
Approximation of probability density functions for SPDEs using

truncated series expansions0

Giacomo Capodaglio∗ Max Gunzburger∗ Henry P. Wynn †

Abstract

The probability density function (PDF) of a random variable associated with the solution of a
stochastic partial differential equation (SPDE) is approximated using a truncated series expansion.
The SPDE is solved using two stochastic finite element (SFEM) methods, Monte Carlo sampling
and the stochastic Galerkin method with global polynomials. The random variable is a functional of
the solution of the SPDE, such as the average over the physical domain. The truncated series are
obtained considering a finite number of terms in the Gram-Charlier or Edgeworth series expansions.
These expansions approximate the PDF of a random variable in terms of another PDF, and involve
coefficients that are functions of the known cumulants of the random variable. To the best of our
knowledge, their use in the framework of SPDEs has not yet been explored.

1 Introduction

In the field of uncertainty quantification, the problem of describing the probability density function
(PDF) of the output of a model, given a known distribution of the input is of major relevance [13].
For instance, for the solution of inverse problems involving partial differential equations (PDEs) with
Bayesian inference [55, 20, 11], the PDF for the forward problem may be sought to get insights on the
forward uncertainty propagation [38, 37]. The forward PDF is inferred from the histogram, which may
be obtained according to two different strategies. The first is a direct approach, where Monte Carlo
(MC) sampling is used to obtain realizations of the quantity of interest (QoI) by solving the forward
problem for each sample. Alternatively, once an approximation of the stochastic solution of the forward
problem is obtained, realizations may be obtained with MC sampling without solving the problem for
each sample. This is the method used for instance in [38], where the stochastic solution of the forward
problem is approximated with polynomial chaos, or in [37], where adaptive sparse grid collocation is
employed. It is important to observe that despite providing a simple and easy approximation, histograms
are not continuous, hence they cannot be differentiated if necessary. The differentiability of the estimator
is an important feature in many applications [14, 27, 12, 52, 44]. In this work, we propose an alternative
strategy to estimate the PDF of a quantity of interest, given a known distribution for the input data.
The quantities of interest are associated with the solution of a stochastic partial differential equation
(SPDE), which is approximated using a stochastic finite element method (SFEM). Once the QoI has
been obtained from the SPDE solution, its PDF is estimated by means of a truncated Gram-Charlier
(GC) or Edgeworth (ED) series expansion [35]. These series have been used in several fields such as
chemistry [46, 22], finance [33, 50, 41], physics and astrophysics [23, 21, 45, 34, 8, 17], material science
[51], oceanology [60], power systems engineering [24], and other branches of applied mathematics [47].
However, to the best of our knowledge, their use in the field of SPDEs has not yet been explored. The
GC and ED expansions approximate a PDF adding successive corrections to a known PDF that is used
as a first approximation. The known PDF is usually chosen to be Gaussian, and only a few efforts have
been made to generalize the GC expansion to the case of a non-Gaussian kernel [9, 7]. The terms in
the GC and ED series involve derivatives of the known PDF and are functions of the cumulants of the
PDF to approximate. The cumulants of a given random variable can be obtained analytically from its
moments, which involve integrals of powers of the random variable [35]. For this reason, a stochastic
Galerkin method (SGM) with global polynomials is employed for the solution of the SPDE. With this
choice, QoIs can be defined as polynomial functions in the stochastic variable, so exact moments can be

∗Department of Scientific Computing, Florida State University, Tallahassee, FL 32306-4120, USA
†The London School of Economics and Political Science, London WC2A 2AE, UK
0Funding: MG and HW would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for

support and hospitality during the program Uncertainty quantification for complex systems: theory and methodologies
where work on this paper was undertaken. This work was supported by UK EPSRC grant numbers EP/K032208/1 and
EP/R014604/1. GC and MG were supported in part by the US Air Force Office of Scientific Research grant FA9550-15-1-
0001 and by the US Department of Energy Office of Science grant de-sc0016591.

1

ar
X

iv
:s

ub
m

it/
26

24
90

3 
 [

m
at

h.
N

A
] 

 2
4 

M
ar

 2
01

9

http://arxiv.org/abs/de-sc/0016591


computed with appropriate quadrature rules. Hence, also the coefficients of the GC and ED expansions
can be computed exactly. The SGM is validated against the Monte Carlo method (MCM) for small input
variances of the random data. The method we propose still makes use of the histogram to determine the
PDF of the QoI, although the histogram is used only as a crude approximation to determine the most
appropriate truncation order of the series. The approximate PDF is given analytically as a truncated
series and it does not depend directly on the histogram, so it is not affected by the dimension of the
bins used to construct it and by the number of samples. Finally, if the kernel is a C∞ function (i.e. a
Gaussian distribution), the truncated GC and ED expansions are continuous and infinitely differentiable,
therefore potentially more useful than just a histogram approximation.

The paper is structured as follows: in Section 2, the mathematical problem and the input data
description are introduced; in Section 3, the two SFEMs employed for the solution of the SPDEs are
described, namely the Monte Carlo method and the Stochastic Galerkin method; the theory on the
Gram-Charlier and Edgeworth expansions is laid out in Section 4. Arguments on asymptotic expansions
and convergence are given in Section 5 and Section 6, respectively. Numerical results are reported in
Section 7, for different types of output distributions. The paper is concluded with Section 9, where our
findings are discussed.

2 Formulation of the problem

For SPDEs, the stochasticity is taken into account assuming that the input data depends on a random
variable, other than the physical variable as in standard partial differential equations [56, 16, 43, 59, 42,
58]. The input data consists of coefficient functions and forcing term. For simplicity, here it is assumed
that the stochastic contribution is introduced only by the coefficients and not by the forcing term. The
model SPDE considered is the Poisson problem defined on D × Ω, where D ⊂ Rd and Ω is the sample
space {

−∇ · ( a(x, ω) ∇u(x, ω) ) = f(x) in D × Ω

u(x, ω) = 0 on ∂D × Ω.
(1)

As in [29, 3, 43, 42], the following assumption is made.

Assumption 1 The coefficient function a(x, ω) in system (1) has the following properties:

1. There exists two positive constants amin and amax <∞ such that

amin ≤ a(x, ω) ≤ amax,

almost surely on Ω, for all x ∈ D.

2. a(x, ω) = a(x,y(ω)) in D × Ω, where y(ω) = (y1(ω), y2(ω), . . . , yN (ω)) is a vector of real-valued
uncorrelated random variables defined on a probability space (Ω,F ,P).

3. a(x,y(ω)) is measurable with respect to y.

For any n = 1, . . . , N , let Γn := yn(Ω) ⊂ R and let us define the parameter space Γ :=
∏N
n=1 Γn. The

joint probability density function (PDF) for {yn}Nn=1 is denoted by ρ(y) : Γ → R+. Several choices of
coefficient functions are possible to ensure that Assumption 1 is satisfied. Some examples are given in
[29]. The choice made in this work is described in the next section.

