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Abstract

The calibration of complex computer codes using uncertainty quan-

tification (UQ) methods is a rich area of statistical methodological de-

velopment. When applying these techniques to simulators with spatial

output, it is now standard to use principal component decomposition

to reduce the dimensions of the outputs in order to allow Gaussian

process emulators to predict the output for calibration. We introduce

the ‘terminal case’, in which the model cannot reproduce observations

to within model discrepancy, and for which standard calibration meth-

ods in UQ fail to give sensible results. We show that even when there

is no such issue with the model, the standard decomposition on the

outputs can and usually does lead to a terminal case analysis. We

present a simple test to allow a practitioner to establish whether their

experiment will result in a terminal case analysis, and a methodology

for defining calibration-optimal bases that avoid this whenever it is

not inevitable. We present the optimal rotation algorithm for doing

this, and demonstrate its efficacy for an idealised example for which

the usual principal component methods fail. We apply these ideas to

the CanAM4 model to demonstrate the terminal case issue arising for

climate models. We discuss climate model tuning and the estimation

of model discrepancy within this context, and show how the optimal

rotation algorithm can be used in developing practical climate model

tuning tools.

1 Introduction

The design and analysis of computer experiments, now part of a wider cross-

disciplinary endeavour called ‘Uncertainty Quantification’ or ‘UQ’, has a

rich history in statistical methodological development as far back as the

landmark paper by Sacks et al. (1989). The calibration of computer simu-

lators, a term reserved for methods that locate simulator input values with

outputs that are consistent with physical observations (the inverse prob-

lem), is a well studied problem in statistical science, with Kennedy and

O’Hagan’s Bayesian approach based on Gaussian processes the most widely

used (Kennedy and O’Hagan, 2001).
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The essence of the statistical approach to calibration is to combine a

formal statistical model relating the computer simulator to real-world pro-

cesses for which we have partial observations (Kennedy and O’Hagan, 2001;

Goldstein and Rougier, 2009; Williamson et al., 2013), with a statistical rep-

resentation of the relationship between inputs and outputs of the simulator

based, typically, on Gaussian processes (Haylock and O’Hagan, 1996).

Extensions for computer simulators with spatio-temporal output have

centred around projecting the output onto a basis and adapting calibra-

tion methods to the lower-dimensional projections of these fields. Though

wavelets (Bayarri et al., 2007) and B-splines (Williamson et al., 2012) have

been tried, the approach due to Higdon et al. (2008), based on the principal

components of the simulator output, has become the default method. Statis-

tical methodological developments in UQ have built on principal component

methods (e.g. Wilkinson (2010); Chang et al. (2014, 2016)), and they have

seen wide application, particularly in the analysis of climate models (Sexton

et al., 2011; Chang et al., 2014; Pollard et al., 2016).

What statisticians term calibration is referred to as ‘tuning’ in the cli-

mate modelling community, a process that has a huge influence on the pro-

jections made by each modelling centre and by the Intergovernmental Panel

on Climate Change (Stocker et al., 2013). Each modelling centre submits

integrations of their climate model for 4 different forcing scenarios (known

as Representative Concentration Pathways) to each phase of the Coupled

Model Intercomparison Project (Meehl et al., 2000), with the input param-

eters of the model ‘tuned’ prior to submission so that the model output

compares favourably with certain key observations. The resulting integra-

tions, and not the simulators themselves, are what most climate scientists

call ‘climate models’ (i.e. simulators are not considered to be functions of

these now fixed parameters). These integrations are used to discover physical

mechanisms (Scaife et al., 2012), projected trends (Screen and Williamson,

2017), drivers of variability (Collins et al., 2010) and future uncertainty to

aid policy making (Harris et al., 2006).

Despite the application of UQ methods to the calibration of ‘previous-

generation’ climate models, referred to in the papers above and many others,
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UQ is not used for tuning within any of the major climate modelling centres

(Hourdin et al., 2017). Instead, climate model parameters are often explored

individually and tuning done by hand and eye, with the parameters changed,

and the new run either accepted or rejected based on heuristic comparison

with the current ‘best’ integration. Different descriptions of these processes

are offered by Mauritsen et al. (2012); Williamson et al. (2017); Hourdin

et al. (2017).

This lack of uptake of state-of-the-art statistical methodology for cali-

bration amongst some of the world’s most important computer simulators

should give us pause for thought. The ‘off-the-shelf’ methodology, Bayesian

calibration with principal components, is widely used elsewhere, well pub-

lished, and is applied to many lower resolution climate models within the

climate science literature. Is the lack of uptake a communication issue, or

are there features of our methodology that mean it doesn’t scale up well to

climate simulators?

In this paper we show how the terminal case, wherein a simulator can-

not be satisfactorily calibrated, manifests in the inference of standard UQ

methodologies. We then demonstrate that even when there is a good so-

lution to the inverse problem, the use of standard basis representations of

spatial output (e.g. principal components across the design) can and reg-

ularly do lead to the terminal case and incorrect inference. We develop a

simple test to see whether an analysis will lead to the terminal case before

performing the calibration and, when the terminal case is not guaranteed,

provide a methodology for finding an optimal basis for calibration, via a

basis rotation. The efficacy of our methodology is demonstrated through

application to an idealised example, and its relevance to climate model tun-

ing through application to the calibration of the atmosphere of the current

Canadian climate model, CanAM4.

In Section 2, we review UQ methodologies for calibration and present

the terminal case for scalar model output. Section 3 reviews the standard

approach to handling spatial output and demonstrates the implications of

the terminal case for these methods through an idealised example. Section

4 presents novel methods for finding optimal bases for calibration that over-
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come the terminal case issues and demonstrates the efficacy of calibrating

with optimal bases for our example. In Section 5 we see that standard

approaches always lead to terminal analyses in CanAM4, and show how

our optimal basis methodology can be used in the process of climate model

tuning. Section 6 contains discussion.

2 Calibration methodologies and the terminal case

We consider a computer simulator to be a vector-valued function f(θ,x),

with input parameters θ that we wish to estimate/constrain, and ‘control’ or

‘forcing’ parameters, x, both of which can be altered to perform computer

experiments. For example, x might represent future CO2 concentrations

in a climate model. f(·,x) simulates a physical system y(x), and we have

access to measurements or observations z, of part or all of y. The goal of

calibration methods is to use z to learn about θ. In what follows we remove

the control parameters, x, to simplify the notation, as they are not involved

in calibration, but in subsequent prediction.

The two statistical methodologies for calibration that we focus on here

are Bayesian (or probabilistic) calibration (Kennedy and O’Hagan, 2001;

Higdon et al., 2008), and history matching with iterative refocussing (Craig

et al., 1996; Vernon et al., 2010; Williamson et al., 2017). Both begin with

the same type of assumption, namely that there exists a best input setting,

θ∗, so that

y = f(θ∗) + η, z = y + e (1)

for mean-zero independent observation errors, e, and model discrepancy, η

(though history matching differs in only requiring uncorrelated terms in (1)

rather than independent terms).

Both methods require an emulator, usually a Gaussian process represen-

tation of function f(θ), trained using runs F = (f(θ1), ..., f(θn)) based on

design X = (θ1, . . . ,θn). For scalar f(·), the general model is

f(θ)|β,φ ∼ GP
(
βT g(θ), R(|θ − θ′|;φ)

)
, (2)
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where g(θ) is a vector of specified regressors, β their coefficients, and R(|θ−
θ′|;φ) a weakly stationary covariance function with parameters φ. The

model is completed by specifying a prior on the parameters, π(β,φ), and

posterior inference given F follows naturally with

f(θ)|F,β,φ ∼ GP(m∗(θ), R∗(·, ·;φ))

with

m∗(θ) = βT g(θ) + K(θ)V−1
(
F− βT g(X)

)
, K(θ) = R(θ,X;φ),

R∗(θ,θ′;φ) = R(θ,θ′;φ)−K(θ)V−1K(θ′)T , V = R(X,X;φ).

There are many variants on emulation, with some practitioners preferring no

regressors (Chen et al., 2016), different types of correlation function (includ-

ing no correlation) (Kaufman et al., 2011; Salter and Williamson, 2016), and

different priors, π(β,φ), with some leading to partially analytic posterior

inference (Haylock and O’Hagan, 1996). As history matching only requires

posterior means and variances of the emulator, Bayes linear analogues are

sometimes used (Vernon et al., 2010). Generalisations to multivariate Gaus-

sian processes are natural (Conti and O’Hagan, 2010), and we address the

difficulty with high dimensional output from Section 3 onwards.

