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Abstract

This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward
uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube,
by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is
very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC
machinery. Moreover, the combination-technique formulation of MISC allows the straight-forward reuse of
existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the
proposed approach.

Highlights

• Isogeometric solvers used in a MISC framework for forward UQ problems.

• The combination-technique formulation of the method allows straight-forward reuse of legacy IGA
solvers.

Keywords: Isogeometric analysis, Uncertainty Quantification, Sparse Grids, Stochastic Collocation
methods, multilevel methods, combination-technique

1. Introduction

Uncertainty quantification (UQ) has received a considerable amount of attention in recent years and is by
now considered an essential tool in the domain of computational science and engineering [1, 2, 3]. However,
performing UQ analyses remains a significant computational challenge, since these analyses typically require
solving a computational model repeatedly for different values of the uncertain variables in the model. In
this paper, we consider in particular models described by elliptic PDEs whose solution is denoted by u.
Two general “meta-strategies” (complementary to each other) are by now recognized in the UQ community
as key to reducing the computational cost and making UQ analyses feasible: a) dimension-adaptivity, i.e.,
investing the majority of the computational cost in approximating the dependence of u on the random
variables whose variability has the largest impact on u itself; and b) a multi-level approach, in which most
of the variability of u is explored by using “low-fidelity” approximations of the PDE (e.g., coarse meshes
and simplified-physics models), and resorting to “high-fidelity” approximations only sparingly. Dimension-
adaptivity was the first “meta-strategy” to be introduced in the UQ community and has been extensively
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discussed in the literature, e.g. in [4, 5, 6, 7], while the multi-level approach was developed more recently;
see, e.g., [8, 9, 10].

The Multi-Index Stochastic Collocation (MISC) method for random PDEs was first introduced in [11, 12]
and represents an attempt to combine both strategies. MISC uses an ad-hoc algorithm to simultaneously
choose both the best sequence of computational meshes and the random variables whose impact should
be more carefully approximated. It is closely related to the sparse-grids technique introduced to solve
high-dimensional PDEs [13, 14, 15, 16] and to compute high-dimensional integrals/interpolants [17, 18], and
indeed it can be seen as a combination of the two methodologies. The main idea behind the MISC algorithm
is to write the approximation operator as a linear combination of many less-refined approximations, in the
spirit of a Richardson extrapolation [19]. In particular, a “profit” is assigned to each possible component,
and eventually only those components with the largest profit are included in the computation. Another
possible approach would be to balance the errors of the physical and stochastic discretizations, as proposed
in [20, 21, 22].

Crucially, MISC needs both a physical solver and a sampler in the stochastic domain with a tensor
structure. The tensor construction in the stochastic domain can be obtained by e.g. tensorizing standard
Lagrangian (interpolant) polynomials, which would also be the starting point of the classical sparse-grids
collocation method for UQ [23, 24]. When it comes to the physical solver, previous works on MISC [11, 12]
only considered square domains over structured grids, which induce a tensor structure in the solver; possible
strategies to apply MISC to non-square domains, on which having a tensorized solver might be non-trivial,
were only briefly mentioned in [12].

In this paper, we extend [11, 12] and consider MISC on arbitrarily shaped domains, by employing
isogeometric analysis (IGA) [25, 26]. IGA is an alternative to the standard finite element analysis that
uses the basis functions employed by CAD softwares to represent the computational domain (typically, B-
splines or non uniform rational B-splines (NURBS)) as basis for the approximation of the PDE solution as
well. IGA has several interesting features and has therefore received a growing interest from researchers
and practitioners in computational science. For example, IGA can work with exact domain representation
and the meshing process is simplified in some situations; B-splines/NURBS of arbitrary polynomial degree
and regularity can be generated in a very easy way and show, in certain cases, superior error vs. degrees-
of-freedom ratio with respect to standard finite element bases. We refer the reader to [27] for an in-depth
discussion on IGA. Crucially, multivariate B-splines and NURBS are built by tensorization of their univariate
counterparts, which makes IGA solvers particularly suitable for use with MISC.

It is important to remark that in the end the MISC algorithm itself simply prescribes to solve a number of
standard uncoupled PDEs, each of them corresponding to a different realization of the random parameters,
on physical meshes with different resolutions (possibly anisotropic, i.e., more refined along some physical
directions). Therefore, any available IGA software can be readily re-used. We also point out that in the case
where there are no random variables, this procedure corresponds to the sparse IGA method for solving PDEs
discussed in [28]. Finally, we mention that while IGA is a convenient choice to extend MISC to problems
on non-square domains, it is not the only possible choice. Other choices, such as finite differences, finite
volumes, Qk finite elements, might be envisaged; the comparison of these methods is outside the scope of
this work.

The rest of this paper is organized as follows. We introduce the general UQ framework for elliptic PDEs
with random coefficients in Section 2, and discuss IGA solvers in Section 3. We present the MISC algorithm
in Section 4 and showcase the results obtained with MISC on some numerical examples in Section 5. Finally,
we draw conclusions in Section 6.

Throughout the manuscript, we make extensive use of multi-indices, i.e., vectors with integer components.
To this end, we recall some useful definitions and notations:

• Given i, j ∈ NK , i ≤ j means that ik ≤ jk for k = 1, . . . ,K;

• ei is the i-th canonical multi-index, i.e., (ei)k = 1 if i = k, and zero otherwise;
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• 1 is a multi-index whose components are all equal to 1;

• Given a function f : R→ R and a multi-index i, f(i) denotes the multi-index [f(i1), f(i2), . . . , f(iK)];

• A multi-index set Λ ⊂ NK is said to be downward closed if

∀i ∈ Λ, i− ej ∈ Λ for every j = 1, . . . ,K such that ij > 1. (1)

• The margin of a multi-index set Λ, Mar(Λ), is the set of multi-indices that can be reached “within one
step” from Λ,

Mar(Λ) = {i ∈ NK s.t. i = j + ek for some j ∈ Λ and some k ∈ {1, . . . ,K}}; (2)

• The reduced margin of a multi-index set Λ, Red(Λ), is the subset of Mar(Λ) composed by indices from
which “every backward step” will take inside Λ,

Red(Λ) = {i ∈ NK s.t. i− ek ∈ Λ for every k ∈ {1, . . . ,K}s.t. ik > 1}. (3)

