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Abstract

We present a self-contained construction of the Euclidean ®* quantum field theory on R3
based on PDE arguments. More precisely, we consider an approximation of the stochastic
quantization equation on R3 defined on a periodic lattice of mesh size £ and side length M.
We introduce a new renormalized energy method in weighted spaces and prove tightness of
the corresponding Gibbs measures as ¢ — 0, M — oo. Every limit point is non-Gaussian and
satisfies reflection positivity, translation invariance and stretched exponential integrability.
These properties allow to verify the Osterwalder—Schrader axioms for a nontrivial Euclidean
QFT apart from rotation invariance and clustering. Moreover, we establish an integration
by parts formula leading to the hierarchy of Dyson—Schwinger equations for the Euclidean
correlation functions. To this end, we identify the renormalized cubic term as a distribution
on the space of Euclidean fields. Our argument applies to arbitrary positive coupling constant
and also to multicomponent models with O(N) symmetry.
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1 Introduction

From the point of view of probability theory, one of the major achievements of the constructive
quantum field theory (CQFT) program [VW73, Sim74, GJ87, Riv9l, BSZ92, Jaf00, Jaf08, Sum12|
which flourished in the 70s and 80s can be summarized in the existence of a “wonderful new
mathematical object” (as Gelfand once put it [Jaf08]):

Theorem 1.1 There exists a one parameter family (v)xso of measures on S'(R®) that are
non-Gaussian, Euclidean invariant and reflection positive.

A measure p on the space S'(R?) of Schwartz distributions on R? is Euclidean invariant (EI)
if it is invariant under the rigid motions of R3. Denote by ¥, (f) := fS’(RS) e?(N) p(dy) the
characteristic function of p. We say that p is reflection positive (RP) if the matrix (V,(f; —
0f;))i; is positive semidefinite for any finite choice of Schwartz functions (f;); C S(R3) with
supp(fi) C {(w1,22,23) € R® : 21 > 0} and where 0f;(z1,29,23) = fi(—x1,22,23) is the
reflection with respect to the x1 = 0 plane. Reflection positivity is a property whose crucial
importance for probability theory and mathematical physics [Bis09, Jafl8] and representation
theory [NO18, JT18] has been one of the byproducts of the constructive effort.

Surprisingly, a measure which satisfies all these three properties has been quite difficult to find.
Euclidean invariance and reflection positivity conspire against each other. Models which easily
satisfy one property hardly satisfy the other if they are not Gaussian (see e.g. [AY02, AY09)]).
In the two dimensional setting the existence of the analogous object has been one of the early
successes of CQFT [Sim74, GJ87, BSZ92|, while it is likely that in four and more dimensions
such an object cannot exist [FFS92].

Theorem 1.1 (provided some additional technical properties are satisfied) implies the existence
of a relativistic quantum field theory in the Minkowski space-time R!'*? which satisfies the
Wightman axioms [Wig76| (a minimal set of axioms capturing the essence of the combination of
quantum mechanics and special relativity). The translation from the commutative probabilistic
setting (Euclidean QFT) to the non-commutative Minkowski QFT setting is operated by a set



of axioms introduced by Osterwalder—Schrader [OS73, OS75]| for the correlation functions of the
measure v (called Schwinger functions or Euclidean correlation functions) which shall satisfy:
a regularity axiom (OS0), an Euclidean invariance axiom (OS1), a reflection positivity axiom
(082), a symmetry axiom (OS3) and a cluster property (OS4).

The standard approach to construction of measures which satisfy EI, RP and are non-
Gaussian is to perturb in a non-linear way a Gaussian measure via a Gibbs-type density which is
ill-defined due to small scale (ultraviolet, in CQFT parlance) singularities as well as to large scale
ones (infrared). One is then led to introduce a cut-offs in order to tame the singularities and
reqularize the measure (see e.g. our choice in (1.1) below). Such a regularization typically spoils
EI or RP (or both) and has to be subsequently removed by a more or less elaborate limiting
procedure, whose main duty is to reestablish the simultaneous validity of both properties. This
additionally requires, especially in three dimensions, to remove certain diverging quantities, a
process called renormalization.

The original proof of the OS axioms, along with additional properties of the family of measures
(1*)x which are called ®3 measures, is scattered in a series of works covering almost a decade.
Glimm [Gli68] first proved the existence of the Hamiltonian (with an infrared regularization) in
the Minkowski setting. Then Glimm and Jaffe [GJ73] introduced the phase cell expansion of the
regularized Schwinger functions, which revealed itself a powerful and robust tool (albeit complex
to digest) in order to handle the local singularities of Euclidean quantum fields and to prove the
ultraviolet stability in finite volume. The proof of existence of the infinite volume limit and the
verification of Osterwalder—Schrader axioms [OS73, OS75] was then completed by Feldman and
Osterwalder for A small [FO76| using cluster expansion methods, finally the work of Seiler and
Simon [SS76] allowed to extend the existence result to all A > 0 (this is claimed in [GJ87] even
though we could not find a clear statement in Seiler and Simon’s paper). Equations of motion
for the quantum fields were established by Feldman and Raczka [FR77].

Since this first, complete, construction, there have been several other attempts to simplify
(both technically and/or conceptually) the arguments and the ®3 measure has been since con-
sidered a test bed for various CQFT techniques. There exists at least six methods of the proof:
the original phase cell method of Glimm and Jaffe extended by Feldman and Osterwalder [FO76],
Magnen and Seneor [MS76] and Park [Par77| (among others), the probabilistic approach of Ben-
fatto, Cassandro, Gallavotti, Nicolo, Olivieri, Presutti and Schiacciatelli [BCG+78], the block
average method of Balaban [Bal83| (reviewed by Dimock in [Diml13a, Dim13b, Dim14]), the
wavelet method of Battle-Federbush [Bat99], the skeleton inequalities method of Brydges, Froh-
lich, Sokal [BFS83|, the work of Watanabe on rotation invariance [Wat89] via the renormalization
group method of Gawedzki and Kupiainen [GK86|, and more recently the renormalization group
method of Brydges, Dimock and Hurd [BDH95|.

It should be said that, apart from the Glimm—Jaffe-Feldman—Osterwalder result, none of the
additional constructions seems to be as complete and to verify explicitly all the OS axioms. As
Jaffe [JafO8] remarks:

“Not only should one give a transparent proof of the dimension d = 3 construc-
tion, but as explained to me by Gelfand [private communication|, one should make
it sufficiently attractive that probabilists will take cognizance of the existence of a
wonderful mathematical object.”

In our opinion, among all these (incomplete) methods, the simplest and the most “attractive”
one seems to be that of skeleton inequalities proposed by Sokal [Sok82] and Brydges, Frohlich,



Sokal [BFS83|, which however fails to prove rotational invariance (thus not covering completely
Theorem 1.1) and to give information for large .

In the present paper we put forward a simple, self-contained, construction of the <I>§ mea-
sure based on methods from PDE theory as well as on recent advances in the field of singular
SPDEs. We can show invariance under translation, reflection positivity, the regularity axiom of
Osterwalder—Schrader and the non-Gaussianity of the measure, thus going a long way (albeit not
fully reaching the goal) to a complete proof of Theorem 1.1 and of its consequences for QFT.
Our proof applies to all values of the coupling parameter A\ > 0 as well as to natural extensions
to N-dimensional vectorial variants of the model. Furthermore, we establish an integration by
parts formula which leads to the hierarchy of the Dyson—Schwinger equations for the Schwinger
functions of the measure.

Our methods are innovative and very different from all the known constructions we enumer-
ated above. In particular, we do not rely on any of the standard tools like cluster expansion
or correlation inequalities or skeleton inequalities, and therefore our approach brings a new per-
spective to this extensively investigated classical problem, with respect to the removal of both
ultraviolet and infrared regularizations.

The key idea is to use a dynamical description of the approximate measure which relies on
an additional random source term which is Gaussian, in the spirit of the stochastic quantization
approach introduced by Nelson |[Nel66, Nel67] and Parisi and Wu [PW81] (with a precursor in a
technical report of Symanzik [Sym64]).

The concept stochastic quantization refers to the introduction of a reversible stochastic dy-
namics which has the target measure as the invariant measure, here in particular the (I)le measure
in d dimensions. The rigorous study of the stochastic quantization for the two dimensional
version of the ®* theory has been first initiated by Jona-Lasinio and Mitter [JLMS85] in finite
volume and by Borkar, Chari and Mitter [BCMS88]| in infinite volume. A natural d = 2 local
dynamics has been subsequently constructed by Albeverio and Réckner [AR91| using Dirichlet
forms in infinite dimensions. Later on, Da Prato and Debussche [DPDO03] have shown for the
first time the existence of strong solutions to the stochastic dynamics in finite volume. Da Prato
and Debussche have introduced an innovative use of a mixture of probabilistic and PDE tech-
niques and constitute a landmark in the development of PDE techniques to study stochastic
analysis problems. Similar methods have been used by McKean [McK95b, McK95a| and Bour-
gain [Bou96| in the context of random data deterministic PDEs. Mourrat and Weber [MW17b]
have subsequently shown the existence and uniqueness of the stochastic dynamics globally in
space and time. For the d = 1 dimensional variant, which is substantially simpler and does not
require renormalization, global existence and uniqueness have been established by Iwata [Iwa87].

In the three dimensional setting the progress has been significantly slower due to the more
severe nature of the singularities of solutions to the stochastic quantization equation. Only very
recently, there has been substantial progress due to the invention of regularity structures theory
by Hairer [Haild| and paracontrolled distributions by Gubinelli, Imkeller, Perkowski [GIP15].
These theories greatly extend the pathwise approach of Da Prato and Debussche via insights
coming from Lyons’ rough path theory |Lyo98, LQO02, LCL07] and in particular the concept
of controlled paths |Gub04, FH14|. With these new ideas it became possible to solve certain
analytically ill-posed stochastic PDEs, including the stochastic quantization equation for the <I>§
measure and the Kardar—Parisi-Zhang equation. The first results were limited to finite volume:
local-in-time well-posedness has been established by Hairer [Hail4| and Catellier, Chouk [CC18|.
Kupiainen [Kupl6] introduced a method based on the renormalization group ideas of [GKS86|.



Long-time behavior has been studied by Mourrat, Weber [MW17a|, Hairer, Mattingly [HM18b|
and a lattice approximation in finite volume has been given by Hairer and Matetski [HM18a)
and by Zhu and Zhu [ZZ18]. Global in space and time solutions have been first constructed
by Gubinelli and Hofmanova in [GH18|. Local bounds on solutions, independent on boundary
conditions, and stretched exponential integrability have been recently proven by Moinat and
Weber [MW18].

However, all these advances are still falling short to give a complete proof of the existence
of the <I>§ measure on the full space and of its properties. Indeed they, including essentially
all of the two dimensional results, are principally aimed at studying the dynamics with an
a priori knowledge of the existence and the properties of the invariant measure. For example
Hairer and Matetski [HM18a| use a discretization of a finite periodic domain to prove that the
limiting dynamics leaves the finite volume ®3 measure invariant using the a priori knowledge
of its convergence from the paper of Brydges et al. [BFS83|. Studying the dynamics, especially
globally in space and time is still a very complex problem which has siblings in the ever growing
literature on invariant measures for deterministic PDEs starting with the work of Lebowitz, Rose
and Speer [LRS88, LRS89|, Bourgain [Bou94, Bou96|, Burq and Tzvetkov [BT08b, BT08a, Tzv16|
and with many following works (see e.g. [CO12, CK12, NPS13, Chal4, BOP15|) which we cannot
exhaustively review here.

The first work proposing a constructive use of the dynamics is, to our knowledge, the work
of Albeverio and Kusuoka [AK17], who proved tightness of certain approximations in a finite
volume. Inspired by this result, our aim here is to show how these recent ideas connecting prob-
ability with PDE theory can be streamlined and extended to recover a complete, self-contained
and simple, proof of existence of the ®3 measure on the full space. In the same spirit see also
the work of Hairer and Iberti [HI18] on the tightness of the 2d Ising-Kac model.

Soon after Hairer’s seminal paper [Hail4|, Jaffe [Jaf14] analyzed the stochastic quantization
from the point of view of reflection positivity and constructive QF T and concluded that one has
to necessarily take the infinite time limit to satisfy RP. Even with global solution at hand a proof
of RP from dynamics seems nontrivial and actually the only robust tool we are aware of to prove
RP is to start from finite volume lattice Gibbs measures for which RP follows from the spatial
Markov property.

For this reason, the starting point of our analysis is a family (vas¢) e of Gibbs measures on
the periodic lattice Ay . = (e(Z/MZ))? with mesh size ¢ and side length M, given by

A —3Xanse + 3X2bys - + m? 1
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(1.1)
where V. denotes the discrete gradient and aase, bare are suitable renormalization constants,
m? € R is called the mass and A > 0 the coupling constant of the model. Our goal is to let € — 0
and M — oo in order to recover both full translation invariance and reflection positivity which
for vpse is well known to hold. To this end, we prove that the family (vare)a e is tight once
embedded in the space of probability measures on &'(R?). The removal of the regularization
parameters €, M requires a precise tuning of the renormalization constants (anre,bare) e

An SPDE is used to derive bounds which are strong enough to prove the tightness of the
family (vare)ame. To be more precise, we study a lattice approximation of the (renormalized)

Anre



stochastic quantization equation
(at+m2_A)g0+)‘g03 —008025, (t,CC) eRJr XR35 (12)

where ¢ is a space-time white noise on R3. The lattice dynamics is a system of stochastic
differential equation which is globally well-posed and has vjs. as its unique invariant measure.
We can therefore consider its stationary solution ¢jr. having at each time the law vy, .. We
introduce a suitable decomposition together with an energy method in the framework of weighted
Besov spaces. This allows us, on the one hand, to track down and renormalize the short scale
singularities present in the model as ¢ — 0, and on the other hand, to control the growth of the
solutions as M — oco. As a result we obtain uniform bounds which allow to pass to the limit in
the weak topology of probability measures.

The details of the renormalized energy method rely on recent developments in the analysis
of singular PDEs. In order to make the paper accessible to a wide audience with some PDE
background we implement renormalization using the paracontrolled calculus of [GIP15] which is
based on Bony’s paradifferential operators [Bon81, Mey81, BCD11]. We also rely on some tools
from the paracontrolled analysis in weigthed Besov spaces which we developed in [GH18| and on
the results of Martin and Perkowski [MP17| on Besov spaces on the lattice.

The method we use here is novel and differs from the approach of [GH18| in that we are
initially less concerned with the continuum dynamics itself. We do not try to obtain estimates
for strong solutions and rely instead on certain cancellations in the energy estimate that permit
to significantly simplify the proof. The resulting bounds are sufficient to provide a rather clear
picture of any limit measure as well as some of its physical properties. In contrast, in [GH18|
we provided a detailed control of the dynamics (1.2) (in stationary or non-stationary situations)
at the price of a more involved analysis. Section 4.2 of the present paper could in principle be
replaced by the corresponding analysis of [GH18|. However the adaptation of that analysis to
the lattice setting (without which we do not know how to prove RP) would still require further
preparatory work that constitutes a large fraction of the present paper. Similarly, the recent
results of Moinat and Weber [MW18| (which appeared after we completed a first version of this
paper) can be conceivably used to replace a part of Section 4. Our choice of an alternative
approach is mostly motivated by the desire to provide a self-contained, elementary (to the extent
possible) and accessible argument.

Our main result is the following.

Theorem 1.2 There exists a choice of the sequence (anre,bae)me such that for any X > 0
and m* € R, the family of measures (vpre)me (properly extended to S'(R3)) is tight. Every
accumulation point v is translation invariant, reflection positive and non-Gaussian. In addition,
for every small k > 0 there exists 0 >0, >0 and v = O(k) > 0 such that

/ exp {11+ )79l o () < . (13)
S(R3)

Moreover, every v satisfies an integration by parts formula which leads to the hierarchy of
the Dyson—Schwinger equations for n-point correlation functions.

Remark 1.3 1. The stretched exponential integrability in (1.3) is also discussed in the work
of Moinat and Weber [MW18| (using different norms) and it is sufficient to prove the
original regularity axiom of Osterwalder and Schrader (but not its formulation given in the
book of Glimm and Jaffe [GJ87]).



2. The Dyson—Schwinger equations were first derived by Feldman and Raczka [FR77] using
the results of Glimm, Jaffe, Feldman and Osterwalder.

3. As already noted by Albeverio, Liang and Zegarlinski [ALZ06] on the formal level, the inte-
gration by parts formula gives rise to a cubic term which cannot be interpreted as a random
variable under the <I>§ measure. Therefore, the crucial question that remained unsolved un-
til now is how to make sense of this critical term as a well-defined probabilistic object.
In the present paper, we obtain fine estimates on the approximate stochastic quantization
equation and construct a coupling of the stationary solution to the continuum <I>§ dynamics
and the Gaussian free field. This leads to a detailed description of the renormalized cubic
term as a genuine random space-time distribution. Moreover, we approximate this term in
the spirit of the operator product expansion.

4. To the best of our knowledge, our work provides the first rigorous proof of a general
integration by parts formula with an exact formula for the renormalized cubic term. In
addition, the method applies to arbitrary values of the coupling constant A > 0 if m? > 0
and A > 0 if m? < 0 and we state the precise dependence of our estimates on . In
particular, we show that our energy bounds are uniform over A in every bounded subset of
[0, 00) provided m? > 0 (see Remark 4.6).

5. By essentially the same arguments, we are able to treat the vector version of the model,
where the scalar field  : R — R is replaced by a vector valued one ¢ : R3 — R for some
N € N and the measures vy, are given by a similar expression as (1.1), where the norm
|| is understood as the Euclidean norm in RY.

To conclude this introductory part, let us compare our result with other constructions of
the <1>§)l field theory. The most straightforward and simplest available proof has been given by
Brydges, Frohlich and Sokal [BFS83] using skeleton and correlation inequalities. All the other
methods we cited above employ technically involved machineries and various kinds of expansions
(they are however able to obtain very strong information about the model in the weakly-coupled
regime, i.e. when A is small). Compared to the existing methods, ours bears similarity in
conceptual simplicity to that of [BFS83|, with some advantages and some disadvantages. Both
works construct the continuum <I>§ theory as a subsequence limit of lattice theories and the
rotational invariance remains unproven. The main difference is that [BFS83] relies on correlation
inequalities, which, on the one hand, restricts the applicability to weak couplings and only
models with N = (0, )1,2 components (note that the N = 0 models have a meaning only in their
formalism but not in ours), but, on the other hand, allow to establish bounds on the decay of
correlation functions, which we do not have. However, our results hold for every value of A > 0
and m? € R while the results in [BFS83] works only in the so-called “single phase region”, which
essentially corresponds to small A > 0 or m? > 0 large.

Our work is intended as a first step in the direction of using PDE methods in the study
of Euclidean QFTs and large scale properties of statistical mechanical models. Another related
attempt is the variational approach developed in [BG18]| for the finite volume <1>§)l measure. As
far as the present paper is concerned the main open problems is to establish rotational invariance
and give more information on the limiting measures, in particular establish uniqueness for small
A. It is not clear how to deduce anything about correlations from the dynamics but it seems to
be a very interesting and challenging problem.



Plan. The paper is organized as follows. Section 2 gives a summary of notation used throughout
the paper, Section 3 presents the main ideas of our strategy and Section 4, Section 5 and Section 6
are devoted to the main results. First, in Section 4 we construct the Euclidean quantum field
theory as a limit of the approximate Gibbs measures vjr.. To this end, we introduce the
lattice dynamics together with its decomposition. The main energy estimate is established in
Theorem 4.5 and consequently the desired tightness as well as moment bounds are proven in
Theorem 4.9. In Section 4.4 we establish finite stretched exponential moments. Consequently,
in Section 5 we verify the translation invariance and reflection positivity, the regularity axiom
and nontriviality of any limit measure. Section 6 is devoted to the integration by parts formula
and the Dyson—Schwinger equations. Finally, in Appendix A we collect a number of technical
results needed in the main body of the paper.
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2 Notation

Within this paper we are concerned with the <I>§ model in discrete as well as continuous setting.
In particular, we denote by A, = (¢Z)¢ for ¢ = 27N, N € Ny, the rescaled lattice Z? and by

Ape = eZ% N ']I‘%/[ = ¢Z%nN [—%, %)d its periodic counterpart of size M > 0. For notational
simplicity, we use the convention that the case ¢ = 0 always refers to the continuous setting. For
instance, we denote by Ag the full space Ag = R? and by A M0 the continuous torus Ao = T%.
With the slight abuse of notation, the parameter ¢ is always taken either of the form ¢ = 27
for some N € Ny, N > Ny, for certain Ny € Ny that will be chosen as a consequence of
Lemma A.9 below, or ¢ = 0. Various proofs below will be formulated generally for ¢ € A :=
{0, 2NN € No,N > No} and it is understood that the case € = 0 or alternatively N = oo
refers to the continuous setting. All the proportionality constants, unless explicitly signalled,
will be independent of M, e, A, m?. We will track the explicit dependence on ) as far as possible
and signal when the constant depends on the value of m? > 0.