2.1 Karhunen-Loève Expansion

The Karhunen-Loève (KL) series expansion has been widely used in the field of uncertainty quantification
to represent random fields, such as the coefficient function in system (1), as an infinite sum of random
variables [36, 53, 26]. For numerical simulations, due to the finite computational capability available, the
series is truncated, resulting in the following approximation

a(x,y(ω)) ≈ E[a(x, ·)] +

N∑
n=1

√
λnbn(x)yn(ω), (2)

where, for n = 1, . . . , N , λn and bn are, respectively, the eigenvalues and eigenfunctions of the covariance
function of a(x,y(ω)).
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Remark 1 We assume that the input random processes approximated with a truncated KL expansion are
Gaussian, hence the random variables {yn(ω)}Nn=1 are standard independent and identically distributed.
This allows us to generate realizations of the truncated KL expansion by Monte Carlo sampling from
Gaussian distributions.

To bound the coefficient function away from zero, the KL expansion is used on the logarithm of a(x,y(ω))−
amin rather than on the function itself. Thus, let us define the function γ(x,y(ω)) as follows

γ(x,y(ω)) := log(a(x, ω)− amin). (3)

The above definition implies that

a(x,y(ω)) = amin + exp
(
γ(x,y(ω))

)
. (4)

Using a truncated KL expansion to approximate γ(x,y(ω)), we get

γ(x,y(ω)) ≈ µγ +

N∑
n=1

√
λnbn(x)yn(ω), (5)

where µγ := E[γ(x, ·)], and N is the dimension of Γ. Note that, in Eq. (5), (λn,bn) are the eigenpairs
associated with the covariance function of γ(x,y(ω)). Moreover, according to Remark 1, when the
truncated KL is used to approximate γ(x,y(ω)), the assumption of Gaussian distribution is made on
γ(x,y(ω)), and consequently a(x,y(ω)) has a log-normal distribution, as shown in Eq. (4). It follows
from Eq. (4) that a(x,y(ω)) is approximated by

a(x,y(ω)) ≈ amin + exp
(
µγ +

N∑
n=1

√
λnbn(x)yn(ω)

)
. (6)

The eigenvalues and eigenfunctions in Eq. (6) are obtained solving the generalized eigenvalue problem∫
D

Cγ(x, x̂)bn(x)dx = λnbn(x̂), (7)

where Cγ(x, x̂) is the covariance function of the field γ(x,y(ω)). The covariance structure is generally
unknown and usually a specific covariance function is assumed. In this work, the covariance function of
γ(x,y(ω)) is assumed to be

Cγ(x, x̂) = σ2
γ exp

[
− 1

L

( d∑
i=1

|xi − x̂i|
)]
, (8)

where σγ denotes the standard deviation of γ(x,y(ω)), d is the dimension of the spatial variable and
L > 0 is a correlation length satisfying L ≤ diam(D).

The SPDE in Eq. (1) is solved using stochastic finite element (SFEM) methods, and the solution of
Eq. (7) is obtained according to a Galerkin approach, following the procedure presented, for instance,
in [53, 31]. Assume that the physical domain D is discretized with a regular finite element grid Th of
size h [15, 10, 2], and let Jh be the total number of degrees of freedom. If {φj}Jhj=1 denotes the global
nodal basis associated with Th, the eigenfunction bn of the covariance function of γ(x,y(ω)) in Eq. (6)
is approximated by its nodal interpolant

bn(x) ≈
Jh∑
j=1

bj,nφj(x), (9)

where bj,n := bn(xj), with xj being the j-th degree of freedom of Th. A substitution of Eq. (9) in Eq.
(7) transforms the continuous problem into a finite dimensional one

Jh∑
j=1

bj,n

(∫
D

Cγ(x, x̂)φj(x)dx− λnφj(x̂)
)

= 0. (10)

Next, Eq. (10) is multiplied by φi, and integrated with respect to x̂, to obtain

Jh∑
j=1

bj,n

(∫
D

∫
D

Cγ(x, x̂)φj(x)φi(x̂)dxdx̂− λn
∫
D

φj(x̂)φi(x̂)dx̂
)

= 0. (11)
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Let us define the two real symmetric Jh × Jh matrices C and M by

Cij :=

∫
D

∫
D

Cγ(x, x̂)φj(x)φi(x̂)dxdx̂, Mij :=

∫
D

φj(x̂)φi(x̂)dx̂. (12)

Note that M is the standard finite element mass matrix, and is positive definite. With these matrices,
Eq. (11) can be rewritten as the vector equation

Cbn = λnMbn, (13)

Because C is symmetric, its eigenvectors bn associated with distinct eigenvalues are orthogonal with
respect to the mass matrix M , that is bTnMbm = 0 if m 6= n. This orthogonality property implies
that the approximations of the functions bn(x) in Eq. (9) are orthogonal in L2(D). Orthonormality
can be obtained dividing these functions by their L2(D) norm. Note that orthonormality in L2(D) is a
requirement for the functions bn(x).

For the numerical tests, the generalized eigenvalue problem in Eq. (13) is implemented in the in-house
finite element code FEMuS [1], and solved with the SLEPc library [30].

2.2 Quantities of Interest

The aim of the paper is to approximate probability density functions of functionals of the SPDE solution,
which we refer to as quantities of interest. Let uJh(x,y) be the approximate solution of system (1),
obtained with an SFEM. The methods used to solve such a system are discussed in the next section.
Given uJh(x,y), examples of quantities of interest include the spatial average over the physical domain

Qu(y) =
1

|D|

∫
D

uJh(x,y)dx, (14)

the integral of the square

Qu(y) =

∫
D

(
uJh(x,y)

)2

dx, (15)

or the maximum over the physical domain

Qu(y) = max
x∈D

uJh(x,y). (16)

Note that the dependence on the physical variable x is eliminated in the quantities of interest, as Qu(y)
is a scalar function that only depends on the stochastic variable y.

3 Solution of the SPDE

The SPDE (1) is solved numerically using stochastic finite element methods. A detailed description of
SFEMs for SPDEs with random input data such as the one in system (1) can be found in the review
article [29] and references therein. The SFEM used here are described in the next two sections, together
with the procedures to compute stochastic quantities such as moments, once the approximate SFEM
solution is obtained.