2. Problem definition

Let B be a compact domain in Rd, d = 2, 3, that represents the “physical domain” of the problem.
In addition, let y = [y1, y2, . . . , yN ] be an N -dimensional random vector, whose components are mutually
independent random variables with support Γn ⊂ R and probability density function ρn(yn). Thus, y ∈ Γ =
Γ1×Γ2 · · ·ΓN , and Γ represents the “stochastic domain” of the problem; since yn are mutually independent,
ρ(y) =

∏N
n=1 ρn(yn) is a probability density function on Γ. Throughout this work, we often refer to yn as

“stochastic directions”, which is a short-hand for “directions of the stochastic domain”.
We consider the following problem: Find u : B × Γ→ Rm such that for ρ-almost every y ∈ Γ,{

L(u; x,y) = F(x) x ∈ B,
u(x,y) = 0 x ∈ ∂B,

(4)

where L is a differential operator and F is an operator on x. In particular, in the numerical results section
we consider a linear scalar elliptic equation and a linear elasticity equation. We assume well-posedness of the
problem in some Hilbert space V for ρ-almost every y ∈ Γ (specific choices of V are detailed for each example
in Section 5); observe that u can also be seen as an N -variate Hilbert-space-valued function u(y) : Γ→ V ,
and in particular it is convenient to introduce the Bochner space of finite-variance Hilbert-space-valued
functions, L2

ρ(Γ;V ) = {u : Γ→ V strongly measurable such that
∫

Γ
‖u(, ·,y)‖2V ρ(y)dy <∞}, to which u is

assumed to belong.
The random variables y model the uncertainties in the system, i.e., account for the fact that coefficients,

forcing terms, boundary/initial conditions, and domain shape are often “imperfectly” known due to mea-
surement errors, lack of data, or intrinsic variability (e.g., when they describe phenomena like wind, rain,
earthquakes). The goal of a forward UQ analysis is therefore to assess how much the variability of such
random objects affects the quantities of interest of the computation, which could be either the solution u or a
functional thereof. In particular, in this work we assume that some functional of the solution u, Φ : V → R,
e.g. Φ(v) =

∫
B v(x)dx or Φ(v) = v(x0) is given, and we aim to estimate its expected value, i.e., we want to

compute

E[Φ(u(x,y))] =

∫
Γ

Φ(u(x,y))ρ(y)dy.

In this work, we numerically analyze the performance of MISC for this task. More specifically, we use MISC
to select the physical and stochastic discretizations parameters, but other discretization parameters (e.g.,
time-steps, number of particles, solver tolerances) could be added to the set of parameters governed by
MISC. The novelty of the present work consists in showing how to extend the MISC methodology to more
general physical domain shapes, by replacing the multi-linear finite elements solver adopted in previous
works with the IGA solvers that we present in the next section.
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3. Isogeometric solvers

In this section, we briefly present the fundamentals of isogeometric analysis (IGA) and refer the reader to
[25, 26, 27] for a more thorough discussion. The first ingredient of IGA is a B-splines/NURBS representation
of the computational domain B, which is usually provided by a CAD software. An isogeometric solver
typically then uses the same set of basis functions to compute an approximation of the solution of the PDE.
However, that this is not strictly needed, and two different sets of B-splines/NURBS functions could be used
instead: one to approximate the geometry and another to approximate the solution.

The B-splines/NURBS representation of B ⊂ Rd consists of a transformation from a reference domain B̂
(typically, a square or cube) to the physical domain B, written as a linear combination of B-splines/NURBS
functions and so-called control points Pi ∈ Rd. Following the IGA/CAD literature, we refer in this work to

B̂ as the “parametric domain”.
The B-splines/NURBS used in such representation are built by tensorization, and therefore we begin our

presentation by considering the univariate case. We introduce a reference interval, Î = [0, 1], and a knot
vector over Î, i.e, a non-decreasing vector Ξ = [ξ1, ξ2..., ξn+p+1], where n, p ∈ N and ξ1, ξn+p+1 coincide with

the extrema of Î, that will be used to define a set of n B-splines polynomials of degree p over Î; observe
that Ξ can have repeated entries, for reasons that will be clear later on (see Figure 1). Each ξi is called
“knot”, and an interval (ξi, ξi+1) of non-zero length is an “element”; Nel is the number of elements. The
elements are not required to have the same length, but if they do, we call that length the mesh-size, which is
denoted by h. We define the non-decreasing vector Z = [ζ1, . . . , ζNel+1] as the vector of knots of Ξ without

repetitions, and mi is the multiplicity of ζi in Ξ, such that
∑Nel
i=1mi = n + p + 1. A knot vector is said to

be “open” if its first and last knots have a multiplicity of p+ 1.
We can now define the B-splines polynomials of degree p on Î by means of the Cox-De Boor recursive

formula [27]: we start with piecewise constant (p̃ = 0),

Ŝi,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise,
for i = 1, . . . , n+ p

and then, for p̃ = 1, . . . , p, we have the recursive step

Ŝi,p̃(ξ) =


ξ − ξi

ξi+p̃ − ξi
Ŝi,p̃−1(ξ) +

ξi+p̃+1 − ξ
ξi+p̃+1 − ξi+1

Ŝi+1,p̃−1(ξ), ξi ≤ ξ < ξi+p̃+1

0, otherwise
for i = 1, . . . , n+ p− p̃,

with the understanding that 0/0 = 0; note that if the knot vector Ξ is open, the corresponding basis will be
interpolatory in the first and last knots. The B-splines are polynomials of degree p and continuity Cp−mi

at ζi, which means that the regularity of the B-splines can be reduced by repeating multiple times the same
entry of the knot vector. In particular, repeating a knot p times will result in a basis with C0 regularity
in that knot, which means that the basis will also be interpolatory at that knot; see Figure 1-left for an
example. The generated B-splines are linearly independent, and we refer to their span as the “space of
splines”, i.e., Wp(Ξ, Î):

Wp(Ξ, Î) = span
{
Ŝi,p , i = 1, . . . , n

}
.