For f € /'(A.) and g € L*(A.), respectively, we define the Fourier and the inverse Fourier
transform as

Fith) == 3 fla)e e Flg) = /( ICE

:BEAE

where k € (e7'T)¢ =: A, and = € A.. These definitions can be extended to discrete Schwartz
distributions in a natural way, we refer to [MP17| for more details. In general, we do not specify
on which lattice the Fourier transform is taken as it will be clear from the context.

Consider a smooth dyadic partition of unity (¢;);>—1 such that ¢_; is supported in a ball
around 0 of radius 3, ¢ is supported in an annulus, ¢;(-) = ¢o(277+) for j > 0 and if |i — j| > 1



then supp ¢; Nsupp ¢; = 0. For the definition of Besov spaces on the lattice A, for e = 27N we
introduce a suitable periodic partition of unity on A, as follows

A - 90(35)’ <N —J,
7)== { - 2jen-g®il®), G=N-—1J .

where z € A, and the parameter J € Ny, whose precise value will be chosen below independently
on ¢ € A, satisfies 0 < N — J < J. := inf{j : supp p; N 9(e~!T)? # 0} — oo as ¢ — 0. We note
that by construction there exists ¢ € Z independent of € = 2= such that J, = N — /.

Then (2.1) yields a periodic partition of unity on A.. The reason for choosing the upper index
as IV — J and not the maximal choice J. will become clear in Lemma A.9 below, where it allows
us to define suitable localization operators needed for our analysis. The choice of parameters Ny
and J is related in the following way: A given partition unity (¢;);>—1 determines the parameters
Je in the form J. = N — £ for some ¢ € Z. By the condition N — J < J. we obtain the first lower
bound on J. Then Lemma A.9 yields a (possibly larger) value of J which is fixed throughout
the paper. Finally, the condition 0 < N — J implies the necessary lower bound Ny for N, or
alternatively the upper bound for ¢ = 27V < 27N and defines the set A. We stress that once
the parameters J, Ny are chosen, they remain fixed throughout the paper.

Remark that according to our convention, (go?)];,l denotes the original partition of unity
(¢;)j>—1 on R4, which can be also read from (2.1) using the fact that for e = 0 we have .J. = c0.

Now we may define the Littlewood—Paley blocks for distributions on A, by

ASf = F U G5FS),

which leads us to the definition of weighted Besov spaces. Throughout the paper, p denotes a
polynomial weight of the form

ple) = (ha)™ = (1 + |haf?) /2 (2.2)

for some v > 0 and h > 0. The constant A will be fixed below in Lemma 4.4 in order to produce
a small bound for certain terms. Such weights satisfy the admissibility condition p(x)/p(y) <
p~l(z —y) for all z,y € R% For a € R, p,q € [1,00] and ¢ € [0,1] we define the weighted Besov
spaces on A. by the norm

1/q 1/q
HfHBg;;(p):< ) WHA;quLp,E(,))) :( S 20‘”HpA§fH%p,s> ,
—1<j<N—J —1<j<N—J

where LP® for e € A\ {0} stands for the L? space on A, given by the norm

1/p
1fllzre = (ed > If(w)l”>

TEA

(with the usual modification if p = c0). Analogously, we may define the weighted Besov spaces
for explosive polynomial weights of the form p~!. Note that if ¢ = 0 then By (p) is the classical
weighted Besov space By ,(p). In the sequel, we also employ the following notations

Cp) = Bailp) H(p) = B35 (o).



In Lemma A.l we show that one can pull the weight inside the Littlewood—Paley blocks in the
definition of the weighted Besov spaces. Namely, under suitable assumptions on the weight that
are satisfied by polynomial weights we have ||f| s () ~ [lof[lpo:s in the sense of equivalence of
norms, uniformly in €. We define the duality product on A, by

(f,9)e =" fla)g(x)
TE€Ae

and Lemma A.2 shows that BZ;O;’,E(;)’I) is included in the topological dual of By (p) for conjugate
/ ’

exponents p,p’ and ¢, ¢’

We employ the tools from paracontrolled calculus as introduced in [GIP15], the reader is
also referred to [BCD11]| for further details. We shall freely use the decomposition fg = f <
g+ fog+ f =g, where f = g=g = f and [ o g, respectively, stands for the paraproduct of f
and g and the corresponding resonant term, defined in terms of Littlewood—Paley decomposition.
More precisely, for f,g € §’'(A.) we let

f<g:= > ASfASg,  fog:= Y. AffASg

1<, <N—Jyi<j—1 1<, j <N —Jyinsj

We also employ the notations f < ¢g:= f <g+ fogand f Xg:= f < g+ f > g. For notational
simplicity, we do not stress the dependence of the paraproduct and the resonant term on ¢ in
the sequel. These paraproducts satisfy the usual estimates uniformly in e, see e.g. [MP17],
Lemma 4.2, which can be naturally extended to general B,y (p) Besov spaces as in [MW17b],
Theorem 3.17.

Throughout the paper we assume that m? > 0 and we only discuss in Remark 4.6 how to
treat the case of m? < 0. In addition, we are only concerned with the 3 dimensional setting and
let d = 3. We denote by A the discrete Laplacian on A. given by

d

Aef(.%')28722(]0(.%'4-562‘)—2f(1')+f(.%'—€€i)), x € Ag,

i=1

where (€;)i=1,...4 is the canonical basis of R%. Tt can be checked by a direct computation that
the integration by parts formula

d
(At ghine = —~(Vef Veghuse =t 3 S el 2 J@ e v ee) — o)

3
"L'GA]\/I’E i=1

holds for the discrete gradient

o) - (Heee) Sy

e

=1,..,

Welet 2, :=m?—A,, Z.:=0,+ 2, and we write .Z for the continuum analogue of .Z ..
We let .2 -1 to be the inverse of .Z . on A. such that £ -!f = v is a solution to £ .v = f,
v(0) = 0.
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3 Overview of the strategy

With the goals and notations being set, let us now outline the main steps of our strategy.

Lattice dynamics. For fixed parameters ¢ € A, M > 0, we consider a stationary solution
@M, to the discrete stochastic quantization equation

XEQDM,E + )\80}3\476 + (—3>\CLM,€ + 3)\2bM,€)SDM,€ = é-M,E) T € AM@, (31)

whose law at every time ¢ > 0 is given by the Gibbs measure (1.1). Here &y is a discrete
approximation of a space-time white noise & on R? constructed as follows: Let &7 denote its
periodization on ']I"]iw given by

Eni(h) :=&(har), where  hy(t,x) == 1[_%7%)(1(56) Z h(t,z +y),
yeMZ4

where h € L?(R x Rd) is a test function, and define the corresponding spatial discretization by

£M7€(t,£ﬂ) = 67d<£M(t, -), 1|_,x‘<€/2>, (t,a:) eR x AM7€.

Then (3.1) is a finite-dimensional SDE in a gradient form and it has a unique invariant measure
Ve given by (1.1).

Recall that due to the irregularity of the space-time white noise in dimension 3, a solution
to the limit problem (1.2) can only exist as a distribution. Consequently, since products of
distributions are generally not well-defined it is necessary to make sense of the cubic term. This
forces us to introduce a mass renormalization via constants ase, bare > 0 in (3.1) which shall
be suitably chosen in order to compensate the ultraviolet divergencies. In other words, the
additional linear term shall introduce the correct counterterms needed to renormalize the cubic
power and to derive estimates uniform in both parameters M,e. To this end, ays. shall diverge
linearly whereas by, logarithmically and these are of course the same divergencies as those
appearing in the other approaches, see e.g. Chapter 23 in [GJ87].

Energy method in a nutshell. Our aim is to apply the so-called energy method, which is
one of the very basic approaches in the PDE theory. It relies on testing the equation by the
solution itself and estimating all the terms. To explain the main idea, consider a toy model

Lu+d = f, z € R3,

driven by a sufficiently regular forcing f such that the solution is smooth and there are no
difficulties in defining the cube. Testing the equation by u and integrating the Laplace term by
parts leads to

1
SOlullzz +m?[[ullLz + I Vullfe + Allulza = (£, ).

Now, there are several possibilities to estimate the right hand side using duality and Young’s
inequality, namely,

1Az llell e < Co 1 £1172 +45;7%ZHUII%Q
(Fru) < Q1 fllpasllulle < CoATY3 750 + X JullL
£l llullm < Comall FlI7-2 + 0(m?|lullz + [ Vull72)

11



This way, the dependence on u on the right hand side can be absorbed into the good terms on
the left hand side by choosing § € (0,1). If in addition u was stationary hence in particular
¢t~ Ellu(t)||3, is constant, then we obtain

Com2 111172 s
m’El|u(t)]72 + E|Vu(t)72 + XEJu(t)l|ze < ¢ CoA™Y3 £, -

Com2 111

To summarize, using the dynamics we are able to obtain moment bounds for the invariant
measure that depend only on the forcing f. Moreover, we also see the behavior of the estimates
with respect to the coupling constant A. Nevertheless, even though using the L*-norm of u
introduces a blow up for A — 0, the right hand side f in our energy estimate below will always
contain certain power of A in order to cancel this blow up and to obtain bounds that are uniform
as A — 0.

Decomposition and estimates. Since the forcing & on the right hand side of (1.2) does not
possess sufficient regularity, the energy method cannot be applied directly. Following the usual
approach within the field of singular SPDEs, we shall find a suitable decomposition of the solution
©M,e, isolating parts of different regularity. In particular, since the equation is subcritical in the
sense of Hairer [Hail4| (or superrenormalizable in the language of quantum field theory), we
expect the nonlinear equation (1.2) to be a perturbation of the linear problem . X = ¢. This
singles out the most irregular part of the limit field ¢. Hence on the approximate level we set
©me = Xnme + e where Xy is a stationary solution to

gaXM,e = 5M,57 (3'2)

and the remainder 7,/ is expected to be more regular.
To see if it is indeed the case we plug our decomposition into (3.1) to obtain

L it + 3N barconse + AN[X 3] + A3mare[ X3y ] + A3niy o Xoue + Aniye = 0. (3.3)

Here [[X12\4,e]] and [[XJ?\)d,e]] denote the second and third Wick power of the Gaussian random
variable X /. defined by

[[X]2\4,5]] = XJQ\/I,E — QM. [[X]?\’/[,a]] = X]?\’/[,a - 3aM75XM757 (3'4)

where apr. := E[X3, ()] is independent of ¢ due to stationarity. It can be shown by direct com-
putations that appeared already in a number of works (see [CC18], [Haild|, [Hail5], [MWX16])
that [[XJZ\/[@]] is bounded uniformly in M, e as a continuous stochastic process with values in the
weighted Besov space € ~17%¢(p%) for every x,o > 0, whereas [[XJ?\)d,e]] can only be constructed
as a space-time distribution. In addition, they converge to the Wick power [X?] and [X?] of X.
In other words, the linearly growing renormalization constant as. gives counterterms needed
for the Wick ordering.

Note that X is a continuous stochastic process with values in € ~1/27%(p?) for every s, > 0.
This limits the regularity that can be obtained for the approximations Xz uniformly in M, e.
Hence the most irregular term in (3.3) is the third Wick power and by Schauder estimates we
expect 7y, to be 2 degrees of regularity better. Namely, we expect uniform bounds for 7,/ in
€1/ 2=#(p) which indeed verifies our presumption that 7 M e is more regular than @7 .. However,

12



the above decomposition introduced new products in (3.3) that are not well-defined under the
above discussed uniform bounds. In particular, both 7z ¢ [[X%/[ ] and 77%/[ X, do not meet the
condition that the sum of their regularities is strictly positivé, which is a convenient sufficient
condition for a product of two distributions to be analytically well-defined.

Therefore, we need to continue with the decomposition in the same spirit in order to cancel
the most irregular term in (3.3), namely, [X3,_]. The usual way, which can be found basically
in all the available works on the stochastic quantization (see e.g. in [CC18|, [GH18|, [Hail4],
[Hail5|, [MW17al) is therefore to define XL,& as the stationary solution to

L Xy = [X3.], (3.5)

leading to the decomposition ¢pr. = Xpre — )\Xj\%e + Cume. Writing down the dynamics for
¢, we observe that the most irregular term is the paraproduct [[XZZ\/[,E]] - X\X/[,s which can be
bounded uniformly in % ~!7%(p%) and hence this is not yet sufficient for the energy method
outlined above. Indeed, the expected (uniform) regularity of (us. is € 17%(p?). However, we
point out that not much is missing.

In order to overcome this issue, we proceed differently than the above cited works and let
Y e be a solution to

L Ve = —[X3 ] = BNZE[XRL D) - Yire,  Yare(0) = =AX],(0), (3.6)

where %< is the localization operator defined in Section A.2. With a suitable choice of the
constant L = L(\, M, ) determining %< (cf. Lemma A.12, Lemma 4.1) we are able to construct
the unique solution to this problem via Banach’s fixed point theorem. Consequently, we find our
decomposition par e = Xare + Yare + ¢are together with the dynamics for the remainder

L cOrre + Ay = —3NX3y ] = dare — BA[X3 ] © dare — 3N baredare + Ense (3.7)

The first term on the right hand side is the most irregular contribution, the second term is not
controlled uniformly in M, e, the third term is needed for the renormalization and Zj; . contains
various terms that are more regular and in principle not problematic or that can be constructed
as stochastic objects using the remaining counterterm —3\2b Me(Xnre + Yre).

The advantage of this decomposition with ¢5r. as opposed to the usual approach leading to
Car,e above is that together with [[X]?{/[’e]] we cancelled also the second most irregular contribution
(%< [[XJQ\/LE]]) > Y, which is too irregular to be controlled as a forcing f using the energy
method. The same difficulty of course comes with [X32,_] = ¢ in (3.7), however, since it
depends on the solution ¢y we are able to control it usiflg a paracontrolled ansatz. To explain
this, let us also turn our attention to the resonant product [[XJQVI ] © ¢, which poses problems
as well. When applying the energy method to (3.7), these two terms appear in the form

<P4¢M,aa _3)‘[[X]2\/I75]] © ¢M,5>6 + <p4¢M,57 _3)\[[X]2\/[,5]] -~ ¢M,5>57

where we included a polynomial weight p as in (2.2). The key observation is that the presence of
the duality product permits to show that these two terms approximately coincide, in the sense that
their difference denoted by D .(¢ase, _3)‘[[X12\4, .1, énr,e) is controlled by the expected uniform
bounds. This is proven generally in Lemma A.13. As a consequence, we obtain

1
§atH¢M,6”%275 + )‘”(ﬁM@H%‘LE + <¢M,E7 Q6¢M,6>E
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= (p'Ore, =3 2A[X31 ] = dare)e + Dpr (dare, —3A[X3r ] dare) + Enve

Finally, since the last term on the left hand side as well as the first term on the right hand
side are diverging, the idea is to couple them by the following paracontrolled ansatz. We define

Q€¢M,e = Qeng,e + 3[[X]2\/[,g]] - ¢M,€

and expect that the sum of the two terms on the right hand side is more regular than each of
them separately. In other words, 1 is (uniformly) more regular than ¢y .. Indeed, with this
ansatz we may complete the square and obtain

1
§3tHP2¢MveH%2,s + Mlpdarellzac +mPp*UnelFoe + 10°VebnrelFoe = Opnre + Ui ar e,

where the right hand side, given in Lemma 4.2, can be controlled by the norms on the left hand
side, in the spirit of the energy method discussed above.

These considerations lead to our first main result proved as Theorem 4.5 below. In what fol-
lows, Q,(Xjr,c) denotes a polynomial in the p-weighted norms of the involved stochastic objects,
the precise definition can be found in Section 4.1.

Theorem 3.1 Let p be a weight such that p* € L*O for some 1 € (0,1). There exists a constant
a = a(m?) > 0 such that

1
SO0 0l + allpdarclibo +m2llPnseliae + 10°TeturelFec) + 0% 6arcline

< OniQp(Xnsye),

where Cy ;= A3 + AN12=0)/(240) | 1og |4/ (2+0) L \T for § = 1{2__2?.

Here we observe the precise dependence on A which in particular implies that the bound is
uniform over A in every bounded subset of [0, 00) and vanishes as A — 0.

Tightness. In order to proceed to the proof of the existence of the Euclidean <I>§1 field theory,
we shall employ the extension operator £° from Section A.4 which permits to extend discrete
distributions to the full space R3. An additional twist originates in the fact that by construction
the process Y . given by (3.6) is not stationary and consequently also ¢z - fails to be stationary.
Therefore the energy argument as explained above does not apply as it stands and we shall go
back to the stationary decomposition ppre = Xpre — AX\X/[& + Cae, while using the result of
Theorem 3.1 in order to estimate (ar.. Consequently, we deduce tightness of the family of the

joint laws of (¢ar.e, Xase, X\X/Le) evaluated at any fixed time ¢ > 0, proven in Theorem 4.9 below.

To this end, we denote by (¢, X, X\V) a canonical representative of the random variables under
consideration and let ¢ := ¢ — X + XY

Theorem 3.2 Let p be a weight such that p* € L*° for some 1« € (0,1). Then the family of joint
laws of (€€@M75,€€XM75,E€XL7€), e € A, M > 0, evaluated at an arbitrary time t > 0 is tight.
Moreover, any limit measure p satisfies for all p € [1,00)

2 2
Bullo sjamae oy S THAP, BullCI % 0 S WP+ NP4 0,

EullC3n-anay S N2 +AT, EullClihy () S A+
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Osterwalder—Schrader axioms. The projection of a limit measure p onto the first component
is the candidate <1>§)l measure and we denote it by v. Based on Theorem 3.2 we are able to show
that v is translation invariant and reflection positive, establishing (partly) OS1 and OS2, see
Section 5.2 and Section 5.3. In addition, we prove that the measure is nontrivial, i.e. non-
Gaussian. To this end, we make use of the decomposition ¢ = X — AXT + ¢ together with the
moment bounds from Theorem 3.2. Since X is Gaussian whereas X' is not, the idea is to use
the regularity of ¢ to conclude that it cannot compensate X" which is less regular. In particular,
we show that the connected 4-point function is nonzero, see Section 5.4.

It remains to discuss a stretched exponential integrability of ¢, leading to the distribution
property OS0O shown in Section 5.1. More precisely, we show the following result which can be
found in Proposition 4.11.

Proposition 3.3 Let p be a weight such that p* € L*° for some 1+ € (0,1). For every k € (0,1)
small there exists v = O(k) > 0 small such that

1—v
/S o EPVIRI g 0) < o0

provided B > 0 is chosen sufficiently small.

In order to obtain this bound we revisit the bounds from Theorem 3.1 and track the precise
dependence of the polynomial Q,(Xys,) on the right hand side of the estimate on the quantity
|Xas.e]| which will be defined through (4.3), (4.4), (4.5) below taking into account the number
of copies of X appearing in each stochastic object. However, the estimates in Theorem 3.1 are
not optimal and consequently the power of ||Xjs|| in Theorem 3.1 is too large. To optimize we
introduce a large momentum cut-off [X 1?\’476]]< given by a parameter K > 0 and let [X 1?\)4,5]]> =
[X J?\’4 J-I1X J?\’4 .J<- Then we modify the dynamics of Y/, to

L Ve = —[Xir s = 3N%E[X3,.]) = Y,

which allows for refined bounds on Y., yielding optimal powers of [|Xz.]|.

Integration by parts formula. The uniform energy estimates from Theorem 3.2 and Propo-
sition 3.3 are enough to obtain tightness of the approximate measures and to show that any
accumulation point satisfies the distribution property, translation invariance, reflection positiv-
ity and nontriviality. However, they do not provide sufficient regularity in order to identify
the continuum dynamics or to establish the hierarchy of Dyson—Schwinger equations providing
relations of various n-point correlation functions. This can be seen easily since neither the res-
onant product [[X% ] o éare nor [[X% ] o ¥are is well-defined in the limit. Another and even
more severe difficulty lies in the fact that the third Wick power [X?3] only exists as a space-time
distribution and is not a well-defined random variable under the ®3 measure, cf. [ALZ06].