2.1 Probabilistic calibration

Though the underlying statistical model and the emulator are similar for

both history matching and probabilistic calibration, the assumptions placed

upon θ∗, and the resulting inference, are quite different. Probabilistic cal-

ibration places a prior on θ∗, π(θ∗), and a Gaussian process prior for the

discrepancy, η ∼ GP(0,Ση), before deriving the posterior π(θ∗,η|F, z), and

marginalising for θ∗. The discussion of Kennedy and O’Hagan (2001), and

the later paper by Brynjarsdóttir and O’Hagan (2014), argue that lack of

identifiability between θ∗ and η mean that strong prior information on η or

θ∗ is essential for effective probabilistic calibration to be possible.
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2.2 History matching and iterative refocussing

Note that, given a discrepancy variance, probabilistic calibration must still

give a posterior π(θ∗|F, z) that integrates to 1, thus predetermining an anal-

ysis that will point to some region of parameter space Θ as being ‘most

likely’. This can be undesirable in some application areas, as often the goal

is to find out if the simulator can get ‘close enough’ to the observations,

so that experiments predicting the future can be trusted. Climate model

tuning is a good example of this, where part of the goal in tuning is to find

out whether it is the choice of parameters, or the parameterisation itself,

that is leading model bias (Mauritsen et al., 2012; Hourdin et al., 2017).

The method of history matching and iterative refocussing allows the

question of whether the model is fit for purpose to be answered as part of

the calibration exercise, by altering the problem from one of looking for the

best input directly, to one of trying to rule out regions of Θ that could not

contain θ∗. A model unfit for purpose would have all of Θ ruled out. The

method defines an implausibility measure, I(θ), with

I(θ) = (z− E[f(θ)])T (Var(z− E[f(θ)]))−1(z− E[f(θ)]), (3)

where the expectations and variances of f(θ) are derived from the Gaussian

process emulator description above, and are conditioned on the runs F. If

I(θ) exceeds a threshold, T , that value of θ is considered implausible and

ruled out, thus defining a membership function for a subspace Θ′ of Θ that

is Not Ruled Out Yet (NROY), with Θ′ = {θ ∈ Θ : I(θ) ≤ T} . The choice

of T will be problem dependent, though typically, if z is one-dimensional,

Pukelsheim’s three sigma rule (Pukelsheim, 1994) is used to set T = 9 (Craig

et al., 1996; Williamson et al., 2015). For `-dimensional z, Vernon et al.

(2010) define T = χ2
`,0.995, the 99.5th percentile of the χ2-distribution with `

degrees of freedom, or a conservative T can be derived through Chebysev’s

inequality.

A key principle behind history matching is its iterative nature. Following

an initial set of runs, a ‘wave’ of history matching is conducted, leading to a

certain percentage of Θ being ruled out. A new wave can then be designed
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within NROY space, and the procedure repeated, refocussing the search for

possible θ∗ (Williamson et al., 2017).

Discrepancy and observation error variances, Ση and Σe, are impor-

tant in both probabilistic calibration and history matching. For the latter,

equation (1) leads to

Var(z− E[f(θ)]) = Var[f(θ)] + Ση + Σe

in equation (3), whilst a Normal assumption on e in calibration means Ση

and Σe appear in the likelihood.

In this paper, we focus on optimal spatial calibration for both types of

methodology, as the issues we shall identify in Section 3 apply equally to

both, though manifest in different ways, as we shall illustrate now with our

discussion of the terminal case.

2.3 The terminal case

Consider a computer simulator, f(θ), a discrepancy variance assessment

Ση, and an observation error variance Σe, where both variance matrices are

positive definite. We define the terminal case to occur when I(θ) > T , for T

as above and for a perfect emulator, so that, in equation (3), E[f(θ)] = f(θ)

and Var[f(θ)] = 0 for all θ. So, from a history matching perspective, the

terminal case occurs when the model is too far from the observations at

every point in parameter space according to the model discrepancy. Hence,

all of Θ is ruled out, and the modellers must reconsider their simulator, or

their error tolerance.

Within a probabilistic calibration framework, the terminal case implies a

prior-data conflict so that, in some sense, Ση has been ‘misspecified’ or the

expert is ‘wrong’. Lack of identifiability requires informative expert judge-

ment for discrepancy (Brynjarsdóttir and O’Hagan, 2014), yet the difficulty

in providing such judgements for complex computer simulators (Goldstein

and Rougier, 2009) may mean that the terminal case would occur quite of-

ten in practice. It is therefore important to see how such prior-data conflict

would manifest.
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Figure 1: Showing 20 steps of an iterative probabilistic calibration of a
computer simulator (black line) to observations (solid grey line) with Ση and
Σe misspecified (dashed grey lines ±3 standard deviations). Observations of
the model (red dots) iteratively taken at the MAP estimate for θ∗ following
the fitting of a GP emulator (mean solid blue line, ±2 standard deviations
dashed blue lines), and the posterior distribution of θ∗ overlaid at each step
(solid red line).

Figure 1 shows 20 steps of an iterative probabilistic calibration of a 1d

f(θ) that we can evaluate quickly (black line), to observations (solid grey
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line), with Ση and Σe misspecified (dashed grey lines ±3 standard devia-

tions) so that the true function does not come as close to the observations

as the expert judgement indicates. Starting with an equally spaced 6 point

design, a Gaussian process emulator is fitted for fixed correlation length (the

mean function is the solid blue line, 2 standard deviation intervals are given

by the blue dashed lines), and the posterior distribution π(θ∗ | z,F) over-

laid (solid red line). We then evaluate f(θ) at the maximum a posteriori

estimate for θ∗, refit our Gaussian process, and compute the new posterior

over θ∗ to produce the next plot.

From panel 6 onwards, we see the issue with the terminal case for proba-

bilistic calibration. Our posterior beliefs are highly peaked at one particular

θ value, yet evaluating the model there completely shifts the peak to a loca-

tion for which we had near zero prior density. Each evaluation of the simula-

tor, which for climate models may take weeks or months, shifts the posterior

spike to an unexpected (a priori) part of parameter space. It is often not

efficient to run expensive simulators, such as climate models, that require

expert time to run and manage, one run at a time (Williamson, 2015). The

scientists that manage jobs on supercomputers, for example, require batches

of runs that can be run in parallel. However, batch designs could be even

worse here. Guided by the posterior density at each point, batch designs

would be the near equivalent of one point at the MAP estimate, simply

shifting the peak of the posterior to somewhere as yet unsampled.

Eventually, as we see from the bottom 4 panels, posterior uncertainty

in f(θ) is sufficiently reduced, and π(θ∗ | F, z) settles on the ‘least bad’

value of θ, where f(θ) is closest to the observations (though around 30

standard deviations away). For simulators with input spaces of much higher

dimensions (the climate models we work with have typically specified 10-30

parameters to focus on, though these would be a subset of several hundred),

we are unlikely to ever be able to reduce emulator uncertainty to the extent

that the posterior spike settles over the least bad parameter setting. Hence,

under an iterative procedure such as this, we would continue to chase the

best input throughout parameter space, constantly moving the spike as in

a game of whack-a-mole, until we run out of resources.

10



Our illustration of the terminal case shows that though careful subjective

prior information is required for model discrepancy in order to overcome the

identifiability issues with the calibration model, if those judgements lead

to a prior-data conflict via a terminal case, good calibration will not be

possible, and it will take a great deal of resource (enough data to build a

near perfect emulator everywhere) to discover this. It would seem more

natural to first history match in order to check we are not in a terminal

case, and, if not, perform a probabilistic calibration within NROY space as

in Salter and Williamson (2016).

Whichever calibration method, or combination of them, is preferred, it

is important to understand this terminal case, as we shall show that even

for models that can reproduce observations exactly, tractable methods for

calibrating high dimensional output can result in a terminal case analysis.

3 Calibration with spatial output

For spatial fields, the most common approach to emulation and calibra-

tion involves projecting the model output onto a low-dimensional basis, Γ,

and emulating the coefficients, so that fewer emulators are required (Ba-

yarri et al., 2007; Higdon et al., 2008; Wilkinson, 2010; Sexton et al., 2011)

(although alternatives, such as emulating every grid box individually, have

been applied, e.g. by Gu et al. (2016)).

Writing the model output f(θi) as a vector of length `, so that F has

dimension ` × n, the singular value decomposition (SVD) is used to give

n eigenvectors that can be used as basis vectors (equivalently, finding the

principal components) (Higdon et al., 2008; Wilkinson, 2010; Sexton et al.,

2011; Chang et al., 2014, 2016). For the size of model output typically

explored using these methods, Γ will not be of full rank as n << `. This

means that while F can be represented exactly by projection onto Γ, general

`-dimensional fields will not have a perfect representation on Γ. As the

majority of the variability in F is usually explained by only the first few

eigenvectors, the basis is truncated after q vectors, giving a basis Γq =

(γ1, . . . ,γq) of dimension `× q, often chosen so that more than 95% of F is
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explained by Γq. Various rules-of-thumb are used dependent on the problem,

e.g. Higdon et al. (2008) truncate after 99%, while Chang et al. (2014) use

90%.