3.1 The Monte Carlo Method

The first SFEM considered is the classical Monte Carlo Method (MCM), which is a stochastic sampling
method [29]. With MCM, M points {ym}Mm=1 are chosen randomly in the parameter domain Γ, and
system (1) is solved independently for each of these points. In such a way, M realization of the solution
of the SPDE are obtained and M uncoupled finite element systems are solved. For more details on MCM
and error estimates, see [25, 39, 29]. From now on, the number M will be referred to as the number
of MCM samples. According to Remark 1, the MCM samples are randomly drawn from Gaussian
distributions. The mean µγ and standard deviation σγ of γ(x,y(ω)) in Eq. (3) are not in general zero
and one, respectively. Hence, if one chooses samples for the KL expansion from a standard Gaussian
distribution, because of the presence of µγ in the KL and σγ in the covariance function, the result is the
same as sampling from a non-standard Gaussian distribution with mean µγ and standard deviation σγ .
If ym denotes one of the M samples obtained from the Monte Carlo Method, let uJh(x,ym) be the MCM
solution of system (1) associated with the sample ym and let Qu(ym) be a value of a quantity of interest
obtained from the realization uJh(x,ym). Then Qu(ym) is not a function of a random variable but
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rather just a scalar quantity. On the other hand, the quantity of interest Qu(y) is a function of a random
variable, and a random variable itself. Hence stochastic quantities such as moments and cumulants can be
computed. In the framework of MCM, the mean of Qu(y) is approximated with Monte Carlo integration
as follows

E
[
Qu(y)

]
≈ 1

M

M∑
m=1

Qu(ym) := µQu . (17)

For l > 1, the l-th moment is approximated in the same fashion by

E
[(
Qu(y)

)l]
≈ 1

M

M∑
m=1

(
Qu(ym)

)l
. (18)

An estimate of the variance is given by

E
[(
Qu(y)− E

[
Qu(y)

])2]
≈ 1

M

M∑
m=1

(
Qu(ym)− µQu

)2

.

The accuracy of Monte Carlo integration improves with the number of samples M , but the sampling
error increases with the magnitude of the input variance [29]. For this reason, here the MCM is used
only for small values of the input variance and to validate the stochastic Galerkin method, which is later
employed for larger values of the input variance.

3.2 The Stochastic Galerkin Method

The second SFEM used to obtain an approximation of the solution of system (1) is a stochastic Galerkin
method (SGM). With SGMs, the stochastic function space is approximated using a Galerkin procedure,
as it is done for the physical function space in standard finite element methods [28, 4, 5]. Let us assume
that the parameters are independent, so that the input joint probability function ρ(y) can be expressed

as ρ(y) =
∏N
n=1 ρn(yn). According to a Galerkin methodology, the infinite dimensional space L2

ρ(Γ) is
approximated by the finite dimensional space

PJ (p)(Γ) = span
{ N∏
n=1

ypnn

∣∣∣p ∈ J (p), yn ∈ Γn

}
,

where J (p) =
{
p ∈ NN

∣∣∣ N∑
n=1

pn ≤ p
}
,

(19)

which corresponds to the total degree (TD) multivariate polynomial space from [29]. Gaussian PDFs are
assumed for the input variables, hence the multivariate probabilist Hermite polynomials are employed as
an orthogonal basis for PJ (p)(Γ). Moreover, it holds that Γn = R for all n = 1, . . . , N , and so Γ = RN .
The multivariate polynomials are obtained in a tensor product fashion from the univariate probabilist
Hermite polynomials, which are appropriately scaled so that they form an orthonormal basis with respect
to the PDF

ρn(yn) =
exp (−y2

n/2)√
2π

. (20)

The scaling is carried out by dividing the pn-th univariate probabilist Hermite polynomial Hepn
by
√
n!,

to obtain ∫
R

Hepn√
n!

Hepm√
m!

ρn(yn)dyn = δnm, (21)

where ρn(yn) is as in Eq. (20) and δnm is Kronecker’s delta. Multivariate L2
ρ(Γ)-orthonormal Hermite

polynomials are then defined as

Hep(y) =

N∏
n=1

Hepn
(yn). (22)

The SGM approximation of the solution of system (1) is defined as [29]

ugSGJhMp
(x,y) =

∑
p∈J (p)

up(x)Hep(y), where up(x) =

Jh∑
j=1

up,j φj(x).
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We consider quantities of the form

Qu(y) =
∑

p∈J (p)

βpHep(y). (23)

When βp is the average of up(x), we have

Qu(y) =
∑

p∈J (p)

( 1

|D|

∫
D

up(x)dx
)
Hep(y), (24)

as in Eq. (14). When βp is the integral of the square of up(x), we have

Qu(y) =
∑

p∈J (p)

(∫
D

u2
p(x)dx

)
Hep(y), (25)

As opposed to what it is obtained with MCM, the quantities of interest given by the SGM are now
polynomial functions in the variable y. Such a feature gives a considerable advantage in terms of accuracy,
because moments can now be computed exactly with appropriate quadrature rules, rather than being
approximated by Monte Carlo integration. The l-th moment of the Qu(y) in Eq. (24) is defined as

E
[(
Qu(y)

)l]
:=

∫
RN

(
Qu(y)

)l
ρ(y)dy. (26)

The multivariate integral in the above equation can be computed exactly with a multidimensional Hermite
quadrature rule. Exploiting Eq. (21), monodimensional quadrature points can be obtained as the zeros
of the probabilist Hermite polynomials. The quadrature weights are given by the following formula

wi =
(n− 1)!

n (Hen−1(xi))2
, (27)

where xi is the i-th quadrature point and Hen−1
is the (n − 1)-th probabilist Hermite polynomial. By

construction, the weights wi have the property that
∑Nq

i wi = 1, where Nq is the total number of quadra-
ture points employed in the numerical integration. Multidimensional quadrature points and weights can
be obtained in a tensor product fashion. For the SGM, given q ∈ N, the coefficient function a(x,y(ω))
in system (1) is computed as [29]

aSGM (x,y) =
∑

q∈J (q)

aq(x)Heq (y),

aq(x) =

∫
Γ

a(x,y(ω))Heq (y)ρ(y)dy,

(28)

with a(x,y(ω)) as in Eq. (4). In the numerical results, with the exception of the integral for the data
projection in Eq. (28), all integrals are computed by an exact quadrature rule. Among the integrals
that are computed exactly, there are also the moments in Eq. (26). It is worth mentioning that, if
a non-standard Gaussian distribution with mean µγ and standard deviation σγ is considered for the
input variables, the change of variable (x − µγ)/σγ would have to be made in all integrals over the
parameter space. Although, one can avoid this change of variable by taking into account the non-standard
distribution in the input data, as it has been discussed in Section 3.1.

4 The Gram-Charlier and Edgeworth expansions

The goal of this paper is to obtain the PDF fQu : R → R+ of a given quantity of interest Qu(y) using
the Gram-Charlier (GC) and the Edgeworth (ED) series expansions, which express the PDF in terms of
a reference PDF. The coefficients of these expansions are functions of the cumulants of Qu(y), which can
be easily obtained once the moments of Qu(y) have been computed. In general, if we denote by ml and
κl the l-th moment and the l-th cumulant respectively, the first six cumulants are expressed in terms of
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the moments as follows [35, 7]:

κ1 = m1,

κ2 = m2 −m2
1,

κ3 = m3 + 2m3
1 − 3m1m2,

κ4 = m4 − 6m4
1 + 12m2

1m2 − 3m2
2 − 4m1m3,

κ5 = m5 − 5m4m1 − 10m3m2 + 20m3m
2
1 + 30m2

2m1 − 60m2m
3
1 + 24m5

1,

κ6 = m6 − 6m5m1 − 15m4m2 + 30m4m
2
1 − 10m2

3 + 120m3m2m1

− 120m3m
3
1 + 30m3

2 − 270m2
2m

2
1 + 360m2m

4
1 − 120m6

1.