Often, all the internal knots are repeated the same number of times to obtain a B-splines basis with continuity
r at each point ζi, 0 ≤ r ≤ p − 1. If that is the case, we add a superscript r to the notation, i.e., Sri,p or

W r
p (Ξ, Î). Clearly, for a fixed polynomial degree p, the number of basis functions n decreases as r increases;

see Figure 1-center and right for examples of Cp−1
p and C0

p B-splines.
Next, we define B-splines on d-dimensional domains for the case d = 2, with the understanding that

the extension to the case d = 3 is trivial. The fact that multivariate B-splines are defined by tensorization
is crucial for the development of the MISC methodology, as will become clear in Section 4. We define the
parametric domain B̂ = Î×Î and consider two open knot vectors Ξ1,Ξ2 with n1+p1+1 and n2+p2+1 knots,
respectively; the corresponding knots without repetitions are denoted by Z1, Z2. We introduce the tensor
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Figure 1: B-splines basis built on different knot vectors; each knot vector is “open”, i.e., the first and last nodes are repeated
p + 1 times, with p = 4. Left: Ξ = [0, 0, 0, 0, 0, 0.25, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1]. Note the different continuity at
ξ = 0.25 and ξ = 0.5 due to different multiplicity: ξ is repeated 3 times, thus the B-splines are C1 in that knot; ξ is
repeated 4 times, thus the B-splines are C0 in that knot. Center: Ξ = [0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1, 1]. In this case,
the internal knots are repeated only once, resulting in maximally smooth B-splines, i.e., C3 at the internal knots. Right:
Ξ = [0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.4, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 0.8, 1, 1, 1, 1, 1]. Internal knots are repeated p times,
resulting in C0 splines (i.e., Lagrangian finite elements of degree p). As expected, the higher the continuity of the basis functions,
the smaller the cardinality of the basis.

products Ξ = Ξ1 ⊗ Ξ2 and Z = Z1 ⊗ Z2; Z generates a Cartesian mesh over B̂ composed by Nel,1 × Nel,2
rectangular elements. According to the CAD/IGA literature we refer throughout this work to the two
directions ξ1 and ξ2 as “parametric directions”. A basis for the space of bi-variate splines is then obtained
by taking tensor products of the univariate B-splines,

W r
p(Ξ, B̂) = span{Ŝi,p, i ≤ n},

where i = [i1, i2], p = [p1, p2], n = [n1, n2], r = [r1, r2], and Ŝi,p(ξ1, ξ2) = Ŝi1,p1(ξ1)Ŝi2,p2(ξ2).
We are now in the position to introduce the B-splines representation of the computational domain B

using a linear combination of B-splines with control points Pi ∈ R2 and i ≤ n (see also Figure 2):

x ∈ B ⇔ x = G(ξ) =
∑
i≤n

PiŜi,p(ξ) for some ξ ∈ B̂.

In the CAD literature, the function G : Ω̂ → Ω is often called a “parameterization” of the geometry B.
Observe that the control points need not belong to B: this is the case only if the corresponding basis function
is C0 continuous; see again Figure 2. With a slight abuse of wording, in the following we sometimes talk of
“physical directions” instead of “parametric directions”; we also use “physical directions” as a shorthand for
the longer “curvilinear coordinates induced by mapping the parametric directions over the physical space”.
However, this talk of “physical directions” will be useful when juxtaposed with the “stochastic directions”
y1, . . . , yN .

Non-planar surfaces can be also generated in the same way, by choosing Pi ∈ R3 instead of Pi ∈ R2; see
Figure 3-left. A further round of tensorizations, again with Pi ∈ R3, would allow us to represent volumetric
computational domains B; see Figure 3-right. Incidentally, note that many geometries of practical interest,
and in particular all conic sections other than parabulae, cannot be represented exactly by B-splines. To this
end, the so-called non-uniform rational B-splines (NURBS) have been introduced, see again [25, 26, 27] for
details. As the name suggests, NURBS are ratios of B-splines and retain most of the properties of B-splines.

In IGA, the B-splines basis is also used to approximate the solution to (4). We therefore introduce the
B-splines space on the physical domain B as

Wp(Ξ,B) = span{Si,p = Ŝi,p ◦G−1, i ≤ n},

and then approximate the solution to (4) for a fixed value of the random variables y as

u(x,y) ≈ un(x,y) =
∑
i≤n

ciSi,p(x), (5)
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Figure 2: Surfaces are built by linear combinations of control points and tensorized B-splines. Left: B-spline basis along the
first reference interval; center: B-spline basis along the second reference interval. The tensor product of these two bases forms
the basis (with cardinality 18) of the linear combination used to represent the surface in the right plot. The corresponding 18
control points are marked in red. The dotted lines connecting the control points represent the so-called “control net”.

Figure 3: Left: A non-planar surface, obtained from the example in Figure 2 by choosing control points in R3 instead of R2.
Right: A volume is represented by taking tensor products of three B-splines bases.

where the coefficients ci depend on y (for simplicity, we do not show this dependence in the equation). The
coefficients ci can be computed either by following a standard Galerkin approach or by collocation methods,
i.e., inserting (5) in the strong form of the problem, (4), and enforcing that the equation be satisfied in a
set of collocation points, which results in a system of linear equations to be solved [29, 30, 31, 32]. In this
work, we employ a standard Galerkin method; we remark again that, as will be clearer later, pre-existing
solvers can be readily reused in the context of the MISC method.

As expected, the approximation of u in (5), un, converges to u as the cardinality of Wp(Ξ,B) increases,
and the convergence results with respect to both h and p are analogous to the standard finite elements
results.

In the following, we fix the polynomial degrees along each parametric direction, i.e., p1 = . . . = pd = p,
and consider h-refinements only, i.e., we increase the cardinality of the basis by adding knots to the initial
knot vectors Ξ1 and Ξ2, though it is also possible to devise a p-MISC technique (or a combined h − p
version). In particular, for each parametric direction ξ1, i = 1, . . . , d, we consider a sequence of knot vectors
Ξi indexed by an integer αi ≥ 1, whose number of elements doubles whenever αi increases by 1: Nel,i ∼ 2αi .
We let α = [α1, . . . , αd] ∈ Nd, and denote the associated solution of the PDE by uα.

