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Abstract

We prove an explicit formula for the law in zero of the solution of a class of elliptic
SPDE in R

2. This formula is the simplest instance of dimensional reduction, discovered in
the physics literature by Parisi and Sourlas (1979), which links the law of an elliptic SPDE
in d + 2 dimension with a Gibbs measure in d dimensions. This phenomenon is similar to
the relation between an R

d+1 dimensional parabolic SPDE and its Rd dimensional invariant
measure. As such, dimensional reduction of elliptic SPDEs can be considered a sort of ellip-
tic stochastic quantisation procedure in the sense of Nelson (1966) and Parisi and Wu (1981).
Our proof uses in a fundamental way the representation of the law of the SPDE as a su-
persymmetric quantum field theory. Dimensional reduction for the supersymmetric theory
was already established by Klein et al. (1984). We fix a subtle gap in their proof and also
complete the dimensional reduction picture by providing the link between the elliptic SPDE
and the supersymmetric model. Even in our d = 0 context the arguments are non-trivial
and a non-supersymmetric, elementary proof seems only to be available in the Gaussian case.

A.M.S. subject classification: 60H15, 81Q60, 82B44
Keywords: stochastic quantisation, elliptic stochastic partial differential equations, dimen-
sional reduction, Wiener space, supersymmetry, Euclidean quantum field theory

1 Introduction

Stochastic quantisation [16, 17] broadly refers to the idea of sampling a given probability distribu-
tion by solving a stochastic differential equation (SDE). This idea is both appealing practically
and theoretically since simulating or solving an SDE is sometimes simpler than sampling or
studying a given distribution. If, in finite dimensions, this boils down mostly to the idea of the
Monte Carlo Markov chain method (which was actually invented before stochastic quantisation),
it is in infinite dimensions that the method starts to have a real theoretical appeal.

It was Nelson [37, 38, 39] and subsequently Parisi and Wu [43] who advocated the constructive
use of stochastic partial differential equations (SPDEs) to realize a given Gibbs measure for
the use of Euclidean quantum field theory (QFT). Indeed the original (parabolic) stochastic
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quantisation procedure of [43] can be understood as the equivalence

E[F (ϕ(t))] ∝
∫
F (φ)e−S(φ)Dφ. (1)

Here F belongs to a suitable space of real-valued test functions, Dφ is an heuristic “Lebsegue
measure” on S ′(Rd), while on the left hand side the random field ϕ depends on (t, x) ∈ R× Rd

and is a stationary solution to the parabolic SPDE

∂tϕ(t, x) + (m2 −∆)ϕ(t, x) + V ′(ϕ) = ξ, (2)

where ξ is a Gaussian white noise in Rd+1, V : R → R a generic local potential bounded
from below, m2 a positive parameter, and ϕ(t) is the fixed time marginal of ϕ which has a law
independent of t by stationarity and on the right hand side we have the formal expression for a
measure on functions on R

d with weight factor given by

S(φ) :=

∫

Rd

|∇φ(x)|2 +m2|φ(x)|2 + V (φ(x))dx. (3)

Eq. (1) can be made mathematically precise and rigorous with standard tools from the theory
of Markov processes [15, 36, 18], SDE/SPDEs [30, 1, 48] and Dirichlet forms [4], for example
when d = 0, or when the equation is regularized appropriately and, in certain cases, for suitable
renormalized versions of the SPDE [5, 3, 9, 11, 14, 23, 24, 25, 29, 35, 2, 28] when d = 1, 2, 3. Let
us note for example that in the full space it is easier to make sense of eq. (2) than of the formal
Gibbs measure on the right hand side of (1), see [23].

In a slightly different context, and inspired by previous perturbative computations of Imry,
Ma [27] and Young [51], Parisi and Sourlas [41, 42] considered the solutions of the elliptic SPDEs

(m2 −∆)φ+ V ′(φ) = ξ (4)

in Rd+2 where ξ is a Gaussian white noise on Rd+2 and they discovered that its stationary
solutions are similarly related to the same d dimensional Gibbs measure. If we take x ∈ Rd then,
they claimed that, for “nice” test functions F (e.g. correlation functions) we have

E[F (φ(0R2 , ·))] ∝
∫
F (φ)e−4πS(φ)Dφ. (5)

More precisely the law of the random field (φ(0R2 , y))y∈Rd , obtained by looking at the trace of
φ on the hyperplane {x = (x1, . . . , xd+2) ∈ Rd+2 : x1 = x2 = 0} ⊂ Rd+2, should be equivalent to
that of the Gibbs measure formally appearing on the right hand side of (5) and corresponding to
the action functional (3). Therefore one can interpret eq. (5) as an elliptic stochastic quantisation
prescription in the same spirit of eq. (1).

When V = 0 one can directly check that the formula (5) is correct. Indeed in this case
the unique stationary solution φ to the elliptic SPDE (4) is given by a Gaussian process with
covariance

E[φ(x)φ(x′)] =

∫

Rd+2

eik·(x−x
′)

(m2 + |k|2)2
dk

(2π)d+2
, x, x′ ∈ R

d+2.

Therefore for all y, y′ ∈ Rd we have

E[φ(0, y)φ(0, y′)] =

∫

Rd

eik·(y−y
′)

∫

R2

dq

(|q|2 +m2 + |k|2)2
dk

(2π)d+2
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=

∫

R2

dq

(|q|2 + 1)2

∫

Rd

eik·(y−y
′)

m2 + |k|2
dk

(2π)d+2
=

1

4π

∫

Rd

eik·(y−y
′)

m2 + |k|2
dk

(2π)d

where we performed a rescaling of the q integral in order to decouple the two integrations. The
reader can easily check that the expression we obtained describes the covariance of the Gaussian
random field formally corresponding to the right hand side of (5) for V = 0.

While this last argument is almost trivial, a more general justification outside the Gaussian
setting is not so obvious. The equivalence (5) was derived in [41, 42] at the theoretical physics
level of rigor going through a representation of the left hand side via a supersymmetric quantum
field theory (QFT) involving a pair of scalar fermion fields. This is one of the instances of the
dimensional reduction phenomenon which is conjectured in certain random systems where the
randomness effectively decreases the dimensionality of the space where fluctuations take place.
A crucial assumption is that the equation (4) has a unique solution, which is already a non-
trivial problem for general V . Parisi and Sourlas [42] observed that non-uniqueness can lead to
a breaking of the supersymmetry, in which case the relation (5) could fail. So, part of the task of
clarifying the situation is to determine under which conditions some relations in the spirit of (5)
could anyway be true.

The dimensional reduction (5) of the elliptic SPDEs (4) seems less amenable to standard
probabilistic arguments than its parabolic counterpart (1). Let us remark that from the point
of view of theoretical physics it is possible [17, 42] to justify also dimensional reduction in the
parabolic case (2) using a supersymmetric argument much like in the elliptic setting, the difference
in dimensions is only due to the different number of fermions fields needed to represent the law
of the SPDE as a quantum field theory.

The only attempt we are aware of to a mathematically rigorous understanding of the rela-
tion (5) is the work of Klein, Landau and Perez [31, 32, 33] (see also the related work on the
density of states of electronic systems with random potentials [34]) which however do not fully
prove eq. (5) but only the equivalence between the intermediate supersymmetric theory in d+2
dimensions and the Gibbs measure in d dimensions. The reason for this limitation is that the
problem of uniqueness of the elliptic SPDE seems to restrict unnecessarily the class of potentials
for which (5) can be established and Klein et al. decided to bypass a detailed analysis of the
situation by starting directly with the supersymmetric formulation. Their rigorous argument re-
quires a cut-off, both on large momenta in d “orthogonal” dimensions and on the space variable
in d + 2 dimensions in order to obtain a well defined, finite volume problem. This regulariza-
tion breaks the supersymmetry which has to be recovered by adding a suitable correction term,
spoiling the final result (see below). A subtle gap in their published proof is pointed out, and
closed, in Section 4.

Let us remark that, in a different context, dimensional reduction has been proven and ex-
ploited in the remarkable work of Brydges and Imbrie on branched polymers [13, 12] and more
recently by Helmut [26].

In the present work we try to bridge the gap and provide a proof of elliptic stochastic quan-
tisation for the SPDE (4) in the d = 0 case.

Fix d = 0 and consider the two dimensional elliptic multidimensional SPDE

(m2 −∆)φ(x) + f(x)∂V (φ(x)) = ξ(x) x ∈ R
2 (6)
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where φ = (φ1, . . . , φn) takes values in Rn, (ξ1, . . . , ξn) are n independent Gaussian white noises,
V : Rn → R a smooth potential function, f(x) := f̃(|x|2) with f̃ : R+ → R+ a decreasing cut-off
function, such that the derivative f̃ ′ of the function r 7−→ f̃(r) is defined, tending to 0 at infinity,
and ∂V = (∂iV )i=1,...,n denotes the gradient of V . We will denote f ′(x) := f̃ ′(|x|2).

Eq. (6) is the elliptic counterpart of the equilibrium Langevin reversible dynamics for finite
dimensional Gibbs measures. Let us note that the elliptic dynamics is already described by
an SPDE in two dimensions while in the parabolic setting one would consider a much simpler
Markovian SDE [28, 2]. The question of uniqueness of solutions is however quite similar in
difficulty, indeed it is non-trivial to establish uniqueness of stationary solutions to the SDE and
much work in the theory of long time behavior of Markov processes is devoted precisely to
this. In the elliptic context of (6) there is no (easy) Markov property helping and the question of
uniqueness of weak stationary solutions seems is more open, even in the presence of the cut-off f .

What makes this d = 0 problem very interesting, is above all, the fact that while the state-
ments we would like to prove are quite easy to describe (see below), to our surprise their rigorous
justification is already quite involved and not quite yet complete in full generality. However
we are now in a position to confirm that dimensional reduction is indeed at work for the two
dimensional SPDE (6) under a subset of the following assumptions on V and on the finite volume
cut-off f :

Hypothesis C. (convexity) The potential V : Rn → R is a positive smooth function such
that

y ∈ R
2 7→ V (y) +m2|y|2

is strictly convex and it and its first and second partial derivatives grow at most exponen-
tially at infinity.

Hypothesis QC. (quasi convexity) The potential V : Rn → R is a positive smooth function,
such that it and its first and second partial derivatives grow at most exponentially at
infinity and such that there exists a function H : Rn → R with exponential growth at
infinity such that we have

−〈n̂, ∂V (y + rn̂)〉 6 H(y), n̂ ∈ S
n, y ∈ R

n and r ∈ R+,

with S is the n− 1 dimensional sphere.

Hypothesis CO. (cut-off) The function f is a real valued, has at least C2 smoothness and
in addition satisfies f ′ 6 0, it decays exponentially at infinity and fulfils ∆(f) 6 b2f for
b2 ≪ m2 (some examples of such functions are given in [32]).