(29)

In practical applications, the GC and ED series are truncated and only a finite number of terms is
retained. The truncation results in an approximation of the PDF fQu . The behavior of the truncated
series as the number of terms is increased will be subject to a discussion in the next sections.

4.1 Derivation of the expansions

We choose the formulation given in [9] to formally describe the GC and ED series. Let X be any random
variable with PDF fX(x). The characteristic function ΨX(t) of X is the Fourier transform of fX(x) [35].
The cumulant generating function K(t) is defined as K(t) := ln(ΨX(t)), and it holds that

ln(ΨX(t)) =

∞∑
l=1

κX,l
(it)l

l!
, (30)

where i denotes the imaginary unit and κX,l is the l-th cumulant of X. Let ϕ denote the standard
Gaussian distribution defined in Eq. (20). With the same notation used for X, the following equation
can be obtained

ln(Ψϕ(t)) =

∞∑
l=1

κϕ,l
(it)l

l!
. (31)

Using the properties of exponentials and convergent series, Eq. (30) and Eq. (31) can be combined to
get

ΨX(t) = exp
( ∞∑
l=1

(κX,l − κϕ,l)
(it)l

l!

)
Ψϕ(t). (32)

The GC and ED expansions follow from different manipulations of Eq. (32).
The GC is obtained with the use of Bell polynomials Bl(x1, . . . , xl) [6, 40]. These polynomials have

the property that

exp
( ∞∑
l=1

xl
(it)l

l!

)
=

∞∑
l=0

Bl(x1, . . . , xl)
(it)l

l!
, (33)

with B0 := 1. Therefore, Eq. (32) becomes

ΨX(t) =
(

1 +

∞∑
l=1

Bl(κX,1 − κϕ,1, . . . , κX,l − κϕ,l)
(it)l

l!

)
Ψϕ(t). (34)

The inverse Fourier transform applied to Eq. (34) gives the GC expansion

fX(x) =
(

1 +

∞∑
l=1

Bl(κX,1 − κϕ,1, . . . , κX,l − κϕ,l)
(−1)lD

(l)
x

l!

)
ϕ(x), (35)

where D
(l)
x represents the l-th derivative operator with respect to x and

D(l)
x

(
ϕ(x)

)
= (−1)lHel(x)ϕ(x). (36)
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The first six Bell polynomials are given by [9]

B1(x1) = x1,

B2(x1, x2) = x2
1 + x2,

B3(x1, x2, x3) = x3
1 + 3x1x2 + x3,

B4(x1, x2, x3, x4) = x4
1 + 6x2

1x2 + 3x2
2 + 4x1x3 + x4,

B5(x1, x2, x3, x4, x5) = x5
1 + 10x3

1x2 + 15x1x
2
2 + 10x2

1x3 + 10x2x3 + 5x1x4 + x5,

B6(x1, x2, x3, x4, x5, x6) = x6
1 + 15x4

1x2 + 45x2
1x

2
2 + 15x3

2 + 20x3
1x3 + 60x1x2x3

+ 10x2
3 + 15x2

1x4 + 15x2x4 + 6x1x5 + x6.

(37)

Note that when X is a standardized variable, κX,0 = 0 and κX,1 = 1. Since κϕ,0 = 0, κϕ,1 = 1, and
κϕ,l = 0 for l ≥ 3, Eq. (35) reduces to

fX(x) =
(

1 +

∞∑
l=3

Bl(0, 0, κX,3, . . . , κX,l)
(−1)lD

(l)
x

l!

)
ϕ(x), (38)

To derive ED, one assumes that X can be written as the standardized sum [48, 49]

X =
1√
r

r∑
i=1

Zi − µ
σ

, (39)

where the random variables Z1, Z2, . . . , Zr are independent and identically distributed, each with mean
µ, standard deviation σ, and l-th cumulant κZ,l. Note that κZ,1 = µ and κZ,2 = σ2. Define νl = κZ,l/σ

l,
then [9]

κX,0 = 0, κX,1 = 1, κX,l =
νl

r
l
2−1

, l ≥ 3. (40)

Substituting the above equation in Eq. (32), we get

ΨX(t) = exp
( ∞∑
l=3

νl

r
l
2−1

(it)l

l!

)
Ψϕ(t). (41)

With a proper shift of the summation index and an inverse Fourier transform, the above series gives the
ED expansion

fX(x) =
(

1 +

∞∑
l=1

Bl(a1, a2, . . . , al)
1

rl/2 l!

)
ϕ(x), (42)

The interested reader can consult [9] for more details on how the above equation is obtained. The
coefficients al are given by

al =
νl+2(−1)l+2D

(l+2)
x

(l + 1)(l + 2)
. (43)

For ease of notation, if we write the series in Eq. (42) as

fX(x) =

∞∑
l=0

(−1)l
ϑl(x)

rl/2
, (44)

the first six coefficient functions ϑl(x) are given by [8]

ϑ0(x) = ϕ(x),

ϑ1(x) =
1

3!
ν3D

(3)
x

(
ϕ(x)

)
,

ϑ2(x) =
1

4!
ν4D

(4)
x

(
ϕ(x)

)
+

1

72
ν2

3D
(6)
x

(
ϕ(x)

)
,

ϑ3(x) =
1

5!
ν5D

(5)
x

(
ϕ(x)

)
+

1

144
ν3ν4D

(7)
x

(
ϕ(x)

)
+

1

1296
ν3

3D
(9)
x

(
ϕ(x)

)
,

ϑ4(x) =
1

6!
ν6D

(6)
x

(
ϕ(x)

)
+
( 1

1152
ν2

4 +
1

720
ν3ν5

)
D(8)
x

(
ϕ(x)

)
+

1

1728
ν2

3ν4D
(10)
x

(
ϕ(x)

)
+

1

31104
ν4

3D
(12)
x

(
ϕ(x)

)
.

(45)
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A schematic representation of the necessary steps to get from the coefficient function a(x,y(ω)) to the
approximation of the PDF fQu

is summarized in Figure 1. Referring to Figure 1, the physical variable x
and the stochastic variable y are given as inputs to the coefficient function a(x,y(ω)), which is used to
assemble the SFEM system associated with the SPDE in (1). The system is then solved with an SFEM
and an approximate solution is obtained. From this solution, quantities of interest are evaluated and their
moments are computed, in the way associated with the SFEM chosen. Once the moments have been
obtained, they are fed to the truncated series expansions described in this section and an approximation
of the PDF fQu

is produced. In the next two sections, important considerations on the convergence of
the GC and ED expansions are made. First, the concept of asymptotic expansion is discussed.

Coefficient

function
SPDE SFEM

solver

Quantity of

interest Moments PDF

Figure 1: Summary of the steps to obtain an approximation of the PDF fQu
.