To overcome the first issue, we introduce a new paracontrolled ansatz xare = ¢ +
3)\)(\](/[78 ~ ¢m, and show that xar. possesses enough regularity uniformly in M, e in order
to pass to the limit in the resonant product [[X]%/LE]] oxMm,- Namely, we establish uniform bounds

for xare in LITBllj?’“’a(p‘l). This not only allows to give meaning to the critical resonant product
in the continuum, but it also leads to a uniform time regularity of the processes ¢ys.. We obtain
the following result proved below as Theorem 6.2.
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Theorem 3.4 Let 5 € (0,1/4) and o € (0,1). Then it holds true that for all p € [1,00) and
7€ (0,T)
2p

E 2p E
8631,1]\IZ>0 H(‘OMv{‘:HWgalBl—’%—S&E (p4+cr) + 8631,1]\IZ>0 H()OM,€HLi?TH—l/2—2n,s(p2) < o0,

where L:OTH—l/Z—Zn,a(pQ) — LOO(’T,T; H—1/2—25,5(p2))'

This additional time regularity is then used in order to treat the second issue raised above and
to construct a renormalized cubic term [¢3]. More precisely, we derive an explicit formula for [¢?%]
including [X?] as a space-time distribution, where time indeed means the fictitious stochastic
time variable introduced by the stochastic quantization, nonexistent under the <I>§1 measure. In
order to control [X?] we re-introduce the stochastic time and use stationarity together with the
above mentioned time regularity. Finally, we derive an integration by parts formula leading to
the hierarchy of Dyson—Schwinger equations connecting the correlation functions. The precise
result proved in Theorem 6.7 reads as follows.

Theorem 3.5 Let F': S'(R3) — R be a cylinder function such that
@+ IDF(@) s yacey < Collplosncar

for some n € N. Any accumulation point v of the sequence (var o (%)Y satisfies

[ PP(w(ae) =2 [100® - A)elF(e(de) + ATLAF),

where for a smooth h : R — R with supph C [7,T] for some 0 <7 < T < 0o and [ph(t)dt =1
it holds

TP =, | [ HOFG) N0
and [p3] is given by an explicit formula, namely, (6.6).

In addition, we are able to characterize 7, (F) in the spirit of the operator product expansion,
see Lemma 6.5.

4 Construction of the Euclidean ®* field theory

This section is devoted to our main result. More precisely, we consider (3.1) which is a discrete
approximation of (1.2) posed on a periodic lattice Ajr.. For every € € (0,1) and M > 0 (3.1)
possesses a unique invariant measure that is the Gibbs measure v given by (1.1). We derive
new estimates on stationary solutions sampled from these measures which hold true uniformly
in € and M. As a consequence, we obtain tightness of the invariant measures while sending both
the mesh size as well as the volume to their respective limits, i.e. € - 0, M — oc.

4.1 Stochastic terms

Recall that the stochastic objects X, [X3,.], [ X3, ] and X\X/l . were already defined in (3.2),
(3.4) and (3.5). As the next step we provide further details and construct additional stochastic
objects needed in the sequel. All the distributions on Ajps. are extended periodically to the
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full lattice Ac. Then X\Xd,e which is a stationary solution to (3.5) satisfies X\X/[,s = XL7€(O) +

&£ X3, with XL7€(O) = f_ooo Pz X3, ] (s)ds, where Pf denotes the semigroup generated
by £ . on A.. Then it holds for every k,o > 0 and some § > 0 small

od o ¢
||XM,5||CT%1/2*'%E(pU) + ||XM,€||C$/2Lm,E(pU) 5 1,

uniformly in M, ¢ thanks to the presence of the weight. For details and further references see e.g.
Section 3 in [GH18]. Here and in the sequel, T' € (0, 00) denotes an arbitrary finite time horizon

and Cr and Céz/ ? are shortcut notations for C ([0, T]) and CB/2([0, T]), respectively. Throughout
our analysis, we fix k,8 > 0 in the above estimate such that § > 3. This condition will be
needed for the control of a parabolic commutator in Lemma 4.4 below. On the other hand, the
parameter ¢ > 0 varies from line to line and can be arbitrarily small.

If %< is a localizer defined for some given constant L > 0 according to Lemma A.12, we let
Y. be the solution of (3.6) hence

Yire = —AXbro — & TUBNZE[X3 D) - Ve (4.1)

Note that this is an equation for Y, ., which also implies that Y, is not a polynomial of the
Gaussian noise. However, as shown in the following lemma, Y3/, can be constructed as a fixed
point provided L is large enough.

Lemma 4.1 There exists Ly = Lo(A) = 0 and L = L(A\, M,e) > 0 with a (not relabeled)
subsequence satisfying L(A\, M,e) — Lo as € — 0, M — oo, such that (3.6) with %< determined

by L has a unique solution Yas. that belongs to Cr% Y?>~%(p%) N Cg/QLOO(pU). Furthermore, it
holds

v
YMellopgrro—repry S MXnsellopgi/o-re oy

Y Y
HYM7EHC§/2LOO,E(/)O') S )\[”XM,EHCT%1/2_K’E(;)O') + HXM,EHCéi/QLoo,E(po')]’
where the proportionality constant is independent of M, €.

Proof We define a fixed point map
K:Y =Y = -AXj,. — 2 BANZE[XE]) - Y]

for some L > 0 to be chosen below. Then it holds in view of the Schauder estimates from
Lemma 3.4 in [MP17|, the paraproduct estimates as well as Lemma A.12 that

1YL = KYzllcpigr/o-repry S ANZELXRL D) = (Vi = Va)llepg —5/2- (o)

< CX2 PPN X3y ey -1-me o) V1 = Yalloppoos (o) < 8IV2 = Yallopip1/2-me )

for some 0 € (0,1) independent of A\, M,e provided L = L(X,M,¢) in the definition of the
localizer %< is chosen to be the smallest L > 0 such that

A H%f[[XZQM,sHHcTcg—a/zfn,s(p()) < ON2E2|[XE ll o —1-ne (o) < 6.
In particular, we have that

2L/2 = C5(1 + M[X R Dl o —1-me (o)), (4.2)
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which will be used later in order to estimate the complementary operator % by Lemma A.12.
Note that L(X\, M,¢e) a priori depends on M, e. However, due to the uniform bound on

2 2
(55798 [ SRONPE [ ¢ | VA

valid for some v € (0,1), we may use compactness to deduce that for every fixed A > 0 there
exists a subsequence (not relabeled) such that L(A\, M,e) — Lg(A). This will also allow to
identify the limit of the localized term below in Section 6.

Next, it holds

3 v 5
IKY llopeg1r2-n.e(pry € M Xbselloggrrz=ne ey + CANZELX R ]) = Y llepap—a/2-ne (o

. i
<MK elloggr/snegory + 017 lagipro-ne gy

Therefore we deduce that K leaves balls in Cp% /27%2(p?) invariant and is a contraction on
C7€ /272 (p?). Hence there exists a unique fixed point Yas . and the first bound follows. Next,
we use the Schauder estimates (see Lemma 3.9 in [MP17]) to bound the time regularity as follows

2
|’YM’€HC§/2L°°75(/)O') g )\|’XM,€|’C£/2LOO,E(pJ) + C)\”(%;[[X?\ﬂ,e]]) - YM@”C’T%’—?)/Q—H,E(/)O')

.
<Xl e oy IVl 12

Y Y
rg )\”XM,&‘”C’I/B:/2L00,E(po) + )‘”XM,a”CT‘rgﬂl/Q—'i’f(p”)'
The proof is complete. O

According to this result, we remark that Y,/ itself is not a polynomial in the noise terms,
but with our choice of localization it allows for a polynomial bound of its norm. As the next
step, we introduce further stochastic objects needed below. Namely,

X\Z(Ls = "ggl[[X?M,e]]? X\J?Z,e - XM@ o XL,{-:?

X = 9[X% ] 0.2 2 [X2,.] — 3bars,
X\]\%I,e = 9[[X]2\/[,5]] © X\](/[,a - 3BM,6(t)7 X\]%[,a = 3[[X]2\/[,5]] o X\XJ75 - 3bM,5XM,6a

where by, BM,g(t) are suitable renormalization constants. It follows from standard estimates
that [bare(t) — bare| S |logt| uniformly in M, e. We denote collectively

Y Xy Ny Xy
XM,é = (XM@? [[XJ2\4,5]]7XM,z-:vXM,z—:?XM,evXM,z-:?XM,s)'

Note that we do not include X\](Ls in Xj/. since it can be controlled by [[X12w -] using Schauder
estimates. In order to have a precise control of the number of copies of X appearing in each
stochastic term we define || X/ .|| as the smallest number bigger than 1 and all the quantities

1/2 Y 1/3
1Xarellope-1areey NGMEg ey WXl iy (43)

Y oo1/3 o174
IR el ey WXl sy (1.4)
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o 1/4 SN 1/4 % 1/5
(B oy AP b eVl AR b /7R APy (4.5)

Note that it is bounded uniformly with respect to M, e. Besides, if we do not need to be precise
about the exact powers, we denote by @Q,(Xas,c) a generic polynomial in the above norms of the
noise terms X, whose coefficients depend on p but are independent of M, e, A, and change
from line to line.

4.2 Decomposition and uniform estimates

With the above stochastic objects at hand, we let ¢y . be a stationary solution to (3.1) on Apse
having at each time ¢ > 0 the law vj7 .. We consider its decomposition ¢nre = Xpre+ Yy e+ P e
and deduce that ¢,/ . satisfies

$E¢M,6 + )‘¢§)\4,5 = _3)‘[[X]2\/I75]] ~ ¢M,a - 3)\[[X]2\/[75]] < (YM,a + ¢M,5)
—3)\2bM75(XM75 + YM75 + ¢M75) — 3)‘(%<€L[[XJ2\4,5]]) - YM75 (4.6)
—3)\XM,€(YM,€ + (JSM,E)Z — )\Y]\‘Z’a — 3>‘Y]\2/I75¢M,€ — 3)\YM75¢?M76'

Our next goal is to derive energy estimates for (4.6) which hold true uniformly in both parameters
M, e. To this end, we recall that all the distributions above were extended periodically to the full
lattice A.. Consequently, apart from the stochastic objects, the renormalization constants and
the initial conditions, all the operations in (4.6) are independent of M. Therefore, for notational
simplicity, we fix the parameter M and omit the dependence on M throughout the rest of this
subsection. The following series of lemmas serves as a preparation for our main energy estimate
established in Theorem 4.5. Here, we make use of the approximate duality operator D, . as well
as the commutators Cy, C. and C. introduced Section A.3.

Lemma 4.2 It holds
1
§at‘|p2¢€”%2,s + Mpgell1ae +mPp*Yell72e + 10°VetelFoe = Op o+ Uy, (4.7)
with
Ve = de + 2 TBA[XZ] = &), (4.8)
@p4,€ = _<[V€a P4]¢e, vewe>e + <[Q €5 /04] 3@5_1[3>\[[X52]] - ¢€], T;Z)€>€ + (P4¢ga )‘ZX\,S(>€
+D i (¢, —3A[XZ], 6e) + (p* e, Cele, BAIXZ], BA[X2]))e
+Dp4,5 (¢87 3)‘[[X3]]7 le[?’)‘[[Xg]] e ¢6]) )
\Ilp‘l,e = <p4¢€a _3)‘[[X52]] = (Y;-: + ¢€) - 3)‘X€(Y;-: + ¢€)2 - )‘Yeg - 3)‘Ygz¢€ - 3>\YV€¢?>€
+(p" e, —BNUEIXZ]) = Ye + N Ze)e,
and
A A i A 2 21y 2 ~1 e 2
Ze =X + X Yo+3(b— b)) Yo+ Co (Y2, 3[X7], 3[XZ]) — B[ X2 0L 1 (BHE[XZ] - Yz) . (4.9)

Proof Noting that (4.6) is of the form .Z .¢. + A\¢2 = U., we may test this equation by p*@.
to deduce

1
§at<,02¢5, P2¢€>€ + )‘<p2¢6, p2¢§>€ = (I)P4,€ + \IIP47€,
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with
(I)p4,€ = <p4¢€? 2.0 — 3>‘[[X3]] = Qe — 3)‘[[X52]] o ¢ — 3>‘2b€¢€>€?

and

U= (p e, —BALXZ] < (Ve + ) — BAX (Ve + 62)® — AV — 3AY 9. — BAYz¢?).
+(p b, 3N (ZEL[XE]) = Ye — BA[X2Z] o Yz — 3A2b (X, + Y7))-.

We use the fact that (f =) is an approximate adjoint to (fo) according to Lemma A.13 to rewrite
the resonant term as

(p*de, =3A[XZ] 0 ¢e)e = (p* e, —3AIXZ] = de)e + Dps (9, —3A[XZ], 6),
and use the definition of ¢ in (4.8) to rewrite @, as
@ = (pe, 2 ) + ([22,p"] 2 BAIXZ] - e ),
(P BALXZ] = 6c], 2 7 BALXZ] = 6el)e — 3A2b=(p"bc, bc)e + Dy o (de, —3A[XZ], 62).
For the first term we write
(p*he, =2 e)e = =m*(p*he, Yhe)e — (p*Vetbe, Verbe)e — ([Ve, p*lbe, Vetbe)e.
Next, we use again Lemma A.13 to simplify the quadratic term as
(" BAIXZ] = 6c], 2 T BAIXZ] = ¢el)e = (p* e, BA[XZ] 0 2 7' [BA[XZ] > o)),
+D i (62, 3A[X2], 22 BA[XZ] > ¢d])
hence Lemma A.14 leads to
= (p* 62, N[X2] 0 2 ' [X2]), + (p' e, Co(, BAIXZ], BALXZ]))e
+D . (62, 3A[XZ], 2 2 BA[XZ] > ¢e]) -
We conclude that
O o= —m*(p"e, ) — (p*Vetbe, Vetbe)e — ([Ve, p'], Vetbe)e
+([26 0" 27 BAIXZ] = e, ve ), + (p* 62, IN[X2] 0 2 TV [X2] — 3A°De),
+D i (e, —3A[X2], b2) + (p* 62, C(e, BAIXZ], BAIXZ]))<
+D . (62, 3A[XZ], 2 2 BA[XZ] > ) -

As the next step, we justify the definition of the resonant product appearing in W, . and show
that it is given by Z. from the statement of the lemma. To this end, let

Z. = =3\ X2) o Y. — 3b.(X. + Y),
and recall the definition of Y3/, (4.1). Hence by Lemma A.14

Z. = 3[X2] o X! — 3b-X. + 3[X2] 0 2 71 (3[X2] > Yz) — 3b.Y.
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—3[X2) o £ T (BUE[X2] - Yr)
= (3[X2]) o X! — 3b.X.) + (3[X?] 0 £ '3[ X2] — 3b.)Y: + 3(b: — b.)Y-
+C(Yz, 3[X2], 3[X2]) — 3[X2] o £ -1 (B[ X2] - Y2),

which is the desired formula. In this formulation we clearly see the structure of the renormaliza-
tion and the appropriate combinations of resonant products and the counterterms. O

As the next step, we estimate the new stochastic terms appearing in Lemma 4.2. Here and
in the sequel, ¥ = O(k) > 0 denotes a generic small constant which changes from line to line.

Lemma 4.3 It holds true
1Ze(t)lleg —1/2-me (poy S (14 Allog t] + )| X[ 7H7,
1XeYel g 172y S (A D)X

X Y2 g —1r2-me oy S (A2 4 X)X,

Proof By definition of Z. and the discussion in Section 4.1, Lemma 4.1, Lemma A.14, Lemma A.12
and (4.2) we have (since the choice of exponent o > 0 of the weight corresponding to the stochas-
tic objects is arbitrary, o changes from line to line in the sequel)

Yy a
12l -1/2-me ooy SN Xe Nlopg —1/2-me(aoy + 1 Xe lope —ne (o) Yellopg172-re (pr)
Hlog t[Yzllogig 1/2-me (o) + (IVellowrra=see ooy + 1¥ell 72 e o) XD -1 )

+(1+ /\II[[Xf]]\lcT%—l—m(pv))G“\l[[Xf]]ll?;ﬁ—l—n,s(pa) 1Yellopa 1/2-xe (o)
< (14 A+ A log t] + A2) |||+

and the first claim follows since ¢ > 0 was chosen arbitrarily.

Next, we recall (4.1) and the fact that X\ff — X, 0 X! can be constructed without any
renormalization in C7% ~"%(p”). As a consequence, the resonant term reads

X.oYe = —AXY — Xo 0.2 71 BN (E[X2]) - V2], (4.10)
where the for the second term we have (since % is a contraction) that
MXe o2 7 [B(ZEIX2D) = Yelll gyipro-sme (oo
S AMXellopg -1/2-r2 (o) [(Z<[X2]) > YchTgflfﬁvf(p%)

S MXell g -1/2-re (o IIXZ Dl —1-me oo [Yelloppoee (pry S A2 IXe]°. (4.11)

For the two paraproducts we obtain directly
1Xe < Yelloges -2ne (o) S 1Xellpa =172 (o) [ Yell ogig1/2-me (pry S MK, (4.12)

1Xe > Yellopg-1/2-ne ooy S 1Xelloges -1/2-me oy 1 Yellop Looe (o) S MIXell™. (4.13)
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We proceed similarly for the remaining term, which is quadratic in Y.. We have
X.oY?=X.0(2Ye <Y.)+ X.0 (Yoo Yr)
= —X.0 (2. < AX")—X.o0 (2Ye < L 2P BN (%[X2]) = Ye]) + Xeo (Yoo X2)

= 2AXY. — ACH(Ye2XT Xo) — AX. 0 (22 < 2 71 [3(E[X2)) = Y2]) + Xeo (Yoo Ya).

Accordingly,
1X2 0 Y2 gy e (i) S MIX s e o) 1Yzl opip e (o
Yz e e (o) | XD g 172w (oo | Xell g —1/2 .2 ()
Xl opip—1/2-me (oo 1Yol oot oy I TX 2D i =1 o
+ 1 Xell g 172 (o) Vel op sme (oo 1Yo lgpap 172 (pry S (A2 + A3)|Xef° (4.14)

and for the paraproducts
1Xe < Y2l 0pe—2ne(pie) S [ Xellopg—12-ne (o) 1Yl g1/2ne oy S A2IXNT,

2 2 2 7
HX€ b Y;: ||CT%71/27N,5(p40) 5 ||X5||CT%71/27N,E(pU)HY;:HCTLoo,E(po') S >\ ||X€|| .
This gives the second bound from the statement of the lemma. O

Let us now proceed with our main energy estimate. In view of Lemma 4.2, our goal is to
control the terms in © 1 . + W4 . by quantities of the from

cNQp(Xe) + S(llpdellac + mP0°Yel|Fo + 1p*Verself2e),

where > 0 is a small constant which can change from line to line. Indeed, with such a bound
in hand it will be possible to absorb the norms of ¢., 1. from the right hand side of (4.7) into
the left hand side and a bound for ¢, 1. in terms of the noise terms will follow.

Lemma 4.4 Let p be a weight such that p* € L*9 for some + € (0,1). Then it holds
[Opt el + Wyt o < (A2 + A2/ 1og 111240 1 AT, (X.)

+0(Alpgelac + 9% 0eFp—one +m?[0°elF2e + 197 Vetbe|Z20),

1/2—4k

where 0 = 1=~

Proof Since the weight p is polynomial and vanishes at infinity, we may assume without loss
of generality that 0 < p < 1 and consequently p® < p® whenever o > > 0. We also observe
that due to the integrability of the weight it holds (see Lemma A.G)

1P el 2 S Nodell e

with a constant that depends only on p. In the sequel, we repeatedly use various results for
discrete Besov spaces established in Section A. Namely, the equivalent formulation of the Besov
norms (Lemma A.1), the duality estimate (Lemma A.2), interpolation (Lemma A.3), embed-
ding (Lemma A.4), a bound for powers of functions (Lemma A.7) as well as bounds for the
commutators (Lemma A.14).
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Even though it is not necessary for the present proof, we keep track of the precise power of
the quantity ||X.|| in each of the estimates. This will be used in Section 4.4 below to establish the
stretched exponential integrability of the fields. We recall that ¥ = O(k) > 0 denotes a generic
small constant which changes from line to line.