In order to emulate the model, the runs are first centred by subtracting

their mean, µ, from each column of F, giving the centred ensemble Fµ (we

use the term ensemble to mean the collection of runs, as is common in the

study of climate models). Fµ is then projected onto the basis Γq, giving q

coefficients associated with each parameter choice:

c(θi) = (ΓTq Γq)
−1ΓTq (f(θi)− µ). (4)

Given q coefficients, a field of size ` is reconstructed via

f(θi) = Γqc(θi) + µ+ ε, (5)

with ε = 0 for θi ∈ X. Emulators for the coefficients of the first q SVD

basis vectors are then built:

ci(θ) ∼ GP(m∗i (θ), R∗i (θ,θ;φ)), i = 1, . . . , q. (6)

Given these emulators, calibration can either be performed using the entire

`-dimensional output, with emulator expectations and variances transformed

to the `-dimensional space of the original field (Wilkinson, 2010), or on its q-

dimensional basis representation, with the observations projected onto this

basis (Higdon et al., 2008).

Calibration (via either history matching or probabilistic calibration) re-

quires an informative prior process model for the spatial discrepancy, η. This

could be a stationary process defined through a simple covariance function

over the output dimensions, though a richer class of non-stationary process

defined via kernel convolution is often used (Higdon, 1998; Chang et al.,

2014, 2016). These approaches specify a number of knots over the spatial

field and define discrepancy to be a mixture of kernels around each of these

knots. As with any calibration problem, however, strong prior information

for discrepancy processes is essential to overcome identifiability issues, as
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discussed in Section 2.3. The way to include this information has been to

fix the correlation parameters of the kernels and to have an infomative prior

for their variances. With such a prior, a terminal case analysis is just as

possible as for the 1D example we presented earlier.

Suppose that the prior on the process is strong enough to overcome

identifiability issues and is such that we don’t have a terminal case. When

using a basis emulator to calibrate f(·), we may artificially induce a terminal

case analysis, as reconstructions from coefficients on the basis are restricted

to a q-dimensional subspace of `-dimensional space. Further, it will not be

clear whether our analysis implies that the model is incapable of reproducing

z, or that this was due to a poor basis choice. The SVD basis chooses the

q-dimensional subspace that explains the maximum amount of variability in

F with the fewest number of basis vectors. This choice does not guarantee

that important directions in F that are consistent with z are preserved.

3.1 Illustrative example

We illustrate this problem with an idealised example of a 6 parameter func-

tion f(θ) (detailed in Section S1), with output given over a 10 × 10 grid.

Observations, z, are given by a known input parameter setting, f(θ∗), with

N(0,Σe) observation error added (given in (S2), with Ση defined in (S3)),

so that a calibration exercise should be able to identify θ∗. In our example,

the great majority of the input space leads to output that is biased away

from z: the proportion of input space leading to output consistent with z is

around 0.01%.

The first panel of Figure 2 shows the observations, z, with a strong signal

on the main diagonal. The second panel is the mean of the output field over

a maximin Latin hypercube sample of size 60 in Θ (i.e. the mean of ensemble

F). The strong signal in the ensemble is a biased version of z. In a climate

context, this is analogous to the Gulf Stream being observed in the incorrect

place in model output.

We calculate the SVD basis Γ as described above. Over 95% of the en-

semble variability is explained by projection onto the first four basis vectors,
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Figure 2: Left: the observations, z, for our function. Centre: the ensemble
mean. Right: the reconstruction of z using the truncated SVD basis.

which we refer to as the ‘truncated basis’, Γ4. If we project z onto this ba-

sis and reconstruct the original field using these coefficients, via equations

(4) and (5), we obtain the field given by the third panel of Figure 2: the

distinctive pattern found in z has been lost. That is, spatial calibration

with Γ4 would ultimately rule out parameter space that contained the true

coefficients due to poor reconstruction, suggesting that, for reconstructions

of the field using Γ4, we are in the terminal case.

Fitting Gaussian process emulators to the coefficients given by projection

of Fµ onto the four basis vectors, the expectation and variance at θ is given

by

E[c(θ)] = (E[c1(θ)], . . . ,E[c4(θ)])T , Var[c(θ)] = diag(Var[c1(θ)], . . . ,Var[c4(θ)]).

To probabilistically calibrate or history match on the original field, we re-

quire E[f(θ)] and Var[f(θ)] in terms of the coefficient emulators. These

are

E[f(θ)] = ΓqE[c(θ)], Var[f(θ)] = ΓqVar[c(θ)]ΓTq + Γ−qΣ−qΓ
T
−q

where Γ−q contains the discarded basis vectors, and Σ−q is a diagonal matrix

with the associated eigenvalues as the diagonal elements (Wilkinson, 2010).

Calibrating in the coefficient subspace requires projection of z, Ση and

Σe onto Γ4. For example, the implausibility in (3) on the coefficients be-
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comes

Ĩ(θ) = (ΓTq z−E[c(θ)])T (Var[c(θ)]+ΓTq ΣηΓq+ΓTq ΣeΓq)
−1(ΓTq z−E[c(θ)]).

(7)

Using the 0.995 value of the chi-squared distribution with 100 degrees of

freedom to history match via (3), we rule out the whole parameter space,

Θ, and so we are in the terminal case. Hence probabilistic calibration gives

peaked prediction at the incorrect value of θ∗, consistent with the description

given in Section 2.3 (see SM section S1.1, Figures S3, S4).

By history matching on the coefficients instead, using (7), and setting

T using the chi-squared distribution with 4 degrees of freedom, we find an

NROY space consisting of 3.8% of Θ. However, we rule out 58% of the

parameter space that was consistent with z, as the important directions for

comparing the model to observations are not contained in Γ4.

Whether we are calibrating on the original field, or on the coefficients, the

‘best’ result we are able to find is that given by the reconstruction of z with

Γ4, given in the final panel of Figure 2. On the field, we are in the terminal

case. On the coefficients, we are attempting to find runs that give coefficients

that lead to this reconstruction, regardless of what happens in the directions

we are interested in (i.e. the main diagonal pattern). Henceforth, we choose

to focus on calibration on the field, as it compares all aspects of the observed

output to the model, rather than a few summaries of it.

4 Optimal basis selection

For calibration, there are two main requirements for a basis, B, representing

high dimensional output: being able to represent z with B (a feature not

guaranteed by principal component methods), and retaining enough signal

in the chosen subspace to enable accurate emulators to be built for the basis

coefficients (as principal components do).

A natural method for satisfying the first goal is to minimise the error

given when the observations are reconstructed using B. Define the recon-
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struction error, RW(B, z) via

RW(B, z) = ‖z−B(BTW−1B)−1BTW−1z‖W. (8)

where ‖v‖W = vTW−1v is the norm of vector v, and W is an `×` positive-

definite weight matrix. By setting W = Σe + Ση, RW(B, z) is analogous

to (3), and is the implausibility when we know the basis coefficients exactly

(so that the emulator variance is 0).

As W will not generally be a multiple of the identity matrix, the SVD

projection from (4) is not appropriate for RW(·, z). Therefore, (4) becomes

c(θi) = (BTW−1B)−1BTW−1(f(θi)− µ), (9)

with this projection minimising the error in ‖·‖W (Section S2), hence the

definition of the reconstruction error in (8).

We present everything in full generality for positive definite W. There-

fore, B is an orthonormal basis if BTW−1B = In. A basis with this property

can be obtained using generalised SVD (Jolliffe, 2002), with W = I` giving

the usual SVD decomposition:

FT
µ = UDBT , UTU = In, BTW−1B = In.

As a measure of whether emulators can be built, we use the proportion of

variability explained by projection of the ensemble onto each basis vector

bk, Vk(B,Fµ), with

Vk(B,Fµ) =

∑n
j=1‖bk(b

T
kW−1bk)

−1bTkW−1(f(θj)− µ)‖W∑n
j=1‖f(θj)− µ‖W

. (10)

The proportion of ensemble variability explained by B, V(B,Fµ), is

V(B,Fµ) =

∑n
j=1‖B(BTW−1B)−1BTW−1(f(θj)− µ)‖W∑n

j=1‖f(θj)− µ‖W
. (11)

The SVD basis maximises Vk(B,Fµ) for each k, given the previous vectors
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Figure 3: A plot showing how the reconstruction error (red) and proportion
of ensemble variability explained (blue) change as the SVD basis is increased
in size, for W = Σe + Ση.

and subject to orthogonality.

Prior to building emulators and performing calibration for a given ba-

sis, we can assess whether we are in the terminal case or not. For history

matching threshold T , if RW(B, z) > T then we are in the terminal case

on B, and would even rule out values of θ∗ that reproduce z exactly. If

RW(B, z) > T for some {B,W}, we may view W as having been misspeci-

fied, as in the terminal case described in Section 2.3. However, we may also

have under-explored the output dimension of f(·), so that B does not allow

us to get close enough to z. We revisit this test in the context of optimal

basis choice in Section 4.2.

Figure 3 compares V(·,Fµ) and RW(·, z) for the example of Section 3.

