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Abstract

Recently, Holmes and Perkins identified conditions which ensure that for a class of critical
lattice models the scaling limit of the range is the range of super-Brownian motion. One of
their conditions is an estimate on a spatial moment of order higher than four, which they
verified for the sixth moment for spread-out lattice trees in dimensions d > 8. Chen and
Sakai have proved the required moment estimate for spread-out critical oriented percolation
in dimensions d + 1 > 4 + 1. We prove estimates on all moments for the spread-out critical
contact process in dimensions d > 4, which in particular fulfills the spatial moment condition
of Holmes and Perkins. Our method of proof is relatively simple, and, as we show, it applies
also to oriented percolation and lattice trees.

1 Introduction and results

1.1 Introduction

It is by now well established that super-Brownian motion arises as the scaling limit in a number of
critical lattice models above the upper critical dimension, including the voter model, the contact
process, oriented percolation, percolation, and lattice trees (see, e.g., [6, 8, 13, 24, 25]). There are
various ways, of differing strengths, of stating such convergence results. A particularly strong
statement is that the scaling limit of the range of the critical lattice model is the range of super-
Brownian motion, with the convergence with respect to the Hausdorff metric on the set of compact
subsets of Rd. Recently, Holmes and Perkins [20] have identified conditions which imply this strong
form of convergence. These conditions also imply an asymptotic formula for the probability of
exiting a large ball, i.e., for the extrinsic one-arm exponent.

One of the substantial conditions of [20] is an estimate on a spatial moment of degree higher
than four. Holmes and Perkins have proved the required bound on the sixth moment for spread-
out lattice trees in dimensions d > 8, and Chen and Sakai have proved asymptotic formulas for
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all spatial moments for spread-out critical oriented percolation in dimensions d+ 1 > 4 + 1 (their
case α =∞, see [5, p.510]). These results are sufficient to establish the spatial moment condition
of Holmes and Perkins in these contexts.

In this paper, we prove, in a unified and relatively simple fashion, estimates on all spatial
moments for critical spread-out models of the contact process in dimensions d > 4, oriented
percolation in dimensions d + 1 > 4 + 1, and lattice trees in dimensions d > 8. Our results for
the contact process are new, and, together with the other conditions verified in [20], yield the
conclusions of Holmes and Perkins. Our method of proof simplifies the bound of [20] on the sixth
moment for lattice trees and extends it to all moments. It also provides a simpler approach to
bounding the moments for oriented percolation than the method of [5] (who however did obtain
stronger results). Our proof is based on the lace expansion, which has been applied to study the
critical contact process (e.g., [14, 16, 23]), critical oriented percolation (e.g., [3–5, 17, 21, 22]), and
lattice trees (e.g., [7,12,18,19]). We emphasise the contact process throughout the paper, because
it is the greatest novelty in our work, and because it is the most delicate of the three models to
analyse.

Our spread-out models are formulated in terms of a probability measure D on Zd, which is
defined as follows. Let h : Rd → [0,∞) be bounded, continuous almost everywhere, invariant
under the symmetries of Zd, and such that∫

h(x) ddx = 1,

∫
|x|nh(x) ddx <∞ (n ∈ N). (1.1)

Given L ≥ 1, we define D by

D(x) =


h(x/L)∑

y∈Zd\{0} h(y/L)
(x 6= 0)

0 (x = 0).

(1.2)

It follows that, for any n ∈ N,

‖D‖∞ = O(L−d), sup
x∈Zd

|x|nD(x) = O(Ln−d),
∑
x∈Zd

|x|nD(x) = O(Ln). (1.3)

1.2 Oriented percolation

We begin with oriented percolation, which also serves as a discretisation of the contact process.
We will use this discretisation to analyse the contact process.

Spread-out oriented percolation is defined on the graph with vertex set Zd × {0, 1, 2, . . .} and
directed bonds ((x, n), (y, n+1)), for x, y ∈ Zd and n ≥ 0. To the directed bonds ((x, n), (y, n+1)),
we associate independent random variables taking the value 1 with probability pD(y − x) and 0
with probability 1 − pD(y − x). We say a bond is occupied when its random variable takes the
value 1, and vacant when its random variable is 0. The parameter p ∈ [0, ‖D‖−1∞ ] is the expected
number of occupied bonds per vertex (it is not a probability). The joint probability distribution
of the bond variables is Pp, with expectation denoted Ep.

We say that (x, n) is connected to (y,m), and write (x, n) −→ (y,m), if there is an oriented path
from (x, n) to (y,m) consisting of occupied bonds, or if (y,m) = (x, n). This requires that n ≤ m.
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Let C(x, n) denote the set of sites (y,m) such that (x, n) −→ (y,m); its cardinality is denoted by
|C(x, n)|. The critical point pc is defined to be the supremum of the set of p ∈ [0, ‖D‖−1∞ ] for which
Ep|C(0, 0)| <∞. It is known that pc = 1 +O(L−d) (and more) [15]. Let

τn(x) = Ppc((0, 0) −→ (x, n)). (1.4)

Our main result for oriented percolation is the following theorem.