In view of Lemma 4.2 we shall bound each term on the right hand side of (4.7). We have

[V, pY e, Vetbe)e| < Cpll e p2e 102V etbel p2e < CsColp*0el72.e + 8] 0*Vethe |7 2ce -

This term can be absorbed provided C, = ||p~*[V., p]||1 - is sufficiently small, such that
C(gCg < m?, which can be obtained by choosing h > 0 small enough (depending only on m? and
0) in the definition (2.2) of the weight p. Next,

[([2e,p"] 27 BAIXC] - ¢c), ). | < (22T BAXED - ], [22, 0] ¢e) |

and we estimate explicitly

1072 [2 2. 0] e e < ColllpP el 2 + 192V et 20 2)

for another constant C, depending only on the weight p, which can be taken smaller than m? by
choosing h > 0 small, and consequently

([2 ¢, "] 27 BAIXE] = 6el,ve )| S AIXCP0% 77 bl 2 (2] 0*e | 2 + (192 Verbel[ o)

< NCSIX® + 0(Allpde e +mP[lp*ellZoe + 107 VetbellZa0),

since o is sufficiently small.
Using Lemma A.2, Lemma A.7, interpolation from Lemma A.3 with for § = %:4212
inequality we obtain

and Young’s

A2(p%02, X)e| S A0 X g e 1™ 82 e S N2 XT gm0 Bl 2 [19° 7 e promee

1,1~

S NI lpge | E N0 el an.e S ATV HOC X 1+ 6N p@ellFa.c + 1077120 ).

Recall that since o is chosen small, we have the interpolation inequality (see Lemma A.3)

16 | pr1/2eme p2=o/2) < N el e oo 192 a2 2
1{2__225 Similar interpolation inequalities will also be employed below. Then, in view
of Lemma A.13 and Young’s inequality, we have

MDys (e, =31XZ]: 0| S Allp” [X2T Mg 1w 19~ 2 bel 31 /2.

where 6 =

2(1— 0
SAMPIX2 g 1m0 2 | 0% | 21 20

2(1-6) _
S AP pge ]2 920l o < XOTICHIKBH + 6(AIpelbae + |02 0el2pranc)-

Similarly,
N Dy o (6e,3[X2], 2 S BIXZ] > ¢c])]

5 )‘2”/70[[)(52]]”‘5*1*“’5Hp37L72U¢6”H4“’E P1+L+UQ@§1[3[[X52]] s ¢5]|H172H,E )
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where we further estimate by Schauder and paraproduct estimates
P72 N BIX2] = bel| paane SN0 TTIIXZ] > ellp-1-2me

S o7 X2 g —1-ncllp" e 2

and hence we deduce by interpolation with 8 = _6: and embedding that

N2 Do (¢, 3[X2], 2 BIXZ] = ¢e]) | S NIl bell e 10 e |l ram.e

S )‘2”X6”4Hp¢a”;—6”ﬂ ¢6HH1 2k,e
SATOVEOCH XM + 6(MIpde 0. + [19°Gelfn-2e.e).

Due to Lemma A.14 and interpolation with 8 = tg:, we obtain

N2[(p" e, C (e, BIXZ], BIXZD)el € N Np7[XZDNG —1-re 0% Bellpan.c

2(1-6)
)‘ZC5HX | ”pl—H(ﬁEHLQng ¢8|’[{(1 21,6
< )‘4/6_105”X HS—W + 5()‘”P¢6”L45 + HP ¢a|’H1—2m).

Then we use the paraproduct estlmates the embedding € /2% (p?) C H'/2=2r5(p?=9/2) (which

holds due to the integrability of p* for some ¢ € (0,1) and the fact that o can be chosen small),

together with Lemma 4.1 and interpolation to deduce for 6 = 1/ 2 5“ that

N(p* e, =3[X2] < (Yz + 62))<|
S M [X 2N —1-me 10772 (Ve + )l grarz—2me 10772 el g1 /2 43m.e
S M IX 2 g -1-me 1622Vl rs2-ane 1927 2 el /2 m,e
AP [X2] Nl —1-me 1077 2 el 3 20
SAMIEN 0 bel e 190 | 58 e + 1K 210 02 0% e ]2 o)
< (AEZ0/CH0) 4 AZ/“)C(;HXeHS” + 6l poellzae + 102Gl F1-2mc)-

Next, we have

Alp"de, =3X=(Ye + 62)")el S M7 Xellog-1/2-me 0" 7762 pr/zone

A7 XeYellg-1/2-me 0" B2l grrzinie + Allp7 XY llig 172 19" el g2

1/2—4k

Here we employ Lemma A.7 and interpolation to obtain for § = ~{=——

Mp” Xellg -1/2-rcllp*=7 G2 grrzene S Mp7 Xellg -1/ [lpGe [ acll0* 7 Bc | 1242

S AN pde T2 10° Gl ae < ACTVOCHXPH + S(Nllpdel 71 + 197 GelF1-2n.c)
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and similarly for the other two terms, where we also use Lemma 4.3 and the embedding H!~2%¢(p?) C
H/2425e(p3=1=0) and HY?+202(p?) = ;/22+2H “(p?) C Bi/12+n’€(p4_(’) together with interpola-

tion with 6 = 1/2 Qiﬁ

Mo XeYell 172097020 gz + Mo XV vy 07 0 g

S W+ NN llo" ™ bell g2 6% 7 el g rzame + (A% + AKX 10> Gell 17220
S O+ X)Xl p@ell 2 10% dell v + (X% + XX |00 G0 197G 1 e
< AV CHO L AOZEOCEN G + 6(Allpde e + 107Dl Fra-2me)- (4.15)

Next, we obtain

M(p*0e, =Y2)el S Mo Yellfoerllp* ™ dellpre S MK lodellzee < ACslIXc|™ + 0Xl|pde 7.,

(4.16)
and similarly
A(p e, =3Y2¢)e| S Allp”Yell7oocllp* 7 2]
€ e Yelel ~ P el Looe p e Ll
S AX Ol 7o < NCslIXell™ + 0MIpde || Fae (4.17)
A (p ¢z, =3Yed2)e| S Mp7Yellnoellp* 7021 n1e S Mlp” Yol Lo | pde |42
S VX lpgellF e < NCsIXelI™ + Al pge | 74.c - (4.18)

Then, by (4.2)

A(phe, ~BUELX?]) = Yobe| S Mo UELX2 - roame 07Vl e 10"~ el 1

S AL+ A Xl 10 ) 07 [X 2N Nlig -1 |67 Vel | owre | 9% G | r1-n.c
S A+ N X P20 | pra-ame < (A + X)X + 01 0%belfpoee,  (419)

1/2—4x
and finally for 8 = / .

N|(p" 02, Ze)el S N1107 Zelleg 172 107 el prrzne
S (N 4 Nlog t] + XX [l pe | T e lp° bl 1 2
< (A(S_G)/(Q-FG) + A(12=0)/( 2+0)| logt|4/ (2+90) + >‘(16_0)/(2+0))C6HX6H12

+3(Mpdelpae + 1970 lFp-ans)- (4.20)
The proof is complete. g

Now we have all in hand to establish our main energy estimate.

Theorem 4.5 Let p be a weight such that p* € L*9 for some 1 € (0,1). There exists a constant

1/2—4k
a = a(m?) € (0,1) such that for = /—zn

1
§3t\|p2¢slliz,e + aMlpgel e +mPlp*Yellios + 107 Vetelliac] + 07 0e 7 2n.c (4.21)
< ()\3 + )\(1279)/(2+€)|logt|4/(2+9) + >\7)Qp(Xe)-
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Proof As a consequence of (4.8), we have according to Lemma A.5, Lemma A.4, Lemma A.1
_ 2
Hp2¢€”§{1—2&6 S Hp2°@€ 1[3)‘[[X52]] - ¢5]HH1—2'€’5 + ||102¢€||§{1—2~76

S N7 IX2NNG 1w 17 GellF 2 + 10l Framee
SNQp(Xe) + Alpdellzac + llp*¢ellZoe + 10°Verke| e (4.22)

Therefore, according to Lemma 4.4 we obtain that
1
50ul0° el 72.c + Allpdellzae +mPllp*vellZze + [10*Vethe |72

< (N + A270/CH0) 166 4|1/ CH0) L ATYQ,(X2) + IC(N||pdel[fae + (07022 + |97 Vetbe|22.e).-

Choosing 6 > 0 sufficiently small (depending on m? and the implicit constant C' from Lemma A.5)
allows to absorb the norms of ¢., . from the right hand side into the left hand side and the
claim follows. O

Remark 4.6 We point out that the requirement of a strictly positive mass m? > 0 is to some
extent superfluous for our approach. To be more precise, if m? < 0 then we may rewrite the
mollified stochastic quantization equation as

(Or — Ac + 1) e + )\(Pg =&+ (1 mz)‘Pe

and the same decomposition as above introduces an additional term on the right hand side of
(4.7). This can be controlled by

(1= m®){p'¢e, Xe + Yo + )| S Csp-1Qp(Xe) + SN[l pgel| e + [l0° P [F-2ne),

where we write Cjs \—1 to stress that the constant is not uniform over small . As a consequence,
we obtain an analogue of Theorem 4.5 but the uniformity for small A is not valid anymore.

Corollary 4.7 Let p be a weight such that p* € L*° for some v € (0,1). Then for all p € [1,00)

_1/2—4k
and § = 15~

1 —
%@sz%ﬂi’;,a + AP GelI75E < AN+ A0 CHO 10g 1 /340 1 X0)Q, (X)) PHD/2. (4.23)
Proof Based on (4.21) we obtain
1 _
2 Ol0° 0l + NP0l 122 " pell e

< (A3 4 A1220/40)| 1og ¢ 4/(2H0) L 3TY | 026, 2PN Q,,(X,).

The L*norm on the left hand side can be estimated from below by the L?-norm, whereas on the
right hand side we use Young’s inequality to deduce

1 2 2p+2
%atH/F(JSeHLI;,s + >‘||102¢6HLI;;

< A[(NZ + AB0=20/@40) 10 14/ (240) 1 N6)Q (X)) PHD/2 4 57| p? 0 || 7512,

Hence we may absorb the second term from the right hand side into the left hand side. O
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4.3 Tightness of the invariant measures

Recall that ¢pe is a stationary solution to (3.1) having at time ¢ > 0 law given by the Gibbs
measure vps.. Moreover, we have the decomposition ¢are = Xare + Y e + dne, where Xy is
stationary as well. By our construction, all equations are solved on a common probability space,
say (2, F,P), and we denote by E the corresponding expected value.

Theorem 4.8 Let p be a weight such that p* € L*° for some v € (0,1). Then for every p € [1,00)
it holds

Sup (Elpare(0) = Xare(O)21/a-aue o) V2 S A+ A2,
e€eA,M>0

sup (EHQDM,E(O) - XM,E(O)‘|ig,g(p2))1/2p ,S >\1/2 + )\3/2.
eeA,M>0

Proof Let us show the first claim. Due to stationarity of pare — Xare = Yimre + ¢nr e, it holds

1 T
E|lp*(pa1,£(0) = Xare(O)l71/2-2nc = ;/O E|lp*(pare(s) = Xare(s))l31/2-2ncds

1 T

=~ [ Bl 0ne6) + Vi) By e
0

1 /[ 1 (7

S 2 [ IR ancds + - [ EIPYin(5) By
0 0

In order to estimate the right hand side, we employ Theorem 4.5 together with Lemma 4.1 to
deduce

EHPZ(SDM,E(O) - XM,E(O)) H%{l/Q—Qn,s

1
S CoO® + NVEQ,(Xar) + 5-BlI0? a1 (O) 3 + Bl Varell3 1o
C C
< Cr (2 + AVEQy(Kar) + ZElloP(pa1c(0) = Xare(O) 3 + —ElI0*Yire(0) 32

C
< CT()‘2 + )‘7)EQ0(XM76) + ?EHPQ((PM,E(O) - XM@(O))H%?’E-

Finally, taking 7 > 0 large enough, we may absorb the second term from the right hand side into
the left hand side to deduce

E[lp*(¢a1.£(0) = Xare(O)F1/2-2nc < Cr(A + ANEQp(Xare).

Observing that the right hand side is bounded uniformly in M, e, completes the proof of the first
claim.

Now, we show the second claim for p € [2,00). The case p € [1,2) then follows easily from
the bound for p = 2. Using stationarity as above we have

T

1 T
E|lp(oa1,(0) = Xare ()75 = —/O Ellp*(dare(5) + Yare(s)) |5 ds

1 (7 1 (7
S [ Bl one s+ - [ EIYi (o) e (4.21)
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Due to Corollary 4.7 applied to p—1 and the fact that for any o > 0 it holds fOT | log s\2p/(2+9)ds <
Cp7071+(’ for all 7 > 1, we deduce

“/ E||p*ar(5)] . ds < Cpo[T(A% 4+ AO)P/2 4 7150 W O-0/CHOIR[Q (X))
0
A7t 2(p—1
Ell 2 (p—1)
< Cpo[T(NF + XOP/2 4 1o NP G=0/CTR(Q (X))
+ CoO A 02 (par (0) — Xar(0))][292Y)

+ CoA B0 Yar (0) 297,

Plugging this back into (4.24) and using Young’s inequality we obtain

Cpo o\ p(5—
E||,02(SDM,5(O) _XM,E( ))HL26 < (I;, [()\2+)\6)p/2+7 )\p(5 9)/(2+9)]E[Qp(XM,€)]

Cp s CoA2P
+0—"Ep"(oar,(0) = Xar,(0 NIITae + Cs,p+ ElQp(Xaze)]-

Taking 7 = max(1, \=?P) leads to

Ellp(orr.(0) = Xare (0D < =22 + X2 4 72O/ CHIE[Q, (X))

(67

+0Cp,aEll0*(231,6(0) = Xnre(0)[[ 5. + N Cspt-CpaNPE[Qy(Xir2)]

and choosing 6 > 0 small enough, we may absorb the second term on the right hand side into
the left hand side and the claim follows O

The above result directly implies the desired tightness of the approximate Gibbs measures
VM. To formulate this precisely we make use of the extension operators £° for distributions on
A, constructed in Section A.4. We recall that on the approximate level the stationary process
©m,e admits the decomposition ¢pre = Xare + Yare + dare, where Xy is stationary and Yz
is given by (4.1) with X\Xd, . being also stationary. Accordingly, letting

CM,E =2 ;1 [3)\ (02/;[[)(]2\475]]) >~ YM,E] + ¢M,5 = NMe+ ¢M,5

we obtain ¢y e = Xyre — )\X\X/l . + Cu,e, where all the summands are stationary.

The next result shows that the family of joint laws of (€%¢pnrc, £ Xnr e, £° X\XL .) at any chosen
time ¢ > 0 is tight. In addition, we obtain bounds for arbitrary moments of the limiting measure.
To this end, we denote by (¢, X, X\V) a canonical representative of the random variables under
consideration and let ( := ¢ — X + XY

Theorem 4.9 Let p be a weight such that p* € L* for some v € (0,1). Then the family of joint
laws of (Est,g,EEXM,a,EeXLﬁ), e € A, M > 0, evaluated at an arbitrary time t > 0 is tight.
Moreover, any limit probability measure p satisfies for all p € [1,00)

2
Bl sy S TH AP, G ) S AP+ A7 408,

EullCllfn-ongey S X+ X7 Eulllpy () S A+
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Proof Since by Lemma A.15
2
EIEXar (O s o) S ENXar O sy S 1
uniformly in M, e, we deduce from Theorem 4.8 that

2
EH55<PM,6(0)”;-1/2_%@2) S1+ A%

uniformly in M, e. Integrating (4.23) in time and using the decomposition of ¢y leads to
10°Oare ()17 < 1197001 (O)][F5. + CAN + A0 PHDRQ, (X o) P/

< Gyllp*(oar(0) = Xare(0) 175 + Cpllp™Yare(0)[|75.. + CAN + A PHVRQ, (X )P/,

Hence due to Theorem 4.8 we obtain a uniform bound
Elp?dare(t)75. Se AP+ NPT,

for all ¢ > 0. In addition, the following expressions are bounded uniformly in M, e according to
Lemma 4.1 and Theorem 4.5

2
EH”?M,EHC%)Tcgl—n,s(po) 5 )\4]7’

T T
)\/ E||¢ar,e(t) ey dt + / El|are(t)ra-2ne(paydt ST A + AT,
0 0

whenever the weight p is such that p* € L* for some ¢ € (0,1). In view of stationarity
of (. and the embedding €' 17%¢(p?) C H1*2’”(p2), we therefore obtain a uniform bound
El[Care ()13 2m.e < A2+ A7 as well as E||Cpr.( )HL“ () S AP 4 AP FE L AP for every t > 0.

Similarly, using statlonarlty together with the embedding €!1=%¢(p?) C Bgéo(p) as well as
L4(p) C Bg,’;(p) we deduce a uniform bound E||(as (¢ )HBO . < A+ A8 for every ¢ > 0.

Consequently, by Lemma A.15 the same bounds hold for the corresponding extended distri-
butions and hence the family joint laws of (e, E5 X e, EEX\XL .) at any time ¢ > 0 is tight.
Therefore up to a subsequence we may pass to the limit as ¢ — 0, M — oo and the uniform
moment bounds are preserved for every limit point. O

The marginal of u corresponding to ¢ is the desired ®3 measure, which we denote by v.
According to the above result, v is obtained as a limit (up to a subsequence) of the continuum
extensions of the Gibbs measures vy given by (1.1) as e = 0, M — oo.

4.4 Stretched exponential integrability

The goal of this section is to establish better probabilistic properties of the <I>§1 measure. Namely,
we show that ||p?pare|t” H1/2-2. is uniformly (in M, ) exponentially integrable for every v =
O(k) > 0, hence we recover the same stretched exponential moment bound for any limit measure
v. To this end, we revisit the energy estimate in Section 4.2 and take a particular care to optimize
the power of the quantity ||Xjs .|| appearing in the estimates. Recall that it can be shown that

E[eAI%m%] < oo (4.25)
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uniformly in M, e for a small parameter 8 > 0 (see [MW18]). Accordingly, it turns out that the
polynomial Q,(Xxr,c) on the right hand side of the bound in Lemma 4.4 shall not contain higher
powers of || Xy .|| than 84 O(k). In the proof of Lemma 4.4 we already see what the problematic
terms are. In order to allow for a refined treatment of these terms, we introduce an additional
large momentum cut-off and modify the definition of Yjs. from (3.6), leading to better uniform
estimates and consequently to the desired stretched exponential integrability.

More precisely, let K > 0 and take a compactly supported, smooth function v : R — R4
such that ||v][;1 = 1. We define

[[X]?\)d,e]]é = UK %t AiK[[XJ?\)d,e]]’

where the convolution is in the time variable and vy (t) := 2Kv(25¢). With standard arguments

one can prove that

sup (272 [XF <llopres)??
KeN

is exponentially integrable for a small parameter and therefore we can modify the definition of
IXase|l to obtain
IIX3 < lloproe S 225G | Xar | (4.26)

while still keeping the validity of (4.25). Moreover, we let [[X%J76H> = [[X%J76H - [[X%/LE]k and
define XL, -~ to be the stationary solution of
L Xiges = [Xrel - Krle
By choosing K we can have that
1X0se 5 leprocior) S 27KV INX0 Sl opgraneory S 27PN Kane | S X

which holds true provided
2K/2 _ HXMaHI/(liém)-

Next, we redefine Yy to solve
Yire = —AXQpo o — 2 S BAZEIXRL D) > Yo,
The estimates of Lemma 4.1 are still valid with obvious modifications. In addition, we obtain
107 Yarelloproes ey S MXarell?, 107 Yasellopig1r2-re oy S MXnrell?s
and by interpolation it follows for a € [0,1/2 — k] that
16" Yot ellepgaciry S MXagel /025, (4.27)

From now on we avoid, as usual, to specify explicitly the dependence on M since it does not play
any role in the estimates. The energy equality (4.7) in Lemma 4.2 now reads

1
5&5”/)2@5”%2,5 + Y. = @p4,6 + \I’p‘*,e + <p4¢€a _A[[Xg]]<>€’ (4'28)

where
Te := Mlpdellpae +m?0° Vel Zos + 1p*Vere72e
and ©,4 ., ¥ 4 . where defined in Lemma 4.2. Our goal is to bound the right hand side of (4.28)

pPHE?
with no more than a factor ||X.[|3+? for some ¥ = O(k). In view of the estimates within the

proof of Lemma 4.4 we observe that the bounds (4.15), (4.16), (4.17), (4.18), (4.19) and (4.20)
need to be improved.
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Lemma 4.10 Let p be a weight such that p* € L*° for some 1+ € (0,1). Then there is ¥ =
O(k) > 0 such that

105 el + (W |+ [(p* e, —AIXE]<)el < Cs(A + A3 log t]*/® + )X [ + 6.

