/4,
since τR − c < δ/4, and this yields∫ c+δ

c

∆2(x)dx ≥ δ/4. (A.75)

Case 1.3 Assume ϕ̂0
n−ϕ0 ≥ ε on [c, c+δ] and N̂ 6⊂ [c, c+δ]. Additionally, as-

sume that Sn(ϕ̂0
n)∩([c, c+δ]\N̂) = ∅. We define ∆̃ to be an affine function either

with ∆̃(c) = −ε and ∆̃ nonincreasing or ∆̃(c + δ) = −ε and ∆̃ nondecreasing.
Thus, ∆̃ ≤ −ε on [c, c+ δ]. We take ∆̃ to be tangent to ϕ0− ϕ̂0

n (but this is not

essential). Next let (c1, d1) := {∆̃ < 0} ∩ (c0, d0) where [c0, d0] ⊃ ([c, c+ δ] \ N̂)
is defined to be the maximal interval on which ϕ0 − ϕ̂0

n is concave, so ϕ̂0
n is

linear. Define ∆ ∈ D2 ⊂ D4 via

∆(x) :=

{
0 x /∈ [c1, d1],

∆̃(x)/ε x ∈ [c1, d1].

Now, (A.58) of Lemma A.8 is seen to be satisfied since ∆ is 0 on N̂ , and since
by definition τL 6= m 6= τR, (A.59) is satisfied at c1 and d1. Since ∆̃ is tangent
to ϕ0 − ϕ̂0

n, condition (A.69) is verified, and (A.70) and (A.71) are also seen to
be verified. Condition (A.72) holds easily since in fact ∆ ≤ −1 on [c, c+ δ].

Case 2 Now assume ϕ0 − ϕ̂0
n ≥ ε on [c, c+ δ].

Case 2.1 Assume N̂ ⊂ (c, c + δ). Then if c + δ/2 ≤ m ≤ c + δ then set
c0 = τ−1(c), the largest knot of ϕ̂0

n not larger than c, set x0 = m, and set
d0 = τR. If c ≤ m < c + δ/2, set c0 = τL, set x0 = m, and let d0 = τ1(c + δ),
the smallest knot of ϕ̂0

n not smaller than c+ δ.

Case 2.2 Assume N̂ 6⊂ (c, c+δ). Then (c, c+δ)\N̂ is an interval, and we set x0
to be the midpoint of this interval; if m ≥ c+ δ/2 then set c0 = τ−1(c) and and
set d0 = τ1(c + δ) ∧ τL. Similarly, if m < c + δ/2, set c0 = τ−1(c) ∨ τR and set

d0 = τ1(c+ δ). Since |N̂ | ≤ δ/4, c0 − c ≤ δ/4 and c+ δ − d0 < δ/4 (where only
one of the previous inequalities is relevant, depending on whether m < c+ δ/4
or m > c+ 3δ/4).
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For both Case 2.1 and 2.2 we then define ∆ ∈ D3 ⊂ D4 by

∆(x) :=


0, x ∈ [c0, d0]c,

1 + β1(x− x0) x ∈ [c0, x0],

1 + β2(x− x0), x ∈ [x0, d0],

(A.76)

where β1 ≥ 0 is chosen such that if

(ϕ0 − ϕ̂0
n)(c0) ≥ 0 then ∆(c0) = 0, and if (A.77)

(ϕ0 − ϕ̂0
n)(c0) < 0 then sign(∆) = sign(ϕ0 − ϕ̂0

n) on [c0, x0], (A.78)

where sign(y) is 1 if y ≥ 0 and −1 if y < 0. Similarly, β2 ≤ 0 is chosen such that
if

(ϕ0 − ϕ̂0
n)(d0) ≥ 0 then ∆(d0) = 0, and if (A.79)

(ϕ0 − ϕ̂0
n)(d0) < 0 then sign(∆) = sign(ϕ0 − ϕ̂0

n) on [x0, d0]. (A.80)

That is, ∆ is defined to be 1 at x0 and, if ϕ0− ϕ̂0
n crosses below 0 on [c0, c]∪ [c+

δ, d0] at potential points c̃ or d̃, then ∆ crosses below 0 at the same point(s).
We note also for future reference in Case 2.1 that if c + δ/2 ≤ m then (ϕ0 −
ϕ̂0
n)(d0) = 0 since d0 = τR ≤ c + δ, so we are in case (A.79) and ∆(d0) = 0.

Thus W (∆) = W (∆1[c0,x0]), because we have thus forced W (∆1[x0,d0]) = 1 (and
1 ≤ W (∆1[c0,x0])). Similarly, if m < c + δ/2 then we are in case (A.77), and
W (∆) = W (∆1[x0,d0]). Now we check that the conditions of Lemma A.8 hold.

Case 2.1 (continued) If m ∈ N̂ ⊂ [c, c + δ] then ∆ is continuous at m (so
(A.61) holds), (A.58) holds, and at c0 and d0 (A.59) holds (possibly with one
discontinuity) since these are both knots.