We refer to plots of this type as VarMSE plots. The red line represents

RW(Bk, z), and the blue line shows V(Bk,Fµ), for each truncated basis,

{Bk}nk=1. The vertical dotted line indicates where the basis is truncated

if we wish to explain 95% of the ensemble variability, and the horizontal

dotted line represents the history matching bound, T . The solid horizontal

line is equal to RW(B, z). For the SVD basis in our example, we see that

RW(·, z) is large (compared to T ) until k = 6, where the error decreases

below the threshold, indicating that the sixth basis vector contains patterns

that are important for explaining z. As further basis vectors are added,

RW(·, z) continues to decrease, suggesting that patterns relevant for repre-

senting z are in fact included in B for this example. However, the later basis
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vectors explain low percentages of the variability in the ensemble, with the

low signal to noise ratio of projected coefficients making accurate emulation

impossible. If we could emulate the coefficients for the 5th and 6th basis

vectors, we would more accurately represent z, although this rapid decrease

in the reconstruction error is a feature of our example, rather than a gen-

eral property of the SVD basis, and therefore we still truncate at 95% for

illustrative purposes.

The SVD basis aims to maximise the blue line for each basis vector

added, whereas, for calibration, we require the red line to be below T . The

problem of basis selection for calibration is one of trading off these two

requirements, reducing RW(·, z) while ensuring that each Vk(·,Fµ) is large

enough to enable emulators to be built. Given that the full SVD basis

may contain information and patterns that allow the observations to be

more accurately represented, the information contained in this basis may be

combined in such a way that the resulting basis is suitable for calibration,

with important low-order patterns blended with those that explain more of

the ensemble variability.

4.1 Rotating a basis

Performing a rotation of an ensemble basis B using an n×n rotation matrix,

Λ, rearranges the signal from the ensemble, potentially allowing the new

truncated basis to be a better representation of z. A general n× n rotation

matrix Λ can be defined by composing n(n − 1)/2 matrices that give a

rotation by an angle around each pair of dimensions (Murnaghan, 1962).

Our goal is to find Λ such that BΛ minimises RW((BΛ)q, z), subject to

constraints on Vk(·,Fµ) that allow the projected coefficients to be emulated.

To directly define a rotation matrix Λ via optimisation requires a large

number of angles to be found, even when the ensemble size is small. Instead,

we take an iterative approach, selecting new basis vectors sequentially while

minimising RW(·, z) at each step, in such a way that guarantees that the

resulting basis is an orthogonal rotation of the original basis.

Given p < n basis vectors, Bp = (b1, . . . ,bp), we define the ‘ensemble
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residual’ as

Fε = Fµ −Bp(B
T
p W−1Bp)

−1BT
p W−1Fµ

This represents the variability in the ensemble not explained by Bp. Define

the ‘residual basis’, Bε, to be the matrix containing the right singular vectors

of Fε. The residual basis gives basis vectors that explain the remaining

variability in Fµ, given vectors Bp.

4.2 The optimal rotation algorithm

Given an orthogonal basis B for Fµ with dimension `×n; a positive definite

` × ` weight matrix W = Ση + Σe; a vector v, where vi is the minimum

proportion of the ensemble variability to be explained by the ith basis vector;

the total proportion of ensemble variability to be explained by the basis vtot;

and a bound T (usually that implied by history matching, T = χ2
`,0.995), we

find an optimal basis for performing calibration as follows:

1. If RW(B, z) > T , stop and revisit the specification of W, or add more

runs to Fµ. Else set k = 1.

2. Let Γ∗k = (γ∗1, . . . ,γ
∗
k−1,Bλk) and set

λ∗k = argminλk
RW(Γ∗k, z)

such that Vk(Γ∗k,Fµ) ≥ vk. Define the new normalised vector as

γ∗k =
Bλ∗k√
‖Bλ∗k‖W

,

and set Γ∗k = (γ∗1, . . . ,γ
∗
k−1,γ

∗
k).

3. Find the residual basis given Γ∗k, Bk
ε , and form the orthogonal rank n

basis

Γ∗ = (Γ∗k, [B
k
ε ]n−k).

4. Define q ≥ k as the minimum value satisfying V(Γ∗q ,Fµ) ≥ vtot, where

Γ∗q represents the first q columns of Γ∗. If RW(Γ∗q , z) < T, then stop,
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and return Γ∗q as the truncated basis for calibration. Else, set k = k+1

and B = [Bk
ε ]n−k, and return to step 2.

Prior to applying the algorithm, we must specify an initial basis, B, a weight

matrix, W, and the parameters vtot and v to control the amount of vari-

ability explained by each basis vector. We use the SVD basis (with respect

to W) for B, however other choices are possible, e.g. we could apply Gram-

Schmidt to the ensemble itself and rotate this, or apply a different scaling

to the SVD basis.

At each step, our algorithm selects the linear combination of a given

basis that minimises RW(·, z), subject to explaining a given percentage of

ensemble variability, and given any previously selected basis vectors. If the

defined truncation Γ∗q satisfies RW(Γ∗q , z) < T , then the algorithm termi-

nates, as standard residual variance maximising basis vectors no longer lead

to a terminal case analysis. We allow a basis to be identified that satis-

fies our two goals: we do not rule out z, and have coefficients that can be

emulated, if v is set appropriately. To optimise for λk, we use simulated

annealing (Yang Xiang et al., 2013), although any optimisation scheme that

converges could be used.

The check in step 1 of our algorithm is due to the following result (proved

in S2):

Result 1 (Invariance of RW(·, ·) to rotation). For a rotation matrix Λ of

dimension k × k, and a set of basis vectors B = (b1, . . . , bn), we have

RW(Bk, z) = RW(BkΛ, z), k = 1, . . . , n (12)

Regardless of the rotation that is applied to B, we cannot reduce the

reconstruction error below that given by the full basis originally. However,

because the SVD basis is always truncated prior to this minimum value

being reached, we can search for a rotation that rearranges the information

from the SVD basis in such a way that satisfies

RW((BΛ)q, z) << RW(Bq, z), (13)
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incorporating important, potentially low-order, patterns into the q basis

vectors that we emulate. Hence step 1 of the algorithm provides an impor-

tant test as to whether our ensemble and uncertainty assessment, (F,W),

are sufficient to avoid a terminal case analysis, and shows when a rotation

exists, up to the choice of v.

Theorem 1. Γ∗ in step 3 of the optimal rotation algorithm is an orthogonal

rotation of B.

The results and proofs required, and the proof of Theorem 1 itself, are

found in Section S2. Given that B passes step 1 of the algorithm, existence

of an optimal rotation depends on the choice of v:

Theorem 2. At the kth iteration of the optimal rotation algorithm, given

an orthogonal Γ∗k−1 that satisfies Vj(Γ∗k−1,Fµ) ≥ vj , j = 1, . . . , k − 1,

∃γ∗k ⊥ Γ∗k−1 with V(γ∗k,Fµ) ≥ vk and RW(Γ∗k, z) ≤ RW(Γ̃k, z) ≤ RW(Γ∗k−1, z),

for Γ∗k = (Γ∗k−1,γ
∗
k), Γ̃k = (Γ∗k−1, γ̃k), and V(γ̃k,Fµ) ≥ vk ∀γ̃k ⊥ Γ∗k−1

⇐⇒ V1(Bk−1
ε ,Fµ) ≥ vk. In this case the algorithm converges to γ∗k.

Proof. By construction, V1(Bk−1
ε ,Fµ) = maxj Vj(Bk−1

ε ,Fµ) = maxV(ε,Fµ)

∀ ε ∈ span{Fk−1
ε }. Hence if V1(Bk−1

ε ,Fµ) < vk, 6 ∃γ∗k = Bk−1
ε λk such that

V(γ∗k,Fµ) ≥ vk.
If V1(Bk−1

ε ,Fµ) ≥ vk =⇒ ∃γ∗k = Bk−1
ε λk with

i) V(γ∗k,Fµ) ≥ vk,
ii) γ∗k ⊥Γ∗k−1 (by Theorem 1),

iii)RW(Γ∗k, z) ≤ RW(Γ∗k−1, z): let c∗k−1 = ((Γ∗k−1)
TW−1Γ∗k−1)

−1(Γ∗k−1)
TW−1z

and c∗k = ((Γ∗k)
TW−1Γ∗k)

−1(Γ∗k)
TW−1z be the coefficients given by project-

ing z onto Γ∗k−1 and Γ∗k respectively. Let c∗ = (c∗k−1, 0), then

RW(Γ∗k−1, z) = ‖z−Γ∗k−1c
∗
k−1‖W = ‖z−Γ∗kc

∗‖W ≥ ‖z−Γ∗kc
∗
k‖W = RW(Γ∗k, z).

as by construction c∗k minimises the reconstruction error in the W norm.