5 Asymptotic expansions

Let {Fr(x)} be a sequence of functions to be approximated by any partial sum of the series

∞∑
i=0

Ai(x)

(
√
r)i

. (46)

According to [54, 57], for a given r, the series (46) is an asymptotic expansion valid to n terms if the first
n+ 1 partial sums have the property∣∣∣Fr(x)−

n∑
i=0

Ai(x)

(
√
r)i

∣∣∣ ≤ Cn(x)

(
√
r)n+1

. (47)

Moreover, if Cn(x) does not depend on x, the expansion is said to be valid uniformly in x. As pointed
out by Wallace [57], the asymptotic property is a property of finite partial sums and, for a given r, the
series (46) may or may not be convergent. If the series (46) converges to Fr(x), we know that for every
ε > 0 there is an R ∈ N such that∣∣∣Fr(x)−

n∑
i=0

Ai(x)

(
√
r)i

∣∣∣ < ε, ∀n ≥ R. (48)

While the above inequality states that for all partial sums with n ≥ R, the error will be less than ε, it
does not give specific information of what happens to the error before n reaches R. On the other hand,
if r is sufficiently large, an asymptotic expansion valid to n terms has the property that the error will
be uniformly reduced as more terms are added to the finite partial sum, from 1 up to n+ 1 terms, after
which there is no longer the guarantee that adding successive terms will provide a uniform reduction of
the error [54, 57]. With small r, the situation is a little different. Because the bounds Cn(x) typically
increase rapidly with n, a small value of r may be unable to make the denominator grow faster than the
numerator of the right hand side in Ineq. (47), and only the first few terms would be improvements, as
pointed out in [54, 57]. If a series is convergent, regardless of it being also asymptotic, the error will
eventually go to zero as the number of terms in the partial sums is increased. If a series is asymptotic but
not convergent, regardless of the value of r, there will be a minimum error that can be achieved, which
limits the accuracy of the series. To summarize: convergent series give information on what happens
to the error as the number of terms in the partial sum goes to infinity, whereas asymptotic series give
information on the error as more terms are added starting from the first, and up to the (n+ 1)-th term.

We note that divergent asymptotic expansion have a long and useful history, especially with regards
to applications. Excellent expositions on the subject are found in [54, 57].

6 Considerations on convergence

In [35] (page 152), the following sufficient condition for the convergence of the GC expansion is given

Proposition 1 If the PDF f(x) is of bounded variation on every finite interval and∫ ∞
−∞
|f(x)| exp(−x2/4)dx <∞, (49)

then the GC expansion of f(x) is convergent.
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While the integral in Proposition 1 is finite for PDFs with bounded support, the requirement of being
of bounded variations on every finite interval may be in general harder to satisfy. We could not find in the
literature any explicit sufficient condition addressing the convergence of the Edgeworth (ED) expansion.

Although, as pointed out by several authors [35, 19, 41, 24], convergence of the GC or ED series should
not be a concern, because for practical applications the series are truncated. Of course, if the series are
convergent, the error will eventually go to zero, but this is not useful for practical applications because
the number of terms necessary to achieve convergence will likely be too big. The real question is how
well a truncated GC or ED series can approximate the PDF of interest. This is directly connected to the
definition of asymptotic expansion introduced in the previous section. With an asymptotic expansion,
there is the guarantee that the initial error will be reduced by adding a certain number of successive
terms. This property is relevant for our purpose regardless of the convergence of the series, because only
a finite number of terms after the initial approximation are considered. Unfortunately, the GC series is
not an asymptotic expansion [57, 8, 47, 34]. On the other hand, it has been shown in [18] that the ED
expansion is asymptotic uniformly in x. Even though explicit bounds on errors were not given in [18],
the asymptotic nature of ED expansion still makes it more valuable than the GC for the applications of
our interest, where the series are truncated to a small number of terms.

In light of these observations, we believe that the best approach is composed of the following com-
ponents. First we assume that we have in hand a stochastic Galerkin approximation of the quantity of
interest. We do not include this step in the description of our algorithm because having in hand an SGM
approximation of the QoI is something one might want for any approach for estimating PDFs of QoIs.

At the heart of our algorithms is the construction of a truncated Edgeworth or truncated Gram-Charlier
expansion approximation of the PDF for the QoI.

1. Recursively for l = 3, . . ., compute the l-th moment of the QoI. Note that we initialize by computing
three moments.

– Supposing we have in hand l moments so obtained, we use those moments to construct an
l-term truncated ED or GC expansion, determining cumulants from the moments.

– The moments are obtained via exact numerical integration of the SGM approximation of the
QoI so that one need only integrate polynomials.

We need to determine the “optimal” number of terms in the ED or GC expansions.

2. This is done by comparing, each time we have incremented l, the l-term expansion with the (l–1)-
term expansion previously determined.

– The comparison can be done visually or by computing, e.g., using a sampling of the two
expansions, the `2-norm of the difference between them.

At this point we have two possibilities.

3a. If the ED or GC expansion is known to be convergent or, using the comparisons done in 2 above,
the expansion “seems” to be convergent, we stop the recursion when the difference computed in 2
is smaller that a prescribed tolerance.

– In this case, the “optimal” number of terms in the truncated ED or GC expansion is determined
by the prescribed tolerance.

3b. If the ED or GC expansion is known to an be asymptotic but divergent or, using the comparisons
done in 2 above, the expansion “seems” to be divergent, increasing the number of terms in the
expansion may not result in a better approximation so that we instead determine the “optimal”
number of terms kept in the expansion as follows.

– Run a Monte Carlo simulation to obtain samples of the QoI that are used to construct a
histogram approximation of the PDF for the QoI, including bounds on the support of that
PDF, in case it is bounded.

– The Monte Carlo samples are determined from the SGM approximation of the QoI and
not by doing expensive solves of the discretized SPDE.

– As a result, the histogram approximation of the PDF for the QoI can be obtained at
almost no cost. Even so, we do not need to take a huge number of samples because we
only need to have in hand a crude histogram approximation.

– By comparing the crude histogram so computed with the ED or GC approximate PDFs for
all values of the number of terms used, one can determine the optimal number terms as that
for which the expansion approximation is “closest” to the histogram.

10



Figure 2: First eigenfunction (left) and second eigenfunction (right) in the KL expansion from Eq. (6)
for the case of σγ = 0.08 and N = 2.

We also remark that the number of terms kept in ED or GC expansion approximations of PDFs is often
considerable lower than, e.g., kernel density estimators (KDE) [32]. The number of terms in the latter
is equal to the number of samples taken of the SGM approximation of the QoI. On the other hand,
for ED or GC approximations of the PDF, the SGM approximation is sampled only at the quadrature
points used to approximate moment integrals, so that the number of terms kept in the expansions is not
otherwise related to the number of samples.

For the sake of simplicity, the numerical results reported in the next section do not follow every detail
of the above algorithm, but those results are sufficient to illustrate the efficacy of our approach. A full
implementation of the above algorithm would cast our approach in an even more favorable light as would
some implementation steps that we have not discussed. An example of the latter is to take advantage
of the use of SGM approximations of the QoI to avoid approximating integrals of polynomials that are
known to vanish due to the use of orthogonal polynomials in the construction of the SGM approximation.

