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Abstract. Deterministic interpolation and quadrature methods are often unsuitable to address
Bayesian inverse problems depending on computationally expensive forward mathematical models.
While interpolation may give precise posterior approximations, deterministic quadrature is usually
unable to efficiently investigate an informative and thus concentrated likelihood. This leads to a
large number of required expensive evaluations of the mathematical model. To overcome these
challenges, we formulate and test a multilevel adaptive sparse Leja algorithm. At each level, adaptive
sparse grid interpolation and quadrature are used to approximate the posterior and perform all
quadrature operations, respectively. Specifically, our algorithm uses coarse discretizations of the
underlying mathematical model to investigate the parameter space and to identify areas of high
posterior probability. Adaptive sparse grid algorithms are then used to place points in these areas,
and ignore other areas of small posterior probability. The points are weighted Leja points. As the
model discretization is coarse, the construction of the sparse grid is computationally efficient. On this
sparse grid, the posterior measure can be approximated accurately with few expensive, fine model
discretizations. The efficiency of the algorithm can be enhanced further by exploiting more than two
discretization levels. We apply the proposed multilevel adaptive sparse Leja algorithm in numerical
experiments involving elliptic inverse problems in 2D and 3D space, in which we compare it with
Markov chain Monte Carlo sampling and a standard multilevel approximation.
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1. Introduction. Mathematical models in science and engineering often require
input parameters which cannot be observed directly, yet these parameters are required
for predictions based on the model. A standard procedure is to estimate the inputs
from indirect observations, which is known as an inverse problem. In contrast, the
corresponding forward problem maps from the parameter to the observation space.

In many applications, for instance the geosciences or medical sciences, the ob-
servations are noisy and their number is insufficient to identify a unique associated
parameter value. The Bayesian approach to inverse problems [21, 41, 43] provides
a consistent mechanism to combine noisy or incomplete data with prior knowledge,
and to quantify the uncertainty in the parameter estimate. The prior knowledge is
incorporated into a probability distribution over the parameter space; this is termed
prior (measure) µ0. The Bayesian solution to the inverse problem is then the posterior
(measure) µy arising from conditioning the prior µ0 on the observations. Unfortu-
nately, the posterior is often intractable in the sense that it does not admit closed
form analytic expressions. Hence approximations have to be used in practice.

Sampling-based posterior approximations such as Markov chain Monte Carlo
(MCMC) [1] or Sequentical Monte Carlo (SMC) [7] do not rely on the smoothness of
the parameter-to-observation map, and can be conducted in high-dimensional param-
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eter spaces. The drawback is that without exploiting smoothness or low-dimensional
structure in the parameter space often a prohibitive number of samples are required
to obtain the desired accuracy. Since each sample entails the evaluation of the for-
ward map, the total cost of the Bayesian inversion becomes prohibitive if the forward
model is specified by a partial differential equation (PDE), and is thus computation-
ally expensive. In recent years, many works suggested computationally feasible, yet
accurate approximations of the posterior. In this work we focus on sampling-free ap-
proximations for computationally expensive problems for parameter spaces of small
to moderate dimension. We assume that the prior and posterior have a probability
density function with respect to (w.r.t.) the Lebesgue measure and approximate the
posterior density using sparse grid interpolation and sparse grid quadrature.

Sampling-free approaches often involve surrogates for the forward response oper-
ator to decrease the computational cost. Typical surrogates are based on generalized
polynomial chaos [10, 26, 30, 47], sparse grids [3, 5, 28, 36, 37, 38], Gaussian pro-
cess regression [22, 42], model reduction [13, 24, 27], and combinations, e.g., sparse
grids and reduced bases [3, 4]. To obtain an accurate (and convergent) approxima-
tion, these surrogates require certain types of smoothness of the response surface or
likelihood function w.r.t. the input parameters. The smoothness assumptions can
be weakened by using piecewise polynomial approximations together with Voronoi
tesselations of the parameter space [31]. Of course, surrogates can also be used to ac-
celerate sampling-based approximations such as MCMC, see e.g., [26, 33]. We remark
that Quasi-Monte Carlo [8, 35] is in principle a sampling-free method which does not
rely on surrogates, however, it requires again a smooth approximand, and is often
used together with randomization.

Theoretical analysis shows that if the surrogate converges to the forward model
at a specific rate w.r.t. the prior weighted L2-norm, then the approximate posterior
converges to the exact posterior with at least the same rate [30, 41]. This result
has been improved recently in [46] where it was showed that the convergence rate
of the posterior approximation is at least twice as large as the convergence rate of
the surrogate, for general priors. However, constructing an accurate surrogate over
the entire support of the prior might not be feasible and is in fact often unnecessary.
Indeed, in inference problems where the data is informative, the posterior differs
significantly from the prior, and is supported only in a small part of the prior support.
This suggests to adapt and localize the surrogate construction to the support of the
posterior. We adopt this approach in our work and construct multilevel, adaptive
surrogates with localized support using adaptive sparse grid approximations.

The idea of posterior-focused surrogates is not new, it has however received little
attention to date in the literature. Li and Marzouk [26] borrow ideas from statistics
and construct an efficient polynomial chaos surrogate associated with a density that
minimizes the cross entropy between the posterior and a family of multivariate normal
distributions. Jiang and Ou [20] suggest a two-stage surrogate based on generalized
multiscale finite elements and least-squares stochastic collocation. Yan and Zhou [47]
propose a multifidelity polynomial chaos surrogate which combines a large number
of inexpensive low-fidelity model evaluations with a small number of expensive high-
fidelity model evaluations, following the idea of multifidelity approximations [34].

One challenge of posterior-focused surrogates is the need to handle arbitrary den-
sities which can deviate significantly from the prior which is usually a classical density
such as uniform or Gaussian. We address this by constructing adaptive sparse grid
approximations based on weighted (L)-Leja sequences (see, e.g., [16, 32]). Note that
sparse grid approximations with Leja points have been devised for forward uncer-
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tainty propagation in [11, 12, 14, 32]. In [11] the adaptive construction of the points
is guided by sensitivity scores, and the strategy is applied in plasma microturbulence
analysis. In [14] the Leja points are constructed with the help of an adjoint-based
error indicator. The use of Leja points to approximate posterior densities is a novel
contribution to the literature. Leja points offer further computational advantages
since they are nested and thus allow to reuse (expensive) model evaluations.

We address the possible high-dimensional parameter space in Bayesian inversion
by the use of multilevel approximations. At each level, dimension-adaptive sparse
grids [6, 15, 32] are employed, either in standard form, or using directional variances to
better exploit anisotropies in the parameter space. In particular, at the first level, our
algorithm uses a coarse discretization of the given model to investigate the parameter
space and to identify areas of high posterior probability. Adaptive algorithms are
then used to place weighted (L)-Leja points in these areas, and ignore other areas
of small posterior probability. Starting with the second level, we sequentially update
the prior such that the previous sparse grid approximation of the posterior is reused.
In this way, the current posterior measure can be approximated accurately with few
expensive, finer model discretizations. We point out that sparse grid approximations
are based on point sequences in one dimension. However, starting with the second
level the posterior densities are in general not separable and hence we cannot rely
on a simple tensorization of univariate Leja points. Instead we construct Leja points
w.r.t. a Gaussian approximation of the posterior, which is separable, and we then
correct the bias introduced by this approximation in quadrature computations.

The remainder of this paper is structured as follows. In section 2 we provide the
necessary background information. In particular, in subsection 2.1 we formulate the
Bayesian inverse problem and discuss the computation of posterior expectations by im-
portance sampling. Subsection 2.2 reviews multilevel approaches, and subsection 2.3
discusses generalized sparse grids. Section 3 contains the major contribution of our
work, the multilevel adaptive sparse Leja approximation to the posterior density in a
Bayesian inverse problem. This method is independent of the specific implementation
of the adaptive sparse grid approximations. Details on the used dimension-adaptive
approximations are given in section 4. In section 5, we present numerical results, com-
paring our multilevel algorithm with sampling methods and the classical multilevel
approach based on telescoping sums. Finally, section 6 offers concluding remarks.