Remark 1 The following families of functions satisfy Hypothesis QC:

• Smooth convex functions (since they satisfy the stronger Hypothesis C),

• Smooth bounded functions,

• Smooth functions having the second derivative semidefinite positive outside a compact set,

• Any positive linear combinations of the previous functions.
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By weak solution to equation (6) we understand a a probability measure ν on fields φ under
which (m2 −∆)φ+ ∂V (φ) is distributed like Gaussian white noise on R

2. A strong solution φ to
equation (6) is a measurable map ξ 7→ φ = φ(ξ) satisfying the equation for almost all realizations
of ξ.

Define the probability measure κ on Rn by

dκ

dy
:= Z−1

κ exp

[
−4π

(
m2

2
|y|2 + V (y)

)]
, (7)

where Zκ :=
∫
Rn exp

[
−4π

(
m2

2 |y|2 + V (y)
)]

dy.

The main result of this paper is the following theorem which states that on very general
conditions on V there is always a weak solution which satisfies (an approximate) elliptic stochastic
quantisation relation.

Theorem 1 Under the Hypotheses QC and CO there exists (at least) one weak solution ν to
equation (6) such that for all measurable bounded functions h : Rn → R we have

∫

W

h(φ(0))Υf (φ)ν(dφ) = Zf

∫

Rn

h(y)dκ(y) (8)

where Υf (φ) := e4
∫
R2
f ′(x)V (φ(x))dx and Zf :=

∫
W

Υf (φ)ν(dφ). W is a suitable Banach space of
functions from R2 to Rn where ν is defined (see Section 2).

The drawback of this result is the lack of constructive determination of the weak solution
ν for which the dimensional reduction described by eq. (8) is realized. This is of course linked
with the possible non-uniqueness of the strong solution to (6). The fact that non-uniqueness is
related to a possible breaking of the supersymmetry associated with (6) was already noted by
Parisi and Sourlas [42]. If we are willing to assume that the potential is convex we can be more
precise, as the following theorem shows.

Theorem 2 Under Hypothesis C and CO there exists an unique strong solution φ = φ(ξ) of
eq. (6) and for all measurable bounded functions h : Rn → R we have

E[h(φ(0))Υf (φ)] = Zf

∫

Rn

h(y)dκ(y) (9)

where Zf := E[Υf (φ)] and where E denotes expectation with respect to the law of ξ.

Both theorems require the presence of a suitable cut-off f 6= 1 which is responsible for the
weighting factor Υf(φ) on the left hand side of the dimensional reduction statements (8) and (9).
If we would be allowed to take f = 1 then we would have proven the d = 0 version of eq. (5).
However, presently we are not able to do this for all QC potentials but only for those satisfying
Hypothesis C (see Sect 4 for the proof). This is the first rigorous result on elliptic stochastic
quantisation without any cut-off. In fact in this case the results of Klein, Landau and Perez [32],
using only an integral representation of the solution to equation (6), it does not hold.

Theorem 3 Suppose that V satisfies Hypothesis C and let φ be the unique strong solution in
C0

exp β(R
2;Rn) (see Section 5 for the definition of this space) of equation

(m2 −∆)φ + ∂V (φ) = ξ. (10)
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Then for any x ∈ R2 and any measurable and bounded function h defined on Rn we have

E[h(φ(x))] =

∫

Rn

h(y)dκ(y). (11)

Remark 2 It is easy to generalize Theorems 1, 2 and 3 to equations of the form

(m2 −∆)φi(x) +

n∑

r=1

γirγ
j
rf(|x|2)∂φjV (φ(x)) = γirξ

r(x), (12)

where f is as before, Γ = (γij)i,j=1,...,n is an n× n invertible matrix and the Hypothesis C and
QC generalized accordingly.

Plan. The paper is organized as follows. In Section 2 we study the strong and weak solutions of
eq. (6) and also the representation of weak solutions via the theory of transformation of measures
on Wiener space developed by Üstünel and Zakai in [49] whose setting and main facts needed
here are summarized in Appendix A. Section 3 is devoted to the proof of our results about elliptic
stochastic quantisation. The supersymmetric approach to dimensional reduction is detailed in
Section 4. Finally, Section 5 discusses the proof of Theorem 3 on the cut-off removal.

Acknowledgments. The authors would like to thank the Isaac Newton Institute for Mathe-
matical Sciences for support and hospitality during the programme Scaling limits, rough paths,
quantum field theory when work on this paper was undertaken. This work was supported by EP-
SRC Grant Number EP/R014604/1 and by the German Research Foundation (DFG) via CRC
1060.

2 The elliptic SPDE

In order to study equation (6) we have to recall some definitions, notations and conventions.
Fix an abstract Wiener space (W ,H, µ) where the noise ξ is defined (for the concept of abstract
Wiener space we refer e.g. to [22, 40, 49]). The Cameron-Martin space H is the space

H := L2(R2;Rn),

with its natural scalar product and natural norm given by 〈h, g〉 = ∑n
i=1

∫
R2 h

i(x)gi(x)dx. Let
W (in which H is densely embedded) be the space

W = Wp,η :=W p,−1−2ǫ
η (R2;Rn) ∩ (1−∆)(C0

η (R
2;Rn)),

where p > 1, η > 0 and W p,−1−2ǫ
η (R2;Rn) is a fractional Sobolev space with norm

‖g‖Wp,−1−2ǫ
η

:=

(∫

R2

(1 + |x|)−η
∣∣∣(1−∆)−

1
2
−ǫ(g)

∣∣∣
p

dx

) 1
p

,

for some ǫ > 0 small enough and (1 − ∆)(C0
η (R

2;Rn)) is the space of the second order dis-
tributional derivatives of continuous functions on Rn growing at infinity at most as |x|η with
norm

‖g‖(−∆+1)(C0
η)

:= ‖(1 + |x|)−η((1−∆)−1g)(x)‖L∞
x
.

Thus Wp,η is a Banach space with norm given by the sum of the norms of W p,−1−2ǫ
η (R2;Rn) and

of (1 −∆)−1(C0
η(R

2;Rn)). In the following we usually do not specify the indices η and p in the

definition of Wp,η and we write only W . We also introduce the notation W̃ = (1−∆)−1(W).
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The Gaussian measure µ on W is the standard Gaussian measure with Fourier transform
given by e−

1
2
‖·‖2

H . The white noise ξ is then naturally realized on (H,W , µ), in the sense that ξ
is the random variable ξ : W → S ′(R2;Rn) (where S ′(R2;Rn) is the space of Rn–valued Schwartz
distributions on R2) defined as ξ(w) = idW(w) = w. In this way the law of ξ is simply µ (or,
better, it is equal to the pushforward of µ on S ′ := S ′(R2,Rn) with respect the natural inclusion
map of W in S ′).

Sometimes it is also useful to consider the space Cατ , i.e. the space of α-Hölder continuous
functions such that they and their derivatives (or Hölder norms) grow at infinity at most like
|x|τ for the real number τ (this notation is used also if τ is negative in that case the functions
decrease at least like 1

|x|−τ ). It is important to note that Cαη can be identified with the Besov space

Bα∞,∞,η(R
2) (see [8] Chapter 2 Section 2.7). It is also important to realize that (1−∆)−1(W) ⊂ Cαη

if we choose p big enough and α > 0 small enough.

We introduce now two notions of solutions for equation (6). For later convenience it is better
to discuss the equation in term of the variable η := (m2 −∆)φ for which it reads

η + f∂V (Iη) = η + U(η) = ξ, (13)

where
I := (m2 −∆)−1

and where we introduced the map U : W → H given by

U(w) := f∂V (Iw), w ∈ W . (14)

It is simple to prove that under the Hypothesis C or QC, we have indeed U(w) ∈ H. Furthermore
we introduce the map T : W → W as T (w) := w + U(w). It is clear that a map S : W → W
satisfies the equation (13), i.e. T (S(w)) = ξ(w) = w, for (µ-)almost all w ∈ W , if and only if
IS(w) satisfies equation (6). The law ν on W associated to a solution of equation (13) must
satisfy the relation T∗(ν) = µ. For these reasons we introduce the following definition.

Definition 1 A measurable map S : W → W is a strong solution to equation (13) if T ◦S = IdW

µ-almost surely. A probability measure ν ∈ P(W) (where P(W) is the space of probability
measures on W) on the space W is a weak solution to equation (13) if T∗(ν) = µ.

2.1 Strong solutions

In order to study the existence of strong solutions to equation (6) we introduce an equivalent
version of the same equation that is simpler to study. Indeed if we write

φ̄ = φ− Iξ,

and we suppose that φ satisfies equation (6), then the function φ̄ satisfies the following (random)
PDE

(m2 −∆)φ̄ + f∂V (φ̄− Iξ) = 0. (15)

Equation (15) can be studied pathwise for any realization of the random field Iξ. Hereafter the
symbol . stands for inequality with some positive constant standing on the right hand side.

Lemma 1 Suppose that V satisfies Hypothesis QC, and let φ̄ be a classical C2 solution to the
equation (15), such that limx→∞ φ̄(x)=0, then for any 0 < τ < 2 and η > 0 we have

‖φ̄‖∞ . 1 + ‖feα1|Iξ|‖∞ (16)
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‖φ̄‖C2−τ
−η

. 1 + eα1‖φ̄‖∞‖(|x|+ 1)ηfeα1|Iξ|‖∞, (17)

for some positive constant α1 and where it and the constants involved in the symbol . depend
only on the function H in Hypothesis QC.

Proof Putting rφ̄(x) =
√∑

i(φ̄
i(x))2 = |φ̄(x)|, x ∈ R2, since the C2 function φ̄ converge to

zero at infinity, the function rφ̄ must have a global maximum at some point x̄ ∈ R2. This means

that −∆(r2
φ̄
)(x̄) > 0. On the other hand since φ̄ solves equation (15) we have

m2r2φ̄(x̄) 6 −1

2
∆(r2φ̄)(x̄) +m2r2φ̄(x̄)

6 (−φ̄ ·∆φ̄− |∇φ̄|2 +m2|φ̄|2)
6 −f(x̄)rφ̄(x̄)(n̂φ̄(x̄) · ∂V (Iξ(x̄) + n̂φ̄(x̄)rφ̄(x̄)))

where n̂φ̄ = φ̄
|φ̄|

∈ Rk when rφ̄ 6 =0, and 0 elsewhere. Using Hypothesis QC we obtain

‖rφ̄‖∞ 6
f(x̄)H(Iξ(x̄))

m2
. 1 + ‖feα1|Iξ|‖∞,

since H grows at most exponentially at infinity. This result implies inequality (16). The bound
(17) can be obtained directly using the inclusion properties of Besov spaces. ✷

Remark 3 It is simple to prove that the inequalities (16) and (17) can be chosen to be uniform
with respect to some rescaling of the potential of the form λV , or satisfying Hypothesis Vλ below
where λ ∈ [0, 1].

In the following we denote by F : W → P(C2−τ (R2;Rn)) the set valued function which
associates to a givenw ∈ W the (possible empty) set of solutions to equation (15) in C2−τ (R2;Rn),
where τ > 0, when Iξ is evaluated in w.