7 Numerical Results

We consider random variables associated with the solution of (1), obtained with the SFEMs discussed
above. The methods are implemented in the in-house C++ FEM solver FEMuS [1], whereas the gener-
alized eigenvalue problem in Eq. (13) is solved with the SLEPc library [30]. All numerical tests consider
f ≡ −1 and dimension d = 2, for simplicity. The physical domain D is a unit square, with coarse
grid composed of four bi-quadratic quadrilateral elements. The mesh for the simulations is obtained by
refining three times the coarse grid according to a midpoint refinement procedure. The random field
a(x,y(ω)) is given by Eq. (6), and it is assumed that µγ = 0. We chose amin = 1/100, and L = 0.1 for
the covariance function in Eq. (8). The stochastic dimension is N = 2. The input standard deviation σγ
is varied during the simulations. The quantities of interest used are given in (24), and (25). For MCM,
the number of samples is M = 105. Unless otherwise stated, the same amount of samples is used to
obtain the crude histogram approximations. We point out that a smaller value of M can be chosen, but
a fairly large number of samples allows the crude histogram to also be used for comparison with the GC
and ED expansions. Within the proposed method, the histogram is obtained sampling random values of
y from a standard Gaussian distribution and plugging them in Eq. (23), once the SGM system has been
solved. With MCM, the histogram is obtained in the standard way. For SGM, we choose the values of
p = 4 in Eq. (19), and q = 5 in Eq. (28).

Remark 2 When using GC, the quantity of interest is standardized before computing the moments, so
the expansion adopted for the tests is Eq. (38). For ED, considering Eq. (42), it is assumed that r = 1
and that Z1 = Qu. Hence, for both the GC and the ED expansions, the PDF refers to the standardized
quantity of interest.

7.1 Tests with nearly Gaussian output distribution

We begin with simulations where the output distribution of the quantity of interest is close to a standard
Gaussian. For the QoI in Eq. (24), this is achieved with σγ ∈ {0.02, 0.04, 0.06, 0.08}. Because the
truncated GC and ED expansions perform successive corrections of a standard Gaussian distribution, it
is expected that the expansions will perform very well in this context. In Figure 2, the eigenfunctions
b1(x) and b2(x) from Eq. (6) are reported for σγ = 0.08. The values of the moments and cumulants
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QoI in Eq. (24) (N = 2)
σγ = 0.08

SFEM m1 m2 m3 m4 m5 m6

MCM -3.4798e-02 1.2110e-03 -4.2151e-05 1.4674e-06 -5.1082e-08 1.7786e-09
SGM -3.4798e-02 1.2110e-03 -4.2152e-05 1.4673e-06 -5.1084e-08 1.7787e-09

κ1 κ2 κ3 κ4 κ5 κ6

MCM -3.4798e-02 1.4246e-07 0 0 0 0
SGM -3.4798e-02 1.4356e-07 0 0 0 0

σγ = 0.06
m1 m2 m3 m4 m5 m6

MCM -3.4797e-02 1.2109e-03 -4.2141e-05 1.4667e-06 -5.1050e-08 1.7770e-09
SGM -3.4797e-02 1.2109e-03 -4.2142e-05 1.4667e-06 -5.1051e-08 1.7770e-09

κ1 κ2 κ3 κ4 κ5 κ6

MCM -3.4797e-02 8.0123e-08 0 0 0 0
SGM -3.4797e-02 8.0745e-08 0 0 0 0

σγ = 0.04
m1 m2 m3 m4 m5 m6

MCM -3.4796e-02 1.2108e-03 -4.2135e-05 1.4663e-06 -5.1027e-08 1.7758e-09
SGM -3.4797e-02 1.2108e-03 -4.2135e-05 1.4663e-06 -5.1028e-08 1.7759e-09

κ1 κ2 κ3 κ4 κ5 κ6

MCM -3.4796e-02 3.5607e-08 0 0 0 0
SGM -3.4796e-02 3.5884e-08 0 0 0 0

σγ = 0.02
m1 m2 m3 m4 m5 m6

MCM -3.4796e-02 1.2108e-03 -4.2131e-05 1.4660e-06 -5.1014e-08 1.7752e-09
SGM -3.4796e-02 1.2108e-03 -4.2131e-05 1.4660e-06 -5.1014e-08 1.7752e-09

κ1 κ2 κ3 κ4 κ5 κ6

MCM -3.4796e-02 8.9013e-09 0 0 0 0
SGM -3.4796e-02 8.9705e-09 0 0 0 0

Table 1: Behavior of moments and cumulants of the QoI in Eq. (24) for σγ ∈ {0.02, 0.04, 0.06, 0.08}.

for the quantity of interest in Eq. (24) are shown in Table 1. Note that such values are associated
with the non-standardized quantity of interest. As discussed in [29], the sampling error of the MCM
increases with the input standard deviation, hence we use this method only for small values of σγ , such
as those considered in this section. The results obtained with MCM are relevant because they serve as
a validation of the SGM, that is employed in the next section for more general output distributions.
Observing Table 1, it is fair to say that convergence has been reached for the moments, given that there
is a good agreement between the MCM and the SGM predictions. Therefore, the SGM can be considered
validated by the MCM results. All cumulants κl with l ≥ 3 are zero, confirming that the PDF is close to
a Gaussian distribution, which is the one distribution that has κl = 0 for l ≥ 3.

The histograms for σγ = 0.08 are in Figure 3. As expected, both suggest a nearly-Gaussian PDF: the
major difference with an actual Gaussian distribution is that the in this case the PDFs have bounded
support. This is due to the fact that the quantity of interest is bounded. Our tests have shown that
larger values of σγ cause an increased skewness on the histograms, although this effect is very weak for
the values of σγ considered here, and so histograms for σγ = 0.02, 0.04 and 0.06 are not shown due to
their strong similarity to those in Figure 3. The increased skewness will be clearly visible when larger
values of σγ are considered in the next section.

In Figure 3, the truncated GC expansion is displayed for σγ = 0.08. GC expansions for other values
of σγ are not reported due to their strong resemblance to those in Figure 3. The notation GCj means
that the GC expansion in Eq. (38) has been truncated at l = j. Truncations up to l = 6 have been
computed. The GC expansion is a function defined on all R, hence it could be graphed for ideally any x.
Although, after the range of values of the quantity of interest is obtained from the crude approximation,
the graph of the GC is plotted only for values of x in such a range. The same is done for the truncated
Edgeworth expansions. Referring to Figure 3, we see that the GC expansions are in good agreement with
the respective histogram.

In Figure 4 the truncated ED expansions are shown for MCM and SGM. Only the results for σγ = 0.08
are reported, because other values produced similar graphs. Note that, for GC, all the truncated series
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I) II)

Figure 3: Gram-Charlier expansions of the standardized QoI in Eq. (24) for σγ = 0.08 and N = 2. I):
GC - MCM, II): GC - SGM.