2. Background.

2.1. Bayesian inversion. To begin we formulate the Bayesian inverse problem.
Let X ⊂ RNsto denote the parameter space. In addition, let Y = RNobs be a separable
Banach space that denotes the data space. Nsto is the dimension of the data space,
and Nobs is the number of observations. Notably, the parameter and data space are
finite-dimensional. This allows us to work with densities w.r.t. the Lebesgue measure.
The underlying mathematical model is formalized by a function G : X → Y , which
maps from the parameter space to the data space. Noisy observations y ∈ Y are
obtained. To model the noise we assume that y is a realisation of the random variable
G(θtrue) + η where η ∼ N(0,Γ) is non-degenerate Gaussian noise, and θtrue ∈ X is
the true parameter. In an inverse problem we wish to identify the parameter θtrue,
i.e., solve the equation

(2.1) G(θ) + η = y

for θ. This problem is typically ill-posed in the sense of Hadamard [18], due to
noise, and since the low-dimensional data space is often not sufficiently rich to allow
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the identification of a unique parameter in the high-dimensional space X. The ill-
posedness can be cured by reformulating (2.1) as a Bayesian inverse problem. Next,
we introduce our notation and briefly discuss Bayesian inversion, and refer to [41] for
more details.

We assume that θ is an X-valued random variable that is distributed according
to a prior measure µ0 with Lebesgue density π0 on the parameter space X. Moreover,
we assume that θ is stochastically independent of the noise η. The density π0 reflects
our knowledge about θ before we make an observation y. The information provided by
y is modelled by the (data) likelihood. Since the noise η is Gaussian by assumption,
the likelihood is given by

L(θ|y) := exp (−Φ(θ;y)) ,

Φ(θ;y) :=
1

2
‖Γ−1/2(y − G(θ))‖2.(2.2)

The function Φ is called potential or negative log-likelihood. The solution of the
Bayesian inverse problem is the posterior (measure) µy, i.e., the conditional measure
of θ given that the event {G(θ) + η = y} occurred. The posterior measure µy has
also a density πy which can be computed using Bayes’s formula:

πy(θ) =
L(θ|y)π0(θ)

Z(y)
, θ ∈ X, y ∈ Y,(2.3)

Z(y) =

∫
X

L(θ|y)π0(θ)dθ,

provided that 0 < Z(y) <∞. In the given setting (non-degenerate Gaussian additive
noise, finite dimensional data space), one can show that Z(y) is always finite and
bounded away from 0. This implies existence of the posterior measures, see [23].
The work [23] also establishes that Bayesian inverse problems of this type are always
well-posed.

Finally, let g : X → R denote a quantity of interest (QoI) depending on the
parameter θ. Since θ is a random variable, one is typically interested in the forward
propagation of uncertainties through the action of g. For instance, we wish to evaluate
integrals of g w.r.t. the posterior measure:

(2.4) Eµy [g] =

∫
X

g(θ)πy(θ)dθ.

In practice, we approximate integrals of this type via numerical quadrature. Note
that we can write the expected value in (2.4) in terms of a ratio of two expected
values w.r.t. the prior measure:

(2.5) Eµy [g] =
1

Z(y)

∫
g(θ)L(θ|y)π0(θ)dθ =

Eµ0
[g(·)L(·|y)]

Eµ0 [L(·|y)]
.

Note that the prior is typically much more accessible compared to the posterior, via
i.i.d. sampling or a closed form probability density function (pdf). If the two expected
values in (2.5) are approximated with samples from µ0, we refer to this method by
importance sampling. If the expected values are approximated with other numerical
quadrature rules, e.g., Quasi-Monte Carlo [35] or sparse grid quadrature [36, 38], we
refer to any of these methods as importance-sampling-based methods.
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2.2. Multilevel approximation of the quantity of interest. The approxi-
mation of the expected value Eµy [g] involves two sources of error: (i) the quadrature
error associated with the approximation of the measure µy, and (ii) the discretiza-
tion error associated with the approximation of g. The quadrature error is typically
controlled by the number of particles or grid points in the parameter domain. The
discretization error in g is often controlled by the mesh size in the physical domain. In
our setting, the evaluation of g typically involves a computationally expensive model,
e.g., a partial differential equation (PDE). If we wish to construct accurate approxi-
mations to Eµy [g], then g has to be discretized with a high resolution on a fine grid
in physical space, and g has to be evaluated for a large number of parameter values.
For these reasons the approximation of Eµy [g] is computationally demanding.

Multilevel methods provide a framework to approximate high-resolution problems
efficiently by combining evaluations from fine and coarse grid approximations. Specif-
ically, approximations based on quadrature and physical domain discretization grids
of complementary resolution are combined such that most computations are done on
coarse grids while fine grid approximations are evaluated only a limited number of
times. In this way, the overall computational cost is reduced, while the accuracy
is preserved. A large number of multilevel approaches for Bayesian inverse problems
proceed by using a telescoping sum based on the linearity of the expectation operator,
see, e.g., [9]. Alternatively, it is possible to construct a multilevel approximation with-
out relying on such a telescoping sum. Examples are the multifidelity preconditioned
MCMC method in [33], Multilevel Sequential2 Monte Carlo [25], and our multilevel
sparse Leja approximation presented in section 3.

2.3. Approximation with generalized sparse grids. We aim to approximate
posterior density functions with sparse grid interpolation and quadrature at each level
in our multilevel approach. To this end, we employ generalized, adaptive Smolyak
approximations [39]. Smolyak’s algorithm, also known as the combination scheme
[17], is a strategy to construct multivariate sparse grid approximations by weakening
the assumed coupling between the input dimensions (see, e.g., [6, 11]). We briefly
summarize Smolyak’s algorithm. For a more detailed overview of this approach and
its application in scientific computing, see [2, 44] and the references therein.

Let f i : Xi ⊂ R → R denote univariate functions, where i = 1, 2, . . . , Nsto. In
addition, let fNsto : X → R denote a multivariate function with a scalar output. For
example, fNsto could be the potential function, Φ(θ;y), or the QoI, g(θ). Let U i[f i]
for i = 1, 2, . . . , Nsto denote either univariate interpolation or integration operators
defined w.r.t. a weight function w : Xi → R+, which in our context is the ith
component of the prior density. Further, consider approximations U ik[f i] that converge
as k → ∞, where k is typically referred to as level. Starting from one-dimensional
difference or hierarchical surplus operators,

(2.6) ∆i
k[f i] := U ik[f i]− U ik−1[f i], i = 1, 2, . . . , Nsto,

with the convention ∆i
1[f i] := U i1[f i], Smolyak’s approximation formula reads

(2.7) UK[fNsto ] =
∑
k∈K

(∆1
k1 ⊗∆2

k2 ⊗ . . .⊗∆Nsto

kNsto
)[fNsto ] =

∑
k∈K

∆k[fNsto ],

where k := (k1, k2, . . . , kNsto
) ∈ NNsto is a multiindex and K is a finite set of multi-

indices. Note that by construction, (2.7) requires the underlying multivariate space,
X, as well as the corresponding weight function to be separable. When the weight
function is a density the stochastic parameters need to be independent.
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Since (2.7) is written in terms of tensorizations of univariate difference operators
(2.6) the set K must be constructed such that the summation in (2.7) telescopes
correctly. Suitable sets of multiindices K are called admissible (or downward closed ;
see [15]). In particular, for an admissible set K it holds that k ∈ K ⇒ k − ei ∈ K for
i = 1, 2, . . . , Nsto, where ei denotes the ith unit vector in RNsto .

To construct the approximations U ik[f i], we employ weighted (L)-Leja sequences
(see, e.g., [16, 32]). Given the weight function w : Xi → R+, weighted (L)-Leja
sequences are constructed recursively as follows:

θ1 = argmax
θ∈Xi

w(θ),

θn = argmax
θ∈Xi

w(θ)

n−1∏
m=1

(θ − θm), n = 2, 3, . . .
(2.8)

When w is the standard uniform density with support [0, 1], we choose θ1 = 0.5.
Note that the above point sequence is in general not uniquely defined, because (2.8)
might have multiple maximizers. In that case we simply pick one of the maximizers.
Weighted (L)-Leja sequences allow the construction of sparse grid approximations for
arbitrary probability densities. Moreover, they lead to accurate approximations with
low cardinality (see, e.g., [32]). To fully define (2.7), we need to specify the multiindex
set K as well. We construct K adaptively based on the dimension-adaptive algorithm
of [15, 19], which we outline in section 4.

2.4. Assumptions. As discussed in subsection 2.3, sparse grid approximations
require a tensor domain and a tensorized prior measure. Hence, we assume:

A1. The parameter space is a tensor product space, i.e.,

X =

Nsto⊗
i=1

Xi,

where Xi ⊂ R for i = 1, . . . , Nsto.

A2. The prior density π0 is separable, i.e.,

(2.9) π0(θ) =

Nsto∏
i=1

π0,i(θi),

where π0,i : Xi → R, i = 1, . . . , Nsto.