Case 2.2 (continued) Note, if N̂ 6⊂ [c, c + δ], then ∆ is 0 on N̂ ⊇ M̂ : if

N̂ ∩ [c, c+ δ] = ∅ then this is immediate (since the endpoint of N̂ is the nearest
knot to [c, c+ δ]), and if one of τL or τR lies in (c, c+ δ), then ϕ0− ϕ̂0

n is greater
or equal to ε at that point, so ∆ will be 0 at that point. Now (A.59) holds at

c0, d0, and ∆ is 0 on N̂ ⊇ M̂ so (A.61) holds.
Now we check the remaining conditions. Conditions (A.70) and (A.71) hold

by construction for both Case 2.1 and 2.2. We check Condition (A.72) holds for
the two cases.
Case 2.1 (continued) Define ∆∗(x) to be the triangle function with ∆∗(x0) =
1 and ∆∗(c) = ∆∗(c + δ) = 0. We assume without loss of generality that m ≥
c + δ/2. Then, ∆1[c,x0] ≥ ∆∗1[c,x0], so by (A.74),

∫
∆2(x)dx ≥

∫m
c

∆2
∗(x)dx ≥

(m− c)/3 ≥ δ/6.
Case 2.2 (continued) Define ∆∗ to be the triangle function with ∆∗(x0) = 1,
∆∗(c0 ∨ c) = 0 = ∆∗(d0 ∧ (c+ δ)), and ∆∗(x) = 0 for x /∈ [c, c+ δ]. Then again
∆1[c0∨c,d0∧(c+δ)] ≥ ∆∗1[c0∨c,d0∧(c+δ)]. Since c0 − c ≤ δ/4 and c + δ − d0 < δ/4,

d0∧(c+δ)−(c0∨c) ≥ 3δ/4. Thus, as in (A.75),
∫ c+δ
c

∆(x)2dx ≥
∫ c+δ
c

∆∗(x)2dx ≥
δ/4.

Next we check (A.69) for both Case 2.1 and 2.2. If ϕ0 − ϕ̂0
n ≥ 0 on [c0, d0]

there is nothing to check (since then |∆| = ∆ ≤ 1). Assume that there is thus
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a point d̃ with c + δ < d̃ < d0 such that ϕ0 − ϕ̂0
n ≤ 0 on [d̃, d0]. (An analogous

argument holds for a point c̃ < c). By construction, (ϕ0 − ϕ̂0
n)(c + δ) ≥ ε ≥

ε∆(c+ δ) ≥ 0, and (ϕ0 − ϕ̂0
n)(d̃) = ε∆(d̃) = 0; on [c+ δ, d0], ϕ0 − ϕ̂0

n is concave
by the definition of d0. Thus, |(ϕ0 − ϕ̂0

n)′(x+)| ≥ ε|β2| for any x ∈ [d̃, d0]. Thus
(ϕ0 − ϕ̂0

n)(x) ≤ ε∆(x) ≤ 0 for x ∈ [d̃, d0]. Thus we have shown (A.69).

Lastly, we check (A.73) in all cases. Note that since T is a compact interval
strictly contained in {f > 0}, there exists a constant C0 such that f(x) ≥ C0 for
x ∈ T . Now, in Case 1.1, W (∆) ≤ ‖∆‖ = 1 where ‖∆‖ = supx∈R |∆(x)|. And
we have σ(∆)2 ≥ C0

∫
R ∆(x)2dx ≥ C0δ/3 by (A.74). So let K ′ ≥ (3/C0)1/2, and

then (A.73) holds.
Similarly, in Case 1.2, W (∆) ≤ 1 and σ(∆)2 ≥ C0δ/4 by (A.75), so let

K ′ ≥ (4/C0)1/2 and then (A.73) holds.
To handle the remaining cases, we consider h(x) defined by h(x) = 1Q(x)(α+

γx) for α, γ ∈ R where Q = [x0, y0] is a nondegenerate interval, Q ⊆ T . We
always have

W (h) ≤ ‖h‖ and σ(h)2 ≥ C0

∫ y0

x0

h(x)2dx.

Now
∫
R h(x)2dx is invariant under translations of h, sign changes of h, and

replacing h by h(−x). Thus, we assume that h(y0) > 0, by replacing h by
−h if necessary. If miny∈Q h(y) ≥ 0 then let [x0, y0] = [0, y0], taking x0 = 0
by translation. Otherwise, take x0 < 0 < y0 and h(0) = 0, by translation.
Furthermore, we assume h(y0) = ‖h‖ by replacing h(x) by −h(−x) if h(x0) <
−h(y0) < 0 (so h(y0) > 0, still), or by h(−x) if h(x0) > h(y0) > 0. Note that
we have forced h to be nondecreasing so γ ≥ 0.