I) II)

Figure 4: Edgeworth expansions of the standardized QoI in Eq. (24) for N = 2 and σγ = 0.08. I): ED -
MCM, II): ED - SGM.

Standardized QoI in Eq. (24) (SGM, N = 2)
Moments Cumulants

σγ m3STD
m4STD

m5STD
m6STD

κ3STD
κ4STD

κ5STD
κ6STD

1.6 -0.793290 4.16802 -10.4848 46.2597 -0.79329 1.16802 -2.55194 7.44632
1.4 -0.68550 3.87021 -8.49255 36.8592 -0.68550 0.87021 -1.63752 4.10686
1.2 -0.58120 3.62412 -6.80469 29.8402 -0.58120 0.62412 -0.99265 2.10040
1 -0.47986 3.42448 -5.35446 24.6366 -0.47986 0.42448 -0.55579 0.96666

Table 2: Moments and cumulants of the standardized QoI in Eq. (24) with N = 2, for different values of
the input standard deviation.

computed are displayed in Figure 3, namely GC3, GC4, GC5 and GC6. As discussed above, GC is not
an asymptotic expansion and so it might be that, for instance, GC4 is a worse approximation than GC3
but GC5 is better than both GC3 and GC4. Hence, it makes sense to display all computed curves, to
have an idea of the behavior of the truncated series. For ED, truncations up to four terms have been
computed. However, not all curves are displayed in the figures, but only those that show a monotone
reduction of the error. Such curves are typically ED1 and ED2. This scenario is expected considering the
discussion in Section 5, and that r = 1 in Eq. (39). Figure 4 shows great agreement of the ED expansion
with the histograms, for both the MCM and the SGM.

When the distribution of the quantity of interest is nearly Gaussian, our results suggest that the
Gram-Charlier and Edgeworth expansions can effectively be used to describe the PDF of the quantity
of interest. This is consistent with the nature of such expansions, that add successive corrections to a
standard Gaussian distribution. The natural question that arises next concerns how well GC and ED
can work when the PDF to approximate is not nearly Gaussian. Numerical results are presented in the
next section to address this uncertainty.
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Standardized QoI in Eq. (25) (SGM, N = 2)
Moments Cumulants

σγ m3STD
m4STD

m5STD
m6STD

κ3STD
κ4STD

κ5STD
κ6STD

3 0.82751 4.31992 11.3622 51.2865 0.82751 1.31992 3.08712 9.63985
2.9 0.69515 3.89341 8.62298 37.3751 0.69515 0.89341 1.67138 4.14151
2.8 0.58557 3.62103 6.81178 29.6887 0.58557 0.62103 0.95604 1.94421
2.7 0.53517 3.51856 6.08253 27.0037 0.53517 0.51856 0.73080 1.36114

Table 3: Moments and cumulants of the standardized QoI in Eq. (25) with N = 2, for different values of
the input standard deviation.

I) II)

III) IV)

Figure 5: Gram-Charlier expansion of the standardized QoI in Eq. (24) for N = 2, obtained with SGM.
I): σγ = 1.6, II): σγ = 1.4, III): σγ = 1.2, IV): σγ = 1.

7.2 Tests with general output distribution

We now investigate how well the GC and ED expansions can approximate a PDF that is not nearly
Gaussian. This is achieved with larger values of the input standard deviation than those considered in the
previous section. The QoI in (24) and QoI in (25) are considered. With the former, σγ ∈ {1, 1.2, 1.4, 1.6},
while with the latter σγ ∈ {2.7, 2.8, 2.9, 3}. Only the SGM is used, because for the values of σγ considered
here, the sampling error of the MCM would produce results that are not accurate enough. The value
N = 2 is chosen for the stochastic dimension. In Table 2 and Table 3, the values of the moments and
cumulants are reported for the standardized QoIs. As the input standard deviation grows, all moments
increase in magnitude, suggesting that larger values of σγ give increasingly non-Gaussian distributions.
In Figure 5, the histograms for the QoI in (24) are reported: larger values of σγ produce an increasing
negative skewness. The GC curves are in Figure 5. A stronger oscillating behavior with increasing σγ can
be seen in the pictures. For all values of σγ , GC3 provides the best approximation of the PDF, among
the GC curves that have been computed. The quality of the approximation slightly decreases as the
input standard deviation grows but remains overall satisfactory, especially for lower values of σγ . GC4
and GC5 are also good approximations for σγ = 1 and σγ = 1.2, whereas GC6 may be considered good
enough only for σγ = 1. In general, since the GC and ED series keep on correcting a standard Gaussian,
it could be that more terms are required for a good approximation when the PDF is far from a Gaussian.

The ED results are shown in Figure 6. The best approximation among the curves computed is given
by ED2 which well fits all histograms. The quality of the approximation slightly decreases as σγ grows,
but the magnitude of this deterioration is much smaller than in the GC case. The ED expansions are
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I) II)

III) IV)

Figure 6: Edgeworth expansion of the standardized QoI in Eq. (24) for N = 2, obtained with SGM. I):
σγ = 1.6, II): σγ = 1.4, III): σγ = 1.2, IV): σγ = 1.

qualitatively superior to the GC curves, because ED2 is a better approximation than GC3. Note that
GC3 is by definition the same curve as ED1.

Next, we consider the quantity of interest given in Eq. (25). The histograms are in Figure 7. Greater
values of σγ cause an increasing positive skewness, especially going from σγ = 2.9 to σγ = 3. The GC
curves are in Figure 7. For σγ = 2.7, all computed GC curves well approximate the PDF, with GC4 and
GC5 lying on top of each other. For all the other values of σγ , GC3 is again the best approximation, as
the other computed curves progressively deviated from the histogram. For σγ = 2.8, GC4 and GC5 are
still acceptable approximations, however they are not accurate enough for the subsequent values of σγ .
GC6 is acceptable only for σγ = 2.7.

The ED curves are in Figure 8. ED2 well approximates the histogram for all values of σγ , similarly
to what was observed in the previous example. Once again, due to the better approximation provided
by ED2 compared to GC3, we conclude that the ED expansion is more valuable than the GC, for the
examples considered.

We conclude this section with a comparison of the GC and ED expansions with the kernel density
estimator. Given that our analysis is set in a univariate setting, the KDE is given by

fK(x) =
1

hM

M∑
m=1

ϕ
(x−Qu(ym)

h

)
, (50)

where ϕ is the standard Gaussian distribution defined in Eq.(20), and M is the size of the sample set.
The parameter h is called bandwidth and we selected it to be the same as the bin width used for the
histograms in the previous figures. We chose a standard Gaussian kernel for the KDE because the GC
and ED expansions also use a standard Gaussian kernel, hence the comparison is fair. In Figure 9, GC3
and ED2 are compared to the KDE estimator in Eq. (50) with M = 105: results for the QoI in (24)
are visible in I) and II) using σγ = 1.6, whereas for the QoI in (25) they are in III) and IV) considering
σγ = 3. The plots in figure 9 show that the GC and ED expansions are comparable to the KDE in terms
of accuracy.