Theorem 1.1. Let d > 4. There is an L0 = L0(d) such that for L ≥ L0, and for any s ≥ 0, there
is a constant cs = cs(L) such that ∑

x∈Zd

|x|sτn(x) ≤ csn
s/2. (1.5)

The cases s = 0, 2 were proved previously in [22] and also in [17]. The general case was proved
in [5], where a precise asymptotic formula for all moments was given.

1.3 Contact process

The contact process is a continuous-time Markov process with state space {0, 1}Zd
, with d ≥ 1. The

state of the contact process is determined by a variable ξx ∈ {0, 1}, for each x ∈ Zd. When ξx = 0,
then x is “healthy,” and when ξx = 1, then x is “infected.” An infected particle spontaneously
becomes healthy at rate 1, and, given p > 0, a healthy particle at x becomes infected at rate
p
∑

y∈Zd ξyD(x− y).
We assume that at time zero there is a single infected individual at the origin, with all others

healthy. Let Ct denote the set of infected particles at time t ≥ 0. The susceptibility is defined by

χ(p) =
∑
x∈Zd

∫ ∞
0

Pp(x ∈ Ct) dt. (1.6)

The critical point is defined by pc = sup{p : χ(p) < ∞}. It is known that pc = 1 + O(L−d) (and
more) [15]. The following theorem is our main result for the contact process.

Theorem 1.2. Let d > 4. There is an L0 = L0(d) such that for L ≥ L0, and for any s ≥ 0, there
is a constant cs = cs(L) such that

∑
x∈Zd

|x|sPpc(x ∈ Ct) ≤ cs

{
ts/2 (t ≥ 1)

1 (t < 1).
(1.7)

The case s = 2 of (1.7) is proved in [14], as is a uniform bound on the zeroth moment (in fact
more is proved in [14]). The dichotomy in (1.7) does not arise for integer-time models such as
oriented percolation and lattice trees.

It is well known that the contact process can be approximated by an oriented percolation model
(see, e.g., [1,2,14,16,23]). For this, we replace the time interval [0,∞) by εZ+ ≡ {0, ε, 2ε, 3ε, . . . },
and define an oriented percolation model on Zd×εZ+, as follows. Bonds have the form ((x, t), (y, t+
ε)) with t ∈ εZ+ and x, y ∈ Zd. A bond is occupied with probability 1 − ε if x = y, and with
probability εpD(y − x) if x 6= y. Bonds with x = y are called temporal and bonds with x 6= y
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are called spatial. Let Pεp denote the probability measure for the oriented percolation model on
Zd×εZ+. Then Pεp converges weakly as ε→ 0+ to the contact process measure Pp, and the critical
value pεc of the discretised model converges to the critical value pc of the contact process [2, 23]
(see also [26]). In particular,

lim
ε→0+

Pεpεc
(
(0, 0) −→ (x, [t/ε]ε)

)
= Ppc(x ∈ Ct). (1.8)

In order to deal with all models simultaneously, we adopt the notational convenience

τn(x) = Pεpεc
(
(0, 0) −→ (x, nε)

)
. (1.9)

1.4 Lattice trees

For lattice trees, we assume that h(x) = 0 if ‖x‖∞ > 1
2
, so that D of (1.2) is supported on [−L

2
, L
2
]d.

Let B be the set of bonds {x, y} in Zd with 0 < ‖x− y‖∞ ≤ L. A lattice tree is a finite connected
set of bonds in B with no cycles. Let TN denote the set of N -bond lattice trees containing the
origin 0, let B(T ) denote the set of bonds in T ∈ TN , and let

t
(1)
N =

∑
T∈TN

∏
{x,y}∈B(T )

D(x− y). (1.10)

For x ∈ Zd, let TN,n(x) denote the set of lattice trees T ∈ TN which contain x and for which the
unique path in T connecting 0 and x consists of n bonds. Let

t
(2)
N (x;n) =

∑
T∈TN,n(x)

∏
{x,y}∈B(T )

D(x− y). (1.11)

A standard subadditivity argument implies that there exists pc > 0 such that the 1-point function
gp =

∑∞
N=0 t

(1)
N pN has radius of convergence pc.

Critical exponents and the scaling limit of lattice trees in dimensions d > 8 are discussed in,
e.g., [7, 18, 25]. Here, we rely on results from [18]. Our assumption that D has finite range is
to conform with [18]; we expect that this restriction is actually unnecessary. It is known that
pc = 1 +O(L−d) and 1 ≤ gpc ≤ 4, if d > 8 and if L is large enough [11]. Let

τn(x) =
∞∑
N=0

t
(2)
N (x;n)pNc , (1.12)

which is finite since t
(2)
N (x;n) ≤ t

(1)
N . The following theorem is our main result for lattice trees.