Finally, RW(Γ∗k, z) ≤ RW(Γ̃k, z)∀ γ̃k = Bk−1
ε λ̃k with V(γ̃k,Fµ) ≥ vk

(by convergence of the optimiser, e.g. Aarts and Van Laarhoven (1985) for

simulated annealing).
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In practice, when applying our algorithm to high dimensional model out-

put, we have found that only a small number (three or fewer) of iterations

have been required, hence v often has a low dimension. The values of v re-

quired will depend on the problem, with a different approach required when

a small number of vectors explain the majority of the ensemble, compared

to when a large proportion of the variability is spread across many SVD

basis vectors. In the former case, the values of v may be relatively high,

whilst in the latter they can be lower, relative to the proportion explained

by the equivalent SVD basis vectors. A reasonable approach is to initially

set v as half of the proportion explained by the corresponding SVD basis

vectors, reducing these further if the resulting q is too large. As Theorem 2

shows, it is possible to set v in such a way that the algorithm is unable to

find a suitable basis. If we cannot find a kth basis vector that satisfies the

variability constraint, given Γ∗k−1, then a basis doesn’t exist for this choice

of v, and the specification needs revisiting: either vk needs to be decreased,

or an earlier constraints needs relaxing.

The choice vtot is also a concern for the standard UQ approaches based

on principal components. In our experience, using similar rules (e.g. 95%

or 99%) to the SVD applications leads to 0-2 extra basis vectors required.

In an application, it may be desirable to include certain physical pat-

terns, deemed to be important, in our basis B, which may not lie within

the subspace defined by Fµ. In this case, if we have p selected physical

vectors, Bp = (b1, . . . ,bp), combining these with the first n − p vectors of

the residual basis will not necessarily explain all of the variability in Fµ.

The algorithm may be applied to the n + p vectors given by the physical

vectors and the full residual basis, giving a rotation of this space rather

than of Fµ. As truncation occurs after the majority of variability of Fµ,

vtot, is explained, the resulting truncated basis, while not strictly a rotation

of the subspace defined by Fµ, will exhibit similar qualities, and may be

superior for representing z, if important physical patterns can be emulated

when combined with signal from the ensemble.

To perform the algorithm with basis vectors from outside the subspace

defined by Fµ, rather than finding linear combinations of the residual basis

22



at step k > 1, B = (Bp,Bε) is used at each step, with orthogonality imposed

after each new basis vector has been selected, via Gram-Schmidt (as by

Result S3, applying Gram-Schmidt does not affect RW(·, z)).

4.3 Idealised example continued

We now apply the optimal rotation algorithm to the example of Section 3.

We set v = (0.4, 0.1, 0.1), vtot = 0.95, and B as the SVD basis, with the

projection of (4) used for consistency with Section 3.1, to show that rotation

fixes the described problems. One iteration of the algorithm finds a basis

that satisfies RW(Γ∗q , z) < T , with q = 5 (i.e. we need the first 4 vectors of

the residual basis so that Γ∗q explains at least 95% of Fµ).

The reconstruction of z with this basis, and associated VarMSE plot, are

shown in Figure 4. Now, our basis allows us to accurately represent z with

the leading vectors, as the important patterns from low-order eigenvectors

have been combined with the leading patterns (hence an additional vector

being required to explain more than 95% of Fµ).

Performing history matching as before, and using the reconstructions of

the original fields rather than the coefficients, we find that 31.5% of Θ is now

in NROY space (Figure S5). Performing our previous check on the accuracy

of the match, we find that no runs consistent with z have been ruled out.

As we are no longer in the terminal case, we perform probabilistic cali-

bration on the field. The posterior densities found by calibrating on Γ∗q are

shown in Figure S3, with the average simulator output given by samples

from this posterior in the first plot of Figure 5. While the samples here are

not consistent with z, as the off-diagonal is too strong, we have been able

to identify runs where there is signal on the main diagonal. This is because

the rotated basis allows for this direction of the output space to be searched.

The limited signal in the important directions from F has been extracted

and used to guide calibration.

We continue the calibration by running a new design within NROY space.

This new design should contain more signal in the direction of z, and hence

it should be possible to find a rotation that reduces RW(·, z) further than
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Figure 4: The reconstruction of z using the truncated basis Γ∗q , and the
VarMSE plot for this basis, with the truncated SVD basis given by the red
and blue dotted lines.

at the previous wave. We select 60 points from the wave 1 NROY space

and run f(·) at these points to give the wave 2 ensemble. We perform a

rotation, and emulate and calibrate using the wave 2 ensemble. History

matching reduces NROY space to 3.1% of Θ (Figure S7). If we instead per-

form probabilistic calibration, with zero density assigned to regions outside

of the wave 1 NROY space, we find the average output field in the 2nd plot

of Figure 5 (posteriors in Figure S6).

These results represent a large improvement over performing only one

wave. We have ruled out the majority of Θ, allowing future runs to be

focussed in this region. Probabilistic calibration is more accurate, with

samples containing a strong diagonal, as with z.

Repeating the process, our wave 3 ensemble contains patterns more con-

sistent with z than in previous waves, and hence the truncated SVD basis

does not rule out the reconstruction of z, and no rotation is required. Fol-

lowing emulation for this basis, history matching leads to an NROY space

consisting of 2% of Θ (Figure S8). Probabilistic calibration (in the wave 2

NROY space) gives the average output in Figure 5 (posteriors in Figure S6),

showing that our samples are now consistent with z.

5 Application to tuning climate models

In this section, we will demonstrate that optimal rotation is an important

and necessary tool if attempting to perform UQ for climate model tuning.
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Figure 5: The mean output f(θ) for samples of θ from the probabilistic
calibration posterior, for the wave 1 rotated basis, the wave 2 rotated basis
and the wave 3 SVD basis.

However, as we will discuss, climate model tuning is not a solved problem,

and it would be of limited value to simply show how calibration with our

method can lead to an improvement in one output field over the standard

methods, without necessarily improving the whole model or addressing the

concerns of the community. We will motivate our discussion using the cur-

rent Canadian atmosphere model, CanAM4.

CanAM4 is an Atmospheric Global Climate Model, which integrates the

primitive equations on a rotating sphere employing a spherical-harmonic

spatial discretization truncated triangularly at total wavenumber 63 (T63),

with 37 vertical levels spanning the troposphere and stratosphere (von Salzen

et al., 2013). CanAM4 has a large number of adjustable, ‘free’, parameters

of which 13 will be varied here. The climatological influence of each set of

free parameters is determined from 5-year ‘present-day’ integrations with

prescribed sea-surface temperatures and sea-ice. Model output is repre-

sented on the ‘linear’ 128×64 Gaussian grid corresponding to the model’s

T63 spectral resolution.

There are many output fields that must be checked for consistency with

the observed climate when tuning the parameters of a climate model (in the

case of CanAM4 there are more than 20). Here we focus on just 3 2D fields:

vertical air temperature (TA), the top of the atmosphere radiative balance

(RTMT, Wm−2) and the cloud overlap percentage (CLTO). For RTMT and

CLTO, the output is given over a longitude-latitude grid, so that ` = 8192.

TA is the temperature averaged over longitude for each latitude and vertical
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Figure 6: The standard CanAM4 anomaly field for a) CLTO, b) RTMT and
c) TA.

pressure level so that ` = 2368. There is also a temporal aspect to the

output, with monthly values for every grid box; however, we remove this

here by averaging over 5 years of June, July, August (JJA) output.

When evaluating and tuning the model, spatial anomaly plots are rou-

tinely examined to see how the model compares with observations. An

anomaly plot shows the difference between the model and the observations

with a blue-white-red colour scale set such that blue is ‘too negative’, white

is ‘alright’ and red is ‘too positive’. So, for example, in a temperature

anomaly plot, red areas show where the model is too warm (for the mod-

ellers) compared to observations. Figure 6 shows anomaly plots for CLTO,

RTMT, and TA for the standard configuration of CanAM4, with the colour

scales representing the standard colours used by the modellers when tuning

the model.

A goal of tuning is to try to reduce or remove biases that are visible

from these plots. Yet equally important is to learn which biases cannot

be removed simply by adjusting the model parameters. This is the search

for ‘structural errors’ in the model (what statisticians would call model

discrepancies). Structural errors indicate that there are flaws with individual

parametrisations, or with the way they interact, that cannot be fixed by

tuning. Understanding what these structural errors are so that they might

be addressed either as part of this phase of development or for the next

is one of the major goals of tuning (Williamson et al., 2015). However,

joint estimation of model discrepancy variances and model parameters is
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Figure 7: VarMSEplots for a) CLTO b) RTMT and c) TA, with W based on
1SD (dotted line) and 3SD (solid line). The dotted horizontal line indicates
T .

not possible without strong prior information (Brynjarsdóttir and O’Hagan,

2014) due to lack of identifiability.

When working with CanAM4 then, our goal is to use history matching

with a ‘tolerance to error’ discrepancy variance (Williamson et al., 2015,

2017) that aims to reduce the size of NROY space, so that, ultimately, in

a calibration exercise we have strong prior information about θ∗ and some

structured information on discrepancy. A formal methodology for achieving

this is beyond the scope of this paper. However, we will demonstrate that

optimal rotation is a crucial component for any attempt of this nature.