Now if we are in the case infy∈Q h(y) = h(0) = α > 0 with x0 = 0, then∫ y0

0

(α+ γx)2dx =
1

3γ

(
(α+ γy0)3 − α3

)
=

1

3
y0
(
(α+ γy0)2 + α(α+ γy0) + α2

)
=

1

3
(y0 − x0)‖h‖2,

since ‖h‖ = α + γy0 in this case. If we are in the case h(x0) < 0 < h(y0) with
x0 < 0 < y0, then∫ y0

x0

(γx)2dx =
γ2

3
y30 −

γ2

3
x30 =

1

3
(y0 − x0)γ2(y20 − y0x0 + x20) ≥ 1

3
(y0 − x0)‖h‖2

since ‖h‖2 = γ2y20 in this case. Thus, by (C.6),(
3

C0(y0 − x0)

)1/2

σ(h) ≥ ‖h‖. (A.81)

Now we apply these computations to the remaining cases. In Case 1.3, ∆ is of
the form of h defined above and the corresponding x0, y0 satisfy y0− x0 ≥ 3δ/4
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since [c1, d1] ⊇ [c, c + δ] \ N̂ and |N̂ | ≤ δ/4. Note that we can take Q ⊂ T by
the assumption that there are knots of ϕ̂0

n above and below [c, c+ δ], and these
bound the support of ∆. Thus this case is complete since σ(∆)2 ≥ (C0/3)(y0 −
x0)W (∆)2.

For Case 2, ∆ equals h1 + h2 where h1, h2 are of the type considered above
and have disjoint support, where both supports are contained in T again by the
assumption that ϕ̂0

n has knots above and below [c, c+ δ].
Case 2.1 (continued) Assume without loss of generality that m ≥ c + δ/2.
Then, as noted after display (A.80), W (∆) = W (∆1[c0,x0]) ≡ W (h1). For h1,
the corresponding x0, y0 satisfy y0 − x0 ≥ δ/2. Thus,

W (∆) = W (h1) ≤ 61/2

C
1/2
0 δ1/2

σ(h1) ≤ 61/2

C
1/2
0 δ1/2

σ(∆).

Case 2.2 (continued) In this case, for both h1, h2, the corresponding x0, y0
satisfy y0 − x0 ≥ 3δ/8 (again using |N̂ | ≤ δ/4). Thus,

W (∆) = max(W (h1),W (h2)) ≤ 81/2

C
1/2
0 δ1/2

max(σ(h1), σ(h2)) ≤ 81/2

C
1/2
0 δ1/2

σ(∆).

This completes the proof.

Now we complete the proof of Theorem 4.7.B. We treat the case m ∈ K. We
can always enlargeK so this holds. Now, since ϕ′′0(m) < 0, there is an intervalK0

containing m such that ϕ̂0
n has knots above and below K0 with high probability

for large n since ϕ̂0
n is uniformly consistent by Proposition 7.2 of Doss and

Wellner [2018]. Thus, K0 satisfies the condition needed for Lemma A.10. Now
suppose that

sup
t∈K

(ϕ̂0
n − ϕ0)(t) ≥ Cεn or sup

t∈[A+δn,B−δn]
(ϕ0 − ϕ̂0

n(t) ≥ Cεn

for some C > 0 where εn = ρ
2/5
n and δn = ρ

1/5
n = ε

1/2
n . By Lemma A.3 of

Dümbgen and Rufibach [2009] (stated below as Lemma A.11 for convenience)
with ε = Cεn, if C ≥ K(2, L)−2 and n is large it follows that there is a random
interval [cn, cn + δn] either contained in K0 or contained in K \ K0 on which
either ϕ̂0

n − ϕ0 ≥ Cεn/4 or ϕ0 − ϕ̂0
n ≥ Cεn/4. In the case [cn, cn + δn] ⊂ K0,

then since τR − τL = Op(n
−1/5) by Proposition 7.3 of Doss and Wellner [2018].

(since we assumed ϕ′′0(m) < 0) so for n large

|N̂ | = τR − τL ≤ δn/4 = (log n/n)1/5/4,

so we can find a random function ∆n with no more than four knots which
satisfies the conditions of Lemma A.10. If [cn, cn+δn] ⊂ K \K0 then we can find
a random function ∆n with no more than three knots satisfying the conditions
of Lemma A.9. Now, calculating as in the proof of Theorem 4.1 of Dümbgen
and Rufibach [2009], we can see that for a constant G0,

C2 ≤ 16G2
0(1 + o(1))ε−2n ρn
σ2(∆n)

=
16G2

0(1 + o(1))

δ−1n σ2(∆n)
≤ 48G2

0(1 + o(1))

inft∈K f0(t)
.
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But if we choose C strictly larger than the constant on the right side we find
that the set is empty, and hence has probability 0 on an event with probability
increasing to 1.

Lemma A.11 (Lemma A.3, Dümbgen and Rufibach [2009]). For any β ∈ [1, 2]
and L > 0 there exists a constant K = K(β, L) ∈ (0, 1] with the following
property: suppose that g and ĝ are concave and real-valued functions on T =
[A,B] where g ∈ Hβ,L(T ). Let ε > 0 and 0 < δ < K min(B −A, ε1/β). Then

sup
t∈T

(ĝ − g)(t) ≥ ε or sup
t∈[A+δ,B−δ]

(g − ĝ)(t) ≥ ε

implies that for some c ∈ [A,B − δ]

inf
t∈[c,c+δ]

(ĝ − g)(t) ≥ ε/4 or inf
t∈[c,c+δ]

(g − ĝ)(t) ≥ ε/4.