Theorem 1.3. Let d > 8. There is an L0 = L0(d) such that for L ≥ L0, and for any s ≥ 0, there
is a constant cs = cs(L) such that ∑

x∈Zd

|x|sτn(x) ≤ csn
s/2. (1.13)

The cases s = 0, 2, 4, 6 are considered in detail in [20] (stronger results than (1.13) for s = 0
are proved in [12] and for s = 2 in [7]). Our method of proof is simpler than that of [20], and it
applies to all s ≥ 0.
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2 Sufficient condition on generating function

For any one of the three models under consideration, let

tz(x) =
∞∑
n=0

τn(x)zn. (2.1)

The Fourier transform of an absolutely summable function f : Zd → R is defined by

f̂(k) =
∑
x∈Zd

f(x)eik·x (k = (k1, . . . , kd) ∈ [−π, π]d). (2.2)

We use the Fourier–Laplace transform

t̂z(k) =
∞∑
n=0

τ̂n(k)zn. (2.3)

Let ∆ =
∑d

i=1
∂2

∂k2i
. Then, for |z| < 1 and r ∈ N,

∆r t̂z(0) =
∞∑
n=0

d(r)n zn with d(r)n = (−1)r
∑
x∈Zd

|x|2rτn(x). (2.4)

A key element of our proof is [7, Lemma 3.2(i)], which is a kind of Tauberian theorem (see
also [9]). We restate it as follows.

Lemma 2.1. If for u ≥ 1 and v ≥ 0 the power series
∑∞

n=0 anz
n obeys∣∣∣∣∣

∞∑
n=0

anz
n

∣∣∣∣∣ ≤ C

|1− z|u(1− |z|)v
(|z| < 1), (2.5)

then

|an| ≤

{
C ′nu+v−1 (u > 1)

C ′nv log n (u = 1).
(2.6)

We will prove the following proposition for the discretised contact process. The proposition
also applies for oriented percolation for d > 4 and lattice trees for d > 8, with the parameter ε
given simply by ε = 1.

Proposition 2.2. Let d > 4, p = pεc, and r ∈ N. There is an ε-independent L0 > 0 such that for
any L ≥ L0 there is an ε-independent constant C2r = C2r(L) such that

|∆r t̂z(0)| ≤ C2rε

|1− z|2
r−1∑
j=0

εj

(1− |z|)j
(|z| < 1). (2.7)
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By Lemma 2.1, Proposition 2.2 implies that there is an ε-independent constant c′2r such that,
for all r, n ∈ N, ∑

x∈Zd

|x|2rτn(x) ≤ c′2r

r∑
j=1

(nε)j. (2.8)

When ε = 1 this gives a bound c2rn
r and proves Theorems 1.1 and 1.3 for even integer powers.

For the contact process, the bound becomes∑
x∈Zd

|x|2rPεpεc((0, 0)→ (x, nε)) ≤ c′2rr
(
(nε) ∨ (nε)r

)
. (2.9)

By (1.8), this implies the conclusion of Theorem 1.2 for even integer powers.
In fact, it suffices to prove Theorems 1.1 and 1.3 for s a non-negative even integer, since the

general case then follows by Hölder’s inequality (using the known results for the zeroth moment).
In detail, if s is not an even integer then let r be the smallest integer such that s < 2r. Let
p = 2r/s > 1 and define q by 1

p
+ 1

q
= 1. Then sp = 2r is an even integer and, for oriented

percolation and lattice trees (ε = 1),∑
x∈Zd

|x|sτn(x) =
∑
x∈Zd

|x|sτn(x)1/pτn(x)1/q

≤
(∑
x∈Zd

|x|spτn(x)

)1/p(∑
x∈Zd

τn(x)

)1/q

≤ (c2rn
r)1/pc

1/q
0 = csn

s/2. (2.10)

For the contact process, the above argument gives instead, by using (2.9) for the (2r)th moment,
the upper bound (

c′2rr(t ∨ tr)
)1/p

c
1/q
0 = cs(t

s/2r ∨ ts/2). (2.11)

For t ≤ 1, the right-hand side is O(1), consistent with (1.7). For t ≥ 1, since s/2r ≤ s/2 the
right-hand side is O(ts/2), which is again consistent with (1.7). Thus, for Theorem 1.2 it also
suffices to consider even integer powers s.

3 Oriented percolation: proof of Theorems 1.1–1.2

We fix d > 4, L sufficiently large, and p = pεc throughout this section. We are generally not
concerned with the L-dependence of constants, and usually allow them to depend on L. As
discussed above, we can restrict to even integer powers s, and since the cases s = 0, 2 are already
well established in previous papers, we can restrict attention to even integers s ≥ 4.

3.1 Lace expansion for oriented percolation

The proof uses the lace expansion, which provides a formula for the coefficients πn(x) in the
convolution equation

τn+1(x) = (q ∗ τn)(x) +
n−1∑
m=2

(τn−m ∗ q ∗ πm)(x) + πn+1(x) (n ≥ 0), (3.1)
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with the convention that an empty sum is zero. Here (f ∗ g)(x) =
∑

y∈Zd f(y)g(x − y), π0(x) =
π1(x) = 0 for all x, and

q(x) = (1− ε)δ0,x + εpεcD(x). (3.2)

By [14, (2.30) & (2.34)] (and [17, (1.12)] for ε = 1), pεc = 1 + O(L−d). There are three different
versions of the lace expansion for oriented percolation, which provide different representations for
πn(x) [10, 21, 23]. See [25] for a discussion of these three representations. We require few details
here.