Assumption A1 can always be satisfied by embedding a non-tensorized parameter
space into a hyperrectangle of suitable dimension. Assumption A2 is fulfilled if the
components of θ are stochastically independent under the prior measure. If Assump-
tion A2 is not satisfied, the Gaussian approximation of π0 is needed (see section 3).

3. Multilevel sparse Leja algorithm. This section contains the major con-
tribution of our work. Our goal is to address the challenges of Bayesian inversion
in computationally expensive problems. To this end, we formulate a deterministic,
multilevel, sampling-free methodology based on sparse grids in which we sequentially
update the prior information as the level in the multilevel hierarchy increases.

Most computations in Bayesian inversion involve evaluations of the forward op-
erator, G(θ), which in this paper is assumed to be computationally expensive. When
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a large number of such evaluations is needed, the corresponding computational cost
is prohibitive. To reduce the cost, we employ multilevel approximations. At each
level, we construct sparse grid surrogates of the potential function Φ(θ;y). Our mo-
tivation is two-fold. First, evaluating Φ(θ;y) means evaluating the forward model,
G(θ) (see (2.2)), hence the computationally expensive part. Second, even if G(θ) is
vector valued, Φ(θ;y) is a scalar. Sparse grid approximations can be constructed
for vector-valued functions, however, a separate approximation is usually needed for
each output component, which can be infeasibly expensive. After the surrogate is
obtained, all other single level operations, which typically involve integration, employ
this surrogate, making them computationally cheap. In the following, we use the su-
perscripts in and qu to specifically refer to interpolation and quadrature, respectively,
whereas superscript op is used to refer to either of the two operations.

In this paper, the surrogates of the potential function are constructed via adap-
tive sparse grid interpolation, whereas all integration operations are performed using
adaptive sparse grid quadrature. The specific implementations do not influence the
formulation of our multilevel approach. Thus we assume we have two adaptive strate-
gies, AdaptSGInterp(tolin, K in

max, g, π) and AdaptSGQuad(tolqu, Kqu
max, g, π), which

depend on a tolerance, tolop. The other inputs are a maximum reachable sparse grid
level, Kmax, the target function, g, and the density function w.r.t.which the approx-
imation is performed, π. Note that specific implementations might have additional
input arguments, however the four inputs considered here are sufficient to illustrate
these algorithms. The adaptive strategies are summarized in section 4.

3.1. General setup. Let J > 1, J ∈ N, denote the number of levels in our
multilevel formulation. Further, let A ∈ {G,Φ, L, Z, πy} denote a generic quantity
depending on both physical and stochastic parameters. Let j = 1, 2, . . . , J . By hj we
characterize the discretization of the physical domain of the forward response operator
G(θ), where h1 is the coarsest and hJ the finest discretization level. Hence, by Aj we
denote the semi-discrete approximation of A depending on hj , whereas Aδj denotes
either Aj − Aj−1 or Aj/Aj−1. In addition, tolopj denotes the tolerance employed in
the adaptive sparse grid approximations of Aj such that

tolop1 ≤ tol
op
2 ≤ . . . ≤ tol

op
J .

Thus by Aj,s we denote the sparse grid approximation of Aj depending on tolops .
In our multilevel formulation, we determine Aj,J−j+1 for all j = 1, 2, . . . , J . To

simplify the notation we use the subscript `(j) to refer to (hj , tol
op
J−j+1) and the

subscript `(δj) to denote approximations A`(δj) ≈ Aδj . Hence we refer to the level j
in our multilevel approach by `(j) or `(δj). Note that levels are used to characterize
both sparse grid and multilevel formulations. To avoid confusion, we will explicitly
specify what is meant by level in each context.

3.2. Level `(1). At `(1) we compute the approximation Φ`(1)(θ;y) ≈ Φ1(θ;y)
using adaptive sparse grid interpolation w.r.t. the prior π0. This is possible since
π0 has a product structure by Assumption A2, see (2.9). The potential’s approxi-
mation Φ`(1)(θ;y) is used for L1(θ|y) ≈ L`(1)(θ|y) := exp (−Φ`(1)(θ;y)), the level
one likelihood surrogate. Afterwards, we employ L`(1)(θ|y) to compute the evidence
Z`(1)(y) ≈ Z1(y) via adaptive sparse grid quadrature w.r.t. the prior density π0.
Having computed L`(1)(θ|y) and Z`(1)(y) we apply formula (2.3) and obtain the pos-
terior at level `(1), πy`(1)(θ). In addition, we also compute the posterior expectation,



8 I-G. FARCAS, , J. LATZ, E. ULLMANN, T. NECKEL, AND H.-J. BUNGARTZ

m`(1) ∈ RNsto , where for i = 1, . . . , Nsto,

mi
`(1) := Z−1`(1)(y)

∫
X

θiL`(1)(θ|y)π0(θ)dθ

and covariance matrix, C`(1) ∈ RNsto×Nsto , where for n, p = 1, . . . , Nsto,

Cnp
`(1) := Z−1`(1)(y)

∫
X

θnθpL`(1)(θ|y)π0(θ)dθ −mn
`(1)m

p
`(1),

which we need to construct the Gaussian approximation π̂y`(1)(θ) := N(m`(1),C`(1))

of πy`(1)(θ) at the second level `(2) (see subsection 3.3.1).

These steps are summarized in Algorithm 3.1. The first three inputs are the
spatial discretization parameter h1 and the tolerances for sparse grid interpolation
and quadrature, tolin1 and tolqu1 . Moreover, Kmax := (K in

max,K
qu
max) comprises the

maximum attainable sparse grid levels for the two adaptive operations. The last two
inputs are the potential function, Φ(θ;y), and the prior density, π0(θ).

Algorithm 3.1 Level One Adaptive Sparse Leja Algorithm for Bayesian Inversion

1: procedure Level1SparseLeja(h1, tol
in
1 , tol

qu
1 ,Kmax,Φ(θ;y), π0(θ))

2: Compute the potential’s surrogate via adaptive sparse grid interpolation

Φ`(1)(θ;y) = AdaptSGInterp(tolin1 ,K
in
max,Φ1, π0)

3: Construct the likelihood surrogate L`(1)(θ|y) := exp (−Φ`(1)(θ;y))
4: Compute the evidence via adaptive sparse grid quadrature

Z`(1)(y) = AdaptSGQuad(tolqu1 ,Kqu
max, L`(1), π0)

5: Compute the posterior

πy`(1)(θ) :=
π0(θ)L`(1)(θ|y)

Z`(1)(y)

6: Compute the expectation m`(1) of πy`(1)(θ) w.r.t. π0(θ)

7: Compute the covariance C`(1) of πy`(1)(θ) w.r.t. π0(θ)

8: return πy`(1)(θ),m`(1),C`(1)

9: end procedure

3.3. Level `(j) with j ≥ 2.

3.3.1. Gaussian approximation. At levels `(j) with j ≥ 2, we sequentially
update the prior density such that the previous level posterior, πy`(j−1)(θ), is used as

the prior; we detail the sequential update in subsection 3.3.2. To be able to construct
sparse grid approximations w.r.t. πy`(j−1)(θ), the underlying stochastic space needs

to have a separable density (recall Assumption A1). However, πy`(j−1)(θ) is usually

not separable. Therefore, we approximate πy`(j−1)(θ) with a density π̂y`(j−1)(θ) that

allows us to obtain the required product structure. In this paper, we approximate
πy`(j−1)(θ) with the Gaussian density π̂y`(j−1)(θ) defined as

(3.1) π̂y`(j−1)(θ) := N(m`(j−1),C`(j−1)),



MULTILEVEL ADAPTIVE SPARSE LEJA APPROXIMATIONS 9

where m`(j−1) and C`(j−1) are the expectation and covariance matrix of πy`(j−1)(θ).

In most cases C`(j−1) is not diagonal, i.e., π̂y`(j−1)(θ) does not have a product

structure. Nevertheless, from the spectral decomposition C`(j−1) = V DV −1, we have

C
1/2
`(j−1) = V D1/2V −1. We arrive at

(3.2) θ = T`(j−1)(ζ) := m`(j−1) +C
1/2
`(j−1)ζ ⇒ θ ∼ N(m`(j−1),C`(j−1)),

where ζ is a standard Gaussian random variable, i.e., ζ ∼ N(0, I).
Formula (3.2) allows to write a general multivariate Gaussian random variable

with correlated components as a mapping of a standard multivariate Gaussian ran-
dom variable, which has the desired product structure since the components of ζ are
uncorrelated and thus independent. In our context, we use (3.2) as follows. We first
generate 1D (L)-Leja points weighted w.r.t. the standard normal density, that is,
w(θ) := exp (−θ2/2)/

√
2π in (2.8). Moreover, since the maximization defined in (2.8)

is typically performed over a compact domain, we consider Xi := R ≈ [−4, 4]. For
quadrature, we compute 1D quadrature weights w.r.t. normalized Hermite polynomi-
als. We extend these constructions to Nsto dimensions via tensorization and employ
(3.2) to obtain the desired weighted (L)-Leja points. Note that T`(j−1) in (3.2) can
be seen as an affine transport map (see [29]).