Theorem 4 For any w ∈ W the set F(w) is non-empty and closed. Furthermore F(w) ⊂
C2(R2;Rn) and if B ⊂ W is a bounded set then F(B) = ∪w∈BF(w) is compact in C2−τ

−η (R2;Rn)
for any τ > 0 and η > 0.

Proof We introduce the map C(R2;Rn)×W ∋ (φ̄, w) 7→ K(φ̄, w) ∈ C2−τ (R2;Rn), given by

Ki(φ̄, w) := −I(f∂V (φ̄+ Iξ(w))).

The map K is continuous with respect to its first argument, indeed if φ̄, φ̄1 ∈ C(R2;Rn),

‖Ki(φ̄, w)− Ki(φ̄1, w)‖C2−τ
−η

. ‖(|x|+ 1)ηf(∂V (φ̄, Iξ(w)) − ∂V (φ̄1, Iξ(w)))‖∞

.

∥∥∥∥
∫ 1

0

(|x|+ 1)ηf∂2V (φ̄− t(φ̄− φ̄1) + Iξ(w)) · (φ̄ − φ̄1)dt

∥∥∥∥
∞

. ‖φ̄− φ̄1‖∞‖(|x|+ 1)η
√
f‖∞

(
‖∂2VB‖∞ + eα‖φ̄−φ̄1‖∞‖

√
feα|Iξ|‖∞

)
,

where the positive constant α depends on the exponential growth of ∂2V at infinity. By a similar

reasoning we can prove that K sends bounded sets of C2−τ
−η into bounded sets of C2−τ ′

−η′ , where

τ ′ < τ and η′ > η. Since the immersion C2−τ ′

−η′ −֒→C2−τ
−η is compact we have that K is a compact

map.
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Since Iξ ∈ C1−
α , it is simple to prove, using a bootstrap argument, that if φ̄ = K(φ̄, w) then

φ̄ ∈ C2(R). From this fact it follows that, using inequalities (16) and (17) of Lemma 1 and
Remark 3, the solutions to the equation φ̄ = λK(φ̄, w) are uniformly bounded for λ ∈ [0, 1].
Thanks to these properties of the map K we can use Schaefer’s fixed-point theorem (see [21]
Theorem 4 Section 9.2 Chapter 9) to prove the existence of at least one solution to the equation
(15).

Finally using again Lemma 1 we have that F(B) is compact for any bounded set B ⊂ W . ✷

Theorem 5 There exists a strong solution to equation (6) (or equivalently of (13)).

Proof For proving the existence of a strong solution to the equation (13) (in the sense of
Definition 1) it is sufficient to prove that we can choose the solutions to equation (15), whose
existence for any w ∈ W is guaranteed by Theorem 4, in a measurable way with respect w ∈ W .
More precisely we have to prove that there exists a measurable selection for the function set map
F , i.e. there exists a map S̄ : W → C2−τ

−η such that S̄(w) ∈ F(w).
Fix a sequence of balls B1, . . . , Bn, . . . ⊂ W of increasing radius and such that limn→+∞Bn =

W , then, by Theorem 4, the map F|Bn\Bn−1
takes values in a compact set. Since K (introduced

in the proof of Theorem 4) is a Carathéodory map (since, as it is proven in the proof of Theo-
rem 4, K is continuous in φ̄ and measurable in w) by Filippov’s implicit function theorem (see
Theorem 18.17 in [6]), there exists a (Borel) measurable function S̄n defined on Bn\Bn−1 such
that S̄n(w) ∈ F(w). The map S̄ defined on Bn\Bn−1 by S̄|Bn\Bn−1

= S̄n is the measurable
selection that we need (since Bn\Bn−1 is measurable).

A strong solution S to equation (13) is then given by S(w) := w + (m2 −∆)S̄(w), w ∈ W .
✷

Corollary 1 Under the Hypothesis C there exists only one strong solution to equation (13).

Proof Suppose that S1, S2 are two strong solutions to equation (13) then, putting φj(x,w) =

I(Sj(w)(x)), j = 1, 2, writing δφ(x,w) = φ1(x,w)−φ2(x,w) and δr(x,w) =
√∑n

i=1(δφ
i(x,w))2,

we obtain

(m2 −∆)(δr2) + 2
∑

i

(|∇δφi|2) + fδr[n̂δφ · (∂V (φ1)−∇V (φ2))] = 0.

By Lagrange’s theorem there exists a function g(x), x ∈ R2, taking values in the segment
[φ1(x), φ2(x)] ⊂ Rn such that n̂δφ · (∂V (φ1)− ∂V (φ2)) = δr∂2V (g(x))(n̂δφ, n̂δφ). From this fact
we obtain

(m2 −∆)(δr2) + (∂2V (g(x))(n̂δφ, n̂δφ))δr
2 6 0.

Since m2+∂2V (g(x))(n̂δφ, n̂δφ) is positive y 7→ V (y)+m2|y|2 being convex by our Hypothesis C,
and δr(x) is positive and goes to zero as x→ +∞, we have φ1 = φ2 and so S1(w) = S2(w). ✷

2.2 Weak solutions

First of all we prove that the map U , given by (14), is a H − C1 function (in the sense of [49],
see Appendix A) for the abstract Wiener space (W ,H, µ).

Proposition 1 If V and its derivatives grow at most exponentially at infinity the map U is a
H − C1 function, on the abstract Wiener (W ,H, µ) and we have

∇U i(w)[h] = f(x)∂φiφjV (Iw) · I(hj).

9



Furthermore U is C2 Fréchet differentiable as a map from W into H.

Proof The proof is essentially based on the fundamental theorem of calculus and the use of the
Fourier transform. In order to give an idea of the proof we prove only the most difficult part,
namely that ∇U is continuous with respect to translations by elements of H, where continuity
is understood with respect to the Hilbert-Schmidt norm for operators acting on H.

For fixed w ∈ W , h, h′ ∈ H we have

∇U i(w + h′)[h]−∇U i(w)[h] = f(x)

∫ 1

0

∂3φiφjφrV ((m2 −∆)−1(w + th′)) · I(hj) · I(h′r)dt, (18)

where the sum over j, r = 1, . . . , n is implied. We recall that the Hilbert-Schmidt norm of an
integral kernel is the integral of the square of the kernel. In our case the Fourier transform of
the integral kernel representing the difference (18) is given by

K̂i
j(k, k

′) =

n∑

r=1

∫

R4

∫ 1

0

V̂ it,jr,f (k − k1)

(|k1 − k2|2 +m2)
· ĥ′r(k1 − k2)

(|k2 − k′|2 +m2)

dk1dk2
(2π)4

,

where V̂ it,jk,f (k, l) is the Fourier transform of f∂3φiφjφkV (I(w + th′)), t ∈ [0, 1]. It is simple to
prove that

‖∇U(w+h′)[·]−∇U(w)[·]‖22 .

∫

R4

K̂i
r(k, k

′)K̂r
i (k

′, k)dkdk′ . ‖
√
feα|Iw|+α|Ih′|‖2∞‖

√
f‖2L2‖h′‖2H,

where α depends on the exponential growth of ∂3V . Since ‖√feα|Iw|+α|Ih′|‖∞ is always finite in
W (for η positive and small enough) we have proved the continuity of the map h′ 7−→ ∇U(w+h′)
with respect to the Hilbert-Schmidt norm. ✷

Define the measurable map N : W → N ∪ {+∞}

N(w) := (number of solutions y ∈ W to the equation T (y) = w) ,

moreover let M ⊂ W be the set of zeros of det2(IH +∇U(w)).

Theorem 6 The function N is greater or equal to 1 and it is µ-almost surely finite. Furthermore
the map T is proper and N is (µ-)almost surely finite.

Proof We define T (φ̂, w) = φ̂+U(φ̂+w). Obviously we have that z is a solution to the equation

T (z) = w if and only if φ̂ = z −w is a solution to the equation T (φ̂, w) = 0. On the other hand

φ̂ is solution to the equation T (φ̂, w) = 0 if and only if φ̄ = I(φ̂) is a solution to equation (15).
By Theorem 4, equation (15) has at least one solution for any w ∈ W and so N(w) > 1 for any
w ∈ W .

Let K be a compact set in W we have that T−1(K) ⊂ K +(m2 −∆)(F(K)) (where F is the
set valued map introduced in Theorem 4). Since K is compact, by Theorem 4, F(K) is compact
in C2−

−η which implies that (m2 −∆)(F(K)) is compact in C0−
−η . Since the immersion C0−

−η −֒→W
is compact and the sum of two compact sets is compact, we obtain that T is a proper map.

Since by Proposition 5, µ(T (M)) = 0, for proving the theorem it is sufficient to prove that
N(w) < +∞ for w 6 ∈T (M). If w 6 ∈T (M) then idH +∇U(w)|H is a linear invertible operator on
H and so idW +∇U(w) is a linear invertible operator on W . By the Implicit Function Theorem,
we have that T is a C1 diffeomorphism between a neighborhood Bw of w onto T (Bw). This

10



implies that the set T−1(w) consists of isolated points. Since the map T is proper, this means
that T−1(w) is a compact set made only by isolated points which implies that T−1(w) is a finite
set. ✷

Theorem 7 A probability measure ν is a weak solution to equation (13) if and only if it is
absolutely continuous with respect to µ and there exists a non-negative function A ∈ L∞(µ) such
that

∑
y∈T−1(w)A(y) = 1 for µ-almost all w ∈ W and dν

dµ = A|ΛU | with

ΛU (w) := det2(I +∇U(w)) exp

(
−δ(U)(w) − 1

2
‖U(w)‖2H

)
,

where δ(U) the Skorokhod integral of the map U and where det2 denotes the regularized Fredholm
determinant (see [47] Chapter 9).

Proof Recall that, by Proposition 5, µ(T (M)) = 0. This implies that for any weak solution ν we
have ν(T−1(T (M)))=0. Letting Wn := T−1(N = n) ∩ T−1(T (M)) we deduce that ν(∪nWn) =∑

n ν(W
n) = 1 and therfore if we prove that ν is absolutely continuous with respect to µ on each

Wn we have proved that ν is absolutely continuous with respect to µ.
Using n times iteratively the Kuratowski-Ryll-Nardzewski selection theorem (Theorem 18.13

in [6]) due to the fact that T−1(x) ∩Wn is composed by zero or n elements, we can decompose
the set Wn into n measurable subsets Wn

1 , . . . ,W
n
n where the map T |Wn

i
is invertible. This means

that if Ω ⊂ Wn we have ν(Ω ∩ Wn
i ) 6 µ(T (Ω)). On the other hand we have that µ(T (Ω)) =∫

Ω∩Wn
i

|ΛU |dµ. This implies that if µ(Ω) = 0 then ν(Ω ∩Wn
i ) 6 µ(T (Ω)) =

∫
Ω∩Wn

i

|ΛU |dµ = 0.

As a consequence ν(Ω) =
∑

i ν(Ω ∩Wn
i ) = 0 and ν is absolutely continuous with respect to µ.