Appendix B: Local asymptotic distribution theory near the mode

B.1. Limit processes and scaling relations

From Theorems 5.1 and 5.2 of Doss and Wellner [2018], we know that the pro-
cesses H and H(2) = ϕ̂ and H0 and (H0)(2) = ϕ̂0 exist and are unique in
the limiting Gaussian white noise problem described by (1.2). We now intro-
duce further notation and basic scaling results that are needed in the proof of
Theorem 1.1. As in Groeneboom, Jongbloed and Wellner [2001a] Appendix A,
Proposition A.1, and Theorem 4.6 of Balabdaoui, Rufibach and Wellner [2009]
(noting the corrections indicated in Subsection B.2 below), let σ ≡ 1/

√
f0(m),

a = |ϕ(2)
0 (m)|/4!, and let

Ya,σ(t) ≡ σ
∫ t

0

W (s)ds− at4 d
= σ(σ/a)3/5Y ((a/σ)2/5t),

Y (1)
a,σ (t) = σW (t)− 4at3

d
= σ(σ/a)1/5Y (1)((a/σ)2/5t),

where Y ≡ Y1,1. These processes arise as the limits of appropriate (integrated)
localized empirical processes. Similar relations are satisfied by the unconstrained
and constrained invelope processes Ha,σ, H0

a,σ, and their derivatives: with H ≡
H1,1 and H0 ≡ H0

1,1, where H0 can be either HL or HR,

Ha,σ(t)
d
= σ(σ/a)3/5H((a/σ)2/5t),

H0
a,σ(t)

d
= σ(σ/a)3/5H0((a/σ)2/5t),

H(1)
a,σ(t)

d
= σ(σ/a)1/5H(1)((a/σ)2/5t),

(H0
a,σ)(1)(t)

d
= σ(σ/a)1/5(H0)(1)((a/σ)2/5t),
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and

ϕ̂a,σ = H(2)
a,σ

d
= σ4/5a1/5H(2)((a/σ)2/5·)

=
1

γ1γ22
H(2)(·/γ2) ≡ 1

γ1γ22
ϕ̂(·/γ2), (B.1)

and, similarly,

ϕ̂0
a,σ = (H0

a,σ)(2)
d
= σ4/5a1/5(H0)(2)((a/σ)2/5·)

=
1

γ1γ22
(H0)(2)(·/γ2) ≡ 1

γ1γ22
ϕ̂0(·/γ2), (B.2)

Here

γ1 =

(
f0(m)4|ϕ(2)

0 (m)|3

(4!)3

)1/5

=
1

σ

( a
σ

)3/5
, (B.3)

γ2 =

(
(4!)2

f0(m)|ϕ(2)
0 (m)|2

)1/5

=
(σ
a

)2/5
, (B.4)

and we note that

γ1γ
3/2
2 = σ−1 =

√
f0(m), γ1γ

4
2 = a−1 =

4!

|ϕ(2)
0 (m)|

, (B.5)

γ1γ
2
2 =

1

C(m,ϕ0)
≡

(
4!f0(m)2

|ϕ(2)
0 (m)|

)1/5

. (B.6)

B.2. Corrections for Balabdaoui, Rufibach and Wellner [2009]

In (4.25) of Balabdaoui, Rufibach and Wellner [2009], replace

Yk,a,σ(t) := a

∫ t

0

W (s)ds− σtk+2

by

Yk,a,σ(t) := σ

∫ t

0

W (s)ds− atk+2

to accord with Groeneboom, Jongbloed and Wellner [2001a], page 1649, line -4,
when k = 2. In (4.22) of Balabdaoui, Rufibach and Wellner [2009], page 1321,
replace the definition of γ1 by

γ1 =

(
f0(x0)k+2|ϕ0(x0)|3

(4!)3

)1/(2k+1)

.
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In (4.23) of Balabdaoui, Rufibach and Wellner [2009], page 1321, replace the
definition of γ2 by

γ2 =

(
((k + 2)!)2

f0(x0)|ϕ(k)
0 (x0)|2

)1/(2k+1)

.

When k = 2 and x0 = m, these definitions of γ1, γ2 reduce to γ1 and γ2 as given
in (B.4). One line above (4.24) of Balabdaoui, Rufibach and Wellner [2009], page
1321, change Ya,k,σ to Yk,a,σ.

Appendix C: Lemmas

Below are some useful lemmas.

Lemma C.1. Let fin = eϕin for i = 1, 2, and let x be such that |f1n(x) −
f2n(x)| → 0 as n→∞. Then

f1n(x)− f2n(x) = (ϕ1n(x)− ϕ2n(x)) eε̃n(x)eϕ2n(x) (C.1)

=

(
ϕ1n(x)− ϕ2n(x) +

(ϕ1n(x)− ϕ2n(x))
2

2
eεn(x)

)
eϕ2n(x)

(C.2)

where ε̃n(x) and εn(x) both lie between 0 and ϕ1n(x)−ϕ2n(x), and thus converge
to 0 as n→∞.