The following proposition is proved in [14] (see also [17, 22] for ε = 1). We will extend Propo-
sition 3.1 to arbitrary integers r ≥ 0.

Proposition 3.1. [14, Propositions 2.1 & 2.3] Let d > 4 and p = pεc. There is an L0 > 0 and a
finite C, both independent of ε, such that for L ≥ L0 and for n ≥ 0,∑

x∈Zd

|x|2rτn(x) ≤ C(L2nε)r (r = 0, 1), (3.3)

sup
x∈Zd

|x|2rτn(x) ≤ (1− ε)n + C
(
L2(1 + nε)

)r−d/2
(r = 0, 1), (3.4)∑

x∈Zd

|x|2r|πn(x)| ≤ ε2C
(
L2(1 + nε)

)r−d/2
(r = 0, 1, 2). (3.5)

We use the Fourier–Laplace transforms

t̂z(k) =
∞∑
n=0

τ̂n(k)zn, Π̂z(k) =
∞∑
n=2

π̂n(k)zn. (3.6)

By (3.3) with r = 0, the power series t̂z(k) converges in the open unit disk |z| < 1 in the complex
plane. The stronger result that the limit A = limn→∞

∑
x∈Zd τn(x) exists (see [14,17]) implies that

t̂1(0) =∞. On the other hand, the following corollary to Proposition 3.1 shows that Π̂z and some
of its derivatives remain bounded on the closed disk |z| ≤ 1.

The transformation converts the spatio-temporal convolutions in (3.1) into products. A linear
equation for t̂z(k) results, and its solution is

t̂z(k) = 1 + Π̂z(k) + Φ̂z(k)t̂z(k) =
1 + Π̂z(k)

1− Φ̂z(k)
, (3.7)

with

Φ̂z(k) = zq̂(k)
(
1 + Π̂z(k)

)
, q̂(k) = 1− ε+ εpcD̂(k). (3.8)

Corollary 3.2. Under the hypotheses of Proposition 3.1, uniformly in |z| ≤ 1,

|Π̂z(0)| ≤ O(L−dε), (3.9)

|∂zΠ̂z(0)| ≤ O(L−d), (3.10)

|∆Π̂z(0)| ≤ O(L2−dε), (3.11)

|∆Φ̂z(0)| ≤ O(L2ε). (3.12)
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Proof. Let |z| ≤ 1. By (3.5) with r = 0, 1,

|Π̂z(0)| ≤
∞∑
n=2

∑
x∈Zd

|πn(x)| ≤ O(L−d) ε2
∞∑
n=2

(1 + nε)−d/2 ≤ O(L−dε), (3.13)

|∂zΠ̂z(0)| ≤
∞∑
n=2

∑
x∈Zd

n |πn(x)| ≤ O(L−d) ε
∞∑
n=2

(1 + nε)1−d/2 ≤ O(L−d), (3.14)

|∆Π̂z(0)| ≤
∞∑
n=2

∑
x∈Zd

|x|2|πn(x)| ≤ O(L2−d) ε2
∞∑
n=2

(1 + nε)1−d/2 ≤ O(L2−dε). (3.15)

Also, by (1.3),

|∆Φ̂z(0)| = |z|
∣∣∣q̂(0) ∆Π̂z(0) +

(
1 + Π̂z(0)

)
εpc∆D̂(0)

∣∣∣ = O(L2ε). (3.16)

This completes the proof.

Since limz↑1 t̂z(0) =∞ and Π̂1(0) = O(L−dε), it follows from (3.7) that

Φ̂1(0) = 1. (3.17)

By (3.7) and (3.8), we can therefore rewrite t̂z(0) as

t̂z(0) =
1 + Π̂z(0)

Φ̂1(0)− Φ̂z(0)
=

1 + Π̂z(0)

q̂(0)
(
(1− z)(1 + Π̂1(0)) + z(Π̂1(0)− Π̂z(0))

) . (3.18)

It then follows from (3.9)–(3.10) that

|t̂z(0)| ≤ O(1)

|1− z|
(|z| < 1). (3.19)

To bound the second moment ∆t̂z(0), we differentiate (3.7) using the quotient rule and apply
(3.11)–(3.12). This gives (with L-dependent constant)

|∆t̂z(0)| =
∣∣∣∣ 1

1− Φ̂z(0)

(
∆Π̂z(0) + t̂z(0)∆Φ̂z(0)

)∣∣∣∣
=

O(1)

|1− z|

(
ε+

ε

|1− z|

)
=

O(ε)

|1− z|2
(|z| < 1). (3.20)

Note that the bounds (3.19)–(3.20) are better than those naively obtained by multiplying |z|n on
both sides of (3.3) and then summing over nonnegative integers n, which results in inverse powers
of (1− |z|) instead of |1− z|.
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3.2 Induction