Theorem 14 below implies that for any measurable positive functions f,A we have

∫
f ◦ T (w)A(w)|ΛU (w)|dµ =

∫
f(w)


 ∑

y∈T−1(w)

A(y)


 dµ. (19)

Taking f = IT (M) and A = 1 we deduce that
∫
T−1(T (M))

|ΛU |dµ = µ(T (M)) = 0. Therefore we

can suppose that there exists a specific non-negative function A such that dν = A|ΛU |dµ and
since T∗(ν) = µ we must have

∫
f(w)dµ =

∫
f ◦ T (w)dν =

∫
f ◦ T (w)A(w)|ΛU (w)|dµ,

for any bounded measurable function f . From a comparison of this formula with (19) we deduce
that

∑
y∈T−1(w)A(y) = 1 for (µ-)almost all w ∈ W .

On the other hand, using again Theorem 14 it is simple to prove that if dν = A|ΛU |dµ and(∑
y∈T−1(w)A(y)

)
= 1 then ν is a weak solution to equation (13). ✷

Remark 4 If S is any strong solution to equation (13) then ν = S∗µ is a weak solution. Fur-
thermore it is simple to prove that the weak solutions of the form S∗µ, where S is some strong
solution to (6), are the extremes of the convex set W := {ν satisfying T∗ν = µ}. Using a lemma
(precisely Lemma 2) that we shall prove below, it follows from this that W is weakly compact
and thus, by Krein–Milman theorem (see Theorem 3.21 in [45]), any measure ν ∈ W can be
written as convex combination of measures induced by strong solutions.
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Corollary 2 If V satisfies Hypothesis C there exists only one weak solution ν to equation (13)
and we have that dν

dµ = |ΛU | and ν = S∗µ (where S is the only strong solution to equation (13)

and ΛU is as in Theorem 7).

Proof If V satisfies Hypothesis C, by Corollary 1, T is invertible and by Theorem 7 we have
that ν is unique and dν

dµ = |ΛU |. By Remark 4 we have that S∗µ, where S is the unique strong

solution of (13), is the unique weak solution to the same equation. ✷

3 Elliptic stochastic quantisation

In this section we want to prove the dimensional reduction of equation (6), namely that the law
in 0 of at least a (weak) solution to equation (13), has an explicit expression in terms of the
potential V .

The original idea of Parisi and Sourlas [41] for proving this relations was to transform ex-
pectations involving the solution φ to equation (6) (taken at the origin) into an integral of the
form

E[h(φ(0))] =

∫
h(Iw(0)) det(I +∇U(Iw))e−〈U(Iw),Iw〉− 1

2
‖U(Iw)‖2

Hdµ(w), (20)

where U is precisely defined in equation (14). Then one can express the determinant on the right
hand side of (20) as the exponential e

∫
V (Φ)dxdθdθ̄ involving the superfield

Φ(x, θ, θ̄) = ϕ(x) + ψ(x)θ + ψ̄(x)θ̄ + ω(w),

(see Section 4.1 for a more precise description) constructed from the real Gaussian free field
ϕ over R2, two additional fermionic (i.e. anticommuting) fields ψ, ψ̄ and the complex field
ω. Introducing these new anticommuting fields it can be easily proven that the integral (20)
admits an invariance property with respect to supersymmetric transformations. This implies the
dimensional reduction, i.e.

(20) =

∫
h(ϕ(0))e−

∫
V (Φ)dxdθdθ̄DΦ =

∫

Rn

h(y)dκ(y). (21)

Unfortunately this reasoning is only heuristic since the integral on the right hand side of (20) is
not well defined without a spatial cut-off, given that both the determinant and the exponential
are infinite.

For polynomial potentials V , a rigorous version of this reasoning was proposed by Klein
et al. [32]. More precisely Klein et al. give a rigorous proof of the relationship (21) introducing
a suitable modification due to the presence of the spatial cut-off f , but they do not discuss the
relationship between equation (6) and the reduction (20).

The goal of this section is to prove the following theorem.

Theorem 8 Under the Hypotheses CO and QC there exists (at least) one weak solution ν to
equation (6) such that for any measurable bounded function h defined on Rn we have

∫
W h(Iw(0))Υf (Iw)dν(w) =

∫
W h(Iw(0))Υf (Iw)ΛU (w)dµ(w)

= Zf
∫
Rn h(y)dκ(y)

(22)

where Zf =
∫
W

Υf (Iw)dν(w) > 0.

12



Let us first discuss the consequences of this result. The relation (22) can be expressed in the
following more probabilistic way. Suppose that on a given probability space (Ων ,Pν), the map
φ : R2×Ων → Rn gives the weak solution ν of Theorem 8, namely that the law of the W-random
variable (m2 −∆)φ(·, ω) is the measure ν. Then we have that, for any real measurable bounded
function defined on Rn,

EPν

[
h(φ(0))

Υf (φ)

Zf

]
=

∫

W

h(y)dκ(y),

namely we have proven Theorem 1. If we assume Hypothesis C then by Corollary 1, Corollary 2
and Theorem 8 there exists a unique strong solution satisfying (22) and we have proven as a
consequence Theorem 2.

The proof of Theorem 8 will be given in several step of wider degree of generality with
respect to the hypothesis on the potential V . For technical reasons we need to first introduce an
additional class of potentials.

Hypothesis Vλ. We have the decomposition

V = VB + λVU , VU (y) =

n∑

i=1

(yi)4, y = (y1, . . . , yn) ∈ R
n,

with λ > 0 and VB a bounded function with all bounded derivatives on Rn.

In Section 4 below we will exploit a supersymmetric argument for the family of potentials
V satisfying the more restrictive Hypothesis Vλ to prove that in this case a cut-off version of
equation (21) holds:

Theorem 9 Under the Hypotheses CO and Vλ if h is any real measurable bounded function
defined on Rn then we have

∫

W

h(Iw(0))ΛU (w)Υf (Iw)dµ(w) = Zf

∫

Rn

h(y)dκ(y),

where Zf =
∫
W

ΛU (w)Υf (Iw)dµ(w) > 0.

Proof The proof is given in Section 4 below. ✷

Next we prove that Theorem 9 implies the existence of a weak solution satisfying equation (22)
under Hypothesis Vλ.

Theorem 10 Under the Hypothesis Vλ we have that

∫

W

g ◦ T (w)ΛU (w)dµ(w) =
∫

W

g(w)dµ(w). (23)

where g is any bounded measurable function defined on W.

Proof Using the methods of Section 2 we can prove that the map T satisfies Hypotheses DEG1,
DEG2, DEG3 of Appendix A. The claim then follows from Theorem 15 and Theorem 16 below,
where we can choose the function g to be any bounded continuous function since ΛU ∈ L1(µ)
under Hypothesis Vλ. ✷
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Proposition 2 Under the Hypotheses CO and Vλ there exists at least a weak solution ν to
equation (13) satisfying (22).

Proof Let V ⊂ L1(|ΛU |dµ) be the span of the two linear spaces V1,V2 ⊂ L1(|ΛU |dµ) where V1

is composed by the functions of the form g ◦ T , where g is a measurable function defined on W
such that g ◦ T ∈ L1(|ΛU |dµ), and V2 is formed by the functions of the form h(Iw(0))Υf (Iw),
where h is a measurable function defined on R

n such that h(Iw(0))Υf (Iw) ∈ L1(|ΛU |dµ). Note
that V1 and V2, and so V = span{V1,V2}, are non-void since, under the Hypotheses Vλ and CO
(see Lemma 15 below), ΛU ∈ Lp(µ) and so g ◦ T, h(Iw(0))Υf (Iw) ∈ L1(µ) whenever g, h are

bounded. Define a positive functional L̂ : V → R by extending via linearity the relations

L̂(h(Iw(0))Υf (Iw)) :=

∫
h(Iw(0))Υf (Iw)ΛU (w)dµ(w) (24)

L̂(g ◦ T ) :=

∫
g(w)dµ(w). (25)

to the whole V . We have to verify that L̂ is well defined and positive on V . Suppose that there
exist functions g and h such that g ◦ T = h(Iw(0))Υf (Iw) then, by Theorem 10, we have

∫

W

gdµ =

∫

W

g ◦ TΛUdµ =

∫

W

h(Iw(0))Υf (Iw)ΛUdµ. (26)

This implies that L̂ is well defined on V1 ∩ V2 and so on V . Obviously L̂ is positive on V2, and,
by Theorem 9 we have

L̂(h(Iw(0))Υf (Iw)) =
∫

W

h(Iw(0))Υf (Iw)ΛUdµ = Zf

∫

Rn

h(y)dκ(y) > 0 (27)

whenever h, and so h(Iw(0))Υf (Iw), is positive. This means that L̂ is positive.
For any f = g ◦ T ∈ V1, by Theorem 14 and Theorem 6, we have

|L̂(f)| =
∣∣∣∣
∫

W

g(w)dµ(w)

∣∣∣∣ 6
∫

W

|g(w)|N(w)dµ(w) =

∫

W

|g ◦ T (w)ΛU (w)|dµ(w) = ‖fΛU‖1.

On the other hand, if f ∈ V2, by relation (24), L̂(f) 6 ‖fΛU‖1. These two inequalities and the
positivity of L̂ imply, by Theorem 8.31 of [6] on the extension of positive functionals on Riesz
spaces, that there exists at least one positive continuous linear functional L on L1(|ΛU |dµ),
such that L(f) = L̂(f) for any f ∈ V . The functional L defines the weak solution to equation
(13) we are looking for. Indeed, since L is a continuous positive functional on L1(|ΛU |dµ)
there exists a measurable positive function B ∈ L∞(|ΛU |dµ) ⊂ L∞(dµ) such that L(f) =∫
W f(w)B(w)|ΛU (w)|dµ(w). Since ΛU ∈ Lp by Lemma 15 below, we have 1 ∈ V1 and so
L(1) =

∫
W

1dµ(w) = 1. This implies, since the function B is positive, that the σ-finite measure
dν = B|ΛU |dµ is a probability measure. Furthermore, since V1 contains all the functions g ◦ T ,
where g is measurable and bounded, equality (25) implies that T∗(ν) = µ. This means that
ν is a weak solution to equation (13). Finally since V2 contains all the functions of the form
h(Iw(0))Υf (Iw) where h is measurable and bounded on Rn the measure ν satisfies the thesis
of the theorem. ✷

Unfortunately we cannot repeat this reasoning for general potentials satisfying the weaker Hy-
pothesis QC since both Theorem 9 and Proposition 2 exploit an Lp bound on ΛU (see Lemma 15
below) that cannot be obtained for more general potentials. Thus the idea is to generalize equa-
tion (22) without passing from equation (21). Indeed it is possible to approximate any potential
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V satisfying Hypothesis QC by a sequence of potentials (Vi)i satisfying Hypothesis Vλ in such
a way that the sequence of weak solutions νi associated with Vi converges (weakly) to a weak
solution associated with the potential V (see Lemma 2, Lemma 3 and Lemma 4 below). Since
equation (22) involves only integrals with respect to a weak solution to equation (6), we are able
to prove that equation (22) holds for any potential V approximating its weak solution ν by the
sequence νi satisfying equation (22).

Let us now set up the approximation argument, starting with a series of lemmas about
convergence of weak solutions.