Proof Let us begin with a new bound for the term with X.Y2 appearing in (4.15). For the
resonant term we get from the interpolation estimate (4.27) that the bound (4.14) can be updated
as

107 Xe 0 Y2 opig e S NI + NIXH S (A2 + A7) |[%c |+

where we used that, due to the presence of the localizer (see (4.2)), we can bound

o o o —(1—-6k
\| o7 % S IX2 e -1-me (14 M IX2 g -1me) ™7 S (429)

giving an improved bound for the paracontrolled term which reads as follows

szan o (2Ye < j;l [3)\ (02/>[[X52]]) ~ YS])H%*'“E

S M7 Xellg-1/2-me |97 Yell7oo.c

p° U [[Xf]] Hcg73/2+2n . S >\3HX€H5+79'

~

1—4k
1-2k

Consequently, for 6 =

Ap e, XeoY2)e| S Ao Xe 0 Y2 lig—rcllp® = bell gz S NP+ ADIXl* llpde | Fae 10> Bell i o

< ()\(1279)/(2+9) + )\(1679)/(2+9))C6||X€H8+79 + (STE

1/2—4k
1—2k

For the paraproducts we have for 6 =

M(p 62, Xe 2 Y2)e| S Mo* ™2 el e |0” Xe g -2 |07 Vel e

SNIX NPl pelGacllp?Ge il o < AT EFOCsIX, 1B + 67

Let us now consider the term with X.Y; always in (4.15). In view of (4.11), (4.12), (4.13) we
shall modify the bound of the resonant product which using the decomposition (4.10) together
with (4.11) and the bound (4.29). We obtain

107Xz 0 Yellg —re S A + A2 IXPT S (A + A% X1

~

1—4k
1—-2k>

and consequently, for § =

M(p' 92, Xe 0 Ye)e| S Mlp7 Xz 0 Yellg—ncllp* 2l pre S (N + X)X [l pge | o2 l10% 0c 1 o e

1,1

< ()\(7—6)/(1—}—6) + )\(11_0)/(1+0))05HX5”8 + 5T5-

1/2—4k
1-2k

For the paraproducts we have for § =

M(p'dZ, Xe M Ye)e| S )\HP4_20¢§HB}/12+WHP"Xellcgfl/zfn,s 17 Yel|Loowe

S OXP o | 121 0% 0= [ 12 5 e < AT=O/AFO O X [[8 4 67
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With the improved bound for Y, (4.16), (4.17), (4.18) can be updated as follows
[0 e, AY2)el S Mpdell o 1p7YelEy ooie S A o@ell e IXell® < OMlpde [T + CoN°|IXc |1,

[0, BAY20e)el S AlpdellZacllp”Yelley oo S NP llpgel|ZacIXel* < OMo@e]| 70 + CoA®|IXc |7,
(o e, AY=02)<| S Motellzacllo”Yellorroe S A pdelfac IXel® < OMlpde|7ae + CoN°|IXc |-
Now, let us update the bound (4.19) as

A(p40e, =3(ZEIX]) = Vohe| < (X 4+ X)ClEL S + 8] 72 0el 3y

Next, we shall improve the bound (4.20). Here we need to use a different modification for each

term appearing in (p*¢., \>Z.). as defined in (4.9). For 0 = 1{2_—_2? we bound

2 o o v
[(p e, X Vel S NPp* 7 el yrrenc 107X Ml g —172-n.c
By

S )‘2”P¢6”L46”P2¢6HH1 QMHX5H5 < )‘(870)/(2+6)C¢5”X6”8 + 07
< (X 4+ XG5 Xc || + 07

Next, we have

N2|(pt 6o, IV <2240, XY M Y)| + 22| (phe, XY 0 V)|

1-4k

2> we bound

where, for 6 =
% —20 o v
N2 (e, K 90 V2)el S X002 0 e 77 K W Vell e

S N lpdellaellp® dell e 107X g e 7Yoo < AED/ OO 849 4 57,
< (A2 + 230X BT + 67,
and the resonant term is bounded as
/\2|<,04¢e,5f§/ o Yo)el S Nlp* 2 el prcellp” N?Hcﬁ—w\lp"Yellfgw SN poell pae 1K) 5F7
< Co MBI |BT 4 67 < (A% 4+ A Gy [X 377 + 07
Now,
Xl{pte, <6€ — be)¥2)e] S 1og HAZ [ Gell e 0% Vel poee < [og tY2NTACH|X[[¥/3 + 67

Next, for 6 =

25’

N2 [(p* e, Ce(Ye, BIXZ], BIXZD)el £ NMp* 27 el ponc 7 Vel zme |07 [X2T 5 -1

S )‘3HP¢SHL4EHP2¢6”H1 e X [| 5T < AW270/CHO Oy X |+ + 67,
< N3+ XX BT + 67,
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At last, we have
N (p'0e, —3[X2) 0 2 Tt (3%E[X2] - Y2)), |

SN0 27 bl pre |07 Yell oo e[l 07 [X2 ]l —1-me | 07 ZEIXZD | ¢ —14m.c

SP3|I < MG X124 + 07 < (AP + XG5 |PHY + 67

This concludes the estimation of (p*¢., \2Z.). giving us
[ bey N2 Ze)e| < (N + A G |IXc [P+ 4 07
Finally, we arrive to the additional term introduced by the localization. Using (4.26) we obtain
(o e, =AXRr)<Del S Mpdellpoc o7 [XRrel<lloproos S Mlpdell o252 x|

< ACy || X B 4 67,

where we also see that the power 8 + 19 is optimal for this decomposition. O
Let <¢€> = (1 + ||p2¢€‘|%2,s)1/2 and <Q0€>* = (1 + HpQSDsH?q—l/z—%,s)l/z' With Lemma 4.10 in

hand we can proceed to the proof of the stretched exponential integrability.

Proposition 4.11 There exists an o > 0, 0 < C < 1 and v = O(k) > 0 such that for every
B >0 it holds

=

ateﬁ(t¢e>171) + aeﬁ<t¢s>liv(1 _ U)B<t¢5>_v_1t2’r5 S_, 1+ e(ﬁ/C)HXe

Consequently, for any accumulation point v we have

1-v

/ PPy (dy) < oo
S'(R?)

provided B > 0 is sufficiently small.
Proof We apply (4.28) and Lemma 4.10 to obtain

) 66(t¢5)1_“ 1-w 1
BT R R

= PN TR (T 4 O+ W+ (phe, —AXE] L)) + ]P0k | 2]
< eﬁ<t¢s>171} [tQ(_TE + @p4,8 + \I/p“,e + <p4¢87 _)‘[[Xg]]<>6) + 5t2)‘Hp¢6”i475 + C&,)\*l]

< P21 = 20) Yo + Oot*(|log ]2 + DIX|FT + Cspma),

<t¢e> 1+v

where by writing Cj y—1 we point out that the constant is not uniform over small A. Therefore

by absorbing the constant term Cs -1 in [|Xc||** we have

Oy 9™ 4 P9 (1= 0)B(te) VN (1 — 20T

v 4.30
< Cyyr P9 (1 — 1) Bll) =12 log (43 + 1)K, |+ (4.50)
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Now we can have two situations at any given time, either |[X.||> < |ftpge|;z0 or |IXc[? >
gHtpqﬁngLZf; for some fixed and small ¢ > 0. In the first case the right hand side of (4.30) is
bounded by

C&)\flemmg)lw(l B v)ﬂ(t¢5>’”’1§4+79/2t2(! logt]4/3 + 1)Htp¢e|!(L44tﬂ/2)(1_v),

and we can choose v = v(k) so that (4 +¥/2)(1 — v) = 4 and by taking ¢ small (depending on
d, X through Cj y-1) we can absorb this term into the left hand side since for ¢ € (0, 1) it will be
bounded by

Ciam1 €09 (1= 0)Bltge) 7122 pge | .4

In the case ||X.[|* > gHtpqﬁngLZf; we have

IXCI? > clltodelIpa? 2 slitp*¢:llizE 2 <(tde)' ™ = 1),

provided p is chosen to be of sufficient decay, and therefore we simply bound the right hand side
of (4.30) by
< Cj ,\716(5/00”&”2HXeHgJ”S <1+ o(28/COIXe|?

The first claim is proven.
It remains to prove the bound for ¢.. By Hoélder’s inequality, we have

E[eﬁ(%(o)—Xs(O))l_“] — E[eﬁws(l)—xs(l))l_“] < E[eﬁﬁfs(1)>1_“+5<¢s(1))1_“]
< [E[e2PY=) 77| 1/2[R[e26(¢=(1) ) 1/2
and we observe that (Yz(1))!7% < 1+ ||X.||? so the first term on the right hand side is integrable
uniformly in € by (4.25). On the other hand, using Lemma 4.11 we have
t

E[e28(t6=(0)' "] 4 / E[ce200= ()™ (1 — 0)2B8(s¢.(5)) "V 12T o(s)]ds < E[1 + e2P/O)I%e
0

[

]

and therefore
E[e26<¢>s(1)>1’“] <E[1+ 6(25/C)||Xs||2]_

We conclude that

sup E[e?(#=(0)-X=(0)""] < [E[e2POHIXI*) /2[R [1 4 @B/ONXI))1/2 < o6
ecA

uniformly in € by (4.25), from which the claim follows. O

5 The Osterwalder—Schrader axioms and nontriviality

The goal of this section is to establish several important properties of any limit measure v ob-
tained in the previous section. Osterwalder and Schrader [OS73, OS75| introduced the following
axioms for a family (S, € S'(R?)®"),en, -
Let RY = {(21,29,23) € R : 27 > 0}, R¥ = {(zW,...,aM) € R¥": 0 < xgl) < <
xgn)} and
S'(R¥) 1= {f € S'(R™) : supp(f) © R},
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0S0 (Distribution property) It holds Sy = 1. There is a Schwartz norm || - || on S'(R3) and
B > 0 such that for all n € N and f1,..., f, € S(R3) it holds

[Su(fi® ... ® fu)l < ()’ TTIfills- (5.1)
i=1

OS1 (Euclidean invariance) For each n € N, g = (a, R) € R®x O(3), fi,..., [ € S(RY) it holds

Sn((a, R)fl ®... (a7R)fn) - Sn(fl @... Q0 fn)7
where (a, R).fn(z) = fn(a + Rz) and where O(3) is the orthogonal group of R3.

0S2 (Reflection positivity) For all sequences (f, € Sc(R2")),en, with finitely many nonzero
elements, it holds

S Suin(@Fa® fu) >0, (52)

n,meNp

where Of,(z1), ..., ™) = f(HzW, ... 02")) and 0(zxy,x9,23) = (—x1,20,23) is the
reflection with respect to the plane x1 = 0.

0S3 (Symmetry) For alln € N, fi,..., f, € S(R?) and 7 a permutation of n elements:
Sn(fi @@ fn) = Sn(fr) @+ @ fr(m))-

The reconstruction theorem of [OS75] asserts that functions (Sy,)nen, Which satisfy OS0-3 are
the Euclidean Green’s functions (or Schwinger functions) of a uniquely determined Wightman
theory (maybe lacking the cluster property). The reader is referred to [GJ87| for a detailed
exposition of the Euclidean approach to QFT.

For any measure ;1 on S'(R?) we define S}, € (§'(R3))®" as

SHi®-® fa) = /S,(RS) o(f1) - o(fa)u(dp),  meEN, fi,..., fn € S(R?).

In this case OS3 is trivially satisfied.

Along this section we will prove that, for any accumulation point v, the functions (S%),
satisfy additionally OS0, OS2 and OS1 with the exception of invariance with respect to SO(3)
(but including reflections) and moreover that it is not a Gaussian measure.

5.1 Distribution property

Here we are concerned with proving the bound (5.1) for correlation functions of v.

Proposition 5.1 There exists > 1 and K > 0 such that any limit measure v constructed via
the procedure in Section /j satisfies: for all n € N and all f1,..., fn € H1/2+2””(p*2) we have

[Eulo(f1) - o(fa)ll < K™D T illzp2eon o2y,

i=1

In particular, it satisfies OS0.
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Proof Forany a € (0,1) and any n € N we obtain with the notation (p), = (1—1—”4,0”%171/27%(/)2))1/2

Eu[llllfy-1/2-2e (o)) < Eul{0)* ] S B, [(0)°TT] < 57N ([n/a])E, 7))
< Kn(n!)l/aEy[eB(sO)“]’
where we used the fact that Stirling’s asymptotic approximation of the factorial allows to estimate

nla [n/a] nla n/a+1
falt <€ (FLD) 7 ntngaly 2 < o (XY @l 2

e

e [(2)" ] < s

for some constants C, K, uniformly in n (we allow K to change from line to line). From this we
can conclude using Proposition 4.11. O

5.2 Translation invariance

For h € R3 we denote by T, : S'(R3) — S’(R3) the translation operator, namely, T, f(z) =
f(z—h). Analogically, for a measure p on S'(R?) we define its translation by Tpu(F) := pu(FoT,)
where F' € Cy(S'(R?)). We say that y is translation invariant if for all h € R? it holds T,u = p.

Proposition 5.2 Any limit measure v constructed via the procedure in Section j is translation
mvariant.

Proof By their definition in (1.1), the approximate measures vjs. are translation invariant
under lattice shifts. That is, for h. € A. it holds Tj_vare = V.. In other words, the processes
o and Tp_@are coincide in law. In addition, since the translation 7;_ commutes with the
extension operator £°, it follows that £°¢pr . and T E%¢pr e coincide in law. Now we recall that
the limiting measure v was obtained as a weak limit of the laws of £y on H~1/2728(p2+7),
If h € R? is given, there exists a sequence h. € A, such that h. — h. Let k € (0,1) be small and
arbitrary. Then we have for F' € C,?’l(H*I/Q*?’“(p“V)) that

Tw(F)=v(FoTy) = lim Po(E¢uye) Y(FoTy) = lim E[F(ThE%um.)]

e—0,M —00 e—0,M —00

= lim E[F(T,.&%ume)] = lim  E[F(E¢me)] = v(F),

e—0,M—o0 e—0,M —00

where in the third inequality we used the regularity of F' and Theorem 4.8 as follows
E[F(The pnre) = F(Th.E50ne)] < IFllcor BIThE orre = Th € on el pr-1r2-sn 21

S (h — hg)REHSE(pM@HH_1/2_2,.;(p2+q) ,S (h — h,g)li —0 as e—0.

If F € Cy(HY/?735(p>t7)), then by approximation and dominated convergence theorem we also
get Tpv(F') = v(F'), which completes the proof. O
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5.3 Reflection positivity

As the next step we recover the reflection positivity of the measure v. We fix an index i € {1, 2, 3}
and establish reflection positivity of v with respect to the reflection given by the hyperplane
R~ x {0} x R37%. To this end, we denote Ri,& = {z € R%x; > §} and define the space of

functionals F' depending on fields restricted to Ri, 5 by

K
His = {Z eI e C, f € CSO(R‘:’_),K € N}
k=1

and let H = Hy . For a function f: R? — R we define its reflection

(Hf)(x) = (Hzf)(x) = f(ml, ey Lj—1y —Ljy Ljg1y - - ,.%'3)

and extend it to F' € Hy by 0F (¢(f1),...,¢(fx)) = F(p(0f1),...,0(0f)). Hence for F € H 5
the reflection §F depends on ¢ evaluated at x € R? with x; < —4.
A measure p is reflection positive if

K

07 = [ o PFOVF () = 5 T (5= ) >0

for all FF = ST cpe?®Fs) € H, .

Proposition 5.3 Any limit measure v constructed via the procedure in Section /j is reflection
positive with respect to all reflections 0 = 0%, i € {1,2,3}. In particular, it satisfies OS2.

Proof We recall that our Euclidean quantum field theory v was obtained as a limit of (suitable
continuum extensions of) the measures vy given by (1.1). It is known that for every e, M the
measures V). reflection positive (on Aps.), see [GJ87|. Therefore, we obtain
E[0FF) = lim E[0F(Epu:)F(Epme) = lim  E[F (0% )F(Epue)]-
e—=0,M—o0 e—=0,M—o0
Next, we observe that since the function w in the definition of the extension operator £° was
chosen radially symmetric, the reflection and the extension operator commute. Moreover, if
F € M, s then F o&° € H, when ¢ is small enough (depending on ) and therefore due to the
reflection positivity of vy, for all F' € H 5 we have
E,[0FF) = lim E[F(E0pn)F(E% o)

e—0,M —0c0
= lim E[#(Fo&%)pme(Fo&%)pme = 0.
e—=0,M—o0
Using the support properties of v we can approximate any F' € H4 by functions in H, s and
therefore obtain the first claim. Let us now show that (5.2) holds. Note that, thanks to the
exponential integrability satisfied by v any polynomial of the form G = 37y, ©®"(fn) for se-
quences (fn, € Sc(R3)),en, with finitely many nonzero elements, belongs to L?(v). In particular
it can be approximated in L?(v) by a sequence (F},), of cylinder functions in . Therefore

E,[0GG] = limy, o0 EL[0F,, F,,] = 0 and we conclude that
S @@ fa) = Y B @) (f)] = EL[IGG) > 0.

n,meNy n,meENy
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5.4 Nontriviality

This section is devoted to the proof of nontriviality, that is, non-Gaussianity.

Theorem 5.4 If A > 0 then any limit measure v constructed via the procedure in Section / is
non-Gaussian.

Proof In order to show that the limiting measure v is non-Gaussian, it is sufficient to prove
that the connected four-point function is nonzero, see [BFS83|. In other words, we shall prove
that the distribution

Ui (z1,...,24) = Ey[p(x1) - - p(24)]
—E,[p(z1)p(22)Ev[p(z3)0(74)] — Epp(@1)p(23)|Es[0(72)(24)]
—Eu[p(x1)p(z4)]Ey[p(72)0(23)], T1,...,04 € RY

is nonzero.

To this end, we recall that in Theorem 4.9 we obtained a limit measure y which is the joint law
of (p, X, X\V) and that v is the marginal corresponding to the first component. Let K; = F~ly;
be a Littlewood-Paley projector and consider the connected four-point function UJ convolved
with (K, K;, K;, K;) and evaluated at (z1,...,24) = (0,...,0), that is,

U4V * (Ki7 K;, K, Ki)(07 0,0, 0) = EV[(Ai¢)4(O)] - 3EV[(AZ"‘P)2(O)]2

= E,[(Aip)*(0)] — 3E,[(Ai0)*(0)]2 =: L(p, 0, ¢, ),

where L is a quadrilinear form. Since under the limit p we have the decomposition ¢ = X —
AXT 4 ¢, we may write

L(p, ,0,0) = L(X, X, X, X) —4AL(X, X, X, X )+ R (5.3)

where R contains terms which are at least bilinear in X' or linear in (. Due to Gaussianity of
X, the first term on the right hand side of (5.3) vanishes. Our goal is to show that the second
term behaves like 2¢ whereas the terms in R are more regular, namely, bounded by 2:(1/2+%) n
other words, R cannot compensate 4\L(X, X, X, X\V) and as a consequence L(p, p, @, @) # 0 if
A> 0.