The proof of Proposition 2.2 is by induction on r ∈ N. The case r = 1 is provided by (3.20). To
advance the induction, we first note that, by Hölder’s inequality,

|x|2r =

( d∑
j=1

x2j

)r
≤

(( d∑
j=1

1

)1−1/r( d∑
j=1

x2rj

)1/r
)r

= dr−1
d∑
j=1

x2rj . (3.21)

Then, for a Zd-symmetric nonnegative function f on Zd, we have∑
x∈Zd

x2r1 f(x) ≤
∑
x∈Zd

|x|2rf(x) ≤ dr−1
∑
x∈Zd

d∑
j=1

x2rj f(x) = dr
∑
x∈Zd

x2r1 f(x). (3.22)

Therefore, to prove Proposition 2.2, it suffices to show (2.7) for a single component, i.e.,

|∂2r1 t̂z(0)| ≤ O(ε)

|1− z|2
r−1∑
j=0

εj

(1− |z|)j
(|z| < 1), (3.23)

where ∂1 is an abbreviation for ∂
∂k1

.
By applying Leibniz’s rule to the first equality in (3.7) and using the spatial symmetry, we

obtain

∂2r1 t̂z(0) = ∂2r1 Π̂z(0) +
r∑
j=0

(
2r

2j

)
∂2j1 Φ̂z(0) ∂2r−2j1 t̂z(0)

=
1

1− Φ̂z(0)

(
∂2r1 Π̂z(0) +

r∑
j=1

(
2r

2j

)
∂2j1 Φ̂z(0) ∂2r−2j1 t̂z(0)

)
(r ∈ N). (3.24)

(This reproduces the first equality of (3.20) when r = 1.) The right-hand side of (3.24) only involves
lower-order derivatives of t̂ than the left-hand side. This opens up the possibility of an inductive
proof, though we must deal with the fact that the right-hand side does involve ∂2r1 Π̂z. The idea
is similar to that of [5], where for oriented percolation an asymptotic formula for

∑
x∈Zd |x1|stn(x)

is derived for any s > 0. We only prove upper bounds in this paper, and can be less careful in
dealing with the recursion relation (3.24).

The next lemma shows that `1 estimates on |x|qτn(x) imply corresponding `∞ estimates.

Lemma 3.3. Assume the same setting as Proposition 2.2, and let q ∈ N. Suppose there is an
ε-independent constant C such that

∑
x∈Zd |x|qτn(x) ≤ C(1+nε)q/2 holds for all n ≥ 0. Then there

is an ε-independent constant C ′ such that supx∈Zd |x|qτn(x) ≤ C ′(1 + nε)(q−d)/2 also holds for all
n ≥ 0.

Proof. We write m = bn/2c. Since (a + b)q ≤ 2q(aq + bq) for any a, b > 0, and since τn(x) ≤∑
y τm(y)τn−m(x− y), we have

|x|qτn(x) ≤ 2q‖τn−m‖∞
∑
y

|y|qτm(y) + 2q‖τm‖∞
∑
y

|x− y|qτn−m(x− y). (3.25)

By hypothesis, each of the two sums is bounded by C(1+nε)q/2. By (3.4) for r = 0, each `∞ norm
is bounded above by a multiple of (1 + nε)−d/2 (we use (1 − ε)n ≤ e−nε ≤ c(1 + nε)−d/2 with c
independent of ε). This completes the proof.
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(0; 0)

(x; n)

×jxj2rjxj2×

(0; 0)

(x; n")

×jxj2rjxj2×

Figure 1: Allocation of |x|2 and |x|2r to a diagram bounding π(1)
n (x) for oriented percolation (left)

and the contact process (right).

The next lemma is a key step in advancing the induction. It shows that a bound on the
(2r)th moment of τn implies a bound on the (2r + 2)th moment of πn. The proof uses standard
diagrammatic estimates on πn, which are explained in detail in [14, (4.26)] (and [17, (4.10)] for
ε = 1). Figure 1 illustrates the diagrams for π(1)

n (x), which is one contribution to πn(x). The
oriented percolation case ε = 1 (left figure) needs less care, as compared to the contract process
case ε < 1 (right figure). For the latter, correct factors of ε must be extracted. Those factors can
be obtained by noting that, at each intersection of two bond-disjoint paths, at least one must use
a spatial bond (red arrows) to leave or enter that point. Summation over the temporal location
of the two middle red bonds consumes their ε factors to form a Riemann sum, leaving the two ε
factors from the top and bottom red bonds; these are responsible for the factor ε2 in the bound
(3.5) on πn(x).

Lemma 3.4. Assume the same setting as Proposition 2.2, and let r ∈ N. Suppose there is an
ε-independent constant C such that

∑
x∈Zd |x|2rτn(x) ≤ C(1 +nε)r holds for all n ≥ 0. Then there

is an ε-independent constant C ′ such that
∑

x∈Zd |x|2r+2|πn(x)| ≤ C ′ε2(1 + nε)r+1−d/2 also holds
for all n ≥ 0.