3.3.2. Level update on tensor domain. We assume that πy`(j−1)(θ) for j ≥ 2

is not separable, hence we employ the Gaussian approximation (3.2) for all adaptive
sparse grid operations; if πy`(j−1)(θ) is separable, everything that follows is computed

directly using πy`(j−1)(θ) for all levels greater than two. Thus, we sequentially update

the prior in Bayes’ formula (2.3) such that we reuse the Gaussian approximation of
the posterior from the previous level, i.e.,

πyj (θ) :=
Lj(θ|y)π0(θ)

Zj(y)
=
Lj(θ|y)π0(θ)

Zj(y)

Lj−1(θ|y)

Lj−1(θ|y)

Zj−1(y)

Zj−1(y)

=
Lj−1(θ|y)π0(θ)

Zj−1(y)

Lj(θ|y)

Lj−1(θ|y)

Zj−1(y)

Zj(y)
=
πyj−1(θ)

Lj(θ|y)
Lj−1(θ|y)

Zj(y)
Zj−1(y)

≈
πy`(j−1)(θ)Lδj(θ|y)

Zδj(y)
=
π̂y`(j−1)(θ)Lδj(θ|y)

πy
`(j−1)

(θ)

π̂y
`(j−1)

(θ)

Zδj(y)
,

(3.3)

where Lδj(y) := Lj(y)/Lj−1(y) and Zδj(y) := Zj(y)/Zj−1(y). Note that in (3.3) we
correct the bias introduced by the Gaussian approximation of the posterior from the
previous level, π̂y`(j−1), with the ratio πy`(j−1)/π̂

y
`(j−1).

First, we construct an adaptive sparse grid interpolation surrogate Φ`(δj)(θ;y) of
Φδj(θ;y) w.r.t. the density π̂y`(j−1)(θ) because it holds

Lδj(θ|y) :=
exp (−Φj(θ;y))

exp (−Φj−1(θ;y))
= exp (−Φδj(θ;y)).

Recall that the mapping T`(j−1) defined in (3.2) allows us to use adaptive sparse
grid interpolation w.r.t. the Gaussian approximation π̂y`(j−1)(θ). To construct the

surrogate for the potential function Φδj(θ;y) we employ T`(j−1) and obtain

Φδj(θ;y) ≈ Φ`(δj)(T`(j−1)(ζ);y).
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Φ`(δj) gives the approximation L`(δj)(T`(j−1)(ζ)|y) := exp (−Φ`(δj)(T`(j−1)(ζ);y)).
To evaluate the ratio of evidences Zδj(y) we make use of (3.3), i.e.,

Zδj(y) =

∫
X

π̂yj−1(θ)Lδj(θ|y)
πyj−1(θ)

π̂yj−1(θ)
dθ

≈
∫
X

π̂y`(j−1)(T`(j−1)(ζ)) · L`(δj)(T`(j−1)(ζ)|y)) ·
πy`(j−1)(T`(j−1)(ζ))

π̂y`(j−1)(T`(j−1)(ζ))
dζ

(3.4)

and numerically integrate
(
L`(δj)π

y
`(j−1)/π̂

y
`(j−1)

)
◦T`(j−1) w.r.t. the density π̂y`(j−1)(θ)

via adaptive sparse grid quadrature to obtain the approximation Z`(δj)(y) ≈ Zδj(y).
Thus, at each level `(j) with j ≥ 2 we obtain the posterior approximation

πyj (θ) ≈ πy`(j)(θ) := Z−1`(δj)(y)πy`(j−1)(T`(j−1)(ζ))L`(δj)(T`(j−1)(ζ)|y)).

For all other quadrature computations, we proceed analogously to (3.4). To sim-
plify the notation, denote R`(j−1) := πy`(j−1)/π̂

y
`(j−1). Given an integrable function

g(θ), we integrate
∫
X
g(θ)πyj (θ)dθ, which reads as∫

X

g(T`(j−1)(ζ))L`(δj)(T`(j−1)(ζ)|y))R`(j−1)(T`(j−1)(ζ))π̂y`(j−1)(T`(j−1)(ζ))dζ,

via adaptive sparse grid quadrature w.r.t. π̂y`(j−1). The above formula is used to

assess the expectation and covariance matrix of πyj (θ). Moreover, at level J of our

approach, we integrate the QoI g ≈ g`(J) w.r.t. π̂y`(J)(θ). In this way, we perform

the multilevel decomposition implicitly, different from standard multilevel methods in
which the QoI is assessed explicitly via telescoping sums. Note that at the end of our
multilevel algorithm we also obtain a surrogate for the posterior density which can be
further used, for example, in an uncertainty propagation setting.

We summarize the steps for levels greater than two in Algorithm 3.2. The first
three inputs are the number of levels, J , the sequence of mesh sizes, h, and tol,
which comprises the tolerances for adaptive sparse grid interpolation and quadrature
at all levels. The next input denotes the maximum reachable levels for the adaptive
algorithms, Kmax := (Kqu

max,K
in
max). Finally, π0 is the prior density, Φ(θ;y) is the

potential function and g is the QoI. We combine Algorithms 3.1 and 3.2 and depict
all steps in our proposed multilevel approach in Figure 1.

3.4. Computational cost. The largest computational effort in the proposed
multilevel methodology is spent in finding the interpolation surrogates since this in-
volves evaluations of the forward operator. Thus, for j = 1, 2, . . . J , let Chj denote the
cost of the evaluating once the forward model discretized using a mesh depending on
hj . Additionally, let NtolinJ−j+1

denote the number of forward operator solves to achieve

tolerance tolinJ−j+1 for adaptive sparse interpolation. Then, the total interpolation cost
of our approach reads

costinMLSL =

J−1∑
j=1

(NtolinJ−j+1
+NtolinJ−j

)Chj
+Ntolin1 ChJ

.

We obtain the above number because for each level except the last one, the same
potential function and thus the same forward model enters two different likelihood
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Algorithm 3.2 Multilevel Adaptive Sparse Leja Algorithm

1: procedure MultilevelAdaptSparseLeja(J,h, tol,Kmax,Φ(θ;y), π0(θ), g)
2: Use Algorithm 3.1 to obtain

πy`(1)(θ),m`(1),C`(1) = Level1SparseLeja(h1, tol
in
1 , tol

qu
1 ,Kmax,Φ, π0)

3: for j ← 2, J do
4: Construct the Gaussian approximation (3.1) and the mapping (3.2)

π̂y`(j−1)(θ) := N(m`(j−1),C`(j−1)), T`(j−1)(ζ) := m`(j−1) +C
1/2
`(j−1)ζ

5: Compute the potentials ratio surrogate via adaptive interpolation

Φ`(δj)(θ;y) = AdaptSGInterp(tolinj ,K
in
max,Φδj ◦ T`(j−1)(ζ), π̂y`(j−1))

6: Construct L`(δj)(T`(j−1)(ζ)|y) := exp (−Φ`(δj)(T`(j−1)(ζ);y))
7: Compute the evidence ratio via adaptive quadrature

Z`(δj)(y) = AdaptSGQuad(tolquj ,K
qu
max, L`(δj), π̂

y
`(j−1))

8: Compute the updated posterior

πy`(j)(θ) :=
πy`(j−1)(θ)L`(δj)(θ|y)

Z`(δj)(y)

9: Compute the expectation m`(j) of πy`(j)(θ) w.r.t. π̂y`(j−1)(T`(j−1)(ζ))

10: Compute the covariance C`(j) of πy`(j)(θ) w.r.t. π̂y`(j−1)(T`(j−1)(ζ))

11: end for
12: Compute g`(J) ≈ g and integrate w.r.t. πy`(J) → I`(J)
13: return I`(J)
14: end procedure

ratios (see (3.3)). However, because we update the prior as the level increases, we
expect the number of forward model solves to decrease significantly with the level.

All other costs are due to computations depending on the interpolation surro-
gates. These costs are however insignificant compared to the evaluation cost of a
computationally expensive forward operator.