4. Multi-Index Stochastic Collocation (MISC)

Besides IGA, the other basic building block of MISC is a tensorized quadrature formula over the stochastic
domain Γ that can be used to evaluate, e.g., expected value, variance and higher-order moments of multi-
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variate random functions defined over Γ.
Let us therefore start by introducing a quadrature operator for a univariate real-valued continuous

function v(t) : Γ̃→ R, with the understanding that Γ̃ is a placeholder for any of the univariate sub-domains
Γ1, . . . ,ΓN composing the random space Γ = Γ1×. . .×ΓN ; therefore, it comes with an associated probability
density function, that we denote by ρ̃. The quadrature operator is defined as

Qm(β) : C0(Γ̃)→ R, Qm(β)[v] =

m(β)∑
j=1

v(tβ,j)ωβ,j ,

where β ≥ 1 is a positive integer (usually referred to as the “refinement level” or just “level” of the
quadrature operator), m(β) a strictly increasing function giving the number of distinct quadrature points to

be used, {tβ,j}m(β)
j=1 ⊂ Γ̃, with corresponding weights {ωβ,j}m(β)

j=1 . The quadrature points should be chosen
according to the underlying probability measure ρ̃; see, e.g., [5, 33]. Moreover, for refinement purposes it is

advantageous if the quadrature points are chosen to be “nested”, i.e., {tβ,j}m(β)
j=1 ⊂ {tβ+1,j}m(β+1)

j=1 ,∀β ≥ 1.
In the numerical examples of this work we consider problems depending on uniform random variables, for
which a number of different families of nested quadrature points exist: Clenshaw–Curtis points, several
variants of Leja points, and Gauss–Patterson points; see, e.g., [5, 34, 35, 36, 37]. In particular, we adopt the
Clenshaw-Curtis points, which are defined as

tβ,j = cos

(
(j − 1)π

m(β)− 1

)
, 1 ≤ j ≤ m(β),

and are nested provided that the function m(β) is chosen as

m(0) = 0, m(1) = 1, m(β) = 2β−1 + 1, β ≥ 2.

The extension to multi-variate real-valued continuous functions v(t) : Γ→ R is obtained by tensorization
of the univariate quadrature operators. In detail, we introduce a multi-index β ∈ NN , whose i-th component
gives the level of the univariate quadrature to be used along Γi, and we define the multi-variate quadrature
operator as

Qm(β) : C0(Γ)→ R, Qm(β) =
⊗

1≤i≤N

Qm(βi), Qm(β)[v] =

#m(β)∑
j=1

v(tj)ωj ,

where tj are points in the Cartesian grid
⊗

1≤i≤N{zβi,j}
m(βi)
j=1 , ωj are the corresponding products of weights

of the one-dimensional quadrature rules, and #m(β) denotes the total number of quadrature points in the

Cartesian grid, #m(β) =
∏N
i=1m(βn).

We are now in the position to introduce the MISC approximation of the expected value of a functional
of the solution of the PDE, E[Φ(u(x,y))]. For ease of presentation, we introduce the function φ : Γ → R
which associates each y with its corresponding value of the functional φ(y) = Φ(u(x,y)); thus, our goal
becomes computing an approximation of E[φ(y)].

Clearly, the value of φ(y) is accessible to us only by solving the PDE after fixing the value of the random
vector y: in particular, we denote by φα the value of φ obtained by post-process of uα, where (as already
mentioned) α prescribes the number of elements in the knot vectors used to build the IGA solver, Nel,i ∼ 2αi .

The fully discrete approximation of E[φ(y))] is therefore completely determined by the choice of the
discretizations α in the physical space and by β in the probability space, i.e., E[φ(y))] ≈Mα,β = Qm(β)[φα].
Of course, the ideal approximation Mα,β could be obtained by setting α1 = . . . = αd = ᾱ � 1 and
β1 = . . . = βN = β̄ � 1, but this is out of reach for even moderate values of d,N, ᾱ, and β̄, due to its
combinatorial computational cost. Instead, we resort in MISC to the classical “sparsification” construction,
which was already introduced in the literature for solving high-dimensional PDEs [14] and quadrature
problems [17].
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To this end, we need to introduce the so-called univariate and multivariate “detail operators” on the
physical and stochastic domains as follows, with the understanding that Mα,β = 0 when at least one
component of α or β is zero:

Univariate physical detail: ∆phys
i [Mα,β] = Mα,β −Mα−ei,β with 1 ≤ i ≤ d;

Univariate stochastic detail: ∆stoc
i [Mα,β] = Mα,β −Mα,β−ei with 1 ≤ i ≤ N ;

Multivariate physical detail: ∆phys[Mα,β] =

d⊗
i=1

∆phys
i [Mα,β];

Multivariate stochastic detail: ∆stoc[Mα,β] =

N⊗
j=1

∆stoc
j [Mα,β];

Mixed multivariate detail: ∆mix[Mα,β] = ∆stoc
[
∆phys[Mα,β]

]
.

Observe that taking tensor products of univariate details amounts to composing their actions, e.g.,

∆phys[Mα,β] =

d⊗
i=1

∆phys
i [Mα,β] = ∆phys

1

[
∆phys

2

[
· · ·∆phys

d [Mα,β]
] ]
,

and analogously for the stochastic multivariate detail operators, ∆stoc[Mα,β]. Crucially, this in turn implies
that the multivariate operators can be evaluated by evaluating certain full-tensor approximations Mα,β and
then taking linear combinations:

∆phys[Mα,β] = ∆phys
1

[
∆phys

2

[
· · ·∆phys

D [Mα,β]
] ]

=
∑

j∈{0,1}d
(−1)|j|Mα−j,β;

∆stoc[Mα,β] =
∑

j∈{0,1}N
(−1)|j|Mα,β−j.

The latter expression is known in the sparse-grids community as “combination-technique”, and can be very
useful for practical implementations, especially for evaluating ∆phys[Mα,β]: indeed, it allows to evaluate
detail operators by calling pre-existing softwares on different meshes (in this case, IGA solvers) up to 2d

times in a “black-box” fashion. As an example, if d = 2, then

∆phys[Mα,β] = ∆phys
2

[
∆phys

1 [Mα,β ]
]

= ∆phys
2 [Mα,β −Mα−e1,β]

= Mα,β −Mα−e1,β −Mα−e2,β +Mα−1,β.