Lemma 2 Let {Ti}i∈N be a sequence of continuous maps on W such that for any compact
K ⊂ W we have that ∪i∈NT

−1
i (K) is pre-compact and there exists a continuous map T such that

Ti → T uniformly on the compact subsets of W. Let Mi be a set of probability measures on W
defined as follows

Mi := {ν probability measure on W such that Tj,∗(ν) = µ for some j > i} .

Then M := ∩i∈NM̄i, where the closure is taken with respect to the weak topology on the set of
probability measures on W, is non-void and

M ⊂ {ν probability measure on W such that T∗(ν) = µ} .

Proof First of all we prove that Mi is pre-compact for any i ∈ N. This is equivalent to prove
that the measures in Mi are tight. Let K̃ be a compact set such that µ(K̃) > 1 − ǫ for a fixed

0 < ǫ < 1, then K := ∪i∈NT
−1
i (K̃) is a compact set in W . Consider ν ∈ Mj then there exists Tk

such that Tk,∗ν = µ. This implies

ν(K) > ν(∪iT−1
i (K̃)) > ν(T−1

k (K̃)) > µ(K̃) > 1− ǫ,

for any k ∈ N. Since Mi are pre-compact, M̄i are compact and M̄i ⊂ M̄j if i > j. This implies
that M is non-void. If we consider a ν ∈ M there exists a sequence νk weakly converging to ν,
for k → +∞, such that Tik,∗(νk) = µ and ik → +∞. Proving that T∗(ν) = µ is equivalent to
prove that for any C1 bounded function g with bounded derivatives defined on W taking values
in R we have

∫
g ◦ Tdν =

∫
gdµ. Let K the compact set defined before, then there exists a

k ∈ N such that supw∈K ‖Tik(w) − T (w)‖ 6 ǫ and that
∣∣∫

W
g ◦ Tdν −

∫
W
g ◦ Tdνk

∣∣ 6 ǫ, for the
arbitrary 0 < ǫ < 1. This implies that

∣∣∣∣
∫

W

g ◦ Tdν −
∫

W

gdµ

∣∣∣∣ 6

∣∣∣∣
∫

W

g ◦ Tdν −
∫

W

g ◦ Tdνi
∣∣∣∣+
∣∣∣∣
∫

K

(g ◦ T − g ◦ Tik)dνk
∣∣∣∣

+‖g‖∞ǫ+
∣∣∣∣
∫

W

g ◦ Tikdνk −
∫

W

gdµ

∣∣∣∣
6 ǫ + ‖∇g‖∞ǫ+ ‖g‖∞ǫ.

Since ǫ is arbitrary, from this it follows that
∫
W
g ◦ Tdν =

∫
W
gdµ.

✷

Remark 5 The proof of Lemma 2 proves also that given any sequence of νi ∈ Mi there exists
a subsequence converging weakly to ν ∈ M.

Lemma 3 Let {Vi}i∈N be a sequence of potentials satisfying the Hypothesis QC converging to
the potential V and such that ∂Vi converges uniformly to ∂V on compact subsets of Rn, Vi, V ,
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∂Vi and ∂V are uniformly exponentially bounded and there exists a common function H entering
Hypothesis QC for {Vi}i∈N and V . Let Ti, T the maps on W associated to Vi and V respectively.
Then the sequence {Ti}i∈N satisfies the hypothesis of Lemma 2.

Proof Note that the a priori estimates (16) and (17) in Lemma 1 are uniform in i ∈ N since
they depend only on H and the exponential growth of Vi, V, ∂Vi, ∂V . From this we can deduce
the pre-compactness of the set K = ∪i∈NT

−1
i (K̃) for any compact set K̃ ⊂ W using a reasoning

similar to the one proposed in Theorem 4 and Theorem 6.
Proving that Ti converges to T uniformly on the compact sets is equivalent to prove that the

map Ui(w)(x) = f(x)∂Vi(Iw(x)) converges to U(w)(x) = f(x)∂V (Iw(x)) in L2 uniformly on
the compact subsets of W . Let K be a compact set of W , then there exists an M > 0 such that
|Iw(x)| 6M(1 + |x|η) (where we suppose without loss of generality that η < 1). By hypotheses
we have that there exist two constants α, β > 0 such that |∂Vi(y)|, |∂V (y)| 6 eα|y|+β, thus there
exists a compact subset K of R2 such that

∫
Kc(f(x))

2 exp(2αM(1 + |x|η) + 2β)dx 6 ǫ, for some
ǫ ∈ (0, 1). Denote by Bǫ the ball of radius supx∈K

M(1 + |x|η) then we have

sup
w∈K

‖Ui(w) − U(w)‖2H 6 2

∣∣∣∣
∫

Kc

(f(x))2e2αM(1+|x|η)+2βdx

∣∣∣∣

+ sup
w∈K

∣∣∣∣
∫

K

(f(x))2|∂V (Iw) − ∂Vi(Iw)|2dx
∣∣∣∣

6 2ǫ+ ( sup
y∈Bǫ

|∂V (y)− ∂Vi(y)|)2
∫

K

(f(x))2dx

→ 2ǫ,

as i→ +∞. This means that limi→+∞(supw∈K ‖Ui(w)−U(w)‖2H) 6 2ǫ, and since ǫ is arbitrary
in (0, 1) the theorem is proved. ✷

Lemma 4 Let V be a potential satisfying Hypothesis QC, then there exists a sequence {Vi}i∈N

of bounded smooth potentials converging to V and satisfying the hypothesis of Lemma 3.

Proof Let V be a potential satisfying the Hypothesis QC and let H̃ the function whose existence
is guaranteed by Hypothesis QC. Let, for any N ∈ N, vN := supy∈B(0,N) |V (y)| and let Ṽ N :=
GvN ◦ V where

Gk(z) :=

{
z if |z| 6 k,
k if |z| > k.

Let ρ be a smooth compactly supported mollifier and denote by ρǫ the function ρǫ(y) := ǫ−nρ
(
y
ǫ

)
.

We want to prove that V N = Ṽ N∗ρǫN , for a suitable sequence ǫN ∈ R+, is the approximation
requested by the lemma. Without loss of generality we can suppose that H̃ is a positive function
depending only on the radius |y| and increasing as |y| → +∞. Under these conditions the request
of Hypothesis QC is equivalent to say that for any unit vector n̂ ∈ Sn we have that for any y ∈ Rn

max(−n̂ · ∂V (y + rn̂), 0) 6 H̃(y).

We want to prove that H(|y|) = H̃(|y|+ supN (ǫN )) is the function requested by the lemma.
Since for any unit vector n̂ ∈ Sn we have |n̂ · ∂Ṽ N | 6 |n̂ · ∂V | and since Ṽ N is absolutely

continuous we obtain

−n̂ · ∂V N (y + rn̂) = ((−n̂ · ∂Ṽ N )∗ρǫN )(y + rn̂)
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6 (max(−n̂ · ∂V (·+ rn̂), 0)∗ρǫN )(y) 6 H̃∗ρǫN (y).
Furthermore we have that Ṽ N = V on B(0, N − 1) and so there exists a sequence {ǫN}N such
that ǫN → 0 and supx∈B(0,N−1) |∂V N (x)− ∂V (x)| 6 1

N . Since V N is smooth and bounded and

H̃∗ρǫN (y) 6 H̃(|y|+ sup
N

(ǫN )) = H(y),

we conclude the claim. ✷

Finally we are able to prove (22) for all QC potentials, which will conclude this section.
Proof of Theorem 8 By Proposition 2 the equality (22) holds when V satisfies the Hypothe-
sis Vλ for some λ > 0, i.e. if V (y) = Vλ,VB

(y) = VB(y)+λ
∑n
k=1(y

i)4 for some bounded potential
VB . It is clear that if λi → 0 the potentials Vλi,VB

converge to the potential VB and the hypoth-
esis of Lemma 3 hold. This means that if ν̂i is a sequence of probability measures such that ν̂i
is a weak solution to the equation associated with Vλi,VB

satisfying the thesis of Proposition 2,
by Remark 5 and Lemma 2, there exists a probability measure ν̂, that is a weak solution to the
equation associated with VB , such that ν̂i → ν in the weak sense, as i→ ∞ and λi → 0.

We want to prove that ν̂ is a weak solution to the equation associated with VB satisfying
equation (22). The previous claim is equivalent to prove that

∫

W

g(Iw(0))e4
∫
f ′(x)Vλi,B

(Iw(x))dxdν̂i(w) →
∫

W

g(Iw(0))e4
∫
f ′(x)VB(Iw(x))dxdν̂(w), (28)

as λ → 0, for any continuous bounded function g, and that κλi
→ κB weakly, where dκλi

=
exp(−4πVλi,B)dx/Zλi

and dκB = dκλi
= exp(−4πVB)dx/ZB .

Proving relation (28) is equivalent to prove that
∫
f ′(x)Vλi,B(Iw(x))dx →

∫
f ′(x)VB(Iw(x))dx

uniformly on compact sets of W . This assertion can be easily proved using the methods of
Lemma 3. The weak convergence of κλi

to κB easily follows from Lebesgue’s dominate conver-
gence theorem.

The previous reasoning proves the theorem for any bounded potential VB . Using Lemma 4 we
can approximate any potential V satisfying Hypothesis QC by a sequence of bounded potentials
VB,i. Using Lemma 3, Remark 5, Lemma 2 and a reasoning similar to the one exploited in
the first part of the proof we obtain the thesis of the theorem for a general potential satisfying
Hypothesis QC. ✷

4 Dimensional reduction

Let

Ξ(h) :=

∫

W

h(Iw(0))ΛU (w)
Υf (Iw)
Zf

dµ(w), (29)

with the notations as in Section 2 (Theorem 7) and Section 3 (Theorem 8). In this section we
prove Theorem 9, i.e. the identity

Ξ(h) =

∫

Rn

h(y)dκ(y), (30)

using the supersymmetric representation of the integral. It is important to note that ΛU appears
without the modulus in (29).
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4.1 Supersymmetric representation

Let us illustrate how to derive the supersymmetric formulation of Ξ(h). Our goal is to provide
a blueprint for the reader to understand the role of supersymmetry in our argument. For an
introduction to the mathematical formalism of supersymmetry see e.g. [20, 7, 44, 19]. The details
of the rigorous implementation of the ideas exposed here is the main goal of the paper of Klein et
al. [32] and of the modifications we implement in the following subsections in order to overcome
a gap in their proof.

Let us start by unfolding the definition of ΛU and Υf(Iw) in (29) to get the expression

ZfΞ(h) =

∫
h(Iw(0)) det2(IH +∇U) exp

(
−δ(U)− 1

2
‖U‖2H + 4

∫
V (Iw(x))f ′(x)dx

)
dµ(w).