Let us begin with L(X, X, X, X\V). To this end, we denote ki3 = k1 + k2 + k3 and recall
that

@0 = [ itk [ g s, an),

R —00
0
(AiX\V)(O):/ ds/ / / i (kp1zz) e knza =)
—oo  Jrd Jrd JRa

< | 11 /S e~ PN =0 (s, dly) |

1=1,2,37

where [] denotes Wick’s product. Hence denoting H := [4m? + |k:[123}|2 + |k1|? + |k2)? + |k3)?]
we obtain

L(X X, X, XT) = E [(AX) (0)(A:X)(0) (A X) (0)(8:X7)(0)

38



0
:3!/ dS/ / / %(’f[123])€7H(7S)
—00 ]Rd ]Rd ]Rd

|:/ e2[m2+|kl2}(5sl)gpi(kjl)dSldkl:|
3 e

1=1,2
31 [0 dk
==/ 4 i (Kpoz )e (%) [ Ak 71}
8/00 S/Rd/Rd/RdSD([ms})e 11113 @(1)m2+|kl|g
3! pi(kp23) dk i(— '
== R (k) ———— | & 20849 97,
8 /Rd /Rd /Rd H H il l)m2+ ‘klP

1=1,2,3

Let us now estimate various terms in R. The terms containing only combinations of X, x'
can be estimated directly whereas for terms where ( appears it is necessary to use stationarity
due to the limited integrability in space. For instance,

[E [(4:)0) (A X)0)(A:X7)(0)(A:ix7)(0)|

< 9—2i(=1/2-K)9—2i(1/2—K) g |:HX”<25_1/2—/€(/)0')HX\V”%1/2—&(/)0')] < oidr

and similarly for the other terms without ¢ which are collectively of order 2:4%(\2 +- \*). For the
remaining terms, we fix a weight p as above and use stationarity. In addition, we shall be careful
about having the necessary integrability. For instance, for the most irregular term we have

E[(A:X)*(0)(A:€)(0)] = / PHEELAXP @) A = B!, (AX)*(A:0))
and we bound this quantity as
E[(A:X)?(0)(Ai)(0)]] < EAXel|7 00 (poy 1A | 1 p1-50)] S BIIAXe]|700 (o [18i€ ] 2(02)]

< 27 B1/2mm) i 12 [ x| 1720 (o) HCHB;%(pz)

< 9=3i(=1/2-k) 9i(~1+2k) (E[HXHG%71/27n(po)])1/2(E[‘|C‘|2B%—22n(p2)])l/2
< 2i(1/2+5/€) ()\ + )\7/2).

where we used Theorem 4.9. Next,
E[(A:X)?(0)(A:0)*(0)]] < E[|AiX |00 (o 1AiC | 2 o140y [AiC [ 122)]

< 2_2i(_1/2_ﬁ)2_i(1_2K)E[HX”%—1/2—&(,)0)”C”Bg’oo(p) ”C|’H1*2“(p2)] S 2i4ﬁ()‘5/4 + )\5)7

and

ELAX) O O] < E[IAX | o) 1A G601
E[|AiX | oo (o 1A 4,
27V X e iRy )
,S 2’i(1/2+/€)()\3/4 4 )\9/2)’

[E[(AO)]] = [E{p", (M) S EN(A:ON 745y < EllClzy )] S A+ A,

<
<
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Proceeding similarly for the other terms we finally obtain the bound
|R| < 2i(1/2+5n)(>\3/4 + )\7)
Therefore for a fixed A > 0 there exists a sufficiently large ¢ such that
E[(Aip)!(0)] = 3(E[(Aip)*(0)))* £ ~2'A <0,

and the proof is complete. O

6 Integration by parts formula and Dyson—Schwinger equations

The goal of this section is twofold. First, we introduce a new paracontrolled ansatz, which allows
to prove higher regularity and in particular to give meaning to the critical resonant product in
the continuum. Second, the higher regularity is used in order to improve the tightness and to
construct a renormalized cubic term [¢®]. Finally, we derive an integration by parts formula,
together with the Dyson—Schwinger equations and we identify the continuum dynamics.

6.1 Improved tightness

In this section we establish higher order regularity and a better tightness which is needed in
order to define the resonant product [X2] o ¢ in the continuum limit. Recall that the equation
(4.6) satisfied by ¢as has the form

L cdme = =3A\[X3r.] = dare + Unre, (6.1)
where
UM75 = _3)\[[X%4,5]] < (YM7E + ¢M,€) - 3)\2bM,5(XM,5 + YM,;.; + ¢M75)
3N ZENXE, D) = Yare — 3AXare (Yare + dare) — AV .
—3\Yyy Onme — 3BAYaredy . — ADRy .
If we let

XM, = (bM,e + 3)\X\](/[,5 > ¢M,57 (6'2)

we obtain by the commutator lemma, Lemma A.14,

3)\[[X]2\/[,5]] © ¢M,a + 3)\2bM,5¢M,5 = _3)‘[[X]2\/I,5]] ° (3)‘X\](/[,6 > ¢M,6) + 3)\26M,5¢M,6
+ 3>‘[[X]2\4,5]] O XM,e

Ny -
= _AQXM,5¢M,5 + 3)\2(bM,5 - bM,a(t))(ﬁM,e
+ N2 (Pt —3X fy 2, 3[X 3 D) + 3ALXE, ] © Xare

Recalling that Zpre = —3A"1[X3, ] o Yare — 3bare(Xare + Yare) can be rewritten as (4.9) and
controlled due to Lemma 4.3, where we also estimated X7 .Yy . and X M,€Y]\2/I ., we deduce

N ~
Z']]\/[5 = —)\QXM,a(bM,e + 3)\2(b]\/[,5 - bM,e(t))(bM,e + )‘QCE((bM,m _3X\](4,5’ 3[[X12\4,€]])

+3>‘[[X%4,5]] ° XM7€
TN Zyre = 3A[X3 ] < (Yare + dare) = SMUENXG, D) = Yare — 3AX Yy,
—6AX 0 Yarehnre — 3AXarediy . — AV, — 3AYir e — 3AYar 0%, . — Aoy, .
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Consequently, the equation satisfied by x s reads

L oxme = Lebue+3NX3 ] - dure +3NXY, = L chue — 6AVXY,, = Vedure
Une+3M\X), . = % ¢ —6AVX), . = Vede
= UM7€ + 3AX\](W,€ - (_3>\[[X]2\4,6]] - ¢M7€ + UM,€) - 6>\v€X\](M75 - v€¢M,€’

(6.3)
where the bilinear form V. f < V.g is defined by

st = ng = 1(As(f = g) - Az—:f =g-— f = Asg)

2

and can be controlled as in the proof of Lemma A.14.

Next, we state a regularity result for xas., proof of which is postponed to Appendix A.6.
While it is in principle possible to keep track of the exact dependence of the bounds on A we
do not pursue it any further since there seems to be no interesting application of such bounds.
Nevertheless, it can be checked that the bounds in this section remain uniform over A\ belonging
to any bounded subset of [0, c0).

Proposition 6.1 Let p be a weight such that p* € L*? for some v € (0,1). Let dm e be a solution
to (6.1) and let xnre be given by (6.2). Then

190t ell s i < O A@o(EKnn ) A+ 076010 2.

We apply this result in order to deduce tightness of the sequence (par¢) e as time-dependent
stochastic processes. In other words, in contrast to Theorem 4.8, where we only proved tightness
for a fixed time ¢ > 0, it is necessary to establish uniform time regularity of (@are)are. To this
end, we recall the decompositions

PMe = XM,E + YM,E + ¢M,€ = XM,e - )\X\XLE + CM,E

with
(M = Yare + AXpo + bnre = =L D BNZE[X3 ] = Yare] + dnre. (6.4)

Theorem 6.2 Let § € (0,1/4). Then it holds true that for all p € [1,00) and T € (0,T)

sup  Elloare )

2p
Bl p—1-3ke, 4 + sup E”‘PM,&” <O\ < o0,
e€A,M>0 Wr By g (p**9) e€A,M>0 L

fTH—l/Q—Qn,s(p2)

where L?TH71/27211,5([)2) — LOO(T, T; H71/272I€,€(p2)).

Proof Let us begin with the first bound. According to Proposition 6.1 and Theorem 4.8 we
obtain that

Bl prione o) < CraAB@o(Xar)(1+ B[00 (0)]1%.)
TP11 p

< CrpEQ,(Xo)(1 + E|lp*(0ar.c(0) — Xare(0))[I75.- + Ellp*Yare(0)[175.-)
is bounded uniformly in M,e. In addition, the computations in the proof of Proposition 6.1
imply that also E ||.Z -x M,gHi’i Bl 1) is bounded uniformly in M,e. As a consequence, we
T-1,1
deduce that

(r*)

2 2 2
EHatXM,a“LZB;%+3n,s(p4) g EH(AE —m )XM@HLI;B;}«H&@E (/74)

2
+ E H"iﬂ EXM,a“LgB£}+3n,E
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is also bounded uniformly in M, e.

Next, we apply a similar approach to derive uniform time regularity of ¢s.. To this end, we
study the right hand side of (6.1). Observe that due to the energy estimate from Theorem 4.5 and
the bound from Proposition 6.1 together with Theorem 4.8 the following are bounded uniformly
in M,e

BN ] - SatclFrsoeearoy BNl 0Xatel e vy

whereas all the other terms on the right hand side of (6.1) are uniformly bounded in better
function spaces. Hence we deduce that

2p 2 2p
EHatng’eHL%B;}_SN’E(p‘l‘H’) < EH(AE —m )¢M,€‘|L%Bl—’}—3n 5( 4+o + ]E Hz €¢M€|| 1—1—3m,s(p4+0)
is bounded uniformly in M, €.

Now we have all in hand to derive a uniform time regularity of (/.. Using Schauder estimates
together with (6.4) it holds that

_ 2
<E[|Z BN ] - Yot oz e

2p
EHCM,E HW;l_QK)/Q’lB;}_M’E(p4+‘7)

2
+EH¢M&HM€1 1B—1 3k, € (pito)

is bounded uniformly in M, €.
Finally, since for all 5 € (0,1) we have that both

EHXMEHCB% 1/2—k—28, <(p ) H M6”05cg1/2 k—28, € (p)

are bounded uniformly in M, e, we conclude that so is E|/@ar || for g € (0,1/4),

WB 1 —1 3k, < (pito)
which completes the proof of the first bound.

In order to establish the second bound we recall the decomposition ¢pre = Xpre+ Y e +dnre
and make use of the energy estimate from Corollary 4.7. Taking supremum over ¢ € [r,T] and
expectation implies

5eju]\12> E|’¢M€HLOO L2 E(P ) < 0.

The claim now follows using the bound for X/ . together with the bound for Yj; . in Lemma 4.1.
O

Even though the uniform bound in the previous result is far from being optimal, it is sufficient
for our purposes below.

Corollary 6.3 Let p be a weight such that p* € L* for some v € (0,1). Let 8 € (0,1/4) and a €
(0, B). Then the family of joint laws of (E%pe, E5X ) is tight on VVloc By % 4R (A1) x CR/2X

loc
where
H (ga(i)fﬁ
i=1,..,7

with a(1) = a(7) = —1/2, a(2) = -1, a(3) = 1/2, a(4) = a(5) = a(6) = 0.
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Proof According to Theorem 6.31 in [Tri06] we have the compact embedding
Bii~(p*7) € By (o)
and consequently since o < 8 the embedding

, 4+o A p—1-4 4420
Wioa Bii™™ (0"™*) € Wi B (02
is compact, see e.g. Theorem 5.1 [AmmO00|. Hence the desired tightness of ¢/ follows from
Theorem 6.2 and Lemma A.15. The tightness of £Xj . follows from the usual arguments and
does not pose any problems. O

As a consequence, we may extract a converging subsequence of the joint laws of the processes
(E@ne, ESXpre)Me in W 1B AR (p1H) CR/ X. Let i denote any limit point. We denote

loc

by (p,X) the canonical processes on VVlfjclBLll Ar(pto) x C{Z/CQX and let p be the law of the
pair (¢, X) under i (or the projection of fi to the first two components). Observe that there
exists a measurable map V¥ : (¢, X) + (¢, X) such that i = go W~!. Therefore we can represent
expectations under ji as expectations under p with the understanding that the elements of X
are constructed canonically from X via W. Furthermore, Y, ¢,(, x are defined analogously as
on the approximate level as measurable functions of the pair (p, X). In particular, the limit
localizer % is determined by the constant Ly obtained in Lemma 4.1. Consequently, all the
above uniform estimates are preserved for the limiting measure and the convergence of the
corresponding lattice approximations to Y, ¢, (, x follows. In addition, the limiting process ¢ is
stationary in the following distributional sense: for all f € C°(R4) and all 7 > 0, the laws of

o(f) and @(f(-—7)) on S'(R?)

coincide. Based on the time regularity of ¢ it can be shown that this implies that the laws of
©(t) and (t + 7) coincide for all 7 > 0 and a.e. t € [0,00). The projection of u on ¢(t) taken
from this set of full measure is the measure v as obtained in Theorem 4.9.

6.2 Integration by parts formula

The goal of his section is to derive an integration by parts formula for the <I>§ measure on the
full space. To this end, we begin with the corresponding integration by parts formula on the
approximate level, that is, for the measures v/ and pass to the limit.

Let F be a cylinder functional on S'(R3), that is, F(p) = ®(p(f1),...,0(fn)) for some
®:R" - Rand fi,..., fn € S(R?). Let DF(p) denote the L2-gradient of F. Then it holds for
fields ¢, defined on A,

% dZ@@ “0) (1) (E70e) () (we % i) (@) = e * DF(E° 2] (a),

where x € A; and w, is the kernel involved in the definition of the extension operator £° from
Section A.4. By integration by parts it follows that

[t DFE et = & [ 2

g 20() v e(dy) = %/F(Secp)wvmg(dcp)

dp()
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- / F(E° )N (@)+ (~3Nanre+3720r )op(a) o (dp) +2 / F(Ep)m? — Adp(@)vare(de).

(6.5)
According to Theorem 4.9, we can already pass to the limit on the left hand side as well as in the
second term on the right hand side of (6.5). Namely, we obtain for any accumulation point v and
any (relabeled) subsequence (vprc o (€°)71) s converging to v that the following convergences
hold in the sense of distributions in the variable = € R?

[ e DFEDI@de) [ DFE) @),

/ F(E°0)E[m? — AdJp(@)vare(dg) — / F(g)m? — Alp(e)v(de).

The remainder of this section is devoted to the passage to the limit in (6.5), leading to the
integration by parts formula for the limiting measure in Theorem 6.7 below. In particular, it is
necessary to find a way to control the convergence of the cubic term and to interpret the limit
under the <I>§ measure.

Let us denote

[°1a1(y) = 0(y)° + (—Banre + 3Mbare) o (y).
We shall analyze carefully the distributions Jas.(F) € S’(A¢) given by

Tnio(F) = / FE Q)6 ]t (@)var.- (dp),

in order to determine the limit of £ 7y .(F) (as a distribution in x € R3) as (M, ) — (00,0).
Unfortunately, even for the Gaussian case when A = 0 one cannot give a well-defined meaning
to the random variable 3 under the measure v. Additive renormalization is not enough to cure

this problem since it is easy to see that the variance of the putative Wick renormalized limiting
field

[¥’]=  lim  E[e*Tue

e—=0,M—o0

is infinite. In the best of the cases one can hope that the renormalized cube [¢%] makes sense
once integrated against smooth cylinder functions F(¢). Otherwise stated, one could try to
prove that (Jase)ae converges as a linear functional on cylinder test functions over &'(R?).

To this end, we work with the stationary solution ¢s . and introduce the additional notation

learl(t,y) = eare(t,y)® + (=Banre + 3Nbare)oare(t, y).
As the next step, we employ the decomposition
oae = Xare = AXipe + Care

in order to find a decomposition that can be controlled by our estimates. We rewrite

3] = [X3.0+31X3, J(—AX5, . + Cure) + BAbasconre
+3X 0 (—AX .+ Cure)® + (“AXY  + Care)®.

Next, we use the paraproducts and paracontrolled ansatz to control the various resonant products.
For the renormalized resonant product 3[X?%, ] o (—)\X\X/[ .+ Cre) + 3Noar e we first recall
that

orre = Xore + Yare + dare,  dnre = —3AXf1o = ase + Xase-
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Therefore using the definition of Zys. in (4.9) we have
3[[X]2\/I,e]] ° (_AX\XJ75 +Cue) + 3N eponre = 3[[X]2\/[,5]] o (Y + dnre) + 3N0ncom e
= 3[[X]2\/[,5]] o YM,E + 3>\bM,€(XM,€ + YM,e)

=AM e
+3[X3r ] 0 dnre + 3Nbaredue

and

3[[X§475]] o dare + 3Nbas e e = 3[[X]2\476]] o (—3)\X\](478 = dnre) + 3N P + 3[[X§475]] 0 XMe

= _)‘X\ny?[,sng,e + 3>‘(bM,€ - BM,s(t))ﬁbM,e + AC&(‘JSM@ Me? 3[[XM 5]]) + 3[[XM 5]] O XMe-

The remaining resonant product that requires a decomposition can be treated as

3Xare o (—AXY .+ Cure)? = 3N Xnre o (X1 )? — 6AXare o (X5, Care) +3Xare0 Gy
= 6A2Xj.0 (XL@ - XL,a) +3M\2X ). 0 (X\XM o XL@)
—6AX s 0 (X}, = Cure) — 6A X o (X]; . < Cure)
+3XM,8 o 6]2\4,5
= OXT XY reacxY, — oy xt X
( M,e CM,E) M + E( M, CM,E) M,e> M,e)
+3X2X g0 0 (XY, 0 X1, ) — 6AXarc 0 (XT, . < Cre)
+3XM,€ o 6]2\4,57

where we used the notation f X g=f<g+ fog.

These decompositions and our estimates show that the products are all are controlled in
the space L'(0,T, Bl_,ll_gﬁ’e(p4+‘7)). The term [[X]‘?/LE]] requires some care since it cannot be
defined as a function of ¢. Indeed, standard computations show that &£° [[X]?{/[’a]] — [X?] in
W, oo =3/ 2=r2(p7), namely, it requires just a mild regularization in time to be well defined
and it is the only one among the contributions to [[cp%ﬂ -] which has negative time regularity. In
particular, we may write [[4,0‘?’\475]] = [[X]:’\‘/[’E]] + H.(pne, Xar,e) where for p € [1,00)

E X k,00 ]E H ’X —1-3kK,e <
eeiuZ\I/}>0 Il ME]]HW @ =3/27r2 (p7) sejul\14)>0 1Helre ME)H 1T (o) >0

is uniformly bounded in M,e. The dependence of the function H. on € comes from the corre-
sponding dependence of the paraproducts as well as the resonant product on &.

Now, let h: R — R be a smooth test function with supph C [7,T] for some 0 < 7 < T < 00
and such that fR t)dt = 1. Then by stationarity we can rewrite the Littlewood—Paley blocks
A8«7M ,6( )

85(F) = [ HOBIFE oar )5 [k (O I

R
=E [/ h(t)F(gecpM@(t))A;[[X]?{/[,a]](t)dt] +E [/ h(t)F(E%pue(t)ASHe(onre, Xare) (t)dt
R R

=: A5Tj1(F) + A5T4 (F).
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As a consequence of Corollary 6.3 and the discussion afterwards we extract a subsequence con-
verging in law and using the uniform bounds we may pass to the limit and conclude

lm & Tvo(F) = E, [ [ roreoSI0a] = 2.0

e—0,M —o00
Here [¢?] is expressed (as [[90%/1,5]] before) as a measurable function of (¢, X) given by
[2°] = [X%]+3[X2) % (=AX" +¢) = AZ - AX Yo+ 3AB()o
FAC(6, —3XY,3[X2]) + 3[X%] o x +3X X (-AXT + 02 +6A0XT — )XV
+6ACAXT =, X7 X) +3)02X o (X 0 XT) —6AX o (X' < () +3X o(?
H(=AXT 4 0)3,
(6.6)

where we used the notation f X g = f < g+ f = g and (,¢,Y are defined as starting from
(0, X) = ¥(p, X) as

=X -AX'+(¢, (=—ZL 'BNZ[XY]) - Y]+,

the operator C' is the continuum analog of the commutator C. defined in (A.8), the localizer %~
is given by the constant Lo from Lemma 4.1 and B(:) (appearing also in the limit Z, cf. (4.9))
is the uniform limit of by . — baro(-) on [1,T]. Let us denote H(p, X) := [¢°] — [X?].

Remark that our uniform bounds remain valid for the limiting measure p. As a consequence
we obtain the following result.

Lemma 6.4 Let F : S'(R3) — R be a cylinder function such that
(@) + IDE ()| grass (p-1-0y < Crlll 17220 2

for some n € N. Let u be an accumulation point of the sequence of laws of (E5onre, ESX ).
Then it holds (along a subsequence) that £ Jae(F) — Ju(F) in 8'(RY), where J,(F) is given
by

TU8) =B | [ MOFOIXN0] 45, | [ h P 00| = TXF) +71 )
for any function h as above. Moreover, we have the estimate
T2ty + 1T s oy o O

where the implicit constant depends on u, h but not on F.