8 Computational times

Next, we compare the computational time required to construct a histogram approximation using M =
106 samples and the time required by the proposed method. For the latter, the moments in Eq. (26) are
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Figure 7: Gram-Charlier expansion of the standardized QoI in Eq. (25) for N = 2, obtained with SGM.
I): σγ = 3, II): σγ = 2.9, III): σγ = 2.8, IV): σγ = 2.7.

I) II)

III) IV)

Figure 8: Edgeworth expansion of the standardized QoI in Eq. (25) for N = 2, obtained with SGM. I):
σγ = 3, II): σγ = 2.9, III): σγ = 2.8, IV): σγ = 2.7.

evaluated with numerical quadrature, and a crude histogram approximation using M = 104 samples is
computed. The comparison is carried out for different values of N , i.e. the dimension of the parameter
space. The aim of this comparison is to show that the computational time required by the proposed ap-
proach is comparable to the one required to obtain an accurate histogram approximation. It is important
to remark that the histogram is a discontinuous approximation, regardless of the number of samples em-
ployed, whereas the GC and ED expansions are continuous and infinitely differentiable. The CPU times
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III) IV)

Figure 9: GC3 and ED2 expansions compared with the KDE estimator in Eq. (50). I) and II): QoI in
(24) σγ = 1.6, III) and IV): QoI in (25) σγ = 3.

Computational times [sec]
Histogram Proposed

N TOT Crude approx Moments Function evals TOT
1 0.843663 0.007834 0.000115 0.000729 0.008678
2 1.251279 0.012149 0.001191 0.000477 0.013817
3 1.788778 0.017364 0.015390 0.000418 0.033172
4 2.533417 0.024813 0.308295 0.000497 0.333605

Table 4: Computational times of histogram and proposed method.

are shown in Table 4 and refer to the quantity of interest in Eq. (24) with σγ = 1.6. The other simulations
parameters are as in the previous section, except N that is varied from 1 to 4. For the proposed method,
the total CPU time reported is the sum of three different costs: the cost of the crude approximation with
M = 104 samples, the cost of the numerical quadrature that does not involve any sampling, and the cost
of performing enough function evaluations to plot the curves, that also does not involve any sampling.
The results show that, for the values of N considered, the CPU times of the proposed method are lower
than those of the histogram. It is true however that as the values of N increase, the number of quadrature
points necessary for the evaluation of the moments in Eq. (26) will grow, likely causing the histogram to
eventually become faster. In Table 5 we compare the CPU time of a function evaluation using the KDE
with the CPU time of a function evaluation using the proposed method. The main difference between
the two methods is that the dominant cost for the KDE is associated with online operations, whereas
for the proposed method the most expensive operations are done offline. For the KDE, every function
evaluation requires the computation of as many kernel values as the total number of samples. Function
evaluations count as online operations for the estimation of the PDF. If the sample set is composed of
Ms points and Me function evaluations are required to estimate the PDF, the estimated cost of the KDE
is proportional to the product MsMe (the influence of the parameter space dimension is negligible). For
the proposed method, the cost of a single function evaluation is given by the computation of the moments
with numerical quadrature and by the crude histogram computation. These operations are all offline and
can be performed once and for all regardless of the number of functions evaluations necessary to estimate
the PDF. If Mc < Ms is the number of samples used for the crude histogram and Qp is the number of
quadrature points required for the exact one-dimensional numerical quadrature, the estimated cost of
the proposed method is proportional to Mc +QNp , with N being the dimension of the parameter space.
Table 5 shows CPU times results for N = 1, 2, 3, 4, considering Mc = 104 and Ms = 106 or Ms = 500 for
the KDE. The KDE with Ms = 500 is the fastest approximation, however it also the most inaccurate,
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CPU times for a single function evaluation [sec]
KDE (M = 106) KDE (M = 500) Proposed

N Offline Online Offline Online Offline Online
1 negligible 0.048431 negligible 0.000034 0.007968 negligible
2 negligible 0.047788 negligible 0.000036 0.012642 negligible
3 negligible 0.052763 negligible 0.000050 0.044448 negligible
4 negligible 0.047178 negligible 0.000037 0.334770 negligible

Table 5: Computational times for a single evaluation of the KDE and of the proposed method (104 are
used for the crude histogram).

as it can be seen from Figure 10. The KDE with Ms = 106, GC3 and ED2 have a comparable level of
accuracy, hence we focus our analysis on the comparison between the proposed method and the KDE
with Ms = 106. For N = 1, 2, 3 the proposed method is faster than a single function evaluation of the
KDE with Ms = 106, whereas for N = 4, one KDE evaluation is approximately nine times faster than
the proposed method. It is very likely that in general more than just nine function evaluations will be
necessary to appropriately describe the approximated PDF. For instance, in Figure 10, the plots have
been obtained with 46 function evaluations. Hence, the proposed method can compete with the KDE in
terms of CPU time.

Figure 10: KDE and proposed method (GC3 and ED2) curves associated with the results in Table 5.

9 Discussion

It has been shown that the GC and ED truncated expansions represent a valid alternative to existing
methods for the approximation of probability density functions associated with solutions of SPDEs. Our
numerical results suggested that GC and ED provide an accurate estimate when the PDF is nearly
Gaussian. This is consistent with the nature of the distributions. Even in the case of a general PDF, the
truncated expansions well approximated the distributions. The asymptotic character of the ED expansion
makes it more valuable than the GC due to a better monitoring of the error, as the truncation order is
increased. Moreover, ED better approximated the distribution than GC, at least up to the truncation
order considered in this work.

The proposed method is easy to implement and takes advantage of the fact that exact moments
can be computed with the SGM, provided that enough quadrature points are considered. Moreover,
all the computational burden is associated with offline computations, and point-wise evaluations have a
negligible cost. A limitation is the lack of a rigorous procedure to determine the necessary number of
terms in the truncated series to obtain the best possible approximation. This is inherent in the use of
truncated series and the issue is present in all works on ED and GC that we were able to find in the
literature. While the optimal number of terms to retain will likely be too large for the desired error in case
of a convergent series, it could be theoretically determined a priori in case of an asymptotic expansion
such as Edgeworth. Unfortunately, the lack of explicit error bounds make this unfeasible at the moment.
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[1] Eugenio Aulisa, Simone Bná, and Giorgio Bornia. FEMuS Web page.
https://github.com/eaulisa/MyFEMuS, 2017.

[2] Eugenio Aulisa, Giacomo Capodaglio, and Guoyi Ke. Construction of h-refined continuous finite
element spaces with arbitrary hanging node configurations and applications to multigrid algorithms.
SIAM Journal on Scientific Computing, 41(1):A480–A507, 2019.
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[4] Ivo Babuska, Raúl Tempone, and Georgios E Zouraris. Galerkin finite element approximations of
stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis, 42(2):800–825,
2004.
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