We designed 62 runs of CanAM4, varying 13 parameters and using a

k-extended Latin Hypercube (Williamson, 2015). Figure 7 shows VarMSE

plots for the output fields CLTO, RTMT and TA for this ensemble. The

weight matrix W used for the reconstructions represents our tolerance to

model error (we discussed its correspondence to model discrepancy (W =

Ση + Σe) in Section 4), and the red lines in these plots represent 2 alterna-

tives based on interpreting the colour scales pertaining to the white regions

in Figure 6. We assume that the white region represents 3 standard devia-

tions (solid red line) and 1 standard deviation (dashed red line), and set a

diagonal W accordingly. The solid red lines on each plot indicate that we

have a terminal case analysis under the small model discrepancy.

The larger discrepancy indicates a terminal case in CLTO and RTMT,

and that 35 basis vectors would be enough to adequately reconstruct TA.
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However, the blue line in the TA plot shows that there is so little ensemble

signal on the basis vector coefficients after arguably 20 (or fewer) basis

vectors, that calibration on 35 basis vectors is not possible. If discrepancy

were increased (an operation that involves scaling the red line until it lies

below the bound T represented by the dashed horizontal line in the plots),

all 3 panels demonstrate that the reconstruction error under SVD decreases

too slowly, so that a large number of basis vectors, each with coefficients that

are increasingly difficult to emulate due to the decreasing ensemble signal,

would be required to avoid a terminal case analysis.

Suppose model discrepancy Ση >> Σe so that we can consider W = Ση

in the following. In order to use optimal rotation, we require W such that

RW(B, z) < T , which is not true under our specification above for RTMT

and CLTO. If we really believed our Ση represented the climate model’s

ability to reproduce observed climate, then this indicates that we need a

larger ensemble in order to explore the model’s variability. In that case, it

may be desirable to follow a procedure like the one we present here to design

these runs.

In our case, we believe it is clear that we have misspecified model dis-

crepancy. In fact, we used a place-holder tolerance to error, so this analysis

indicates that we are not tolerant enough to model error (at this stage). To

explore model discrepancy, we first perform a rotation under the W given

above, using the algorithm without step 1 in order to find RW(Γ∗q , z) as

close to the reconstruction error of the untruncated SVD basis as possible,

for small q and whilst retaining emulatability by setting v = (0.35, 0.1, 0.1)

(as 3 rotated vectors is enough). Given this rotation, we then set

Ση =
RW(Γ∗q , z)

b
W, b = χ2

`,j (14)

where j < 0.995 is a tuning parameter. This ensures that when recon-

structed with the new basis, the observations will not be ruled out, and

hence we can identify an NROY space likely to contain runs as consistent

with z as possible, given the limited information we have with 62 ensemble

members. This has the effect of ‘scaling’ the reconstruction error for the ro-
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Figure 8: VarMSEplots for CLTO, RTMT and TA, with W = Ση, with ro-
tated basis (solid lines) and SVD basis (dotted lines). The dotted horizontal
line indicates T .

tated basis seen in Figure 8 below the horizontal dotted line at the point the

basis is truncated. For our fields, we set j = 0.95 for RTMT, and j = 0.68

for the others (as j = 0.95 ruled out all of Θ for CLTO and TA).

We define NROY space as runs where θ is not ruled out using (3) for

each of TA, CLTO and RTMT. This NROY space consists of 0.9% of Θ. We

then design and run a new 50-member ensemble within this NROY space

(discussed in Salter (2017), Section 6.3.5).

Upon inspection of the TA field for this wave 2 ensemble, we observe that

every run contains the previously found strong warm bias in the Southern

Hemisphere (Figure S9). As our optimal basis choice permitted the search

for runs not containing this structural bias, these results are evidence that

this may be a structural error. In practice, how much evidence is required

before the modellers are convinced that a particular bias is structured or

not is a climate modelling decision. Certainly, we could repeat our wave 1

procedure within the current NROY space and run a wave 3 and so on. This

has the benefit of increasing the density of points in Θ and the accuracy of

emulators in key regions of Θ, thus insuring against possible ‘spikes’ in the

model input space that would correct the bias.

Assuming our modellers were convinced to treat this feature as a struc-

tural bias, we demonstrate an approach to include this information within

the iterative calibration procedure. We first revisit the specification of the

TA discrepancy, selecting the region with the common warm bias shown in
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Figure S10, deemed to be a structural error, and increasing Ση for the grid

boxes in this region. To do this, we set W as a diagonal matrix with 100

for the grid boxes in this region, and 1s elsewhere on the diagonal (note this

is one possible choice. We might, instead, increase the correlation between

these gridboxes in W in addition).

We re-define the wave 1 NROY space so that it only depends on CLTO

and RTMT (consisting of 41.4% of Θ), and then include NROY wave 1 runs

with the wave 2 ensemble when rotating and building emulators for wave 2.

For TA, the optimal rotation algorithm is applied using the newly-designed

W, with the discrepancy Ση defined via (14), to ensure that z is not ruled

out (W reflected our beliefs about the structure, not the magnitude, of

Ση). History matching using the wave 2 bases and emulators leads to an

NROY space containing 0.03% of Θ. Plots illustrating this NROY space

for six of the more active parameters are shown in Figure 9. We see that

the regions with the greatest density of points in NROY space are generally

found towards the edges of the parameter ranges. From the lower left plots,

it is easier to identify relationships between some of the parameters, e.g.

CBMF generally needs to be high while UICEFAC needs to be towards the

centre of its allowable range.

The calibration of climate models, or even simply the search for struc-

tural biases, is a massive undertaking, and a full tuning is well beyond the

scope of this paper. Each small ensemble of CanAM4 required 2 days of

super-computer time to run and, in reality, the modellers routinely check

over 20 spatial fields (and a host of other metrics) when tuning the model.

UQ can help with the tuning procedure in providing tools (emulators) that

allow Θ to be explored much more quickly than is currently possible at the

modelling centres. However, as this application has demonstrated, using the

off-the-shelf methods based on the SVD basis does not work for tuning in

general. It did not work for the 3 fields we showed here, nor have the au-

thors ever found climate model output for which the problems we identified

here were not present. Our application demonstrates the optimal rotation

algorithm as an effective solution to quickly find bases without these issues

for calibration.
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Figure 9: Plot showing the composition of the wave 2 NROY space for 6 of
the parameters of CanAM4. For each cell of a pairwise plot, a large sample
is taken over the remaining parameters and the proportion of space that is
not ruled out is calculated. The lower left gives the same plots, with scales
set for each individual plot to show more structure.

6 Discussion

In this paper, we highlighted the issue of terminal case analyses for the

calibration of computer models. A terminal case analysis occurs when the

prior assessment of model discrepancy is inconsistent with the computer

simulator’s ability to mimic reality, and leads either to useless and incorrect

posterior distributions (using the fully Bayesian procedure) or ruling out all

of parameter space (using history matching). We showed that even when the

prior assessment of model discrepancy is not inconsistent with the ability

of the simulator, dimension reduction of spatial output using the ensemble-

derived principal components (the SVD basis) often leads to a terminal case

analysis.

We proposed a rotation of the SVD basis to highlight and incorporate

important low-signal patterns that may be contained in the original SVD

basis, giving a new basis that avoids the terminal case when this is possible.

We then presented an efficient algorithm for optimal rotation, guaranteeing

to avoid the terminal case when the model discrepancy allows, whilst ensur-
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ing enough signal on leading basis vectors to permit the fitting of emulators.

We proved that our algorithm gives a valid rotation of the original basis,

and established a fast test to see whether a given ensemble of model runs

and discrepancy specification automatically leads to a terminal case anal-

ysis prior to rotation. Our methods are presented for models with spatial

output, however, if basis methods were to be used for more general high

dimensional output (e.g. spatio-temporal), the optimal rotation approach

would not change if, for example, PCA were taken over the entire spatio-

temporal output for the design, as in Higdon et al. (2008).

We demonstrated the efficacy of our method using an idealised applica-

tion, and showed that it scaled up to the important case of spatial output

for state-of-the-art climate models. Our application highlighted the issue

of the terminal case for climate model analyses, and showed the problems

with using SVD in practice. We applied history matching for 2 waves to

CanAM4 and showed how, combined with optimal rotation, we can begin to

distinguish between what the modellers term ‘structural errors’ and ‘tuning

errors’.