Proof. We make the split |x|2r+2 = |x|2|x|2r and multiply |x|2 on the left side and |x|2r to the
right side of the diagrams bounding πn (see Figure 1 for an example of a diagram). Then we
use the triangle inequality to decompose |x|2 along the left side of the diagram and |x|2r along
the right side of the diagram. The proof of the r = 1 case of (3.5) uses the `1 and `∞ estimates
(3.3)–(3.4) for r = 0, 1 to obtain an upper bound of order ε2(1 + nε)1−d/2, where ε2 arises from
the occupied spatial bonds at (0, 0) and (x, nε). By Lemma 3.3 and the hypothesis, we also have
supx |x|2rτn(x) ≤ C ′(1 +nε)r−d/2. If the same bounds as in the proof of the r = 1 case of (3.5) are
applied with one line having weight |x|2r, then our assumption tells us that this line contributes
an additional factor (1 + mε)r where mε is the temporal displacement of the line. Since m ≤ n,
we obtain an upper bound of order (1 + nε)r+1−d/2, as required.

Example 3.5. We illustrate the diagrammatic estimate underlying the proof of Lemma 3.4 with an
example for ε = 1 and r = 2. Suppose that

∑
x |x|4τn(x) ≤ O(n2), and consider the left diagram

in Figure 1 weighted with |x|6 and summed over x, which is a prototype for a contribution to
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∑
x |x|6|πn(x)|. We write |x|6 = |x|2|x|4 and decompose each factor along the two sides of the

diagram using the triangle inequality. One contribution that results is

Xn =
∑

l≤m≤n

∑
u,v,x

|x− u|4|x− v|2τl(u)τm(v)τm−l(v − u)τn−l(x− u)τn−m(x− v). (3.26)

By hypothesis and Lemma 3.3, supz |z|4τn(z) ≤ O(n2−d/2). Therefore, by (3.3),

Xn ≤ c
∑

l≤m≤n

∑
u

τl(u)m−d/2
∑
v

τm−l(v − u)(n− l)2−d/2
∑
x

|x− v|2τn−m(x− v)

≤ c′
∑

l≤m≤n

m−d/2(n− l)2−d/2(n−m)

≤ c′′n3

n−1∑
m=1

m−d/2
m∑
l=1

(n− l)−d/2. (3.27)

The elementary verification that the sum on the right-hand side decays like n−d/2 is carried out
in detail in [17, Example 4.4]. This gives an overall bound n3−d/2 and illustrates the origin of the
bound in the conclusion of Lemma 3.4. Note that the factor n3 in the overall bound results from
the inequalities (n− l)2 ≤ n2 and n−m ≤ n used above to estimate the factors arising from the
spatial moments.

The next lemma promotes the bounds of Lemma 3.4 to bounds on generating functions.

Lemma 3.6. Assume the same setting as Proposition 2.2, and let r ∈ N. Suppose there is an ε-
independent constant C such that

∑
x |x|2rτn(x) ≤ C(1+nε)r holds for all n ≥ 0. Then, uniformly

in ε,

|∆r+1Π̂z(0)| ≤ O(ε2)

1− |z|
+ 1r+1>d/2

O(εr+3−d/2)

(1− |z|)r+2−d/2 (|z| < 1). (3.28)

Proof. We drop the argument “0” from Π̂z(0). Let a = r+1−d/2. By hypothesis and Lemma 3.4,

|∆r+1Π̂z| ≤ O(ε2)
∞∑
n=2

(1 + nε)a|z|n. (3.29)

The case r + 1 ≤ d/2 readily follows from (1 + nε)a ≤ 1.
Suppose r+ 1 > d/2, so that a > 0. Since (1 +x)a ≤ 2a(1 +xa) and |z| ≤ e−(1−|z|), we find that

|∆r+1Π̂z| ≤ O(ε2)
∞∑
n=2

|z|n +O(ε2)
∞∑
n=2

(nε)ae−n(1−|z|)

≤ O(ε2)

1− |z|
+

O(ε2+a)

(1− |z|)a+1
, (3.30)

as required.
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We note that, by (3.22), the bound (3.28) implies that

|∂2r+2
1 Π̂z(0)| ≤ O(ε2)

1− |z|
+ 1r+1>d/2

O(εr+3−d/2)

(1− |z|)r+2−d/2 (|z| < 1). (3.31)

Lemma 3.7. Suppose that the bound (3.31) holds for all r+ 1 ≤ R+ 1. Then, for 2 ≤ j ≤ R+ 1,

|∂2j1 Φ̂z(0)| ≤ O(ε) +
O(ε2)

1− |z|
+ 1j>d/2

 O(εj+2−d/2)

(1− |z|)j+1−d/2 +

j−1∑
i=bd/2c+1

O(εi+3−d/2)

(1− |z|)i+1−d/2

 . (3.32)

Proof. We again drop the argument “0” from the transforms. We use the fact that ∂2j1 q̂ = O(ε)
for j ≥ 1 (but q̂ = O(1)). For 2 ≤ j ≤ d/2,

|∂2j1 Φ̂z| ≤ |1 + Π̂z||∂2j1 q̂|+ |∂
2j
1 Π̂z|q̂ +

j−1∑
i=1

(
2j

2i

)
|∂2i1 Π̂z||∂2j−2i1 q̂|

= O(ε) +
O(ε2)