Proof. Taylor expansion shows

f1n(x)− f2n(x) = eϕ1n(x) − eϕ2n(x) =
(
eϕ1n(x)−ϕ2n(x) − 1

)
eϕ2n(x)

= (ϕ1n(x)− ϕ2n(x)) eεn(x)eϕ2n(x),

yielding (C.1). The second expression, (C.2), follows from a similar (two-term)
expansion.

Lemma C.2. Assume ϕ0 is twice continuously differentiable in a neighborhood
of m and ϕ′′0(m) < 0. Let I be a random interval whose endpoints are in an
Op(n

−1/5) neighborhood of m. Let D be such that for any ξn → m, |(ϕ̂0
n)′(ξn)−

ϕ′0(ξn)| ≤ Dn−1/5 with probability 1−ε for large n by Corollary 5.4 of Doss and

Wellner [2018]. for ε > 0. Assume n1/5λ(I) ≥ 8D/ϕ
(2)
0 (m). Let L > 0, ε > 0,

and δ̌ > 0. Suppose there exists Ǩ > 0 such that∫
I

(ϕ̂0
n − ϕ̂n)2dλ ≤ δ̌

L
Ǩn−1 (C.3)

with probability 1 − ε for n large. Then for any interval J ⊂ I where λ(J) =
Ln−1/5, we have with probability 1− ε for n large

(A) ‖ϕ̂n − ϕ̂0
n‖J ≤ δOp(n−2/5),
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(B) ‖f̂n − f̂0n‖J ≤ δOp(n−2/5),

(C) ‖F̂n − F̂ 0
n‖J ≤ δOp(n−3/5), and

(D) there exist knots η ∈ S(ϕ̂n) ∩ J and η0 ∈ S(ϕ̂0
n) ∩ J such that |η − η0| ≤

δOp(n
−1/5),

(E) and, letting K = [max(η, η0) + δOp(n
−1/5), sup J − δOp(n−1/5)], we have

‖ϕ̂′n − (ϕ̂0
n)′‖K ≤ δOp(n−1/5),

where δ → 0 as δ̌ → 0.

Proof. First we prove the first three statements. By Taylor expansion, ϕ′0(x) =

ϕ
(2)
0 (ξ)(x−m) where ξ is between x and m. Let J = [j1, j2] ⊆ I. Then ϕ′0(j2)−

ϕ′0(j1) ≥ |ϕ(2)
0 (m)|Ln−1/52 for n large enough since ϕ

(2)
0 is continuous near m.

Note with probability 1− ε, |(ϕ̂0
n)′(j1)−ϕ′0(j1)| and |(ϕ̂0

n)′(j2)−ϕ′0(j2)| are less
than n−1/5D by applying Corollary 5.4 of Doss and Wellner [2018] twice taking
ξn = j1 and ξn = j2, and C = 0 (not C = λ(J)). Here (ϕ̂0

n)′ may be the right
or left derivative. Now apply Lemma C.3 (taking I in that lemma to be our J)

with ϕ′U −ϕ′L = n−1/5
(

2D + |ϕ(2)
0 (m)|L/2

)
and ε = δ̌Ǩn−1/L. Then for small

enough δ̌, (
δ̌Ǩ

L(2D + |ϕ(2)
0 (m)|L/2)2

)1/3

n−1/5 ≤ Ln−1/5 = λ(J),

as needed. Thus, Lemma C.3 allows us to conclude

‖ϕ̂0
n − ϕ̂n‖ ≤

(
8
n−6/5δ̌Ǩ

L

(
2D + ϕ

(2)
0 (m)L/2

))1/3

.

Thus taking δ̌ so that δ̌ǨD → 0, we see that Lemma C.2 (A) holds. Then (B)
follows by the delta method (or Taylor expansion of exp). Note that Ǩ and D
depend only on ε, not on I.

We show (C) and (D) next. Note that (C) follows from (D) and (B). This is
because

F̂n(x)− F̂ 0
n(x) = F̂n(η)− F̂ 0

n(η) +

∫ x

η

(f̂n(x)− f̂0n(x))dx.

By (B), the second term above is δOp(n
−3/5) since x ∈ J satisfies |x − η| ≤

Ln−1/5. We can next see that the first term in the previous display is δ1/2Op(n
−3/5).

Notice that supt∈[η,η0] |
∫ t
η
d(F̂n(u) − Fn(u))| = δ1/2Op(n

−3/5) by Lemma C.4,
where the random variable implicit in the Op statement depends on J only

through L. Since |F̂n(η) − Fn(η)| ≤ 1/n by Corollary 2.4 of Doss and Well-

ner [2018], we see that supt∈[η,η0] |F̂n(t) − Fn(t)| = δ1/2Op(n
−3/5). Similarly,

since |F̂ 0
n(η0) − Fn(η0)| ≤ 1/n by Corollary 2.12 of Doss and Wellner [2018],

supt∈[η,η0] |F̂ 0
n(t) − Fn(t)| = δ1/2Op(n

−3/5) by analogous computations. To-

gether, these let us conclude that supt∈[η,η0] |F̂ 0
n(t)− F̂n(t)| = δ1/2Op(n

−3/5).
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Now we prove (D). Let δ > 0 and define i1 and i2 by I = [i1 − δn−1/5, i2 +
δn−1/5], taking δ small enough that i1 < i2. Let i2 − i1 = M̃n−1/5. Then, by
the Taylor expansion of ϕ′0 (see the beginning of this proof), ϕ′0(i2)− ϕ′0(i1) ≥
|ϕ(2)

0 (m)|M̃n−1/5/2 for δ small and n large enough, since ϕ
(2)
0 is continuous.