A purely methodological UQ approach for tuning climate models does

not exist. It may be tempting, for UQ practitioners who are not familiar with

climate models, to claim that calibration of computer simulators is a ‘solved’

problem and that ‘all’ that is required is for the modellers to specify their

model discrepancy. We believe that the challenge for model tuning lies in the

understanding of this elusive quantity. For the statistical community, rather

than focussing on developing comprehensive methods for calibrating climate

models automatically, this should mean engaging with modellers to develop

robust tools and methods to help identify and understand these errors. This

type of approach would have obvious implications for tuning, but would

also feed into model development as it becomes better understood which

parameters control various biases, and therefore which parameterisations

need particular attention during the next development cycle.
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Supplemental Material: Uncertainty quantification
for computer models with spatial output using

calibration-optimal bases

S1 Idealised example

The spatial idealised example f(θ), introduced in Section 3.1, gives output

over a 10× 10 field, and has 6 input parameters defined on [−1, 1]:

f(θ) = 3(10θ22ϕ2 + 5θ23ϕ2 + (θ3 + 1.5θ1θ2)ϕ3 + 2θ2ϕ4 + θ3θ1ϕ5 + θ2θ1ϕ6 + θ32ϕ7

+ (θ2 + θ3)
2ϕ8 + 2) + 1.5πN (θ4, 0.2, 0.1

2)ϕ1

θ5
1.3 + θ6

+ Ψ10×10(0, 0.052)

(S1)

for πN (θ4, 0.2, 0.1
2) the density function of the Normal distribution with

mean 0.2 and variance 0.12, and where Ψ10×10(0, 0.052) gives a sample from

a Normal distribution with mean zero and variance 0.052, at each location

in the 10 × 10 grid. Figure S1 shows (ϕ1, . . . ,ϕ8), with ϕ1 giving the pat-

tern most consistent with the observations, and ϕ2 the basis vector that

dominates the ensemble. After evaluating f(θ), the output is vectorised so

that ` = 100.

We define θ∗ as

θ∗ = (0.7, 0.01, 0.01, 0.25, 0.8,−0.9)

with the observed field, z, given by adding a sample from N(0,Σe) to f(θ∗),

to represent observation error. We define Σe using the squared exponen-

tial correlation function over the 10 × 10 grid, with the spatial coordinates

denoted by si = (si1, si2) for i = 1, . . . , 100. The i, jth entry of 100 × 100

matrix Σe is therefore

Σij
e = exp{−(si1 − sj1)2 − (si2 − sj2)2}. (S2)

We model the discrepancy as
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Figure S1: The 8 orthogonal basis vectors used in the definition of the
idealised function, with ϕ1 shown in the top left, ϕ2 to the right of this, etc.

η ∼ N(0,Ση),

with the (i, j)th value of Ση given by

Σij
η = vivjC(si, sj) (S3)

for variances vi, vj , and a correlation function C(·, ·) between locations si and

sj . For C(·, ·), we again use the squared exponential correlation function,

with the same correlation lengths as for Σe. We define vi via

vi =

0.1 if i ∈ S

1 otherwise

where the set S contains the grid boxes on the main diagonal, as we are more

interested in finding fields with output consistent with the observations in

this region of the output. Figure S2 shows the true NROY space given Σe

and Ση.
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S1.1 Probabilistic calibration for the SVD basis

We performed probabilistic calibration following the Kennedy O’Hagan method,

with fixed discrepancy as outlined in the previous section, uniform priors on

the calibration parameters, and emulators as described in the main text.

The dotted lines on Figure S3 show the resulting densities when the

truncated SVD basis, Γ4, is used to calibrate probabilistically on the field,

for the input parameters θ1, . . . , θ5, and the ratio r = θ5/(1.3 + θ6). There

are peaks of density away from the true values (θ∗, as shown by the red

vertical lines), particularly for θ3 and r. For θ4, the parameter that controls

the strength of the main diagonal, the posterior density is relatively flat

across the entire range of θ4.

We sample from these posteriors and run the idealised function at these

samples, to evaluate whether calibration with the truncated SVD basis has

highlighted a region of parameter space that is ‘close’ to z. 16 samples are

shown in Figure S4, demonstrating that the results suggest it is not possible

to remove the off-diagonal pattern that was dominant in the ensemble.

S1.2 Calibration with the rotated bases

The solid lines in Figure S3 show the posterior distributions for θ1, . . . , θ5

and r when the wave 1 rotated basis is used for probabilistic calibration,

showing improvements (compared to the SVD basis) for θ4 and r.

At wave 2, there are peaks of density at or near to the true parameter

values for all but θ5 and r, as shown by the solid lines in Figure S6. The

dotted lines in this plot show the wave 3 posteriors. Although the peaks

for θ2, θ3 and θ4 are not as large, this wave offers an improvement for r

(important for the strength of the main diagonal) and θ1 (as this parameter

has no effect on the main or off-diagonal, a flat posterior is more accurate).

The averaged posterior samples in Figure 5 show that the posterior distri-

butions at each wave have identified better regions of parameter space than

previously, with the wave 3 samples being consistent with the observations.
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Figure S2: Density plot of the true NROY space (i.e. no emulation involved),
for each pair of parameters. For each cell in a particular pairwise plot, we
average across the remaining 4 parameters, and plot the proportion of these
runs that are in NROY space. The axes are reversed for the lower left
plots, with the colour scale set individually for each plot. The black point
corresponds to θ∗.
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Figure S3: The posterior distributions for θ1, . . . , θ5 and r, when we calibrate
probabilistically on the field with the SVD basis derived from the wave 1
ensemble, Γ4 (dotted lines), and the wave 1 rotated basis (solid lines). The
red vertical lines show the location of θ∗.

Figure S4: f(θ) at 16 samples of θ from the calibration posterior distribu-
tion, when we emulate and calibrate with the truncated SVD basis Γ4.

5



Figure S5: Density plot for the wave 1 NROY space given by history match-
ing using the rotated basis, for each pair of parameters. As in Figure S2, for
each plot we average over the remaining parameters and plot the proportion
in NROY space for each pair. The axes are reversed for the lower left plots,
and the colour scales set differently. The black point corresponds to θ∗.

6



Figure S6: The posterior distributions for θ1, . . . , θ5 and r, at wave 2 (solid
lines) and wave 3 (dotted lines), with the red lines equal to θ∗.
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Figure S7: Density plot for the wave 2 NROY space for each pair of param-
eters. Regions coloured grey indicate that there are no parameter settings
in NROY space here, hence we see that we have significantly reduced space,
compared to Figure S5.
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Figure S8: Density plot for the wave 3 NROY space for each pair of param-
eters, with space again reduced from the previous wave (we have gone from
3.1% to 2% of the original parameter space).
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S2 Proofs

Weighted projection

Define B = (b1, . . . ,bn), a basis with dimension `×n, and W an `×` positive

definite matrix. The reconstruction r = (r1, . . . , r`)
T of f = (f1, . . . , f`)

T has

reconstruction error

‖f− r‖W = (f− r)TW−1(f− r) (S4)

in the W norm, where r is given by coefficients c = (c1, . . . , cn)T with

r =

n∑
k=1

bkck = Bc

The vector c that minimises the reconstruction error with respect to the W

norm is found by first writing (S4) in terms of c:

(f− r)TW−1(f− r) = (f−Bc)TW−1(f−Bc)

= (fT − cTBT )W−1(f−Bc)

= fTW−1f− cTBTW−1f− fTW−1Bc + cTBTW−1Bc

A scalar can be differentiated by a vector θ, with symmetric matrix A, via

∂

∂θ
θTy =

∂

∂θ
yTθ = yT

∂

∂θ
θTAθ = 2θTA

Differentiating the reconstruction error with respect to c, with symmetric

W−1, we have

∂

∂c
‖f− r‖W = 0− (BTW−1f)T − fTW−1B + 2cTBTW−1B

= −fTW−1B− fTW−1B + cTBTW−1B + cTBTW−1B

= −2fTW−1B + 2cTBTW−1B
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Setting equal to zero, and solving for c, we have

0 = −2fTW−1B + 2ĉTBTW−1B

=⇒ ĉTBTW−1B = fTW−1B

=⇒ BTW−1Bĉ = BTW−1f

=⇒ ĉ = (BTW−1B)−1BTW−1f

With W = I`, this is the usual projection equation:

ĉ = (BT I−1` B)−1BT I−1` f = (BTB)−1BT f

Rotational invariance

Result 1 (Invariance of RW(·, ·) to rotation). For a rotation matrix Λ of

dimension k × k, and a set of basis vectors B = (b1, . . . , bn), we have

RW(Bk, z) = RW(BkΛ, z), k = 1, . . . , n.

Proof. We can rewrite the reconstruction error of the rotated basis, BkΛ,

as

RW(BkΛ, z) = ‖z−BkΛ((BkΛ)TW−1BkΛ)−1(BkΛ)TW−1z‖W
= ‖z−BkΛ(ΛTBT

kW−1BkΛ)−1ΛTBT
kW−1z‖W

Rotation matrix Λ is invertible, with ΛT = Λ−1, by definition. We apply

the identity (CD)−1 = D−1C−1, where C,D are k × k invertible matrices,

for C = ΛTBT
kW−1Bk and D = Λ:

= ‖z−BkΛΛ−1(ΛTBT
kW−1Bk)

−1ΛTBT
kW−1z‖W

= ‖z−Bk(B
T
kW−1Bk)

−1(ΛT )−1ΛTBT
kW−1z‖W

= ‖z−Bk(B
T
kW−1Bk)

−1BT
kW−1z‖W

= RW(Bk, z)

where in the second line, the inverse identity has been applied a second time

with C = ΛT and D = BT
kW−1Bk, giving the final result.
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S2.1 Proof of Theorem 1

Before proving Theorem 1, we first prove the following results:

Result S2 (Orthogonality of the residual basis). The residual basis, Bε,

calculated from Fµ and Bp, is orthogonal to Bp (with respect to the W

norm).