In order to manipulate the regularized Fredholm determinant we approximate the right hand
side by

Zχf Ξχ(h) :=

∫
h(Jχw(0)) det2(IH +∇Uχ)×

× exp

(
−δ(Uχ)−

1

2
‖Uχ‖2H + 4

∫
V (Jχw(x))f ′(x)dx

)
dµ(w).

where χ > 0 is a regularization parameter, Jχ := I1+χ = (m2 − ∆)−1−χ, Zχf is the unique
positive constant such that Ξχ(h) = 1 and

Uχ(w) :=
1

1 + 2χ
Iχ∂V (Jχw). (31)

We will prove below that limχ→0 Ξχ(h) = Ξ(h). When χ > 0, ∇Uχ(w) = 1
1+2χIχ∂V (Jχw)Jχ is

almost surely a trace class operator and Uχ ∈ W∗. This means that we can rewrite the regularized
Fredholm determinant det2 in term of the unregularized one (denoted det) (see equation (60)
and the discussion in Appendix A) obtaining

Zχf Ξχ(h) =
∫
h(Jχw(0)) det(IH +∇Uχ)×

× exp
(
−〈Uχ, w〉 − 1

2‖Uχ‖2H + 4
∫
V (Jχw(x))f ′(x)dx

)
dµ(w).

(32)

From the expression of ∇Uχ and the invariance of the determinant by conjugation we deduce

det(IH +∇Uχ) = det(IH +̟Iχf∂2V (Jχw)Jχ) = det(IH +̟I1/2+χf∂2V (Jχw)I1/2+χ),

where ̟ = 1
1+2χ , and featuring the nicer symmetric operator ̟I1/2+χf∂2V (Jχw)I1/2+χ. Let

γ be the Gaussian measure given by the law of ϕ = Jχw under µ. The expression (32) is then
equivalent to

∫
h(ϕ(0)) det(IH +̟I1/2+χf∂2V (ϕ)I1/2+χ) exp(−〈̟f∂V (ϕ), (m2 −∆)ϕ〉)×

× exp

(
−̟

2

2
‖Iχf∂V (ϕ)‖2H + 4

∫
V (ϕ(x))f ′(x)dx

)
γ(dφ).

At this point we introduce an auxiliary Gaussian field η distributed as the Gaussian white noise
µ to write

exp

(
−̟

2

2
‖Iχf∂V (φ)‖2H

)
=

∫
exp(−i̟〈f∂V (φ), Iχη〉)µ(dη).
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We also introduce two free fermion fields ψ, ψ̄ realized as bounded operators on a suitable Hilbert
space Hψ,ψ̄ with a state 〈·〉ψ,ψ̄ for which

〈ψ̄(x)ψ̄(x′)〉ψ,ψ̄ = 〈ψ(x)ψ(x′)〉ψ,ψ̄ = 0, 〈ψ(x)ψ̄(x′)〉ψ,ψ̄ = ̟G1+2χ(x − x′),

where Gα is the kernel of the operator Iα. These additional fields allow to represent the deter-
minant as

det(IH +̟I1/2+χf∂2V (ϕ)I1/2+χ) =

〈
exp

(∫
ψi(x)f(x)∂2φiφjV (ϕ(x))ψ̄j(x)dx

)〉

ψ,ψ̄

.

By tensorizing the fermionic Hilbert space Hψ,ψ̄ with the L2 space of the product measure γ⊗µ

one can realize the fermionic free fields ψ, ψ̄ and the Gaussian fields ϕ, η as operators on the
same Hilbert space HΦ with a state which we denote by 〈·〉Φ or 〈·〉χ when this does not cause
ambiguity. As a consequence, we have

Zχf Ξχ(h) = 〈h(ϕ(0)) exp(S(ϕ, η, ψ, ψ̄))〉χ,

with

S(ϕ, η, ψ, ψ̄) :=

∫
ψ(x)f(x)∂2V (ϕ(x))ψ̄(x)dx +

−̟〈f∂V (ϕ), (m2 −∆)ϕ+ iIχη〉+ 4

∫
V (ϕ(x))f ′(x)dx.

A “more symmetric” form for this expression involving bosonic and fermionic fields can be
obtained by introducing the superspace S and the superfield Φ.

The superspace Formally the superspace S can be thought as the set of points (x, θ, θ̄) where
x ∈ R2 and θ, θ̄ are two additional anticommuting coordinates. A more concrete construction is
to understand S via the algebra of smooth functions on it.

Let G(θ1, . . . , θn) be the Grassmann algebra generated by symbols θ1, . . . , θn, i.e.

G(θ1, . . . , θn) = span(1, θi, θiθj , θiθjθk, . . . , θ1 · · · θn)

with the relations θiθj = −θjθi.
A C∞ function F : R2 → G(θ, θ̄) is just a quadruplet (f∅, fθ, fθ̄, fθθ̄) ∈ (C∞(R2))4 the

identification
F (x) = f∅(x) + fθ(x)θ + fθ̄(x)θ̄ + fθθ̄(x)θθ̄.

The function F can be considered as a function F : S → R by formally writing

F (x, θ, θ̄) = F (x).

In particular we identify C∞(S) with C∞(R2;G(θ, θ̄)). C∞(S) is a non-commutative algebra
on which we can introduce a linear functional defined as

F 7→
∫
F (x, θ, θ̄)dxdθdθ̄ := −

∫

R2

fθθ̄(x)dx,

induced by the standard Berezin integral on S satisfying
∫

dθdθ̄ =

∫
θdθdθ̄ =

∫
θ̄dθdθ̄ = 0,

∫
θθ̄dθdθ̄ = −1.
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Remark 6 A norm on C∞(S) can be defined by

‖F‖C(G) = sup
x∈R2

(|f∅(x)|+ |fθ(x)| + |fθ̄(x)| + |fθθ̄(x)|),

and an involution by

F̄ (x, θ, θ̄) = f∅(x) + fθ(x)θ + fθ̄(x)θ̄ + fθθ̄(x)θθ̄,

where the bar on the right hand side denotes complex conjugation.

Given r : C1(R;R) we define the composition r ◦ F : S → R by

r(F (x, θ, θ̄)) := r(f∅(x)) + r′(f∅(x))fθ(x)θ + r′(f∅(x))fθ̄(x)θ̄ + r′(f∅(x))fθθ̄(x)θθ̄,

in accordance with the same expression one would get if r were a monomial. Moreover we can
define similarly the space of Schwartz superfunctions S(S) and the Schwartz superdistributions
S ′(S) ≈ S ′(R2;G(θ, θ̄)) where T ∈ S ′(S) can be written T = T∅ + Tθθ + Tθ̄θ̄ + Tθθ̄θθ̄ with
T∅, Tθ, Tθ̄, Tθθ̄ ∈ S ′(R2) and duality pairing

T (f) = −T∅(fθθ̄) + Tθ(fθ̄)− Tθ̄(fθ)− Tθθ̄(f∅), f∅, fθ, fθ̄, fθθ̄ ∈ S(R2).

The superfield We take the generators θ, θ̄ to anticommute with the the fermion fields ψ, ψ̄,
and introduce the complex Gaussian field

ω := −̟((m2 −∆)ϕ+ iIχη)

and put all our fields together in a single object defining the superfield

Φ(x, θ, θ̄) := ϕ(x) + ψ̄(x)θ + ψ(x)θ̄ + ω(x)θθ̄.

We define also

V (Φ(x, θ, θ̄)) = V (ϕ(x)) + ∂V (ϕ(x))(ψ̄(x)θ + ψ(x)θ̄) +

+[∂V (ϕ(x))ω(x) + ∂2V (ϕ(x))ψ(x)ψ̄(x)]θθ̄

and since
f̃(|x|2 + 4θθ̄) = f̃(|x|2) + 4f̃ ′(|x|2)θθ̄

we observe that

−
∫
V (Φ(x, θ, θ̄))f̃(|x|2 + 4θθ̄)dxdθdθ̄ =

∫
f(x)∂V (ϕ(x))ω(x)dx+

+

∫
[f(x)∂2V (ϕ(x))ψ(x)ψ̄(x) + 4V (ϕ(x))f ′(x)]dx = S(φ, η, ψ, ψ̄).

By introducing the superspace distribution θθ̄δ0(dx) we have also, by similar computations.

h(ϕ(0)) = −
∫
h(Φ(x, θ, θ̄))θθ̄δ0(dx)dθdθ̄.

As a consequence we can rewrite Ξ(h) as an average over the superfield Φ:

Zχf Ξχ(h) =

〈(
−
∫
h(Φ(x, θ, θ̄))θθ̄δ0(dx)dθdθ̄

)

× exp

(
−
∫
V (Φ(x, θ, θ̄))f̃(|x|2 + 4θθ̄)dxdθdθ̄

)〉

χ

. (33)
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While all these rewriting are essentially algebraic (modulo the issue of justifying rigorously each
step), the supersymmetric formulation (33) makes appear a symmetry of the expression for Ξχ(h)
which was not clear from the original formulation. In some sense the reader can think to the
superspace (x, θ, θ̄) and to the superfield Φ(x, θ, θ̄) as a convenient bookkeeping procedure for a
series of relations between the quantities one is manipulating.

A crucial observation is that the superfield Φ is a free field with mean zero, namely all its
correlation functions can be expressed in terms of the two-point function 〈Φ(x, θ, θ̄)Φ(x, θ′, θ̄′)〉χ
via Wick’s theorem. A direct computation of this two point function gives:

〈Φ(x, θ, θ̄)Φ(x, θ′, θ̄′)〉χ = 〈ϕ(x)ϕ(x′)〉χ − 〈ψ̄(x)ψ(x′)〉χθθ̄′ − 〈ψ(x)ψ̄(x′)〉χθ̄θ′ + 〈ϕ(x)ω(x′)〉χθ′θ̄′

+〈ω(x)ϕ(x′)〉χθθ̄ + 〈ω(x)ω(x′)〉χθθ̄θ′θ̄′

= G2+2χ(x− x′) +̟G1+2χ(x− x′)(θθ̄′ − θ̄θ′)−̟(m2 −∆)G2+2χ(x− x′)(θ′θ̄′ + θθ̄)

+((m2 −∆)2G2+2χ(x− x′)− G2χ(x − x′))θθ̄θ′θ̄′.

Upon observing that (m2 − ∆)G2+2χ = G1+2χ, (m
2 − ∆)2G2+2χ = G2χ and that −θθ̄′ + θ̄θ′ +

θ′θ̄′ + θθ̄ = (θ − θ′)(θ̄ − θ̄′) we conclude

〈Φ(x, θ, θ̄)Φ(x, θ′, θ̄′)〉 = CΦ(x− x′, θ − θ′, θ̄ − θ̄′), (34)

where
CΦ(x, θ, θ̄) := G2+2χ(x)−̟G1+2χ(x)θθ̄.