We remark that the four meshes needed to evaluate the combination-technique expression above are possibly
anisotropic, i.e., they may have different levels of discretization along the different physical directions. A
similar expression holds for the stochastic details, as well as for the mixed details. Specifically, evaluating
∆stoc[Mα,β] requires evaluating up to 2N operators Mα,β over different quadrature grids, and evaluating
∆mix[Mα,β] requires requires evaluating up to 2d+N operators Mα,β over different quadrature grids and
physical meshes. For instance, if d = N = 2, then

∆stoc[Mα,β] = Mα,β −Mα−e1,β −Mα−e2,β +Mα−1,β;

∆mix[Mα,β] = ∆stoc[∆phys[Mα,β]]

= ∆stoc[Mα,β −Mα−e1,β −Mα−e2,β +Mα−1,β]

= Mα,β −Mα−e1,β −Mα−e2,β +Mα−1,β

− (Mα,β−e1
−Mα−e1,β−e1

−Mα−e2,β−e1
+Mα−1,β−e1

)

− (Mα,β−e2
−Mα−e1,β−e2

−Mα−e2,β−e2
+Mα−1,β−e2

)

+Mα,β−1 −Mα−e1,β−1 −Mα−e2,β−1 +Mα−1,β−1.
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Observe that by introducing these operators we have access to a hierarchical decomposition of Mα,β; indeed,
the following is a telescopic identity

Mα,β =
∑

[i,j]≤[α,β]

∆mix[Mi,j],

i.e., it can be easily verified by replacing each term ∆mix[Mi,j] with the the corresponding combination-
technique formula that all terms except Mα,β will cancel. For instance, recalling that by definition Mi,j = 0
when either i = 0 or j = 0, if d = N = 1 we have∑

[i,i]≤[2,2]

∆mix[Mi,j ] = ∆mix[M1,1] + ∆mix[M1,2] + ∆mix[M2,1] + ∆mix[M2,2] (6)

= M1,1 + (M1,2 −M1,1) + (M2,1 −M1,1) +M2,2 −M2,1 −M1,2 −M1,1

= M2,2.

The crucial observation is that (under suitable regularity assumptions on u), not all of the details in the
above hierarchical decomposition contribute equally to the approximation, i.e., they can be discarded and
the resulting formula will retain good approximation properties at a fraction of the computational cost.
Thus, we introduce the MISC approximation of E[φ] as

IMISC
Λ =

∑
[α,β]∈Λ

∆mix[Mα,β],

for a suitable multi-index set Λ ⊂ Nd+N , which should be chosen as downward closed, see (1). Clearly, the
MISC estimator has a combination-technique expression as well, which can be written in compact form as

IMISC
Λ =

∑
[α,β]∈Λ

∆mix[Mα,β] =
∑

[α,β]∈Λ

∑
[i,j]∈{0,1}d+N
[α+i,β+j]∈Λ

(−1)|[i,j]|Mα,β, (7)

which means that again we can evaluate MISC by evaluating full-tensor operators Mα,β independently and
combining them linearly according to (7).

Of course, the effectiveness of the MISC estimator depends on the choice of the multi-index set Λ; the
general principle underlying the “sparse” construction is that Λ should be chosen to exclude isotropic full-
tensor operators from the estimate, i.e., those operators that simultaneously refine both the mesh on the
physical domain and the quadrature grid on the stochastic domain. Rather, indices that refine only a subset
of the physical and/or stochastic directions should be chosen, and then the combination-technique formula
should be used to combine the partial results; this general idea is exemplified in Figure 4. In a sense, the
sparsification approach can be considered a Richardson extrapolation method, in the sense that an ensemble
of coarse approximations are combined in such a way that the result is more accurate than each of the
components alone. A simple yet quite effective choice of Λ that keeps to a minimum the number of isotropic
full-tensor operators to be computed is the so-called “total-degree” set [14, 38]

ΛTD(κ, g, w) =

{
[α,β] ∈ Nd+N :

d∑
i=1

κiαi +

N∑
i=1

giβi ≤ w

}
, for some w ∈ N, (8)

where κi, gi are positive real values that can be used to allow more refinement along selected physical or
stochastic directions (the smaller the coefficient, the larger the maximum refinement level allowed along that
specific direction). For instance, if d = N = 1, w = 2, and the weights are chosen as κi, gi = 1, we have the
set ΛTD(1, 1, 2) =

{
[i, j] ∈ N2 : i+ j ≤ 2

}
, which amounts to∑

[i,j]∈ΛTD(1,1,2)

∆mix[Mi,j ] = ∆mix[M1,1] + ∆mix[M1,2] + ∆mix[M2,1]

= M1,1 + (M1,2 −M1,1) + (M2,1 −M1,1)

= M1,2 +M2,1 −M1,1.
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Anisotropic full-tensor operators Mα,β for MISC

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: A full-tensor method requires sampling the stochastic domain with an isotropic Cartesian grid, and solving the
PDE on a mesh refined along all physical directions for each sample, see top row. Instead, the MISC method requires that
the stochastic domain be sampled with anisotropic Cartesian grids, and the PDE be solved on anisotropic meshes in space,
which are combined in such a way that not all the physical and stochastic directions are simultaneously refined: some meshes
satisfying this principle are shown in the second and third row. The results need to be linearly combined according the
combination-technique formula in (7).

A similar choice of set Λ, i.e., total-degree sets with all weights set to 1, was advocated also in [39, 22]. The
last expression should be contrasted with (6), and shows that the most refined operator, M2,2, no longer
needs to be computed. To devise an optimal strategy for selecting a good multi-index set, we introduce the
error decomposition

|E[φ]− IMISC
Λ | =

∣∣∣E[φ]−
∑

[α,β]∈Λ

∆mix[Mα,β]
∣∣∣

=
∣∣∣ ∑

[α,β]6∈Λ

∆mix[Mα,β]
∣∣∣ ≤ ∑

[α,β]6∈Λ

∣∣∆mix[Mα,β]
∣∣ ≤ ∑

[α,β]6∈Λ

Eα,β, (9)

where we have defined Eα,β =
∣∣∆mix[Mα,β]

∣∣; Eα,β thus represents the “error contribution” of [α,β], i.e.,
the reduction in the approximation error due to having added [α,β] to the current index-set Λ. Similarly,
we define the “work contribution” Wα,β as the work required to add [α,β] to the current index-set Λ, for
instance, summing the degrees of freedom of all the new PDEs that need to be evaluated due to the addition
of [α,β]. Thus, it can be easily seen that the strategy that delivers the best choice of Λ consists of adding

to Λ only the set of multi-indices with the largest profit Pα,β =
Eα,β

Wα,β
[11, 12]:

Λε =

{
[α,β] ∈ Nd+N :

Eα,β
Wα,β

≥ ε
}
, for some ε > 0. (10)