4. Dimension adaptivity with sparse grids. In this section we discuss the
construction of the multiindex set K used in the sparse grid approximations defined
in subsection 2.3 via adaptive refinement. For interpolation we consider a standard
adaptive strategy as well as an enhanced approach that employs directional variance
information. For quadrature we employ a standard adaptive strategy. In the following,
our notation is similar to [11].

4.1. Standard dimension-adaptive interpolation and quadrature. Adap-
tive refinement is preferred especially when the underlying problem has a richer struc-
ture, such as anisotropic coupling of the input parameters or lower intrinsic dimen-
sionality – which is typically the case in most problems (see, e.g., [6, 11, 12, 45]).
The standard strategy is based on the dimension-adaptive algorithm of [15, 19]. The
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Use adaptive sparse
grids to compute
Φ`(1), π

y
`(1),m`(1),

C`(1) w.r.t.
the density π0

Input =
J, h, tol,Kmax,Φ, π0, g

j ← 2

πy`(j−1) has

product
structure?

π̂y`(j−1) ← πy`(j−1)

Gaussian
approximation to
obtain π̂y`(j−1) and
mapping T`(j−1)

Use adaptive sparse
grids to compute

Φ`(δj), Z`(δj),m`(j),
C`(j) w.r.t. the
density π̂y`(j−1)

πy`(j) ← πy`(j−1)L`(δj)/Z`(δj)

Is j < J?

Compute
integral of
QoI g`(J)

j ← j + 1

yes

yes

no

no

Fig. 1. Flowchart of the multilevel adaptive sparse Leja algorithm. The goal is to approximate
the posterior density πy and Eπy [g] for an output QoI g at level J given the prior density π0.

algorithm is described, e.g., in [6, 15, 32]. We summarize only the basic idea below.
K = {1} initially. Each refinement step is performed using the following principle:
if a current multiindex contributes significantly to the approximation, its adjacent
neighbours are likely to contribute as well. Therefore, the forward neighbours of the
multiindex with the largest contribution are added to K provided that K remains
admissible. The contribution of each k is assessed via a refinement indicator ε(k),
whose choice has a crucial impact on the performance of the adaptive algorithm.

We define

(4.1) ε(k) := sop(∆op
k [fNsto ])/δNk,

where sop is a function depending on the multivariate surplus ∆op
k [fNsto ] and δNk is

the number model evaluations needed to assess ∆op
k [fNsto ]. Note that δNk penalizes

subspaces with a large number of points.
For sparse grid quadrature, we consider

squ(∆qu
k [fNsto ]) := ‖∆qu

k [fNsto ]‖L1 = |∆qu
k [fNsto ]|,

which is a surrogate for the local quadrature error. For sparse interpolation, we use

(4.2) sin(∆in
k [fNsto ]) := ‖∆in

k [fNsto ]‖L2 .

As in [11], we employ ‖∆in
k [fNsto ]‖L2 in the standard refinement indicator (4.2) be-

cause it yields the local variance contribution of the surplus to the total variance.
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4.2. Directional variance dimension-adaptive sparse interpolation. Di-
mension adaptivity based on error indicators such as (4.1) does not inherently dis-
tinguish between the individual input parameters. Since in most problems the input
parameters are anisotropically coupled, we wish to exploit this structure and tune
the adaptive process such that it stops refining directions that are rendered unim-
portant. This is particularly important in our proposed approach since we update
the prior starting with level `(2) and thus we have updated information about the
model’s stochastic input parameters. To this end, for sparse interpolation, we enhance
the standard adaptive strategy such that we additionally compute a global measure
of importance of each input parameter via total directional variances, and we stop
refining the directions having insignificant total directional variances.

To enhance the standard adaptive approach for interpolation, we proceed anal-
ogously to [11, 45] and perform a Sobol’ decomposition [40] of the active set A to
obtain directional variance surpluses, that is,

∥∥∥∑
k∈A

∆in
k [fNsto ]

∥∥∥2
L2

= ∆V 0
A +

Nsto∑
i=1

∆V iA + ∆V int
A ,

where ∆V 0
A := γ20 refers to the expectation contribution,

∆V iA :=
∑
`∈Ji

∆γ2` , i = 1, . . . , Nsto,

where Ji = {0 < ` ≤ Ik : `i 6= 0 ∧ `j = 0,∀j 6= i}, are surplus contributions to all
individual variances, and ∆V int

A :=
∑
m∈Jint

∆γ2m refers to the variance surplus due to

all possible interactions, where Jint =
⋃Nsto

i=1 Ji,int, J.i, int = {0 <m ≤ Ik : mi 6= 0}.
Further, we compute total directional variance surpluses as

∆V i,totA := ∆V iA + ∆V i,intA ,

where ∆V i,intA :=
∑
m∈Ji,int

∆γ2m denotes the contribution due to all interactions in-

volving direction i. Note that ∆V i,totA can be seen as a global measure of importance

for each stochastic input: a large ∆V i,totA implies that the ith parameter is significant
from a stochastic perspective. To this end, we prescribe Nsto user-defined directional
tolerances τ in := (τ21 , τ

2
2 , . . . , τ

2
Nsto

) and ascertain the importance of each input di-

rections by comparing ∆V i,totA with τ2i for i = 1, 2, . . . , Nsto. When the stochastic
direction i is rendered unimportant, we simply stop adding multiindices whose ith
component exceeds the maximum ith index in the current multiindex set K. In this
way, the algorithm preferentially refines the most important directions, thus decreas-
ing the overall computational cost. When neither of the directional tolerances are
met, the enhanced algorithm reduces to the standard approach in subsection 4.1.

5. Numerical experiments. In this section we present the numerical results
obtained using our proposed multilevel approach for Bayesian inversion.

5.1. Simple quadrature showcase. In this test case we investigate the be-
haviour of weighted (L)-Leja points in integration problems of the form

(5.1) I(g) :=

∫
g(θ)πy(θ)dθ,



14 I-G. FARCAS, , J. LATZ, E. ULLMANN, T. NECKEL, AND H.-J. BUNGARTZ

where g(θ) is an integrable function and πy(θ) is the posterior density; we outline the
setup used to compute πy(θ) below. We assess (5.1) via quadrature w.r.t. two differ-
ent weight functions. In the first case, we employ a standard importance-sampling-
based strategy (recall (2.5)). Specifically, adaptive sparse grid quadrature w.r.t.the
prior density, π0(θ), with tolerance tolquπ0

is used:

(5.2) I(g) =

∫
g(θ)

L(θ|y)π0(θ)

Z(y)
dθ ≈ Z−1Npr

(y)
( Npr∑
n=1

g(θn,pr)L(θn,pr|y)wn,pr
)
,

where {θn,pr}
Npr

n=1 are (L)-Leja nodes computed w.r.t. π0(θ) and

ZNpr
(y) =

Npr∑
n=1

θn,prL(θn,pr|y)wn,pr.

In the second strategy, we compute (5.1) using our proposed approach. We in-
tegrate (5.1) numerically via adaptive sparse grid quadrature w.r.t.the Gaussian ap-
proximation π̂y(θ) of the posterior density (recall (3.1)), using a tolerance tolquπ̂y :

(5.3) I(g) =

∫
g(θ)

πy(θ)

π̂y(θ)
π̂y(θ)dθ ≈

Npost∑
n=1

g(T (ζn,post))
πy(T (ζn,post))

π̂y(T (ζn,post))
wn,post,

where {ζn,post}
Npost

n=1 are (L)-Leja nodes computed w.r.t.the standard multivariate nor-

mal density, N(0, I), and T (ζ) := m +C1/2ζ, where m and C are the expectation
and covariance matrix associated with the density π̂y(θ).

We consider the following forward model

G(θ) :=
A(θ1)

(w(θ2)π)2
(

sin (w(θ2)πx)− sin (w(θ2)π)x
)
,

where x ∈ [0, 1], A(θ1) = 20θ1 + 1 and w(θ2) = θ2 + 1.2. We employ Bayesian
inversion to infer (θ1, θ2). The prior is the uniform density in [0, 1]2, i.e., π0 = U(0, 1)2.
The observation data y are generated synthetically using (θ1, θ2)true = (0.45, 0.65).
We take Nobs = 9 measurements at locations oj = 0.1j, j = 1, . . . , 9, assumed to
be corrupted by additive Gaussian noise η ∼ N(0, 0.12I). We depict the prior and
posterior densities in the left figure in Figure 2. Observe that the posterior is unimodal
and non-symmetric, but it can be well approximated with a Gaussian density.