Additionally, by applying Corollary 7.1 of Doss and Wellner [2018] twice, taking
ξn = i1 and ξn = i2 and C = 0 (not C = M̃), we find D (independent of λ(I))
such that |(ϕ̂0

n)′(i1)−ϕ′0(i1)| and |(ϕ̂0
n)′(i2)−ϕ′0(i2)| are, with probability 1−ε,

less than n−1/5D. Here (ϕ̂0
n)′ may be the right or left derivative. For δ small

enough, by assumption D < |ϕ(2)
0 (m)|M̃/8, and we then have (ϕ̂0

n)′(i1+) −
(ϕ̂0
n)′(i2−) ≥ |ϕ(2)

0 (m)|M̃n−1/5/4. We do not know a priori how much (ϕ̂0
n)′

decreases at any specific knot in S(ϕ̂0
n), but by partitioning [i1, i2] into intervals

of a fixed length, we can find one such interval on which (ϕ̂0
n)′ decreases by

the corresponding average amount. That is, there exists a subinterval of [i1, i2],
denoted J∗ = [l∗, r∗], of length 2δn−1/5, such that

(ϕ̂0
n)′(l∗+)− (ϕ̂0

n)′(r∗−) ≥ |ϕ
(2)
0 (m)|M̃n−1/5/4

(i2 − i1)/2δn−1/5
=
|ϕ(2)

0 (m)|δn−1/5

2
≡ Kn−1/5

since i2 − i1 = M̃n−1/5. Let x∗l = sup
{
x ∈ J∗ : (ϕ̂0

n − ϕ̂n)′(x) ≥ 0
}

, and let

x∗l = l∗ if the set is empty, and let x∗r = inf
{
x ∈ J∗ : (ϕ̂0

n − ϕ̂n)′(x) ≤ 0
}

, and

x∗r = x∗l = r∗ if the set is empty. Now (ϕ̂0
n− ϕ̂n)′ decreases by at least Kn−1/5/2

on either [l∗, x∗l ] or on [x∗r , r
∗] (since (ϕ̂0

n − ϕ̂n)′ is constant on [x∗l , x
∗
r ]). Let

η0l = inf S(ϕ̂0
n) ∩ J∗ and η0r = supS(ϕ̂0

n) ∩ J∗. Now by assumption ϕ̂n is linear
on [η0l − δn−1/5, η0r + δn−1/5] (since ϕ̂n is linear on J∗ and within δn−1/5 of any
knot of ϕ̂0

n), and so

(ϕ̂0
n − ϕ̂n)′(u) ≥ Kn−1/5

2
for u ∈ [η0l − δn−1/5, η0l ], or (C.4)

(ϕ̂0
n − ϕ̂n)′(u) ≤ −Kn

−1/5

2
for u ∈ [η0r , η

0
r + δn−1/5], (C.5)

depending on whether (ϕ̂0
n − ϕ̂n)′ decreases by Kn−1/5/2 on [l∗, x∗l ] (in which

case η0l ≤ x∗l ) or on [x∗r , r
∗] (in which case x∗r ≤ η0r). (In the former case, (C.4)

holds because (ϕ̂0
n−ϕ̂n)′ is nonincreasing and its decrease to 0 on [l∗, x∗l ] actually

happens on [η0l , x
∗
l ] since η0l is the last knot of ϕ̂0

n in J∗. Similar reasoning in
the latter case yields (C.5).) If (C.4) holds then

sup
u∈[η0l−δn−1/5,η0l ]

|ϕ̂0
n(u)−ϕ̂n(u)| ≥ (Kn−1/5/2)(δn−1/5/2) = |ϕ(2)

0 (m)|n−2/5δ2/8,

and if (C.5) holds then supu∈[η0r ,η0r+δn−1/5] |ϕ̂0
n(u)−ϕ̂n(u)| ≥ |ϕ(2)

0 (m)|n−2/5δ2/8.

This allows us to lower bound
∫
I
(ϕ̂0
n(u)−ϕ̂n(u))2, to attain a contradiction with

(C.3).
Assume that (C.4) holds. The case where (C.5) holds is shown analogously.