Such a set can be determined by classic adaptive algorithms such as those discussed for quadrature problems
in [40, 41, 42], or according to a-priori bounds on the size of Eα,β, Wα,β; in this work, we consider the
latter approach. In particular, all the problems considered in the numerical sections consist of elliptic PDEs,
for which an expression of the optimal Λ was derived in [11], under the assumptions that the problem
depends on uniform random variables and that the univariate quadrature operator used on the stochastic
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domain is built over Clenshaw–Curtis points. In detail, for some positive real values ri, ci, i = 1 . . . , d and
gj , j = 1 . . . , N that we will define in a moment, the following bounds were introduced in [11]:

Eα,β = O(Ẽα,β), Ẽα,β = 2−
∑d
i=1 αiri−

∑N
i=1 gi2

βi log2 e, (11)

Wα,β = O(W̃α,β), W̃α,β = 2
∑d
i=1 αici+

∑N
i=1 βi , (12)

from which the following expression for (10) can be derived:

ΛOP (r, c, g, w) =

{
[α,β] ∈ Nd+N :

d∑
i=1

(ri + ci)αi +

N∑
i=1

(βi + gi2
βi log2 e) ≤ w

}
, for some w ∈ N, (13)

which is reminiscent of the total-degree set (8). The coefficients ri, ci, i = 1 . . . , d and gj , j = 1 . . . , N
are defined as follows, and can either be determined a-priori or learnt during the execution of the MISC
algorithm:

• r1, . . . , rd are the h-convergence rates of the PDE solver for the approximation of φ(y) for a fixed y,
i.e.,

|φα(y)− φ(y)| ≤ C
d∏
i=1

N−riel,i = C

d∏
i=1

2−αiri , (14)

where αi can be determined a-priori by standard finite element theory, keeping into account possible
corner/edge singularities as well as grading of meshes which may be introduced to mitigate the effects
of such singularities; see, e.g., [43, 44]. However, as already mentioned, we will measure ri numerically.

• c1, . . . , cd are the rates of the increase of the cost of computing the approximation of φ(y) for a fixed
y as the physical mesh becomes finer,

cost[φα(y)] ≤ C
d∏
i=1

2αici . (15)

This cost is dominated by assembling and solving the linear system, since evaluating linear functionals
of the solution is typically very cheap (e.g., a matrix-vector multiplication). We mention in-passing
that relating the cost of assembling and solving the IGA linear system to the number of degrees of
freedom is a delicate operation, see e.g. [45]; we simply fit these rates from numerical experiments.

• g1, . . . , gN are the decay rates of the following bound on coefficients of the multivariate Legendre
expansion of φ(y):

φ(y) =
∑
i∈NN

φ̂iLi(y), |φ̂i| ≤ Ce−
∑N
n=1 gnin .

In practice, we use the implementation reported in Algorithm 1. The stopping criterion in Algorithm 1
above consists of checking that the sum of the error contributions in the margin of the index set Λ, see (2),
is smaller than the required tolerance, ∑

[α,β]∈Mar(Λ)

Eα,β < TOL. (16)

This choice of criterion is motivated by the error decomposition in (9), where we further approximate the
error bound by

|E[Φ(u)]− IMISC(u)| ≤
∑

[α,β]6∈Λ

Eα,β ≈
∑

[α,β]∈Mar(Λ)

Ẽα,β.

The approximation above is only reasonable if the size of the details Eα,β decreases quickly enough, which
is true under sufficient smoothness hypotheses for the problem at hand both with respect to the physical
variables and the random variables; see, e.g., [46].
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Algorithm 1: MISC implementation

Multi Index Stochastic Collocation(r1, . . . , rd, c1, . . . , cd, w0,TOL)
Λ = ΛTD(1,1, w0) ;

Compute MISC estimate IMISC
Λ as in (7) ;

Least squares fit of rates gi in (11) with Eα,β for [α,β] ∈ Λ ;

Compute Ẽα,β, W̃α,β as in (11), (12), and P̃α,β = Ẽα,β/W̃α,β for [α,β] ∈ Mar(Λ) ;

while
∑

[α,β]∈Mar(Λ) Ẽα,β > TOL do

Θ =

{
[α,β] ∈ Red(Λ) : P̃α,β = max

[α,β]∈Red(Λ)
{P̃α,β}

}
;

Λ = Λ ∪Θ ;

Compute MISC estimate IMISC
Λ as in (7) ;

Least squares fit of rates gi in (11) with Eα,β for [α,β] ∈ Λ ;

Compute Ẽα,β, W̃α,β as in (11), (12), and P̃α,β = Ẽα,β/W̃α,β for [α,β] ∈ Mar(Λ) ;

end

end

5. Numerical results

In this section, we illustrate the performance of the MISC methodology using some numerical examples.
The random variables are considered to be uniformly distributed, and therefore we employ Clenshaw–Curtis
quadrature points for the approximation over the stochastic space. Computational times were recorded on
single-core runs of MISC on a workstation equipped with Intel Xeon E5 processors with a clock rate of
2.8 GHz and an Ubuntu 16.04 operative system. The IGA solver used is provided by the Matlab/Octave
package GeoPDEs, available at http://rafavzqz.github.io/geopdes/, see also [47].

5.1. Test 1 - 3d linear elliptic PDE with random diffusion coefficient

In this test we consider a classic UQ benchmark, i.e., a linear elliptic PDE with random diffusion
coefficient, for which a vast body of literature exist, see e.g. [23, 48] and references therein,{

−div[a(x,y)∇u(x,y)] = 1 x ∈ B,
u(x,y) = 0 x ∈ ∂B.

We consider the “thick quarter of ring” in Figure 5-top-left as physical domain; this shape is a typical
benchmark geometry in the IGA literature. The random vector y is composed of N = 3 i.i.d. uniform
random variables, yi ∼ U(−1, 1), i.e., Γ = [−1, 1]3. The random field a(x,y) models the variability in the
properties of the material, e.g., uneven heat capacity due to imperfections. Because of the peculiar shape
of the computational domain, we express the random field in cylindrical coordinates:

a([ρ, θ, z],y) =ec γ([ρ,θ,z],y), with c = 4 and

γ([ρ, θ, z],y) =y1 sin (2θ) sin (π(ρ− 1)) sin (πz) +

0.4y2 sin (8θ) sin (π(ρ− 1)) sin (πz) +

0.1y3 sin (16θ) sin (π(ρ− 1)) sin (πz) .