In the numerical experiments, we let g(θ) := exp (−θ1 − θ2) in (5.1). We compute
a reference solution using 3 · 105 Metropolis-Hastings MCMC (MH) samples obtained
from a random walk Gaussian proposal with initial sample θ0 = (1, 1) and covariance
matrix CMH = 7 · 10−3I. The acceptance rate is 44%. Additionally, we employ a
tolerance tolquπ0

= 10−11 in (5.2) and a tolerance tolquπ̂y = 10−5 in (5.3).
The results are summarized in Table 1. The employed tolerances in the two

(L)-Leja sparse grid quadrature approaches are sufficient to match four digits of the
reference results. However, integrating w.r.t. the prior requires 1603 nodes, whereas
our approach which uses the Gaussian approximation of the posterior as weight func-
tion requires only 49 quadrature nodes, i.e., almost 33 times fewer points. This is
because the support of the prior density, π0(θ), is significantly larger than the sup-
port of the posterior: when integrating w.r.t. the prior density, the adaptive algorithm
places a large number of quadrature points outside of the support of the posterior.
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Table 1
Results for the quadrature problem (5.1) using a reference MH solution with 3 · 105 samples,

integration w.r.t. the prior density as in (5.2) and our proposed approach in which we integrate
w.r.t. the Gaussian approximation of the posterior, as showed in (5.3).

Method No. quadrature points Result
MH 3 · 105 0.33813

Integration w.r.t. π0 1603 0.33813
Integration w.r.t. π̂y(θ) 49 0.33811

We visualize the quadrature nodes corresponding to (5.2) and (5.3) in the center and
right figures in Figure 2, respectively.

Remark 5.1. Adaptive sparse grid quadrature w.r.t. an uninformative prior can
sometimes stop early since the quadrature points will fall outside of the support of
the integrated function, yielding null evaluations and thus null error indicators. To
overcome this, one could employ non-adaptive quadrature with a sufficiently large, a
priori chosen number of nodes to cover the support of the integrated function.

Fig. 2. Left: Posterior density πy(θ). Center: (L)-Leja points computed w.r.t. the uniform
prior density used in the integration problem (5.2). Right: Gaussian approximation π̂y(θ) of the
posterior and the associated weighted (L)-Leja points used in (5.3).

5.2. Source inversion with one source in a 2D spatial domain. Consider
a two dimensional Bayesian inverse problem in which the forward model G(θ) is an
elliptic PDE defined on Ω := [0, 1]2,

−(uxx + uyy)(x, y) = A(α) exp (−[(x− θ1)2 + (y − θ2)2)]/2α2), (x, y) ∈ Ω(5.4)

u(x, y) = 0, (x, y) ∈ ∂Ω,

with A(α) = 5/(2πα2) and α = 0.2.
The goal is to infer the coordinates (θ1, θ2) of the source term in the right-hand

side, i.e., we seek the solution to a source inversion problem. We perform the mul-
tilevel Bayesian inversion as described in Algorithms 3.1 and 3.2 with three levels,
i.e., J = 3. Thus j = 1, 2, 3. The employed multilevel setup is summarized in Ta-
ble 2. Standard triangular finite elements (FEs) with mesh widths hj are used for
spatial discretization. To find surrogates for the potential function at each level in
our proposed multilevel approach we employ both adaptive sparse interpolation vari-
ants summarized in section 4. Recall that for standard adaptive interpolation we
have tolerances tolin1 , tol

in
2 , tol

in
3 (see subsection 4.1) whereas for directional variances-

based adaptivity from subsection 4.2 we additionally have the directional tolerances
{τ in

j }3j=1. We choose the FE mesh widths and adaptive interpolation tolerances such
that the approximation errors are quantitatively similar. At level `(1) we combine h1
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with tolin3 and τ in
3 , at level `(2), h2 is combined with tolin2 and τ in

2 , and at level `(3)
we employ h3 together with tolin1 and τ in

1 . For adaptive sparse grid quadrature we
employ small tolerances tolqu1 , tolqu2 , tolqu3 to prevent the adaptive algorithm to stop
too early especially when integrating w.r.t. the prior density (recall Remark 5.1).

Table 2
Multilevel setup for the 2D inversion problem with forward model (5.4).

Level h tolin τ in tolqu

`(1) h1 =
√

2/24 tolin3 = 10−5 τ in
3 = (10−7, 10−7) tolqu3 = 10−12

`(2) h2 =
√

2/25 tolin2 = 10−4 τ in
2 = (10−6, 10−6) tolqu2 = 10−11

`(3) h3 =
√

2/26 tolin1 = 10−3 τ in
1 = (10−5, 10−5) tolqu1 = 10−10

Since the source locations need to reside inside Ω, the prior is the uniform density
in [0, 1]2, i.e., π0 = U(0, 1)2. We consider 16 sensor locations at (0.2i, 0.2j) for i, j =
1, 2, 3, 4. The measurements are obtained synthetically by discretizing the forward
model on a finer mesh, i.e., h =

√
2/27 to avoid committing an “inverse crime”.

Moreover, θtrue = (0.35, 0.65) and the additive Gaussian noise η ∼ N(0, 0.22I).
The QoI is the posterior mean Eπy [θ]. We compute a reference solution using

2·105 samples obtained from a random walk Metropolis-Hastings algorithm with Gaus-
sian proposal having covariance matrix CMH = 4 · 10−3I, started from θ0 = (1, 1).
The acceptance rate of the chain is 64%. To obtain a comprehensive overview of
the accuracy and cost of our approach, we compare it with the standard three-level
approach in which all adaptive sparse grid operations are performed w.r.t. the prior
density. Moreover, the QoI is assessed using the classical telescoping sum. To sim-
plify the notation, in the following we use the abbreviation StdML to refer to the
standard multilevel approach. MLLejaStd refers to our approach in which standard
dimension-adaptive interpolation is used at each level and MLLejaDV refers to our ap-
proach combined with directional variance-based adaptive interpolation summarized
in subsection 4.2. The results are presented in Table 3. Observe that all multilevel
methods yield results very close to the reference estimate. Thus, the two variants of
our proposed approach, MLLejaStd and MLLejaDV, are comparably accurate as the
sampling-based and the standard multilevel solutions.

Table 3
Comparison of estimates of E[πy(θ)] for the source inversion problem with forward model (5.4).

We first compute a reference solution using 2 · 105 MH samples. Afterwards, we employ StdML and
the two variants of our proposed multilevel approach, MLLejaStd and MLLejaDV.

Method Eπy [θ]
MH (0.3628, 0.6370)

StdML (0.3631, 0.6368)
MLLejaStd (0.3630, 0.6369)
MLLejaDV (0.3630, 0.6369)

In Figure 3, we visualize the results for all employed multilevel methods as fol-
lows. The left subplots show the results for StdML, whereas the center and right
subplots depict the results for MLLejaStd and MLLejaDV respectively. Furthermore,
at each level, the prior as well as the corresponding (L)-Leja points used to find the
interpolation surrogate are visualized in the top part. In the bottom plots, we depict
the resulting posterior densities. At level `(1) we obtain the same three posteriors
since the prior is the same in all cases. However, starting with level `(2) the sequential
update of the prior in the proposed approach leads to significantly fewer interpolation



MULTILEVEL ADAPTIVE SPARSE LEJA APPROXIMATIONS 17

Fig. 3. Results obtained using StdML (left), MLLejaStd (center) and MLLejaDV (right) to find
the adaptive sparse grid interpolation surrogate for the potential function in the source inversion
problem with forward model (5.4). At each of the three levels, in the top plots we depict the prior
density and the corresponding weighted (L)-Leja points used to find the surrogate. At levels `(2)
and `(3), the prior is the Gaussian approximation of the posterior from the posterior level. In the
bottom plots we depict the corresponding posterior density solution.

points compared to StdML, which places a large number weighted (L)-Leja points
outside of the support of the corresponding posterior. Moreover, comparing the two
variants of the proposed approach, MLLejaDV requires fewer (L)-Leja points than
MLLejaStd. This is because at both levels `(2) and `(3) in MLLejaDV, the two total
directional variances fall below the imposed tolerances. Thus MLLejaDV discovers
and exploits more structure in the underlying approximation problem.
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We visualize the multiindex sets for the three multilevel variants in Figure 4. At
level `(1) the multiindex sets corresponding to StdML and MLLejaStd are symmetric;
this is because the two stochastic parameters have equal importance w.r.t. the prior
density, which is the 2D (symmetric) uniform density. MLLejaDV leads to a smaller
multiindex set since the directional variances τ in

3 fall below (10−7, 10−7), but there
is no clear distinction between the two input directions as well. However, at level
`(2) we observe a different behaviour in the two variants of our proposed approach,
MLLejaStd and MLLejaDV. Recall that in these two variants the prior density is
the Gaussian approximation of the posterior density from level `(1). Computing the
eigenvalues (λ1, λ2) of its covariance matrix, we obtain λ1 = 0.0097 and λ2 = 0.0055.
Therefore, the first direction is more important that the second, which is reflected
in the two multiindex sets. On the other hand, the multiindex set for the standard
approach remains symmetric because the prior density is unchanged. Finally, at level
`(3) we see low-cardinality multiindex sets for both MLLejaStd and MLLejaDV. This
is because at this stage we have an informative prior, thus the likelihood ratio is close
1, which requires little approximation effort. Hence going beyond level `(3) is not
necessary for our approach.