Proof For any cylinder function F' satisfying the assumptions and since supp h € [r,T| we have
the following estimate for arbitrary conjugate exponents p,p’ € (1,00)

1T (F) g -s/2ry S By [l F 0D g X Ty -2 o

/ i
S @l Fol ) (B IDCUE) oy inv])
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» 1/p
S (Bl = P )7 < ( I e dtds) .

Since for arbitrary conjugate exponents ¢, ¢’ € (1,00) it holds

1
EulF(o(t) — F(e(s))P < /0 E[(DE(¢(s) + 7(p(t) — 9(s))), ¢(t) — p(s))[PdT

1
< /O Ar (B, [DF((s) + 7(p(8) = L)) gass (-1 Bl () = £(8) [ 5r-0n o))

S C?(EHHSD(O)H"Hp_ql/a_zﬁ(pz))l/q Epullet) - @(S)II?;—M([,W))UQ,
we obtain due to Theorem 4.8 that

1/(pq)
dtds

) Ellolt) = (612
< ,
”ju (F)”Cg—?’/Q—H(pO') ~ Cr \/[O,TP ’t _ s‘(l-l—n)pq

5 CF(E,M||QOH%;,qulf%fan(le_ko))1/(pq),

where a« = 1+ k — 1/(pq). Finally, choosing p,q € (1,00) sufficiently small and x € (0,1)
appropriately, we may apply the Sobolev embedding Wfﬁl C W;P? together with the uniform
bound from Theorem 6.2 (which remains valid in the limit) to deduce

I (Yl -s72-w S CrEulelitas s snyrany) " S Cr.

To show the second bound in the statement of the lemma, we use the fact that supph C [r, T
for some 0 < 7 < T < 00 to estimate

T2 )1 sy < EulllE = Flo()llzzs, 1, X) 1y ye1-s o)

2 1/2 2 1/2
< CF(EMH(PHLnifTHfl/2*2n(p2)) / (EMHH((P7 X)|’L1T3ii*3ﬁ(p4+o)) / § CFa
where the last inequality follows from Theorem 6.2 and the bounds in the proof of Proposition 6.1.

a

Heuristically we can think of J,(F) as given by

Tu(F) ~ / F() [ 0)(dg).

However, as we have seen above, this expression is purely formal since [?] is only a space-time
distribution with respect to y and therefore [©3](0) is not a well defined random variable. One
has to consider F — 7,(F) as a linear functional on cylinder functions taking values in &'(R?)
and satisfying the above properties. Lemma 6.4 presents a concrete probabilistic representation
based on the stationary stochastic quantization dynamics of the <I>§ measure.

Alternatively, the distribution J,,(¥') can be characterized in terms of ¢(0) without using the
dynamics, in particular, in the spirit of the operator product expansion as follows.
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Lemma 6.5 Let F be a cylinder function as in Lemma 6.4 and v the first marginal of p. Then
there exists a sequence of constants (¢ )nen tending to oo as N — oo such that

Tu(F) = 1lim [ F(p)[(Acne)® — en(Acng)lv(de).

N—oo

Proof Let
TP = [ FQBane) — ev(Benplo(de)

Then by stationarity of ¢ under p we have for a function h satisfying the above properties

Ton(F) =E, [ [ MOF (B enol) - ex(Bexe(Oliae]

At this point is not difficult to proceed as above and find suitable constants (cy)nyeny which
deliver the appropriate renormalizations so that

[(Acne)® — en(Acne)] = [€°]

and therefore, using the control of the moments, prove that

Fon(F) > E, [ [ roFeI1 0] = 7.0

a

Remark 6.6 By the previous lemma it is now clear that J,, does not depends on p but only on
its first marginal v. So in the following we will write J, := J,, to stress this fact.

Using these informations we can pass to the limit in the approximate integration by parts
formula (6.5) and obtain an integration by parts formula for the <I>§ measure in the full space.
This is the main result of this section.

Theorem 6.7 Any accumulation point v of the sequence (vare o (%) 1) s satisfies

/ DF()u(dp) = 2 / (m® — A F(@)w(dg) + 20T (F). (6.7)

When interpreted in terms of n-point correlation functions, the integration by parts formula
(6.7) gives rise to the hierarchy of Dyson—Schwinger equations for any limiting measure v.

Corollary 6.8 Letn € N. Any accumulation point v of the sequence (vpre o (E5) ™) e satisfies

Y 3@ = z)Eulp(n1) - p(@im)(@i) - plan)] = Bo[[(m® = Ap)p(@))p(1) - - plan)]
i=1

=X lim E,[p(xq1)--- go(xn)((AgNSD(CU))s —cnAcno(z))]

N—oo

as an equality for distributions in S'(R3)®(+1),
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In particular, this allow to express the (space-homogeneous) two-point function S¥(z —y) :=
E,[e(x)p(y)] of v as the solution to

5z —y) = (m* = A)SE(x —y) = A lim (T AZ3)SY)(y,2,2,2) — ex(Aan S5z — y)

where the right hand side includes the four point function S} (z1,...,z4) := E,[p(z1) - - - o(x4)].

Finally, we observe that the above arguments also allow us to pass to the limit in the stochas-
tic quantization equation and to identify the continuum dynamics. To be more precise, we use
Skorokhod’s representation theorem to obtain a new probability space together with (not rela-
beled) processes (¢ns,e, Xas,e) defined on some probability space and converging in the appropriate
topology determined above to some (¢, X). We deduce the following result.

Corollary 6.9 The couple (p,X) solves the continuum stochastic quantization equation
Lo+ A’ l=¢ i SRy xRY,
where £ = % X and [¢?] is given by (6.6).

A Technical results

In this section we present auxiliary results needed in the main body of the paper.

A.1 Besov spaces

First, we cover various properties of the discrete weighted Besov spaces such as an equivalent
formulation of the norms, duality, interpolation, embeddings, bounds for powers of functions and
a weighted Young’s inequality.

Lemma A.1 Let « € R, p,q € [1,00]. Fizn > |a| and assume that p is a weight such that

ol sy + 10 e S 1
uniformly in €. Then
”f”B;‘;;(p) ~ ”PfHBg;;,

where the proportionality constant does not depend on €.

Proof We write pf = p < f + p = f and estimate by paraproduct estimates
o< fliBge = llp =< fllaeco-1p) S lolLocco)lflB2g () S I fllBoE ()

lo = Fllsge = llo = Fllaezo10) S W Bgs ol B, S 1o @) 121 e -1y
Sl s )

which implies one inequality. For the converse one, we write f = p= < (pf) 4+ p~! = (pf), and
estimate

07" = Hszi 0 = o™ el f sz

P,

o™ = (0H)llsz ) S Iefllsge 0™ Bz o) S Nof g 0™ prtae -
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Lemma A.2 Leta € R, p,p',q,q¢" € [1,00] such that p,p’ and q,q" are conjugate exponents. Let
p be a weight as in Lemma A.1. Then

(.90 S 1590 ne o

with a proportionality constant independent of €. Consequently, Bl;oéza(pfl) C (Bpg(p~1))*.

Proof In view of Lemma A.1 it is sufficient to consider the unweighted case. Let f € By, and
ge B, ’6 Then by Parseval’s theorem and Hoélder’s inequality we have

e Z f(x)g(x) = Z et Z Aj f(z)Ajg(x)

TEA. —1<ij<N—J  z€A.

- 3 /soz V£ (k) (k) Fo(k)a

—1<4, <N —J,i~j
= Yo 29927t Y AT f(a)ASg(x) S 1 355 9l e
—1<¢,j<N—J,i~vj €A
O

Lemma A.3 Let e € A. Let a,ap,01,5,00,01 € R, p,po,p1,¢,9,q € [1,00] and 6 € [0,1]
such that

1 0 1-6 1 0 1-06
a:9a0+(1_9)a1’ 52950+(1_9)51, -=—+ ) -=—+ .
p Po b1 q q0 q1
Then it holds

1 gz oy < 1520 (o0 I1F 1 als b1y

Proof The proof is a consequence of Holder’s inequality. Let us show the claim for p, pg, p1, ¢,
g0, q1 € [1,00) and ¢ € A\ {0}. If some of the exponents p, pg, p1,q, qo,q1 are infinite or we are
in the continuous setting, the proof follows by obvious modifications. We write

107851 = = 3 17 B5 @) = 0 3 (0185 £ () ) (1507 45 ()] 1)
Z‘eAs ICGA

and apply Holder’s inequality to the conjugate exponents g—; (12 19)p to obtain

0p/po (1-0)p/p1
16° 85 e < <ed > pBO”“!AEf\”“) (ad > pfflmifrpl)

r€A: TEA:

(1-0)p
- ”AEfHLP() € pB() ”AEfHLpl 5(0’81)

Consequently,
q akq|| B AE
Mg < 3 2P A5
—I)S
Oaok —0)au k (1—6
<X (A, ey ) (27O S, )
—1<j<N—J

20



and by Holder’s inequality to the conjugate exponents q—o and 0 4

1
1-0)q

q
TP
0q/q0 (1-0)a/q1

k k
< Z 2% qOHAEfHLpo £ (pP0) Z 2% quAEfHLpl £(pP1)
—1<G<N-J —1<G<N-J

(1—6
—HfH 0 (460) 115 o QQpBI

a

We note that by our construction of the Littlewood—Paley projectors on A., in each of the
cases j = —1, 5 € {0,...,N —J — 1} and j = N — J, there exists an L!-kernel K such that
the Littlewood—Paley block A? f is given by a convolution with 2/%K(27.). See Lemma A.2 in
[MP17] for more details. For notational simplicity we omit the dependence of K on the three
cases above.

Lemma A.4 Lete € A and let B > 0. Then it holds
0 0
L**(p) = By5(p),  L“*(p) C By (p)
and the proportional constants do not depend on €.

Proof Due to Lemma A.1 together with Parseval’s equality we directly obtain the first claim.
Consequently, by Young’s inequality together with the fact that 2 g % < p~ Yz —y) (for a universal

proportionality constant that depends only on p) we have that

0, = su ASfllpae,y =  su 2JdKC(29.) % 4
e = 5w 185 liseiy = sup 2K« Flisegy

~

< Sup 2]d,C 2] l,e(,—1 4, SJ 4,e
LR I sl liseg S Wl

Lemma A.5 Let k € (0,1), p € [1,00] and let p be a polynomial weight

Hf”B;;”vf(p) ,S HfHBp—’gﬁs(p) + HvefHB;;’f(p)
where the proportionality constant does not depend on €.

Proof Letj>0. Let K; = K;. = F ! ¢S and denote K;=Kj. = ij K; . Then it holds
that ASf = K; x ASf and we write

I_(j*Ajf:(Id—Aa) HId —A)(K i xALf)

= (Id—A) H(K;* ASf) — (Id—A) ' VIVL(K; = ASf). (A1)

For the second term it holds by translation invariance of V.

(Id —A.) T 'VEVL(K; * A f) = (1d —A) TIVEKG) * (ASVf).
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hence by Young inequality
1((1d =A)TIVEK) * (A5Ve )l (p) S I10d =A0) T VK [ pre (p1) |ASVef | 1o )

The kernel V;, := (Id —A.)"'VZ K is given by

-1 e~ 2micx
e (1 - ‘) _
- @5 (z)dz
1+2 z _, & 2sin?(miex,)

ij(k) _ / e2m’k x
where @5 = >, ¢;. Now using (1 — 22N )Y Merike — (1 4+ 227|27k|2)M e2™k% and integrating
by parts (1 — Az)™ we have

871 (1 _ 6727ri€mg)

1—1—22 _, & 2sin?(miex,)

dx

1+ 2[2ek) 50 < [0 208,

@5 (x)]

€

and it is possible to check that (using that 27 < 1)

-1 —2miex
1-— ¢ )
g d( e ) @;(QT) < 27.]}1 o
14237, &2 sin?(miex,)

uniformly in j where A is an annulus centered at the origin. Therefore
Vietk)l S 272U (1 + 2% |2mk ?) =Y

and from this is easy to deduce that [[Vjllp1e(,-1) S 277 uniformly in j and e.
A similar computation applies to the first term in (A.1) to obtain

10 = A0) (R % A5 ) e < 100 =B B 1 oo 1A ey S 2285 ey

and the proof is complete. O

Lemma A.6 Letc € A and let + > 0. Let p be a weight such that p* € L*°. Then

1o flize S Nofllae,

where the proportionality constant does not depend on €.

Proof By Hélder’s inequality

o™+ fllzze <l lacllofllzae,
z)

and since for |x —y| < 1 the quotient E ) is uniformly bounded above and below, it follows from
Lemma A.3 [MP17| that

Il =& 3 @) S [t e)de <

€A,

where the proportional constant only depends on p. O
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Lemma A.7 Let o > 0. Let py, p2 be weights. Then for every 8 > 0 it holds true
1£21B2¢ (prpa) S W lz2e o 1F lizasas.e (o),

12 (o2 pm) S UFIZae o) 1 | ra2sie (.

where the proportionality constants do not depend on ¢.

Proof Due to the paraproduct estimates and the embeddings of Besov spaces, we have for every
8>0
2
17 oy S 11 My S 17y I g

S I llz2e (o) L F 1 rat2s.2 (pg) -

For the cubic term, we write

Hf ||Ba6 (p2p2) ~ < ||f = f2HBa6 (p3p2) + Hf - f2||Bi’f(p%p2) + Hf f HB (p2p2)

and estimate each term separately. The second and the third term can be estimated directly by

2
”f>' f HBO‘E (p2p2) +Hf f ”Bal(plpg S ”f HB;ff(p%)HfHBg‘jfevE(m)

2

For the remaining term, we have

2 < 2
1F = P laz20m S I o 1 e

o) S N ae (o 11l 28,2 (-

p1p2)

where by the paraproduct estimates and Lemma A .4

HfZIIBZ/g%s( S g0 oI | pgr2me ) S M lpac oI Fllrzavase o)

p1p2) (p2)
which completes the proof. O
Lemma A.8 Let p be a polynomial weight. Let p,q,r € [1,00] be such that % +1= 1—1)—}— %. Then

1S *e gllzre o) S IflLre o1y 9l L= o)

r—p p
R o LA P ey 7 P
y€E

where *. denotes the convolution on A. and the proportionality constants are independent of e.

Proof We observe that for a polynomial weight of the form p(x) = (z)™" for some v > 0, it
holds that p(y) < p(z)p~!(x — y). Accordingly,

f = g)p)| = e > Fly—2)g Se oty — )l @ - y)lg(@)lp(z)

z€A: €A
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hence the claim follows by (unweighted) Young’s inequality. For the second bound, we write

1fxgp@) S > (0™ Hly — 2)P|(pg) (@) )7 1(0 )y — )] 7 [(pg) ()] 7
€A
and apply Holder’s inequality with exponents r, r%pp, TT‘qu
1 * 9w)o(w)| < <ed > r<p-1f><y—m>rprpg<m>rq) 1™ ) = el e
TEA

< (ed ST —x>|p|pg<x>|q> sup 10~ £)( = )l e gl e -

d
€A, yeR

Finally, taking the rth power and integrating completes the proof. O

A.2 Localizers

As the next step, we introduce another equivalent formulation of the weighted Besov spaces
B0 (p) in terms of suitable point evaluation of the Littlewood-Paley decomposition. First, for
J € Ny such that N —J < J., @ € R and ¢ € A we define the Besov space bog oo (p) of sequences
A= (Aj7m)_1<j<N_J’meZd by the norm

Mz = sup 2% sup p(277 7 m) |\ ml.
—1<GsSN—J meZd

Note that we do not stress the dependence of b5 oo (p) on the parameter J as in the sequel we
only consider one fixed J for all ¢ € A given by Lemma A.9 below. The next result shows the
desired equivalence.

Lemma A.9 Leta € R, e € A and let p be a weight. There exists J € Ny (independent of € ) with
the following property: f € B oo(p) if and only if it is represented by X = (Aj7m)_1<j<N_J7meZd €
b oo(p) such that

£ lBee (o) ~ MM lbee (o) (A.2)

where the proportionality constants do not depend on €. In particular, given f € B3so(p) the
coefficients X are defined by

ANm(f) = A5f(27777m),  —-1<j<N-J, meZ, (A.3)

and given \ € b5 s the distribution f is recovered via the formula
g ) p

f= Y F N FpismN)), (A4)

—1<j<N—J

where Fo—j—s74 denotes the Fourier transform on the lattice 277774,
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Proof Let us first discuss the decomposition (A.4). We recall that if f € S'(A;) then Ff =
Z_KKN_Jgoj]:f where for j < N — J the function @5Ff is supported in a ball of radius
proportional to 27. Let j < N — J and let B; C R? be a cube centered at the origin with length
2917 We choose J € Ny such that supp ¢ C Bj. Next, we identify B; with (29H7T)e c (2N T)?

3

5F [ as a periodic function on (27+7T)?. Then using a Fourier series expansion we

and regard ¢
may write

—Jj— —271i2= "I m-z
(S5 FF)(2) = 205737 N (£)e> 27 = Fygaga (3 (D) (2)

meZd
where

ey — _J . _ i i

Nl )= [ (F D@y = FGFD) @ m) = 52 m).
j

If j = N — J then by definition of ¢ we see that ¢ F f is a periodic function on (2NT)?. Hence
we obtain the same formula (since —j — J = —N)

N (f) = /(QNT)d(<P§J:f)(y)€2mjJ’”'ydy = AF(2m).

Therefore, we have derived the decomposition (A.4) with coefficients given by (A.3).
It remains to establish the equivalence of norms (A.2). One direction is immediate, namely,
for every N — J < J. we have

sup 299 sup p(20 T m) () = sup 27 sup p(2 7 m)| A F(27 )|
—1<j<N—-J meZd —1<Gj<N—-J mezd

< sup 2% sup p()|ASf(2)].
—1<j<N—-J rEA

Conversely, if € A, belongs to the cube of size 2777/ centered at 277~/ m, we write
A5 f(2)] < |ASf () = A5 FR7m)[ + A5 F(277 7 m)], (A.5)

Now we shall multiply the above inequality by p(z) and estimate. To this end, we recall that due
to the admissibility condition for polynomial weights there exists v > 0 and ¢; > 0 (depending
only on p) such that

% S(1+ {\/EQ_j_J_l{2)V/2 <e¢ whenever |z —z| < Vd2I77L

In addition, to estimate the first term in (A.5), we recall that for —1 < j < N — J the Fourier
transform of A% f is supported in a ball of radius proportional to 2J hence by a computation

similar to Bernstein’s lemma (since by our construction |z — 277~/m| < vd2=7-7/-1)
p(@)| A5 (@) = A5F27 7 m)| < 227 T A e ),

for some universal constant co > 0 independent of f and €. If j = N — J then A, coincides with
the lattice 277777 and therefore we do not need to do anything. Consequently it follows from
(A.5) that

145 fllLooe () < €227 7 IAS fll oo () + 1 sugdp(2’j’Jm)|A§f(2’j’Jm)l-
me

95



Hence, making J € Ny possibly larger such that ¢277/~! < 1, we may absorb the first term on
the right hand side into the left hand side and the claim follows. O

Remark A.10 Throughout the paper, the parameter J € Ny is fixed as in Lemma A.9. Con-
sequently, from the condition 0 < N — J we obtain the necessary lower bound Ny for N, or
alternatively the upper bound for ¢ = 27~ < 27 and defines the set A. These parameters
remain fixed for the rest of the paper.

Remark A.11 Note that the formulas (A.3), (A.4) depend on the chosen partition of unity
(¢5)j=—1 and our construction of the associated periodic partitions of unity on A, via (2.1).

It follows from the previous lemma that we may identify f € Bas’oo(p) with its coefficients
(Njm(f)) —1<j<N—Jsmezd € b oo(p). This consideration leads us to the definition of localization
operators needed for the analysis of the <I>§1 model. Although the principle idea is similar to
Section 2.3 in [GH18|, we present a different definition of the localizers here. It is based on the
equivalent description of the Besov spaces from Lemma A.9 and is better suited for the discrete
setting.

Given (Lg)k>—1 C (0,00) and f € S'(A;) we define

%>€f = (Aj,m (%ff))qgjngJ,mezd’ %éef = (Aj,m (%sef))qgjgzvd,mezd
where

Nim(f),  if|m| ~2¥and j > Ly for some k € {-1,0,1,...},
0 otherwise,

N (20 = {

Xim(f) if [m| ~ 2¥and j < L, for some k € {~1,0,1,...}
‘ e . .]7 s ) b ) Y
Ajm (%gf) T { 0, otherwise .