The expression for γ([ρ, θ, z],y) mimics the expression that one would obtain by applying a spectral de-
composition like Fourier [49] or Karhunen–Loève [50] to a random field and then truncating it to retain
only the most important modes. Three different realizations of the random field can be seen in Figure 5.
Note the different scales of the point-wise values of the realizations (due to the magnifying effect of the
exponential operation in the definition of the random field), as well as the differences among the frequencies
of oscillations. By construction, there exist two real values 0 < m < M such that m < a([ρ, θ, z],y) < M for
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Figure 5: Test 1. Computational domain (top-left) and three different realizations of the random field.

ρ-almost every y ∈ Γ, which guarantees that the problem is well-posed in V = H1
0 (B), and that there exists

an optimally convergent approximation of u in L2
ρ(Γ;V ) as well as L∞ρ (Γ;V ) based on either ρ-orthonormal

polynomials or interpolation processes; see, e.g., [5, 51]. We are interested in computing the expected value
of the integral of the solution over the physical domain, Φ(v) =

∫
B v(x, ·)dx,∀v ∈ V .

Concerning the IGA solver, note that the computational domain in this example cannot be described
exactly by B-splines, because some of the edges are circle arcs. Therefore, as already pointed out in Section
3, we resort to using NURBS basis functions instead of B-splines, which however does not imply any change
in the MISC procedure. Specifically, we employ NURBS of degree p = 2 and maximal continuity, C1;
incidentally, note that this means that a degree-elevation operation (i.e., p-refinement) will have to be
performed prior to actually starting the MISC computation, since the “thick quarter of ring” geometry
is defined by linear polynomials in two out of three parametric directions. The knots in the parametric
domain are not uniform; rather, they are scaled towards the edges of the domain according to a power law
with exponent set to 3 to capture the edge singularities of the PDE solution for fixed y, and thus improve
the convergence of the solution as the mesh-size decreases. We chose the exponent based on a numerical
exploration aimed at recovering the optimal convergence of the IGA solver on analogous problems (albeit
without randomness), see [28] and references therein for more details. For a fixed realization of the random
field, the Galerkin stiffness matrix is typically less sparse for B-splines and NURBS than for finite elements
(due to the larger support of B-splines/NURBS, which is proportional to the degree p, [45]), so we employ
a direct solver (Matlab’s backslash).

We will compare the convergence results of MISC with two different multi-level methods, namely, the
Multi-Level Monte Carlo (MLMC, [8]) in the implementation proposed in [52], and its refined version Multi-
Index Monte Carlo (MIMC, [9]).

The convergence of MLMC and MIMC for elliptic PDEs with random coefficients was discussed respec-
tively in [8] and in [9] and depends on the rates ri, ci in (14) and (15). We have found numerically that ri, ci
have approximate values of ri = [4, 4, 4] and ci = [1, 1, 1], which implies that the computational cost for
reaching an accuracy TOL is expected to be O(TOL−2) for both MLMC and MIMC, see [8, 9] for details.
This is the optimal rate for sampling schemes, i.e., most of the sampling is done on the coarsest mesh levels,
such that the computational cost is “equivalent to sampling a random variable” (of course, up to the cost
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Figure 6: Test 1. Left: Convergence results. Right: Consistency of stopping criterion; the error has been computed against a
sufficiently refined MISC solution. Markers for MLMC and MIMC show the value of the error attained for each method run.
We have enforced that the error for MLMC and MIMC should be less than TOL with 95% probability (asymptotically).

of solving the linear system corresponding to the coarsest levels, which is still non-negligible). The cost
of a standard Monte Carlo analysis where, for an assigned tolerance TOL, we choose a physical mesh and
a number of samples in the stochastic domain such that both the deterministic and statistical errors are
smaller than TOL/2, would instead be proportional to O(TOL−2.75); see, e.g., [8].

Concerning MISC, convergence results are available in [11] for the case of a PDE depending on a finite
number of random variables (as is the case in the current example) and in [12] for the case of a PDE depending
on a countable sequence of random variables. The convergence result for finitely many random variables in
[11] depends on the rates ri, ci only, i.e., gi do not play any role; in other words, the approximation over the
probability space by tensorized quadrature is expected to converge fast enough that it would not impact
the overall convergence rate. More precisely, the result in [11] predicts for the a-priori chosen set in (13) the
asymptotic convergence estimate

|E[Φ(u)]− IMISC(u)| ≤ CWork−4(log Work)10,

which would in turn imply that the computational cost of reaching an accuracy TOL is expected to be
asymptotically O(TOL−1/4) up to logarithmic terms.

We report the computational results in Figure 6-left. On the horizontal axis we show the tolerance, TOL,
which is used in the stopping criterion of each algorithm, and on the vertical axis the recorded computational
time: thus, the flatter the convergence curve, the more effective the method, i.e., moving to smaller tolerance
does not require a dramatic increase in the computational time. Of course, the implicit assumption behind
this plot is that the error actually achieved once the algorithm stops is similar in size to the tolerance
enforced as stopping criterion. For MLMC and MIMC, this is guaranteed with “high probability” by the
choice of number of samples per mesh, while for MISC we employ the criterion in (16); see Figure 6-right
for the effectiveness of these stopping criteria.

We observe from the numerical results that the convergence rates of MLMC and MIMC are roughly 2,
in agreement with the theory discussed above. Observe also that the performances of MLMC and MIMC
are very close, due to the fact that the convergence of the IGA approximation of the physical problem is
very fast (ri = 4), hence sampling the physical problem over anisotropic meshes in space does not provide
as significant advantage. MISC features instead a convergence rate of roughly 1/4, as discussed above, after
a substantial pre-asymptotic regime which was also expected. Moreover, MISC has a significantly smaller
error, which testifies its superior performance compared to the other methods reported, in agreement with
previous numerical investigations reported in [11, 12].

14



Figure 7: Test 2. Left: Undeformed geometry with Q marked by a red dot. Right: Deformation for a random value of the
Lamè parameters.

5.2. Test 2 - 3d linear elasticity PDE with uncertain Lamé parameters

In this test we consider a slightly more complex problem than in the previous test, i.e., a linear elastic
equation, whose strong form reads

−div[σ(u(x,y))] = f(x) x ∈ B,
u(x,y) = 0 x ∈ ∂Bclamped,

σ(u(x,y)) · n = 0 x ∈ ∂Bfree.