Fig. 4. Multiindex sets corresponding to adaptive sparse grid interpolation in the source inver-
sion problem (5.4) for StdML (left), MLLejaStd (center) and MLLejaDV (right).

The costs of all multilevel methods are visualized in Figure 5. The number of
forward model evaluations needed to find the adaptive sparse grid surrogate of the
potential function are shown on the left side. In the right plot we depict the number
of evaluations of the surrogate in all quadrature computations. Note in all multilevel
variants we need quadrature to assess the evidences and expectations at all three lev-
els. Additionally, in MLLejaStd and MLLejaDV we need to compute the covariance
matrices at levels `(1) and `(2) as well, which are needed in the Gaussian approxima-
tion of the associated posteriors and affine mapping (recall (3.1) and (3.2)). However,
since we integrate w.r.t. the same weight function, we keep all surrogate evaluations
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in a look-up table and reuse them whenever the same grid points are used for differ-
ent evaluations. We observe that at level `(1) our proposed approach is slightly more
expensive for interpolation which is due to the need to evaluate the FE solver on level
`(1) at level `(2) as well: recall that at level `(2) we construct a sparse grid surrogate
for the ratio of potential functions. However, the increased cost is not significant since
it involves evaluations of the coarsest FE solver, which are very fast. Starting with
level `(2) we see significant cost savings for both interpolation and quadrature. On
the one hand, at level `(2), MLLejaStd leads to about 2 times fewer forward model
evaluations for sparse grid interpolation and around 12.5 fewer sparse grid quadra-
ture evaluations. Moreover, at level `(3) we obtain about 15 times fewer interpolation
points and 7.5 times fewer quadrature nodes. On the other hand, MLLejaDV leads
to about 5 times fewer interpolation nodes and about 12.5 times fewer quadrature
evaluations. Furthermore, we obtain 20 times fewer interpolation nodes and 9.5 times
fewer quadrature nodes at level `(3). These results clearly show that updating the
prior information in our multilevel approach for Bayesian Inversion leads to significant
cost reduction in finding and evaluating sparse grid surrogates.

Fig. 5. Left: total number of forward model evaluations needed in the adaptive sparse inter-
polation of the potential using the three multilevel variants in the source inversion problem (5.4).
Right: total number of quadrature nodes.

5.3. Source inversion with two sources in a 2D spatial domain. For
a more comprehensive overview of the proposed approach, we consider now a test
case with multimodal observation data. In particular, we consider another source
inversion test case in which we use two sources to generate the data – to have bimodal
observation data – and only one source to perform the Bayesian inference.

The elliptic forward operator defined on Ω := [0, 1]2 reads:

−(uxx + uyy)(x, y) = A(α)
(

exp (−[(x− θ1)2 + (y − θ2)2)]/2α2)

+ b exp (−[(x− θ3)2 + (y − θ4)2)]/2α2)
)
, (x, y) ∈ Ω(5.5)

u(x, y) = 0, (x, y) ∈ ∂Ω,

where A(α) = 5/(2πα2), α = 0.15 and the binary parameter b = 1 when generating
the data and b = 0 when performing the inference. Therefore, we are solving a source
inversion similar to the one in subsection 5.2 but starting from bimodal data.

To generate the data we choose the locations of the two sources far apart, i.e.,
(θ1, θ2)true = (0.15, 0.15) and (θ3, θ4)true = (0.85, 0.85). For Bayesian inference we
employ StdML, MLLejaStd and MLLejaDV using three levels. The multilevel setup
is outlined in Table 4.

We visualize in Figure 6 the bimodal posterior density obtained via standard
Bayes’ formula (2.3) for which we used 502 = 2500 Gauss-Legendre points to assess
the evidence. Note that the two peaks are symmetric around (0.5, 0.5). Therefore,
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Table 4
Multilevel setup for the 2D inversion problem with forward model (5.5).

Level h tolin τ in tolqu

`(1) h1 =
√

2/25 tolin3 = 10−6 τ in
3 = (10−8, 10−8) tolqu3 = 10−13

`(2) h2 =
√

2/26 tolin2 = 10−5 τ in
2 = (10−7, 10−7) tolqu2 = 10−12

`(3) h3 =
√

2/27 tolin1 = 10−4 τ in
1 = (10−6, 10−6) tolqu1 = 10−11

Bayesian inference using only once source in the forward model can yield, in the best
case, a posterior density centered at (0.5, 0.5).

Fig. 6. Posterior density for the source inversion problem with forward model (5.5). We used
502 = 2500 Gauss-Legendre points to assess the evidence.

The QoI is again E[πy(θ)]. In Table 5 we show the obtained estimates. First,
a reference Metropolis-Hastings estimate with 2 · 105 samples is computed using a
random walk Gaussian proposal with initial sample θ0 = (1.0, 1.0) and covariance
matrix CMH = 10−1I. The acceptance rate is 45%. We observe that the MH and
StdML solutions yield estimates close to the center, (0.5, 0.5). However, the estimates
given by MLLejaStd and MLLejaDV are far away from this value.

Table 5
Comparison of estimates of E[πy(θ)] for the source inversion problem with forward model (5.5).

We first compute a reference solution using 2 · 105 MH samples. Afterwards, we employ StdML and
the two variants of our proposed multilevel approach, MLLejaStd and MLLejaDV.

Method Eπy [θ]
MH (0.5032, 0.5068)

StdML (0.5002, 0.5002)
MLLejaStd (0.6688, 0.6548)
MLLejaDV (0.6648, 0.6548)

We depict in Figure 7 the prior and posterior density as well as the weighted (L)-
Leja points used to construct the adaptive sparse grid interpolation surrogate of the
potential function for all employed multilevel methods. We observe that the Gaussian
approximation used in our proposed approach at levels `(2) and `(3) is very spread
and quite different from the approximated posterior. Hence the bias-correcting ratio
in quadrature operations, πy`(j)/π̂

y
`(j) for j = 2, 3 (recall (3.3)) is different from 1 in

most regions of the domain. The large variations of this ratio lead to large variations
of the error indicators in adaptive sparse grid quadrature which prevent the algorithm
to converge and hence to yield accurate estimates. Therefore, the estimates of the
expectation and covariance matrix of the posteriors from levels `(1) and `(2), and with
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Fig. 7. Results obtained using StdML (left), MLLejaStd (center) and MLLejaDV (right) to find
the adaptive sparse grid interpolation surrogate for the potential function in the source inversion
problem with forward model (5.5). At each of the three levels, in the top plots we depict the prior
density and the corresponding weighted (L)-Leja points used to find the surrogate. At levels `(2)
and `(3), the prior is the Gaussian approximation of the posterior from the posterior level. In the
bottom plots we depict the corresponding posterior density solution.

that, the Gaussian approximations employed at levels `(2) and `(3), are inaccurate.
Note that the large spread of the Gaussian approximations leads to weighted (L)-
Leja points outside of the domain of the uniform prior, which coincides with the
domain of the forward operator, Ω (see (5.5)). Whenever this happens, we impose
the corresponding likelihood evaluation to be zero.
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5.4. Higher-dimensional problem in a 3D spatial domain. In the final
test case, we apply the proposed approach in a more challenging and computationally
more expensive problem. We consider an elliptic forward model defined on Ω := [0, 1]3

with a permeability field projected onto a Fourier basis:

−∇ · (k(x, y, z,θ)∇u(x, y, z)) = f, (x, y, z) ∈ Ω(5.6)

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω,

where f ≡ 5 and

(5.7) k(x, y, z,θ) := exp
( 8∑
n=1

snθn sin (pn,1πx) sin (pn,2πy) sin (pn,3πz)
)
,

where s1 = 0.1785, s2 = s3 = s4 = 0.1428, s5 = s6 = s7 = 0.1071, s8 = 0.0714 are
normalized scaling factors, i.e.,

∑8
n=1 sn = 1, and (pn,1, pn,2, pn,3) ∈ {1, 2}3. Note

that with the chosen setup, θ1 is the most important parameter, θ2, θ3, θ4 are the
second most important parameters etc under the prior density.