1− |z|
. (3.33)

For j > d/2, (3.33) needs to be modified as

|∂2j1 Φ̂z| ≤ O(ε) +
O(ε2)

1− |z|
+

O(εj+2−d/2)

(1− |z|)j+1−d/2 +

j−1∑
i=bd/2c+1

(
2j

2i

)
|∂2i1 Π̂z||∂2j−2i1 q̂|

= O(ε) +
O(ε2)

1− |z|
+

O(εj+2−d/2)

(1− |z|)j+1−d/2 +

j−1∑
i=bd/2c+1

O(εi+3−d/2)

(1− |z|)i+1−d/2 . (3.34)

This completes the proof.

Proof of Proposition 2.2. We again drop the argument “0.” We use induction on r ∈ N to prove
(3.23), which asserts that

|∂2r1 t̂z| ≤
O(ε)

|1− z|2
r−1∑
j=0

εj

(1− |z|)j
(r ≥ 1). (3.35)

By (3.20), the initial case r = 1 is already confirmed.
Suppose that (3.35) holds for all positive integers r ≤ R. By Lemma 2.1, there are ε-

independent constants Cr such that, for all nonnegative integers n,∑
x

|x|2rτn(x) ≤ Cr(1 + nε)r. (3.36)

By Lemma 3.6, this provides the estimate (3.31) on ∂2r+2
1 Π̂z for all r ≤ R.

Suppose first that R + 1 ≤ d/2. By (3.24) with r = R + 1,

∂2R+2
1 t̂z =

1

1− Φ̂z

(
∂2R+2
1 Π̂z +

R+1∑
j=1

(
2R + 2

2j

)
∂2j1 Φ̂z ∂

2R+2−2j
1 t̂z

)
. (3.37)
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By Lemmas 3.6–3.7, followed by application of the induction hypothesis,

|∂2R+2
1 t̂z| ≤

O(1)

|1− z|

(
|∂2R+2

1 Π̂z|+ |∂21Φ̂z| |∂2R1 t̂z|+
R∑
j=2

|∂2j1 Φ̂z| |∂2R+2−2j
1 t̂z|+ |∂2R+2

1 Φ̂z| |t̂z|
)

≤ O(1)

|1− z|

(
ε2

1− |z|
+

ε2

|1− z|2
R−1∑
j=0

εj

(1− |z|)j

+

(
ε+

ε2

1− |z|

)
ε

|1− z|2
R∑
j=2

R−j∑
i=0

εi

(1− |z|)i
+

(
ε+

ε2

1− |z|

)
1

|1− z|

)
. (3.38)

It is then an exercise in bookkeeping to verify that this implies that, as required,

|∂2R+2
1 t̂z| ≤

O(ε)

|1− z|2
R∑
j=0

εj

(1− |z|)j
. (3.39)

Suppose finally that R + 1 > d/2. Then (3.38) is modified due to the extra terms in (3.31)–
(3.32). The contribution due to the extra term in ∂2R+2

1 Π̂z can be estimated by

O(1)

|1− z|
εR+3−d/2

(1− |z|)R+2−d/2 =
O(ε)

|1− z|
ε

1− |z|
εR+1−d/2

(1− |z|)R+1−d/2 . (3.40)

The above is of the correct form to advance the induction if d > 4 is even. If instead d is odd (in
which case R + 1 ≥ (d+ 1)/2), then we use

εR+1−d/2

(1− |z|)R+1−d/2 ≤
εR+1−(d+1)/2

(1− |z|)R+1−(d+1)/2
+

εR+1−(d−1)/2

(1− |z|)R+1−(d−1)/2 (3.41)

to obtain a result of the correct form to advance the induction also in this case. We write the
absolute value of the additional term in (3.32) as Xj. It contributes to the last two terms of the
first line of (3.38) an amount

O(1)

|1− z|

 R∑
j=bd/2c+1

Xj|∂2R+2−2j
1 t̂z|+XR+1|t̂z|

 . (3.42)

The XR+1 term is bounded by

O(ε)

|1− z|2

 εR+2−d/2

(1− |z|)R+2−d/2 +
R∑

i=bd/2c+1

εi+2−d/2

(1− |z|)i+1−d/2

 . (3.43)

If d > 4 is even, then this is bounded by the right-hand side of (3.39). If d is odd, then we again
apply (3.41) to obtain an estimate that is appropriate to advance the induction. Finally, for the
sum in (3.42), we use the induction hypothesis to obtain an upper bound

O(ε)

|1− z|3
R∑

j=bd/2c+1

 εj+2−d/2

(1− |z|)j+1−d/2 +

j−1∑
i=bd/2c+1

εi+3−d/2

(1− |z|)i+1−d/2

 R−j∑
i=0

εi

(1− |z|)i
. (3.44)

This again has the correct form to advance the induction, again with the distinction between even
and odd d > 4. This completes the proof.

13



4 Lattice trees: proof of Theorem 1.3

We sketch the proof, and only point out where it differs from the proof of Theorem 1.1. We assume
henceforth that d > 8 and L is sufficiently large.