Remark 7 Note that when χ = 0, the superfield Φ corresponds to the formal functional integral

e−
1
2

∫
[Φ(m2−∆S)Φ]dxdθdθ̄DΦ

where DΦ = DψDψ̄DϕDη and where ∆S = ∆+ ∂θ∂θ̄ is the superlaplacian. Then

1

2

∫
[Φ(m2 −∆S)Φ]dxdθdθ̄ =

1

2

∫
[−2ψ̄(m2 −∆)ψ − ωω + 2ω(m2 −∆)ϕ]dx

=
1

2

∫
[−2ψ(m2 −∆)ψ̄ + ((m2 −∆)ϕ)2 + η2]dx

and this indeed corresponds to the action functional appearing in the formal functional integral
for (ψ, ψ̄, ϕ, η). This is in agreement to the fact that the two point function satisfies the equation

(m2 −∆S)CΦ(x, θ, θ̄) = δ0(x)δ(θ)δ(θ̄),

where δ(x)δ(θ)δ(θ̄) is the distribution such that

∫
F (x, θ, θ̄)δ0(x)δ(θ)δ(θ̄)dxdθdθ̄ = f∅(0),

namely, CΦ is the Green’s function for (m2 −∆S).
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The supersymmetry On C∞(S) one can introduce the (graded) derivations

Q := 2θ∇+ x∂θ̄, Q̄ := 2θ̄∇− x∂θ,

which are such that
Q(|x|2 + 4θθ̄) = Q̄(|x|2 + 4θθ̄) = 0,

namely they annihilate the quadratic form |x|2+4θθ̄. Moreover if QF = Q̄F = 0, for F as above,
then we must have

0 = QF (x, θ, θ̄) = 2θ∇f∅(x) + xfθ̄(x) + 2∇fθ̄(x)θθ̄ − xfθθ̄(x)θ

0 = Q̄F (x, θ, θ̄) = 2θ̄∇f∅(x) + xfθ(x)− 2∇fθ(x)θθ̄ + xfθθ̄(x)θ̄

and therefore
∇f∅(x) =

x

2
fθθ̄(x) and fθ(x) = fθ̄(x) = 0.

If we also request that F is invariant with respect to R2 rotations, then there exists an f such
that f(|x|2) = f∅(x) from which we deduce that 2xf ′(|x|2) = ∇f(|x|2) = ∇f∅(x) = x

2 fθθ̄(x)
which implies

f(|x|2 + 4θθ̄) = f(|x|2) + 4f ′(|x|2)θθ̄ = f∅(x) + fθθ̄(x)θθ̄ = F (x, θ, θ̄).

Namely any function satisfying these two equations can be written in the form

F (x, θ, θ̄) = f(|x|2 + 4θθ̄).

Observe that if we introduce the linear transformations

τ(b, b̄)




x
θ
θ̄


 =




x+ 2b̄θρ+ 2bθ̄ρ
θ − (x · b)ρ
θ̄ + (x · b̄)ρ


 ∈ G(θ, θ̄, ρ)

for b, b̄ ∈ R2 and where ρ is a new odd variable anticommuting with θ, θ̄ and itself, then we have

d

dt

∣∣∣∣
t=0

τ(tb, tb̄)F (x, θ, θ̄) =
d

dt

∣∣∣∣
t=0

F (τ(tb, tb̄)(x, θ, θ̄)) = (b · Q̄+ b̄ ·Q)F (x, θ, θ̄)

so τ(b, b̄) = exp(b ·Q̄+ b̄ ·Q) and τ(tb, tb̄)τ(sb, sb̄) = τ((t+s)b, (t+s)b̄). In particular F ∈ C∞(S)
is supersymmetric if and only if F is invariant with respect to rotations and for any b, b̄ ∈ R2 we
have τ(b, b̄)(F ) = F .

By duality the operators Q, Q̄ and τ(b, b̄) act also on the space S ′(G) and we say that
the distribution T ∈ S ′(S) is supersymmetric if it is invariant with respect to rotations and
Q(T ) = Q̄(T ) = 0. For supersymmetric functions and distribution the following fundamental
theorem holds.

Theorem 11 Let F ∈ S(S) and T ∈ S ′(S) such that T0 is a continuous function. If both F
and T are supersymmetric, then we have the reduction formula

∫
T (x, θ, θ̄) · F (x, θ, θ̄)dxdθdθ̄ = 4πT0(0)F0(0). (35)
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Proof The proof can be found in [32] Lemma 4.5. ✷

Let us note that
QCΦ(x, θ, θ̄) = Q̄CΦ(x, θ, θ̄) = 0,

indeed we can check that

∇G2+2χ(x) =

∫

R2

dk

(2π)2
(ik)eik·x

(m2 + |k|2)2+2χ
= − i

2(1 + 2χ)

∫

R2

dk

(2π)2
eik·x∇k

1

(m2 + |k|2)1+2χ

=
i

2(1 + 2χ)

∫

R2

dk

(2π)2
(ix)eik·x

(m2 + |k|2)1+δ = − x

2(1 + 2χ)
G1+2χ(x) = −x̟

2
G1+2χ(x)

As a consequence expectation values of polynomials over the superfield Φ are invariant under
the supersymmetry generated by any linear combinations of Q, Q̄.

Remark 8 The previous discussion implies that

τ(b, b̄)CΦ(x, θ, θ̄) = CΦ(x, θ, θ̄). (36)

As a consequence, the superfield Φ′ := τ(b, b̄)Φ is a Gaussian free field and has the same correla-
tion function CΦ′ as Φ given by equation (34). However it is important to stress that this does
not imply that Φ′ has the same “law” as Φ, namely that 〈F (Φ′)〉 = 〈F (Φ)〉 for nice arbitrary
functions. Indeed the correlation function given in equations (34) involves only the product
〈Φ(x, θ, θ̄)Φ(x, θ′, θ̄′)〉 of the complex superfield Φ and not also the product 〈Φ(x, θ, θ̄)Φ̄(x, θ′, θ̄′)〉
of Φ with its complex conjugate Φ̄. The law of Φ would have been invariant with respect super
transformations if and if only 〈Φ(x, θ, θ̄)Φ(x, θ′, θ̄′)〉 and 〈Φ(x, θ, θ̄)Φ̄(x, θ′, θ̄′)〉 had been both
supersymmetric. Unfortunately the function 〈Φ(x, θ, θ̄)Φ̄(x, θ′, θ̄′)〉 is not invariant with respect
to super transformations.

Expectation of supersymmetric polynomials As explained in Remark 8, the law of Φ is
not supersymmetric. Nevertheless we can deduce important consequences from the supersym-
metry of the correlation function CΦ. More precisely, since Φ is a free field Wick’s theorem hold
and

〈
2n∏

i=1

Φ(xi, θi, θ̄i)

〉

χ

=
∑

{(ik,jk)}k

n∏

k=1

CΦ(xik − xjk , θik − θjk , θ̄ik − θ̄jk), (37)

〈
2n+1∏

i=1

Φ(xi, θi, θ̄i)

〉

χ

= 0. (38)

By the supersymmetry of CΦ(x− x′, θ − θ̄, θ − θ̄′) and of its products, we obtain that

〈
2n∏

i=1

τ(b, b̄)(Φ)(xi, θi, θ̄i)

〉

χ

=

〈
2n∏

i=1

Φ(xi, θi, θ̄i)

〉

χ

.
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The previous equality implies that
〈

n∏

i=1

∫
Pi(Φ) · τ(b, b̄)(F i)dxdθdθ̄

〉

χ

=

〈
n∏

i=1

∫
τ(b, b̄)(Pi(Φ)) · F idxdθdθ̄

〉

χ

=

〈
n∏

i=1

∫
Pi(τ(b, b̄)(Φ)) · F idxdθdθ̄

〉

χ

=

〈
n∏

i=1

∫
Pi(Φ) · F idxdθdθ̄

〉

χ

, (39)

where P1, . . . , Pn are arbitrary polynomials and F 1, . . . , Fn arbitrary functions on superspace.

Lemma 5 Let F 1, . . . ., Fn ∈ S(S) be supersymmetric smooth functions and P1, . . . , Pn be n
polynomials then

〈
n∏

i=1

∫
Pi(Φ)(x, θ, θ̄) · F i(x, θ, θ̄)dxdθdθ̄

〉

χ

= (4π)n

〈
n∏

i=1

f i∅(0)Pi(φ(0))

〉

χ

.

Proof We define the distribution H1 ∈ S ′(G) in the following way:

H1(G) :=

〈∫
P1(Φ)(x, θ, θ̄) ·G(x, θ, θ̄)dxdθdθ̄

n∏

i=2

∫
Pi(Φ)(x, θ, θ̄) · F i(x, θ, θ̄)dxdθdθ̄

〉

χ

for any G ∈ S(G). Using the fact that F 2, . . . , Fn are supersymmetric and relation (39) we have
that

H1(τ(b, b̄)(G)) =
〈∫
P1(Φ) · τ(b, b̄)(G)dxdθdθ̄

∏n
i=2

∫
Pi(Φ) · F idxdθdθ̄

〉
χ

=
〈∫
P1(Φ) · τ(b, b̄)(G)dxdθdθ̄

∏n
i=2

∫
Pi(Φ) · τ(b, b̄)(F i)dxdθdθ̄

〉
χ
= H1(G).

This means that H1 is supersymmetric and since F 1 is also supersymmetric, by Theorem 11 we
conclude

H1(F 1) = f1
∅ (0)H1

0(0) = (4π)

〈
f1
∅ (0)Pi(φ(0))

n∏

i=2

∫
F i · Pi(Φ)dxdθdθ̄

〉

χ

= H1(V )

where V := (4π)δ0(dx)θθ̄. Setting

H2(G) :=

〈(∫
Pi(Φ)V dxdθdθ̄

)(∫
Pi(Φ)Gdxdθdθ̄

) n∏

i=3

∫
Pi(Φ)F

idxdθdθ̄

〉

χ

and reasoning similarly we also conclude that H2(F 2) = H2(V ). Proceeding by transforming
each subsequent factor, we can deduce that

〈
n∏

i=1

∫
Pi(Φ)F

idxdθdθ̄

〉

χ

=

〈
n∏

i=1

∫
Pi(Φ)V dxdθdθ̄

〉

χ

= (4π)n

〈
n∏

i=1

f i∅(0)Pi(φ(0))

〉

χ

.

✷
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Theorem 12 Let V1, V2, . . . , Vn be smooth functions such that they and their derivatives grow
at most polynomially then

〈
n∏

i=1

∫
Vi(Φ)(x, θ, θ̄) · F i(x, θ, θ̄)dxdθdθ̄

〉

χ

= (4π)n

〈
n∏

i=1

f i∅(0)Vi(φ(0))

〉

χ

.

Proof By Lemma 5, the theorem holds for Vi = Pi polynomials. Then the thesis follows by
the density of polynomials in the space of two-times differentiable functions with respect to the
Malliavin derivative (see [40] Corollary 1.5.1). ✷

Remark 9 Going back to eq. (33) the idea now would be to expand the exponential getting

ZfΞχ(g) =
∑

n>0

1

n!

〈(∫
h(Φ(x, θ, θ̄))θθ̄δ0(dx)dθdθ̄

)
×

×
(
−
∫
V (Φ(x, θ, θ̄))f̃(|x|2 + 4θθ̄)dxdθdθ̄

)n〉

χ

(40)

and then to use Theorem 12 to prove that each average in the right hand side is equal to

〈h(ϕ(0))(−4πV (ϕ(0)))n〉χ.