Let z = argminu∈[i1,i2] |ϕ̂
0
n(u) − ϕ̂n(u)|. Let L be the affine function such that
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L(z) = ϕ̂0
n(z)− ϕ̂n(z) and L has slope Kn−1/5/2. Then for x ∈ [η0l −δn−1/5, η0l ],

|L(x)| ≤ |ϕ̂0
n(x)− ϕ̂n(x)|. For z ≤ x ≤ η0l , this is because

|ϕ̂0
n(x)− ϕ̂n(x)| = ϕ̂0

n(x)− ϕ̂n(x) = ϕ̂0
n(z)− ϕ̂n(z) +

∫ x

z

(ϕ̂0
n − ϕ̂n)′dλ

≥ L(z) +

∫ x

z

L′dλ = |L(x)|,

where the first equality holds since ϕ̂0
n − ϕ̂n is increasing on [η0l − δn−1/5, η0l ]

(by (C.4)), so by the definition of z, ϕ̂0
n(x)− ϕ̂n(x) ≥ 0 for x ≥ z, and the last

is similar. For η0l − δn−1/5 ≤ x ≤ z,

−|ϕ̂0
n(x)− ϕ̂n(x)| = (ϕ̂0

n(x)− ϕ̂n)(x) = (ϕ̂0
n − ϕ̂n)(z)−

∫ z

x

(ϕ̂0
n − ϕ̂n)′dλ

≤ L(z)−
∫ z

x

L′dλ = −|L(x)|,

where the first and last equalities follow because for η0l ≤ x ≤ z, since ϕ̂0
n − ϕ̂n

is increasing it must be negative by the definition of z. Thus, |L(u)| ≤ |ϕ̂0
n(u)−

ϕ̂n(u)| on [η0l − δn−1/5, η0l ] so

δ3K2n−1

3 · 25
≤
∫
[η0l−δn−1/5,η0l ]

L2dλ ≤
∫
[η0l−δn−1/5,η0l ]

(ϕ̂0
n−ϕ̂n)2dλ ≤

∫
I

(ϕ̂0
n−ϕ̂n)2dλ,

where the quantity on the far left is
∫ δn−1/5/2

0
(xKn−1/5/2)2dx. This is a con-

tradiction if δ is fixed and we let δ̌ → 0, since [η0l − δn−1/5, η0r + δn−1/5] ⊂ I by
the definition of [i1, i2], and then

∫
I
(ϕ̂0
n− ϕ̂n)2dλ ≤ δ̌Ǩn−1. A similar inequality

can be derived if (C.5) holds. Thus δ → 0 as δ̌ → 0.
Finally, we show (E) holds with similar logic. Let ξ1 < ξ2 be points such

that ϕ̂n is linear on [ξ1, ξ2], and let δ > 0. Then if all knots ξ0 of ϕ̂0
n satisfy

|ξi−ξ0| >
√
δn−1/5, i = 1, 2, then we can see that ‖ϕ̂′n−(ϕ̂0

n)′‖[ξ1,ξ2] ≤
√
δn−1/5.

This is because at any x ∈ [ξ1 +
√
δn−1/5, ξ2 −

√
δn−1/5], if (ϕ̂0

n − ϕ̂n)′(x) >√
δn−1/5, then (ϕ̂0

n − ϕ̂n)′ >
√
δn−1/5 on [x −

√
δn−1/5, x] (since ϕ̂n is linear

on a
√
δn−1/5 neighborhood of x), so (ϕ̂0

n − ϕ̂n)(x −
√
δn−1/5, x] > δn−2/5,

a contradiction. Here we use the notation g(a, b] = g(b) − g(a). Similarly if
(ϕ̂0
n − ϕ̂n)′(x) <

√
δn−1/5 then (ϕ̂0

n − ϕ̂n)(x, x +
√
δn−1/5] < −δn−2/5, a con-

tradiction. We have thus shown that if we take η and η0 to be the largest knot
pair within

√
δn−1/5 (meaning max(η, η0) is largest among such pairs) then

‖(ϕ̂n − ϕ̂0
n)′‖[max(η,η0),sup J−

√
δn−1/5] ≤

√
δn−1/5, by Part ((A)) and by parti-

tioning [max(η, η0), sup J ] into intervals on which ϕ̂n is linear.

The proofs of Parts (D) and (E) in the previous lemma could also be com-
pleted with the roles of ϕ̂0

n and ϕ̂n reversed. The next lemma provides the cal-

culation used in Lemma C.2 to translate an upper bound on
∫
I

(
ϕ̂0
n − ϕ̂n

)2
dλ

into an upper bound on supx∈I
(
ϕ̂0
n(x)− ϕ̂n(x)

)
for an appropriate interval I.
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Lemma C.3. Let ε > 0. Assume ϕi, i = 1, 2, are functions on an interval I,
where

ϕ′L ≤ ϕ′i(x) ≤ ϕ′U for x ∈ I, i = 1, 2, (C.6)

where ϕ′i refers to either the left or right derivative and ϕ′L, ϕ
′
U are real num-

bers. Assume I is of length no smaller than
(
ε/ (ϕ′U − ϕ′L)

2
)1/3

. Assume that∫
I

(ϕ1(x)− ϕ2(x))
2
dx ≤ ε. Then

sup
x∈I
|ϕ1(x)− ϕ2(x)| ≤ (8ε (ϕ′U − ϕ′L))

1/3
.