Proof. First, we show the orthogonality (in W) of the columns of the residual

ensemble, Fε, and the columns of Bp:

BT
p W−1Fε = BT

p W−1(Fµ −Bp(B
T
p W−1Bp)

−1BT
p W−1Fµ)

= BT
p W−1Fµ − (BT

p W−1Bp)(B
T
p W−1Bp)

−1BT
p W−1Fµ

= BT
p W−1Fµ −BT

p W−1Fµ

= 0

(S5)

This zero matrix has dimension p × n, i.e. the basis vectors in Bp are

orthogonal with the vectors of Fε, with respect to the W norm. Using

this, we obtain the result by considering the (generalised) singular value

decomposition of FT
ε :

FT
ε = UΣVT

=⇒ FT
ε = UΣBT

ε

where U is an orthonormal n×n matrix, Σ is a diagonal n×n matrix, and

V = Bε is an `× n matrix with BT
ε W−1Bε = In. From here, we have that

=⇒ Fε = BεΣ
TUT

=⇒ FεU = BεΣ
TUTU

=⇒ BT
p W−1FεU = BT

p W−1BεΣ
T

where we have multiplied on the left by BT
p W−1. From (S5), we have

BT
p W−1Fε = 0, hence

=⇒ BT
p W−1BεΣ

T = 0
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The final p + 1 eigenvalues on the diagonal of Σ are zero (the p vectors in

Bp, and the ensemble mean, remove p + 1 degrees of freedom). Therefore,

we are only interested in the leading n− p− 1 columns of Bε, as all of the

variability in Fµ has already been explained. By discarding the columns

associated with zero eigenvalues, we have that

=⇒ BT
p W−1[Bε]n−p−1 = 0

because Σ is diagonal, and hence we have the result.

From Result (S2), we can show that the basis vector selected at step

k of the optimal rotation algorithm, γ∗k = Bk−1
ε λk, is orthogonal to those

previously selected, Γ∗k−1 = (γ∗1, . . . ,γ
∗
k−1):

(Γ∗k−1)
TW−1γ∗k = (Γ∗k−1)

TW−1Bk−1
ε λk = 0.

Result S3. When B is a basis for Fµ, we can write Bk
ε = BΛk

ε for square

Λk
ε , i.e. the residual basis at iteration k of the algorithm contains linear

combinations of the vectors of B, and hence each vector selected by the

algorithm is a linear combination of B.

Proof. By the singular value decomposition of the residual ensemble after

selecting k basis vectors, we have

(Fk
ε )
T = Uk

εΣ
k
ε (B

k
ε )
T

for orthonormal Uk
ε , and diagonal Σk

ε . We can write Fµ = BΛµ (B is a

basis for Fµ, hence the ensemble is a linear combination of the basis vectors),

for n × n matrix Λµ. At iteration k of the optimal rotation algorithm, we

have

Bk
εΣ

k
ε (U

k
ε )
T = Fµ − Γ∗k((Γ

∗
k)
TW−1Γ∗k)

−1(Γ∗k)
TW−1Fµ

=⇒ Bk
ε = (BΛµ − Γ∗k((Γ

∗
k)
TW−1Γ∗k)

−1(Γ∗k)
TW−1BΛµ)Uk

ε (Σ
k
ε )
−1

Set k = 1, i.e. we have only selected one basis vector so far. When k = 1,

the algorithm selects a linear combination of B by construction, hence we
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have γ∗1 = Γ∗1 = Bλ̃1 for vector λ̃1. Therefore,

B1
ε = (BΛµ −Bλ̃1((Bλ̃1)

TW−1Bλ̃1)
−1(Bλ̃1)

TW−1BΛµ)U1
ε (Σ

1
ε )
−1

= B(Λµ − λ̃1((Bλ̃1)
TW−1Bλ̃1)

−1(Bλ̃1)
TW−1BΛµ)U1

ε (Σ
1
ε )
−1

= BΛ1
ε

(S6)

with Λ1
ε = Λµ−λ̃1((Bλ̃1)

TW−1Bλ̃1)
−1(Bλ̃1)

TW−1BΛµ)U1
ε (Σ

1
ε )
−1. Then

at iteration k = 2, we optimise over linear combinations of B1
ε , so that

γ∗2 = B1
ελ2 = BΛ1

ελ2 = Bλ̃2

i.e. the second basis vector is a linear combination of B. It follows that at

iteration k, we select a new basis vector where

γ∗k = Bk−1
ε λk = BΛk−1

ε λk = Bλ̃k

for Λk−1
ε = Λµ−Λ̃k−1((BΛ̃k−1)

TW−1BΛ̃k−1)
−1(BΛ̃k−1)

TW−1BΛµ)U1
ε (Σ

1
ε )
−1,

and Λ̃k−1 = (λ̃1, . . . , λ̃k−1) (so that Γ∗k−1 = BΛ̃k−1). Therefore, we have

that the residual basis at each iteration is a linear combination of the original

basis, B, and hence each new basis vector is.

Theorem 1. Γ∗ in step 3 of the optimal rotation algorithm is an orthogonal

rotation of B.

Proof. Assume that we have performed k iterations of the algorithm, result-

ing in the basis

Γ∗ = (γ∗1, . . . ,γ
∗
k, [B

k
ε ]n−k) (S7)

With Bk
ε = BΛk

ε and γ∗j = Bλ̃j (Result S3), we rewrite (S7) as

Γ∗ = (Bλ̃1, . . . ,Bλ̃k, [BΛk
ε ]n−k) = B(λ̃1, . . . , λ̃k, [Λ

k
ε ]n−k) = BΛ.
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We show that ΛTΛ = In, i.e. Λ is a rotation matrix. We have

ΛTΛ =


λ̃
T
1 λ̃1 λ̃

T
1 λ̃2 . . . λ̃

T
1 [Λk

ε ]n−k

λ̃
T
2 λ̃1 λ̃

T
2 λ̃2 . . . λ̃

T
2 [Λk

ε ]n−k
...

. . .

[Λk
ε ]
T
n−kλ̃1 [Λk

ε ]
T
n−kλ̃2 . . . [Λk

ε ]
T
n−k[Λ

k
ε ]n−k

 (S8)

The upper-left k × k block can be written as

λ̃
T
i λ̃j = λ̃

T
i BTW−1Bλ̃j = (γ∗i )

TW−1γ∗j =

1 if i = j

0 otherwise.

Similarly,

[Λk
ε ]
T
n−kλ̃j = (B[Λk

ε ]n−k)
TW−1γ∗j = BT

ε W−1γ∗j = 0,

by Result S2. Finally,

[Λk
ε ]
T
n−k[Λ

k
ε ]n−k = [Λk

ε ]
T
n−kB

TW−1B[Λk
ε ]n−k = [Bk

ε ]
T
n−kW

−1[Bk
ε ]n−k = In−k

and hence from (S8) we have ΛTΛ = In, and Λ is a rotation matrix.

S2.2 Gram-Schmidt invariance

Gram-Schmidt orthonormalisation imposes orthonormality on basis vectors

B = (b1, . . . ,bn) (Björck, 1967). It can be written in terms of matrices

(Björck, 1994):

B = ΓR

where Γ is an l×n basis containing normalised, orthogonal vectors γ1, . . . ,γn,

and R is an n × n upper-triangular matrix. Therefore, the jth new basis

vector is a linear combination of the first j basis vectors of B.

Result S4 (Gram-Schmidt invariance). The reconstruction given by the first

q vectors of the original basis is equal to the reconstruction given by the first
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q vectors of the orthogonal basis:

RW(Bq, z) = RW(Γq, z), q = 1, . . . , n

Proof. Using ΓTW−1Γ = In (i.e. we’ve imposed orthonormality with re-

spect to the W norm), we have

B(BTW−1B)−1BTW−1z = ΓR((ΓR)TW−1ΓR)−1(ΓR)TW−1z

= ΓR(RTΓTW−1ΓR)−1RTΓTW−1z

= ΓR(RTR)−1RTΓTW−1z

As R is invertible, and applying the identity (CD)−1 = D−1C−1 for square

matrices C and D, we have

= ΓRR−1R−TRTΓTW−1z

= ΓΓTW−1z

= Γ(ΓTW−1Γ)−1ΓT z

i.e. the reconstruction of z is the same with both B and Γ. The proof

proceeds analogously for any truncation of these bases.

Alternatively, this result could be shown by proving that both B and Γ

span the same subspace, and using that a basis gives unique representations

of general fields (Kuttler, 2012).
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S3 CanAM4

Figure S9: The TA anomaly for the standard run (left), and for run 005
of the new ensemble, the ‘best’ run in the wave 2 ensemble, in terms of
minimising the root mean squared error. The large warm bias from the
standard run has not been removed.

Figure S10: The grid boxes where we deem there to be a potential structural
error for TA, and hence where we increase the discrepancy, as described in
Section 5.
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