Recall the definitions of Section 1.4, and, as in (2.1), let

tz(x) =
∞∑
n=0

τn(x)zn (|z| < 1). (4.1)

The lace expansion gives (see, e.g., [7, (4.7)–(4.9)])

t̂z(k) =
ĥz(k)

1− Φ̂z(k)
, (4.2)

with
ĥz(k) = gpc + Π̂z(k), Φ̂z(k) = zpcD̂(k)ĥz(k). (4.3)

The critical 1-point function gzc is a constant in the interval [1, 4] [11], and the coefficients of the
power series Πz(x) are given by

Πz(x) =
∞∑
n=0

πn(x)zn. (4.4)

The following proposition is a small modification of [18, Proposition 5.1 & Lemma 5.4]. It plays
the role of Proposition 3.1; note that the power nr−d/2 of (3.5) is replaced by nr−(d−4)/2 for lattice
trees. This reflects the increase in the upper critical dimension from 4 for oriented percolation to
8 for lattice trees.

Proposition 4.1. Let d > 8 and fix any δ > 0. There is an L0 > 0 and a finite C such that for
L ≥ L0 and for n ≥ 1,∑

x∈Zd

|x|2rτn(x) ≤ CL2rnr, sup
x∈Zd

|x|2rτn(x) ≤ CL2r−dnr−d/2 (r = 0, 1), (4.5)

∑
x∈Zd

|x|2r|πn(x)| ≤ CL2r−d+δnr−(d−4)/2 (r = 0, 1, 2). (4.6)

By (4.6), |Π̂z(k)| and |∆Π̂z(k)| are uniformly bounded in |z| ≤ 1. As in (3.19), we obtain

|t̂z(0)| ≤ C

|1− z|
(|z| < 1), (4.7)

in fact much more is known (see [7, (2.5)]). Lemma 3.3 applies equally well to lattice trees.
Lemma 3.4 is replaced by the following lemma, whose proof we discuss below.

Lemma 4.2. Assume the same setting as Proposition 4.1, and let r ∈ N. Suppose there is a
finite C such that

∑
x∈Zd |x|2rτn(x) ≤ Cnr holds for all n ≥ 1. Then there is a finite C ′ such that∑

x∈Zd |x|2r+2|πn(x)| ≤ C ′nr+1−(d−4)/2 holds for all n ≥ 1.
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Figure 2: Allocation of |x|2 and |x|2r−2 to a diagram bounding π(3)
n (x) for lattice trees. The

backbone is represented by the sequence of bold lines (in red).

The conclusion of Lemma 3.6 is then replaced by

∞∑
n=1

∑
x∈Zd

|x|2r+2|πn(x)| |z|n ≤ O
(
(1− |z|)−(r−(d−8)/2)∨1

)
(|z| < 1). (4.8)

The proof of Proposition 2.2 is essentially the same but is simpler because now we can set ε = 1,
and it applies also to prove Theorem 1.3. It remains only to discuss the proof of Lemma 4.2. This
is carried out in detail for r = 1 in the proof of [18, Proposition 5.1], and for r = 2 in the proof
of [20, (9.32)]. The same method applies more generally to handle higher values of r. Briefly, the
proof goes as follows.

Proof of Lemma 4.2. The diagrammatic estimate in the proof of Lemma 3.4 must be replaced by an
estimate for the diagrams that arise for lattice trees (the diagrams are discussed in [20, Section 9.2]
— see, in particular, [20, Figure 2]). We divide |x|2r+2 as |x|2|x|2r−2|x|2, distribute one |x|2 factor
along the top of a diagram via the triangle inequality, and distribute the other |x|2 factor along the
bottom of the diagram (see Figure 2 for an example of a 3-loop diagram). This leads to terms with
one line on the top of the diagram weighted with the displacement squared, and one line on the
bottom similarly weighted. The factor |x|2r−2 is distributed along the backbone, which includes
lines on top and bottom of the diagram, which may or may not be already weighted with the
displacement squared. Thus, altogether, we have one line weighted with |y|2 and a different line
(which must lie on the backbone) weighted with |y|2|y|2r−2 = |y|2r, or we have two lines weighted
with |y|2 and a third line (which must lie on the backbone) weighted with |y|2r−2. The case r = 1
is handled in [18, Proposition 5.1] by using the bounds (4.5) on the backbone lines. For r > 1, we
first apply Hölder’s inequality (as in (2.10)) to see that the hypothesis on the (2r)th moment of τn
implies

∑
x∈Zd |x|2r−2τn(x) = O(nr−1). With Lemma 3.3, these bounds on the (2r)th and (2r−2)th

moments of τn imply corresponding `∞ bounds. Together, these imply that the estimate for the
(2r + 2)th moment of πn will be at most nr−1 times larger than the fourth moment estimate of
(4.6), i.e., ∑

x∈Zd

|x|2r+2|πn(x)| ≤ nr−1O(n2−(d−4)/2) = O(nr+1−(d−4)/2), (4.9)

as required.
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