We observe that by definition f = %< f + %£ f and the localizers %<, %S will only depend on €
through the cut-off of the coefficients A (and consequently on the construction of the partition

of unity on A., cf. Remark A.11), whereas the sequence (Lg)g>—1 will be chosen uniformly for
all e € A.

Lemma A.12 Let p be a weight. Let a, 8,7 € R and a,b,c € R such that a < B < v, a<b<c
andr = (b—a)/(f—a) = (c—b)/(y—F) > 0. Let L > 0 be given. There exists a sequence
(Lg)k>—1 defining the above localizers such that

1% Fllpgge oy S 277 1 e, oy

H%éfHBgf ) g 2(77ﬁ)LHfHBgC;’EOO(pb)7

where the proportionality constants do not depend on € € A. Moreover, the sequence (Lg)g>—1
depends only on L, p and the ratio .

oo (p°

Proof Since a < § and a < b, it holds by Lemma A.9

%5\ pee oy S sup 2% sup p?(277 7 m) [Ny (25 1))
’ —1<j<N—J mezZa
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= sup sup 2003 b (2797 m) 259 pP (277 m) | X ()]
k2—1m~2k Ly <j<N—J

SJ HfHBB,E py Sup sup 2(afﬁ)jpa7b(2,j,§]m)
oo,oo(/’ ) k>*1m~2k,Lk<j<N_J

< HfHB&’Eoo(pb) ks;g 2(04—6)Lkpa—b(2k)7
where we used the fact that a < b, 277 < 27 and that the weight is decreasing to get
P2 m) £ (2T S )
Now we set ¢, = — logy p(2*) to obtain
19 Py 5 16 g g sup 2700, (A.6)
On the other hand, since v > 8 and ¢ > b we have by the same arguments

. g
H%éfHB;’éfoo(pC) S 71<Sj12})v7]27] :Llelgd p(2777 m) ‘)\Lm (%éf)‘

= sup sup Q(V_B)jpc_b@_j_‘]m)Zﬁjpb(2_j_‘]m)\)\j,m(f)]
k>—1ma2k 1< <LyA(N—J)

< (v=B)Li—(c=b)cy

~ HfHchfoo(pb) kS;Pl 2 . (A7)
We see that if the weight is decreasing at infinity, it holds ¢ — co. From (A.6) we obtain the
condition — (8 — )Lk + (b—a)cy = — (8 — «)L hence we shall choose L = L+ (b—a)cx /(5 — ).
Similarly, (A.7) yields (y — )Ly — (¢ — b)ex, = (v — B)L hence Ly = L + (¢ — b)ei /(v — B).

Balancing these two conditions gives (b—a)/(8 — a) = (¢ —b)/(y — B) and completes the proof.
a

A.3 Duality and commutators

In this section we define various commutators and establish suitable bounds. We denote by C.
the operator introduced in Lemma 4.3 [MP17], which for smooth functions satisfies

Ce(fr9:h) = ho(f <g)—f(hoy). (A.8)

We recall that if p,p1,p2 € [1,00] and «, 3,7 € R are such that % = p% + p%, a+ B+~ >0and
B+~ # 0, then the following bound holds

17,9 D) g (o papey S I35 o190 2 o 1 e (A.9)

As the next step, we show that ¢ > is an approximate adjoint of go in a suitable sense, as first
noted in [GUZ18].
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Lemma A.13 Let e € A. Let a, 3,7 € R be such that a,v >0, f+~v<0anda+5+v7>0
and let p1, p2, p3 be weights and let p = p1paps. There exists a bounded trilinear operator

Dy (f,g,h) - H*(p1) x €7 (ps) x H*(p3) = R

such that
1Dpe(f,9: W) S N iz (o) 191l 5. o) 1]l 1122 ()
where the proportionality constant is independent of €, and for smooth functions we have

Dye(fig:h) = (pfigoh)e — (p(f =< g);h)e.
Proof We define

Dy e(fr9:0) = (p, C(f, 9, 1)) = o, (f < 9) = h)e = (p, (f < 9) < h)e,

where C. was defined above. Hence the desired formula holds for smooth functions. By (A.9)
and the paraproduct estimates we have

1C:(f, 9, h)HBf’J{’Y—&f(p) S C:(f, 9, h)”gf’g’f(p) S ||f||B§7’§O(p1)||9HB&foo(p2)||hHB;”;(p3),
107 = 9) = Allgp-egy S <) = lgae (S 1732 oy 19l o152
107 = 9) = Bll gy S 10 = 9) = Bl oy S 1 g oy 190 e o WPl
and the right hand side is estimated by

1022 oo llall ey 12l 32 ) S 171125 o) 191 e o 11535 o

, OO

Consequently,

1Dpe(fs9: M) S 1l poprac 1By (o0 191 e ooy 1l B35 (0s)
which completes the proof. O

Next, we show several commutator estimates. To this end, A, denotes the discrete Laplacian
on A, and we define the corresponding elliptic and parabolic operators by 2. := m? — A, and
L= 0+ 2., where m? > 0.

Lemma A.14 Lete € A. Let o, 3,7 € R such that a € (0,1), 8+v+2 < 0 and a+S+v+2 > 0.
Let p1, p2, p3 be space weights and let py, ps, pg be space-time weights. Then there exist bounded
trilinear operators

Ce: H*(p1) x €7(p2) x €74 (p3) — HPT7H22(p1 paps),
Ce : Cr% ™ (pa) x O1€ "% (p5) x Cr€ 70 (ps) — CrC 72 (pyps ps)
such that for every 6 > 0 it holds
ICe(f, 9, D)l irv+2 (1 paps) S 1 02 (o) |91l 8.0 () 1Pl 46 ()
Hée(fa 9, h)‘|CT‘€/3+”/+2’5(p4p5p5)

S (I lerwecon) + 1l gorz pooe o)) 19l er .2 os) 1Pll g 02 )

where the proportionality constants are independent of €, and for smooth functions we have
Ce(frgh) =ho 271 (f <g)— f(ho2 'g), (A.10)
Ce(fr9,h) =ho L (f <g)— f(ho Z1g).
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Proof First, we define
Co(frg,h) i=ho [2;'(f <g)—f <2 '] +C.(f,2'g,h),

where C. was introduced above. Hence for smooth functions we obtain the desired formula
(A.10). Moreover, by (A.9) the operator C, can be estimated (uniformly in €) for § > 0 as

HCE (f’gglg’ h) “HB+’Y+2,E( ) 5 HCE (f7gglga h) HBg’Q+2+6’E(p1P2p3)

p1p2p3
S A Bg 2 (o 19l 5.2 o) [1Pllg 0.2 o) S LF iz (o1) |9l 5.2 (o) 1P ll g 282 ) -
For the first term in C’a we write
2Mf=9)-f=2 g=2"[f<2.2'9-2.(f<2 "9)]
and as a consequence

Hh ° [ga_l(f <g)—[f= Qe_lg] HH"‘+B+“’+2’E(PIP2PS)

S HhH‘b”’YH’E(pg) Hf <2.2 ;19 - 2. (f = leg)|’Ha+B—6,s(

Finally, we observe that due to an argument similar to Lemma A.8 [MP17| we may control

p1p2) "

1
Vef < Veg:= §(A€(f <g)—Acf <g—f=<Acyg),
hence it holds that
1f<2.279- 2. (f < 2.9) || jrosose(py oy

S|f<2.2'9-2.(f<2 ') HB;;ﬂ,s(ppo) S I lsg (o lglle 5.2ps)

S I lmee oo 19lle 5.2 (o) -

We proceed similarly for the parabolic commutator C., but include additionally a modified
paraproduct given by

f=<g:= T AQifAS,

1<6,j<N—J,i<j—1
where

Qif(t) = /R22iQ(22i(t —5))f((s V0)AT)ds

for some smooth, nonnegative, compactly supported function @ : R — R that integrates to 1.
Namely, we define

Colfrgih) =ho [ZTN(f <g) = f < L9l +ho [£Nf<g—f=g)]
tho[f L tg—f<ZL g +C(f,.L " g,h),
and observe that for smooth functions it holds
Ce(figh) =ho [N f <g)—f =L g+ [ho(f<ZLTg) — f(hoZ Tlg)]
=ho 2 (f<g)—f(hoZy),
and the desired bound follows from Lemma 4.7 in [MP17] and (A.9). 0
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A.4 Extension operators

In order to construct the Euclidean quantum field theory as a limit of lattice approximations, we
need a suitable extension operator that allows to extend distributions defined on the lattice A,
to the full space R%. To this end, we fix a smooth, compactly supported and radially symmetric
nonnegative function w € C°(R?) such that suppw C B; /2 where By 5 C R? is the ball centered
at 0 with radius 1/2 and [pqw(z)dz = 1. Let w®(-) := e %w(e™'-) and define the extension

operator £ by
Ef = . f, I e SI(AE),

where by *. we denote the convolution on the lattice A..

Lemma A.15 Let « € R, p,q € [1,00] and let p be a weight. Then the operators
£ : By (p) = Byy(p)
are bounded uniformly in e.

Proof Within the proof we denote * the convolution on R? whereas *. stands for the convolution
on A.. Let K; = fﬂgdle and K% = .7-"*14,03. First, we observe that for j < N — J we have

AG(E°f) = Kjx (W *c f) = w® * (K *c f) = ESAS .
Consequently,

e venem T acen g E(ASE) i i< N —J
A(E°F) > AERAs) {Ai(EEA%_Jf) if i>N-J "

For i < N —J we obtain by Young’s inequality for convolutions, Lemma A.8 and the construction
of w®, uniformly in ¢, that

IAiE Dllroy < D, 0 % A5fllLeog)

—1<G<N—J:j~i

B 1—1 1
S sup (07 )@= )lped les o,y Do I8 ey S D0 A5 llzreqo)-
yeR? —1<G<N—J:j~vi —1<G<N=Jej~i

If i > N — J then we write let K; = > j~i K and
N(EEAN_ f) = K x (0 xc AN _ f) = Ki * K; xw® e AN _ f = (K *w®) * K; . AN_ f.
Hence by Lemma A.8

[A(ETAN_ 1) zrogpy S I * w® || prog-1) 1K e AN fll o0y

_ B 1-1 1
S K * w¥l|progp-1y sup 1™ Ki)(y = M1 & 1Kl 10, 1) 1A 5 fll ()
ye

1

Now we estimate the first term on the right hand side (using the fact that the weight p~" increases

with |z|) as follows

sz * U)EHLLO(p—l) = /

9 /Rd 24K (21 (x — y))e dw (%) dy‘ p~H(x)dx
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“ Ll
<Ll
<z L

KQZ

1914 (2 (z — y))w ()dy' Yex)dz

9 (e — ) <y>dy\ o @)

/ 124K (£2)(z — y)) Apw(y )dy' Yx)da.
R4
Using p~(z) < p~1(y)p~%(z — y) for some a > 0 and Young’s inequality we obtain

1K % w oy S D IAwwllgee o) lle?2 K (e2°%) | pro oy
0:2¢~e2t

i\ —b
S Y A ey S (62) lwllBy, (o1
£:26~e2t

where b > 0 will be chosen below. To summarize, we have shown that

1A (€A _ s Nllpog) S (€2)IAT_ s fllveo)

Therefore,

1€ b (= Do 2NAE NN,y + D 2 UNAENT,

—1<i<N—-J N—-J<i<oo

S D 29U ey FIAN S liree™ DS 200,

—1<j<N—J N—J<i<oo

If @ < 0 then we may choose b = 0 to obtain

I S S 2INAT ey = 1 e,

—1<ySN—-J

If @ > 0 then we choose b > aqg to get

1€ F IS S Do 2UIAG ey + IAK s Flpepe 2N 7700,
’ —1<j<N—J

where due to € = 27N it holds e 2N =)(ag=b) — 9o(N=T)aq9Jb ynd consequently

1€ 1 oy S Do 2Y9UAS ey = 1F e

—1<j<N—J

holds true uniformly in €.
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A.5 A Schauder estimate

In this section we establish a suitable Schauder-type estimate needed in Section A.6.

Lemma A.16 Let p be a weight and let P; = etBe=m®) denote the semigroup generated by
A. —m?2. Then there exists ¢ > 0 uniform in € such that for all =1 < j < N — J it holds true

_ m2 ¢ 27
1P A5 fll ey S €D A5 fll e )

where the proportionality constant does not depend on € and t > 0.
Proof Recall that the discrete Laplacian A, acts in the Fourier space as
F(e By (k) = O f (),
where
I.(k) = (m? + 4sin®(enk)/e?).

Consequently, for —1 < j < N — J we have using the fact that F~!(gh) = fﬂgl(g) x. F1(h)

(where F~! denotes the inverse Fourier transform on the lattice A.) we obtain

m27 - . . .
As[e! = 8e) ] = [279V;(271)] % A5,
where

V(x) == /R 2 o6 e,

where ¢ is obtained by a rescaling of ¢; = Zflgi<oo;i~j ;. Next, for M € N we want to show
that
(14 [272)MVj(z)| < e W) g e RY (A.11)

Indeed, with this in hand we may apply Lemma A.8 to deduce the claim.
In order to show (A.11) we compute

1+ l2maP V(o) = [ (1= A0 eGP dg

R4

= [ e - A PO ae
where for a multiindex o € N¢

gpe e @8 = MO N 0 5001 (27¢)

ENVENE]
therefore using the bounds from Lemma 3.5 in [MP17] we obtain

|3§v67tls(2j£)| < otm? —2tc(27€)? Z 6(Iﬁ\f2)v0(1 +[27¢?) < o tm? —te(276)%

0<|BI<]af

Therefore
(1 + [2mzH)MVj(2)| S / e—t0(2’§)2¢(5)d£ < o—tm? ,—tc2%
Rd

and (A.11) is proven. O
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Lemma A.17 Let o € R and let p be a weight. Let v solve
gE’U:f7 U(O):UO'

Then it holds
HUHL1 1By (p < HUOHBO‘ 2e( + HfHLlTBla;Q’E(p)’

where the proportionality constant does not depend on T and €.

Proof Applying the Littlewood—Paley projectors we obtain
t
ASu(t) = P ASvo +/0 PE (A5 f(s)ds.

Hence according to Lemma A.16 there exists ¢ > 0 such that for —1 < j < N — J and uniformly
in7T >0ande¢

ollzs 5 = / ST 209 A%u(t) e, / ST 209 PEASug el

1SN T —1<G<N—J

/ Z 2a]/ HPte SAE Hng(p)dsdt
—1<j<N—-J

< Z 2a]/ e t(m?+c2%) dtHA ol .

—1<j<N—-J
+ ) 2w / [ / <t3><m2+c22j>dt} IAS £ (8)]| 1. (p)ds
—1<j<N—-J
SO 2 Aol + Y, 2 / [A5f ()l L1e(pyds
—1<G<N—J —1<G<N—J

= ||v0||B?52’5(p) + ||f||L1TB?;2’E(p)'

A.6 Regularity of .
Finally, we proceed with the proof of the proof of Proposition 6.1.

Proof of Proposition 6.1 For notational simplicity we fix the parameter M and omit the
dependence of the various distributions on M throughout the proof. In addition, the A-dependent
constants are always bounded uniformly over A € [0, \g] for every A\g > 0.

In view of (6.2) we obtain

240

.
7% Xell g 12 < NP?@ellnge e + 10777 (BAXE = e )ll e r2e < CAllp el Lge 122 Qp(Xe),

where, by Theorem 4.5,
1P*¢= (D172 < CoaQp(Xe) + [1p*¢= ()17
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Thus
1747 Xell e r2e < CTAQu(X) (1 + [[2¢=(0) ] 2. (A.12)

Next, we intend to apply Lemma A.17 to (6.3) in the form
HP4X6HL1TB}§3“’E S ”P4X6(O)HB;%+3”75 + HP4$ 5X6HL1TBH+3K,5 .

In view of the second term on the right hand side of (6.3) we shall therefore estimate U, in
By 11 +3/§75(p4,0-) as the weight p? will be lost to control X", Let us first show how to bound the
terms that contain higher powers of ¢, all the other terms being straightforward. By paraproduct
estimates Lemma A.7 and Lemma A.6, we obtain

6" AX 02l gesme S A" Xellg /2l |27 620 o2

S M Xellgg-1/2-rcllp™ Gell 2 192 Gell gaovone < AQp(Xe)llpdellacllp? el pri-ome

while
P* 7 3AYe2l g rvme S Al Yellyr/anc 02762

S Mo Yellgrrzrellp™ bell e 10 0e | mone < N Qp(Xe)llpdell e |10 Pell -2

14k
1-2k

and by interpolation for 6 =

94N povee S Aot @l S MloelZacllo? 6l o

N )\Hp¢5||%4,e‘|p1+L¢5Hi2,5 ||p2¢€‘|}{_10—2n,6 S )‘Hp¢€||i:’1—,2||102¢6H}{_10—2n,5-

Consequently, we use the embeddings B;‘;"’s(/ﬂ—kﬁ) C Bi’f(p4_(’) and BS55(pP) < Bi’f(p‘l_")
for & € R (provided the weight possesses enough integrability and 3,0 > 0 are sufficiently small).
We deduce

—0o o ~\<Y
14Ul rsme S N0” X g mell0®belln-2ec + A logt][[0%6c 1o

+ A2 07 [X2] g -1 107 XY Nl 1nc | PP e | 1-2mee

+ AP [X 2D -1-ne Hp‘*’%xallggm + X107 Zellog -1/2-n.e

+ M7 X2 g —1-ne (107 Yellgprr2—ne + (|07 Pl r1-2nc)

+ AL+ M7 [X 2 1w [X 2Dl -1 1067 Yellig 12 e

+ M7 XY Nl -1/2-ne + M7 XeYellg-1/2-n.e |07 Pe || pr1-2m.e

+ 07 Xl —1/2-ne | p@ell L. |07 el pri-2me + Al p7 Yel|Z 1 jome

F MPTYel|2 1 omne 190l pae + M7 Yellg1/2-mc | 0@e | e |07 be || pr1—2e.c
+ Mlpoel 25 10° e 172 an.e

< [Tog t{(A*Q, (Xe) + N2[[p2 e | m-2n.e) + Q(X) (A + AY)
+ A+ A)Qp(Xe) (0% 0l r-2ee + 19" 2 Xell priome + llpge | pac 16° Pell ra-2n.c)
+ Qu(Xe) NI poe | e + Allpde 25 1p% bl 3l on.c )-
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Thus
HP436X6HB;%+3H75 N Hp“UaHB;yam
+ Mo XY g 1ome Mo [X2D g -1 [19* 72 el 2 + \|p4*”Ue\|B;;+3n,e)
+ M7 XY eg1-me | 67 G -2
<O log t|(Qp(Xe) + 197 bell gr1-2me ) + CrQu(Xe)
+ CrQp(Xo) ([0 e | rr—2m.e + HP472UX5H31+2W + ||p@e | pa.c || 0> Ge || gri-2n.e )
+ CaQu(Xe) (el pas + lodellZE2 1P Pell i o)

Using repeatedly the Young inequality and also (4.22) we obtain

HP4$ 8X€HB;%+3N,E < Cx\(1+ |logt| + |log t‘z)Qp(Xa) + )\Hp(ﬁaui“ + ”PQ(?SH%{P%,E
+ C)\Qp(Xa) HP4_20X5 ”311452“,5.

This bound, together with the energy estimate from Theorem 4.5 imply
H,O4$ 5X5HL1TBI_}+3”’E < CT7m27>\Qp(X€)(1 + ||,04720X5HL%FB}4§2R,5).

By interpolation, embedding and the bound (A.12) we obtain for § = 3% (and under the

1+4k
condition that «,0,¢ € (0,1) were chosen such that § < 3=27=2t) that

T
4-2 2+0+2 0
HP OXa”LlTB}j?m S/O HP 7 LXE(t)| B; mHP XE( )HBﬁi’m,sdt

T T
S [ IO e Ol et S T e e [ o e Ol et

T
< CT,AQp(XE)(l + ”P2¢6( )”L2s)/0 HP4X6(t)H?3i+13wdt-

Consequently,
lo*2 f€><*fHL1TJE;1‘}+3m < Cram2\Qp(Xe)

T
+raQuR)(1 + 0O [ ot (B 0c-at

< O s @)L+ 9260 12.) + 0" Xl 3 o

which finally leads to

14 %ell g prtime < 0 Xe (Ol g0 + Oz aQp(K) (1 + [[7262(0) | 2)

by Lemma A.17 and since x.(0) = ¢.(0) and L>(p?) C By 1352 (p1), the claim follows. O
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