Bayesian inference is carried out for the weights (θ1, θ2, . . . , θ8) of the permeability
field k(x, y, z,θ). Thus, we are solving an 8D inversion problem. These weights follow
a standard normal prior distribution, i.e., µ0 = N(0, I). To perform the Bayesian
inference we employ both the standard and our proposed multilevel approach with the
two variants, MLLejaStd and MLLejaDV, considering J = 3. The employed multilevel
setup is outlined in Table 6. The forward model (5.6) is discretized via standard
tetrahedral FE meshes hj . Moreover, the sparse grid interpolation tolerances tolinj
and τ in

j are chosen to yield quantitatively similar errors to the FE approximation for
j = 1, 2, 3. Finally, we choose small tolerances for quadrature to prevent the adaptive
algorithm from stopping too early.

Table 6
Multilevel setup for the 8D inversion problem with forward model (5.6).

Level h tolin τ in tolqu

`(1) h1 =
√

3/24 tolin3 = 10−5 τ in
3 = 10−7 · 18 tolqu3 = 10−9

`(2) h2 =
√

3/25 tolin2 = 10−4 τ in
2 = 10−6 · 18 tolqu2 = 10−8

`(3) h3 =
√

3/26 tolin1 = 10−3 τ in
1 = 10−5 · 18 tolqu1 = 10−7

The observation data consists of 729 measurements at {0.1, 0.2, . . . , 0.9}3 ∈ Ω,
stemming from the FE solution of the forward model discretized using a finer mesh
width h =

√
3/27 and assuming measurement noise η ∼ N(0, 0.12I). In addition,

θtrue is drawn from the standard multivariate Gaussian density, i.e.,

θtrue = (0.3015, 0.6578,−0.5002, 0.4608, 1.1345, 0.5447,−1.5353,−0.1689).

The QoI is again the expectation of the posterior density, Eπy [θ]. We begin
with level `(1) in the standard multilevel approach. Both the expectation and the
covariance matrix of the corresponding posterior are computed since we need these
evaluations at `(2). We obtain, however, an indefinite covariance matrix with a neg-
ative variance for θ1. This is mainly due to the limitations of the standard approach:
adaptive sparse grid quadrature w.r.t. the prior density becomes challenging when
the complexity of the underlying Bayesian inverse problem increases. To overcome
this limitation, we employ instead standard sparse grids of a priori fixed levels hav-
ing sufficiently many points to guarantee a positive definite covariance matrix. In
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particular, we consider an interpolation grid of level 10 for interpolation (24310 grid
points) and a quadrature grid of the same level comprising 598417 points. Since our
goal is to compare multilevel methods based on adaptive sparse grid algorithms, we
do not perform the standard multilevel approach on the remaining two levels using a
priori chosen sparse grids, but rather focus only on the two variants of our proposed
approach starting from the Gaussian approximation of the posterior at level `(1) ob-
tained with the aforementioned standard sparse grids. Moreover, evaluating the FE
discretizations depending on h2 and h3 on the standard sparse grid of level 10 (24310
evaluations) requires a significant computational cost.

We first compute a reference MH solution with 105 samples. The Gaussian pro-
posal has covariance matrix CMH = 0.5I. To reduce the burn-in, the chain is started
from θtrue. The acceptance rate is 24%. Afterwards, we employ MLLejaStd and
MLLejaDV as described above. The results are showed in Table 7. The two variants
of our approach produce results comparable to the reference solution, thus making
our proposed approach competitive with sampling methods in this test case as well.
Observe, however, that the accuracy of all estimates deteriorates compared with θtrue.
This is because the likelihood becomes less informative as the index increases from 1
to 8: the likelihood updates the prior very well for the first direction, relatively well
for the next three, and almost not at all for the last four directions. Nevertheless,
since the last four directions are the least important by construction (5.7) we expect
that having not accurate corresponding mean estimates will not be too significant.

Table 7
Estimation of the posterior’s mean value for the fourth test case using a referece MH solution

with 105 samples and the two variants of our proposed multilevel approach for Bayesian inversion.

Method Eπy [θ1] Eπy [θ2] Eπy [θ3] Eπy [θ4] Eπy [θ5] Eπy [θ6] Eπy [θ7] Eπy [θ8]
MH 0.2532 0.2123 −0.1363 0.1326 0.1486 0.0753 −0.1584 0.0066

MLStd 0.2642 0.2111 −0.1630 0.1539 0.1429 0.0670 −0.1816 −0.0053
MLDV 0.2620 0.2114 −0.1600 0.1542 0.1448 0.0689 −0.1808 −0.0050

To assess the quality of the expectation estimates, we use them to represent the
permeability field as k(x, y, z,Eπy [θ]) and we compare the results with k(x, y, z,θtrue).
In Figure 8 we depict 2D slices of the field in which the spatial coordinates x (top),
y (middle) and z (bottom) are fixed respectively to 0.5. We observe that having
inaccurate estimates for the latter four components of θ does not significantly affect
the estimation of the true permeability field. This is due to having good estimates
for the first components of θtrue, which are the most important by construction.

In Figure 9 the costs for interpolation (left) and quadrature (right) are shown.
Note that for interpolation we show costs for level `(1) as well because evaluations of
the forward PDE discretized using h1 are needed at `(2). MLLejaDV is cheaper than
MLLejaStd at all three levels, requiring about 4.3 times fewer evaluations at level
`(1), 4.8 times fewer evaluations on level `(2) and 7 times fewer evaluations at level
`(3). Observe that the overall interpolation costs are very small given that we have an
8D inversion problem at hand. For example, at level `(3), MLLejaDV requires only
22 PDE evaluations. The maximum reached level in the corresponding multiindex
set is 4 and all its multiindices have components larger than 1 only in the first four
directions. Indeed, the directional variances-based algorithm detects that the latter
four directions are unimportant, thus invests effort only in the first four directions.
Therefore, we see once again that using the enhanced adaptive algorithm for adaptive
sparse grid interpolation leads to significant cost savings. For quadrature, the total
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Fig. 8. 2D slices of the 3D permeability field from (5.7) parametrized using θtrue and the mean
estimates from Table 7. Top: yz slice taking x = 0.5. Middle: xz slice when y = 0.5. Bottom: xy
slice fixing z = 0.5.

Fig. 9. Left: total number of forward model evaluations needed by the two variants of our
proposed approach, MLLejaStd and MLLejaDV, at all three levels in the 8D inversion problem with
forward model (5.6). Right: total number of quadrature nodes used in all three in MLLejaStd and
MLLejaDV at levels `(2) and `(3).

number of evaluations of the interpolation surrogates are similar.

6. Conclusions. We proposed a novel multilevel Leja algorithm for computing
posterior approximations in computationally expensive, higher-dimensional Bayesian
inverse problems. At each level adaptive sparse grid interpolation is employed to find a
surrogate of the potential function, and adaptive sparse grid quadrature is then used
to perform all integration operations with respect to the posterior. We considered
two adaptive strategies for interpolation: (i) a standard method and (ii) an enhanced
adaptive algorithm in which directional variances are used to ensure that only the most
important stochastic directions are refined. The backbone of the proposed approach
is the sequential update of the prior density. In this way, we can create weighted (L)-
Leja points in areas of high posterior probability. Numerical experiments with elliptic
inverse problems in 2D and 3D space show that the sequential update of the prior
leads to considerably fewer model evaluations compared to the standard multilevel
approach which employs the prior density at all levels. We remark that the proposed
approach is not designed to handle well multimodal posterior densities. In future
research we will extend it such that it employs more general nonlinear mappings, e.g.,
transport maps, to accurately approximate arbitrary, multimodal posterior densities.
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cations - Miami 2016, J. Garcke, D. Pflüger, C. G. Webster, and G. Zhang, eds., Cham,
2018, Springer International Publishing, pp. 43–68.

[13] M. Frangos, Y. Marzouk, K. Willcox, and B. van Bloemen Waanders, Surrogate and
reduced-order modeling: a comparison of approaches for large-scale statistical inverse prob-
lems, in Large-scale inverse problems and quantification of uncertainty, Wiley Ser. Comput.
Stat., Wiley, Chichester, 2011, pp. 123–149.
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