Proof. Assume that x is such that ϕ1(x) − ϕ2(x) = δ, and without loss of
generality, δ > 0. Then by (C.6), if y is such that |x − y| ≤ (δ/2)/(ϕ′U − ϕ′L)
then ϕ1(y) − ϕ2(y) ≥ δ/2. Thus, if I is an interval whose length is no smaller
than (δ/2)/(ϕ′U − ϕ′L) then if ϕ1(x) − ϕ2(x) ≥ δ for any x ∈ J ⊆ I where the
length of J is equal to (δ/2)/(ϕ′U − ϕ′L), then∫

I

(ϕ1(x)− ϕ2(x))
2
dx ≥

∫
J

(ϕ1(x)− ϕ2(x))
2
dx ≥ δ2

22
λ(J) =

1

8

δ3

ϕ′U − ϕ′L
.

Thus, substituting ε = 1
8

δ3

ϕ′U−ϕ′L
, we see that for x ∈ I, |ϕ1(x) − ϕ2(x)| ≤

(8ε (ϕ′U − ϕ′L))
1/3

, as desired.

Lemma C.4. Let either Assumption 1 hold at x0 = m or Assumption 2 hold
at x0 6= m, and let F̂ 0

n and F̂n be the log-concave mode-constrained and uncon-
strained MLEs of F0. Let I = [v1, v2] be a random interval whose dependence
on n is suppressed and such that n1/5(vj − x0) = Op(1), j = 1, 2. Then

supt∈I

∣∣∣∫[v1,t] d(F̂n(u)− Fn(u))
∣∣∣

supt∈I

∣∣∣∫[v1,t] d(F̂ 0
n(u)− Fn(u))

∣∣∣
 =

√
λ(I)Op(n

−2/5). (C.7)

The random variables implicit in the Op statements in (C.7) depend on I through
its length (in which they are increasing) and not the location of its endpoints.

Proof. We analyze supt∈I

∣∣∣∫ tv1 d(F̂n(u)− Fn(u))
∣∣∣ first. Note

sup
t∈I

∣∣∣∣∣
∫
[v1,t]

d
(
Fn − F̂n

)∣∣∣∣∣
≤ sup

t∈I

∣∣∣∣ ∫ t

v1

(
f̂n(u)− f0(v1)− (u− v1)f ′0(v1)

)
du

−
∫ t

v1

(f0(u)− f0(v1)− (u− v1)f ′0(v1)) du

−
∫
[v1,t]

d (Fn − F0)

∣∣∣∣.
(C.8)
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By (the proof of) Lemma 8.16 of Doss and Wellner [2018],

sup
t∈I

∣∣∣∣∣
∫
[v1,t]

d (Fn − F0)

∣∣∣∣∣ =
√
λ(I)Op(n

−2/5).

The supremum over the middle term in (C.8) is λ(I)Op(n
−2/5) by a Taylor

expansion of f0, and applying in addition Lemma 4.5 of Balabdaoui, Rufibach
and Wellner [2009], we see that the supremum over the first term in (C.8) is
also λ(I)Op(n

−2/5).
The same analysis, using Proposition 5.3 or Corollary 5.4 of Doss and Well-

ner [2018], applies to supt∈I

∣∣∣∫[v1,t] d(F̂ 0
n(u)− Fn(u))

∣∣∣. Note in all cases that the

random variables implicit in the Op statements depend on I only through its
length (and they are increasing in the length) and not the location of its end-

points, since ‖f0‖ = f0(m) < ∞ and since f
(2)
0 is continuous and so uniformly

bounded in a neighborhood of x0.

When we apply the previous lemma, the length of I will depend on ε which
gives the probability bound implied by our op statements whereas its endpoints
will depend on δ, which gives the size bound implied by our op statements.

Lemma C.5. Let ε(x) and ε̃(x) be defined by ex = 1 + x + 2−1x2eε(x) and
ex = 1 + xeε̃(x). Then

eε(x) ≤ 2eε̃(x). (C.9)

Proof. We can see

eε(x) =
ex − 1− x

(x2/2)
=

2

x2

∞∑
k=2

xk

k!
=

∞∑
k=0

2xk

(k + 2)!
.

Similarly,

eε̃(x) =
ex − 1

x
=

1

x

∞∑
k=1

xk

k!
=

∞∑
k=0

xk

(k + 1)!
.

Comparing coeffients in the two series, we see that

2

(k + 2)!
≤ 1

(k + 1)!
for all k ≥ 0

since k+ 2 ≥ 2 for k ≥ 0. It follows that eε(x) ≤ eε̃(x) for all x ≥ 0. This implies
that ε(x) ≤ ε̃(x) for all x ≥ 0.

Now for x ≤ 0 we have

2eε̃(x) − eε(x) =
2

x

{
ex − 1− 1

x
(ex − 1− x)

}
=

2

x

{ ∞∑
k=1

xk

k!
−
∞∑
k=1

xk

(k + 1)!

}
=

2

x

∞∑
k=1

k

(k + 1)!
xk
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where the infinite sum is negative for all x < 0 since the first term is negative.
It follows that

2eε̃(x) − eε(x) ≥ 0

for all x ≤ 0. Combined with the result for x ≥ 0 the claimed result holds:
eε(x) ≤ 2eε̃(x) for all x ∈ R.
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