Although still elliptic in nature, this problem is computationally more demanding than the previous case
because the unknown is now the tri-dimensional displacement field u : B → R3. The quantity σ(u(x,y))
is the Cauchy stress tensor which, upon assuming that the body is undergoing small deformations, can be
related to the displacement u as

σ(u(x,y)) = 2µ(y)
∇u + [∇u]T

2
+ λ(y)div(u)I,

where µ, λ are the Lamé constants and I ∈ R3×3 is the identity matrix. The Lamé constants encode the
mechanical properties of the material and in this test they are assumed to be random variables, to model
imperfect knowledge of such properties. One notable practical example in which this might occur is 3d-
printing, where the printer manufacturer guarantees such properties only within a confidence range; see, e.g.,
https://www.eos.info/material-m . In our experiments, we consider typical value ranges for titanium.
More specifically, we consider the following ranges for the Young’s modulus E and the Poission’s ratio ν,

E ∼ U(105× 109 Pa, 120× 109 Pa), ν ∼ U(0.265, 0.34),

and then link these to the Lamè parameters by the well-known equations

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
.

Finally, we let y1, y2 ∼ U([−1, 1]), and y1 → E, y2 → ν by linear maps. We consider the “horse-shoe” domain
in Figure 7-left as computational domain B. The bottom end z = 0 is kept fixed (Bclamped in the equation)
and the rest of the body is free of any constraints (Bfree in the equation). The body is pulled upward by a
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Figure 8: Test 2, computational results. Left: convergence results. Right: consistency of stopping criterion; the error has been
computed against a sufficiently refined MISC solution.

vertical force f = [0, 0, 106] N/m3, and we are interested in computing the expected elongation measured at
Q, the point marked by a red dot in Figure 7-left, i.e., Φ(u) = u(Q); an example of deformation obtained
by two random values of the Lamè parameters is shown in Figure 7-right (magnified by a factor suitable to
make it visible in a plot). It is straightforward to see that the problem is well-posed for ρ-almost every y ∈ Γ
in the vector-valued Hilbert space V = [H1(B)]3. As in Test 1, the IGA solver is set to use NURBS of degree
p = 2 with maximal continuity everywhere except along the ridge of the horseshoe, and power-law-scaled
knots in the parametric domain. The rates ri, ci are assessed numerically as ri = [2.5, 2.5, 2.5], c1 = [1, 1, 1],
implying convergence O(TOL−2) for MIMC and MLMC, O(TOL−3) for Monte Carlo and O(TOL−0.4) up
to preasymptotic and logarithmic terms for MISC. Results are shown in Figure 8, and again confirm the
predicted rates and show that MISC is significantly better than MIMC. We omit the convergence results for
MLMC, which, as in the previous test, is expected to converge with a trend analogous to MIMC.

We conclude the discussion on this test by mentioning in-passing that in a sense we are artificially
increasing the complexity of the problem by using the Lamè parameters instead of the Young’s Modulus and
Poisson’s ratio. Indeed, since both Lamé constants depend linearly on the Young Modulus E, the solution
is inversely proportional to E, given the linearity of the PDE at hand. Thus, φ(E, ν) = 1/E × φ∗(ν) and
therefore the MISC algorithm could be used over four indices (three in space and one for ν) instead of five.
Nonetheless, we choose the formulation with five indices because our goal is to showcase the computational
efficiency of MISC in high-dimensional problems.

6. Conclusions

In this paper we extended the MISC methodology for solving elliptic PDEs with random coefficients
to non-square domains by using isogeometric analysis (IGA) solvers, which fit perfectly into the MISC
framework due to their tensor-structure construction. Observe that in principle any tensor method able to
deal with non-square geometries in a tensorized fashion, such as Finite Differences, Finite Volumes, and Qk
finite element on hexahedral meshes could be used as well. We have shown the effectiveness of MISC-IGA
using a few numerical test cases. Research directions currently under investigations that could benefit from
this approach are:

• forward UQ problems on domains with uncertain shape (and as a further step, shape optimization
under uncertainty): indeed, the B-splines/NURBS representation of a geometry allows us to describe
deviations from a nominal domain in a very straightforward manner.

• UQ problems defined on unions of disjoint subdomains (“patches” in the IGA literature). In this case,
MISC could be allowed to choose different meshes in each subdomain, resulting in anisotropic meshes
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that would refine only a few of the subdomains. The resolution of the PDE on the corresponding
non-conformal meshes could be performed by resorting to e.g. Lagrange multipliers [53, 54, 55] or
discontinuous Galerkin methods [56, 57, 58] to enforce continuity at the interfaces of the subdomains.
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[13] H.-J. Bungartz, M. Griebel, D. Röschke, C. Zenger, Pointwise convergence of the combination technique for the Laplace
equation, East-West J. Numer. Math. 2 (1994) 21–45.

[14] H. Bungartz, M. Griebel, Sparse grids, Acta Numer. 13 (2004) 147–269.
[15] M. Griebel, M. Schneider, C. Zenger, A combination technique for the solution of sparse grid problems, in: P. de Groen,

R. Beauwens (Eds.), Iterative Methods in Linear Algebra, IMACS, Elsevier, North Holland, 1992, pp. 263–281.
[16] M. Hegland, J. Garcke, V. Challis, The combination technique and some generalisations, Linear Algebra and its Applica-

tions 420 (23) (2007) 249 – 275.
[17] S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk

SSSR 4 (1963) 240–243.
[18] V. Barthelmann, E. Novak, K. Ritter, High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math.

12 (4) (2000) 273–288.
[19] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, 2nd Edition, Vol. 37 of Texts in Applied Mathematics,

Springer-Verlag, Berlin, 2007.

17



[20] A. L. Teckentrup, P. Jantsch, C. G. Webster, M. Gunzburger, A Multilevel Stochastic Collocation Method for Partial
Differential Equations with Random Input Data, SIAM/ASA Journal on Uncertainty Quantification 3 (1) (2015) 1046–
1074.

[21] H. W. van Wyk, Multilevel sparse grid methods for elliptic partial differential equations with random coefficients, arXiv
arXiv:1404.0963, e-print (2014).

[22] H. Harbrecht, M. Peters, M. Siebenmorgen, On multilevel quadrature for elliptic stochastic partial differential equations,
in: Sparse Grids and Applications, Vol. 88 of Lecture Notes in Computational Science and Engineering, Springer, 2013,
pp. 161–179.
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