Since

〈h(ϕ(0))(−4πV (ϕ(0)))n〉χ = Zχf

∫

Rn

g(y)dκ(y)

equality (30) would be proved taking the limit χ → 0. Unfortunately equation (40) is not easy
to prove since the series on the right hand side of (40) does not converge absolutely for a general
V . For this reason we present below an indirect proof of (30).

4.2 Outline of the proof of Theorem 9

A proof of Theorem 9 requires a justification of the formal steps in the previous subsection.
Much of the work is already present in [32] and indeed our result is analogous, under different
hypotheses, to Theorem II in [32]. The proofs of Lemma 11, Lemma 13 and Lemma 14 below
follows the same ideas of Lemma 3.1, Lemma 3.2 and Lemma 3.3 in [32]. We decided to propose
a detailed proof of Theorem 9 mainly for two reasons:

1. The first reason is that the hypotheses on the potential V of Theorem 9 and of Theorem II
in [32] are quite different. Indeed in [32] only polynomial potentials are considered while
Hypothesis Vλ permits to consider polynomial of at most fourth degree perturbed by any
bounded function. In order to prove the boundedness of ΛU in Lp(µ) under these different
hypotheses we need to prove Lemma 12 which is a trivial consequence of hypercontractivity
when the potential V is polynomial but is based on the non-trivial inequality (47) (proven
in [49]) for general potentials V .

2. The second main reason is the difference in the use of supersymmetry and of the supersym-
metric representation of the integral (29). Indeed, in our opinion there is a little gap in the
proof of Theorem III of [32] that cannot be fixed without developing a longer proof. More
precisely putting

G(F ) :=

〈
g(ϕ(0)) exp

(
−
∫
V (Φ)Fdθdθ̄dx

)〉

χ

,
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in the proof of Theorem III of [32] it is tacitly assumed that the expression G(F ) is super-
symmetric with respect to the function F , i.e. if F is a smooth function in S(S) and τ(b, b̄)
is a supersymmetric transformation, then we have that G(τ(b, b̄)(F )) = G(F ). In our opinion
this fact is non-trivial since the law of Φ is not supersymmetric (see Remark 8). What can
be easily proven is only that the expressions

Gn(F ) :=

〈
g(ϕ(0))

(∫
V (Φ)Fdθdθ̄dx

)n〉

χ

are supersymmetric in F (see Theorem 12 of Section 4.1). This fact alone does not easily
imply that G(F ) is supersymmetric. Indeed for what we say in the discussion of Remark 9,
we cannot guarantee that the series (40), which is equivalent to G(F ) =

∑
n>0

1
n!G

n(F ),
converges absolutely when V growth at infinity at least as a polynomial of fourth degree (and
we do not know under which conditions on V and F it converges relatively). In order to
overcome this problem we propose a proof of Theorem 9 which exploits only indirectly the
supersymmetric representation of the integral (29) in a way which permits to use only the
supersymmetry of the expressions Gn(F ) and avoiding the proof of the supersymmetry of the
expression G(F ) (see Lemma 8).

The proof is based on two steps:

1. Prove Theorem 9 under the Hypothesis Vλ, C and CO,

2. Prove Theorem 9 under the Hypothesis Vλ with λ small enough and CO.

We introduce some preliminary objects, notations and considerations. First of all, if V is a
potential satisfying the Hypothesis Vλ we write

Vt,λ = tVB + λVU ,

for any t ∈ R, denote by Ut,λ the corresponding map from W into Hand use a similar notation
Uχt,λ for the corresponding map analogous to Ut,λ when U is replaced by its regularized version
(31). Let L : R → R be a continuous bounded function. We write

Gχ,Lλ (t) :=

∫

W

L(Jχw(0)) det2(IH +∇Uχt,λ)×

× exp

(
−δ(Uχt.λ)−

1

2
‖Uχt,λ‖2H + 4

∫

R2

Vt,λ(Jχw(x))f ′(x)dx

)
dµ

and

Hχ,L
λ (t) := Zχf

∫

Rn

L(y) exp

(
−4π

(
(1 + 2χ)m2(1+2χ) |y|2

2
+ tVB(y) + λVU (y)

))
dy.

It is evident that the thesis of Theorem 9 is equivalent to prove that

GLλ (1) := G0,L
λ (1) = HL

λ (1) := H0,L
λ ,

for any bounded potential VB , any λ small enough and any L continuous and bounded. Since
the set of bounded potentials is invariant with respect to rescaling, proving the previous equality
for any bounded potential is equivalent to proving that GLλ (t) = HL

λ (t) for any t. Furthermore
since HL

λ (t) is real analytic in t proving the previous equality is equivalent to proving that
∂kt G

L
λ (0) = ∂kt H

L
λ (0) for any k ∈ N (or equivalently that GLλ (t) = HL

λ (t) in a neighborhood of 0)
and GLλ (t) is real analytic for any t ∈ R.
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4.3 Proof under the Hypothesis C

Let VB be a bounded smooth function with first and second derivatives which are both bounded.

Lemma 6 Let VB be a bounded potential satisfying the Hypothesis C, then exp(−tδ(Uχ)) ∈
L1(µ) for any |t| ∈

[
0, m2

2‖∂2VB‖∞

)
and χ ∈ [0, 1]. Furthermore the integral

∫
exp(−tδ(Uχ))dµ is

uniformly bounded for χ ∈ [0, 1] and t in the compact subsets of
(
− m2

2‖∂2VB‖∞
, m2

2‖∂2VB‖∞

)
.

Proof Under the Hypothesis of the lemma we have that

‖∇Uχt,0‖ 6 |t| ‖∂
2VB‖∞

m2(1+χ)
,

where ‖ · ‖ is the usual operator norm on L(H). Proposition B.8.1 of [49] states that

E

[
exp

(
−1

2
δ(K)

)]
6 (E[exp(‖K‖2H)])

1
4 ·
(
E

[
exp

( ‖∇K‖22
(1− ‖∇K‖)

)]) 1
4

whenever K is a H−C1 map such that ‖∇K‖ < 1. Taking K = 2tUχ in the previous inequality
we obtain the thesis. ✷

Lemma 7 The function Gχ,L0 (t) is real analytic in
(
− m2

2‖∂2VB‖∞
, m2

2‖∂2VB‖∞

)
.

Proof First of all we have that for any t ∈ R the map r → det2(I + ∇Uχt+r,0) =: Dt(r) is
holomorphic in r (see [47] Theorem 9.3). By Cauchy theorem this means that

|∂nt (det2(I +∇Uχt,0))| 6
n! supθ∈S1 |Dt(Re

iθ)|
Rn

.

On the other hand we have for any χ ∈ [0, 1]

|Dt(r)| 6 exp

(
1

2
‖∇Uχt,0 +∇Uχr,0‖22

)
6 exp(C(t2 + |r|2)‖∂2VB‖2∞),

where C ∈ R+ is some positive constant depending on f but not on VB. Thus we obtain

|∂nt (det2(I +∇Uχt,0))| 6
n! exp(C(t2 + |R|2)‖∂2VB‖2∞)

Rn
.

With a similar reasoning we obtain a uniform bound of this kind for ∂nt exp
(
− 1

2 |U
χ
t,0|2

)
.

Finally we note that

E[exp(−δ(Uχt+r,0))] =
∑ (−1)nrn

n!
E[exp(−δ(Uχt,0))(δ(Uχ1,0))n].

By Lemma 6, we note that

|E[∂nt exp(−δ(Uχt+r,0))]| = |E[exp(−δ(Uχt+r,0))(δ(Uχ1,0))n]|

6
1

ǫn
E[exp(−δ(Uχt+ǫ)) + exp(−δ(Uχt−ǫ))] < +∞

for any t ∈
(
− m2

2‖∂2VB‖∞
, m2

2‖∂2VB‖∞

)
and 0 < ǫ < m2

2‖∂2VB‖∞
− |t|. Using the previous inequality it

follows that Gχ,L0 (t) is real analytic in the required interval. ✷
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Lemma 8 For χ ∈ (0, 1) we have that Gχ,L0 (t) = Hχ,L
0 (t) for t ∈

(
− m2

2‖∂2VB‖∞
, m2

2‖∂2VB‖∞

)
.

Proof By Lemma 7 the function Gχ,L0 (t) is real analytic in
(
− m2

2‖∂2VB‖∞
, m2

2‖∂2VB‖∞

)
. It is

enough then to prove ∂nt G
χ,L
0 (0) = ∂nt H

χ,L
0 (0) for any n ∈ N. By the discussion in Section 4.1

we note that

Gχ,L0 (t) =

∫
L(Jχw(0)) det2(IH +∇Uχt,0) exp

(
−δ(Uχt,0)−

1

2
‖Uχt,0‖2H

)
×

× exp

(
4

∫
Vt,0(Jχw(x))f ′(x)dx

)
dµ

=

〈
L(ϕ(0)) exp

(
t

∫
ψi(x)f(x)∂2φiφjV (ϕ(x))ψ̄j(x)dxdθdθ̄

)
×

× exp

(
t

∫
f(x)∂φiV (ϕ(x))ωi(x)dx + 4t

∫
V (ϕ(x))f ′(x)dx

)〉

χ

=

〈(
−
∫
L(Φ(x, θ, θ̄))θθ̄δ0(dx)dθdθ̄

)
×

× exp

(
−t
∫
V (Φ(x, θ, θ̄))f̃(|x|2 + 4θθ̄)dxdθdθ̄

)〉

χ

.

From the previous equality we get

∂nt G
χ,L
0 (0) =

〈(
−
∫
L(Φ(x, θ, θ̄))θθ̄δ0(dx)dθdθ̄

)
×

×
(
−
∫
V (Φ(x, θ, θ̄))f̃(|x|2 + 4θθ̄)dxdθdθ̄

)n〉
χ

Since the distribution f(|x|2 + θθ̄) and θθ̄δ0(dx) are supersymmetric, by Theorem 12 we have

〈(
−
∫
L(Φ(x, θ, θ̄))θθ̄δ0(dx)dθdθ̄

) (
−
∫
V (Φ(x, θ, θ̄))f̃(|x|2 + 4θθ̄)dxdθdθ̄

)n〉
χ
=

= (−4π)n〈L(ϕ(0))(V (ϕ(0))n)〉χ.

And since
∂nt H

χ,L
0 (0) = (−4π)n〈L(ϕ(0))(V (ϕ(0))n)〉χ,

the thesis follows. ✷

Proposition 3 We have that GL0 (t) = HL
0 (t) in

(
− m2

2‖∂2VB‖∞
, m2

2‖∂2VB‖∞

)
.

Proof We need only to prove that Gχ,L0 (t) → Gχ,L0 (t) as χ → 0. Since det2, δ, | · |H are
continuous with respect to the natural norm of H and the Hilbert-Schmidt norm on H ⊗ H
(see [47] Theorem 9.2 for the continuity of det2 and [40] Proposition 1.5.4 for the continuity of
δ), and since exp(−δ(Uχt,0)) is bounded uniformly in Lp (for p small enough) we only have to
prove that, for χ → 0, Uχ1,0(w) → U1,0(w) in H and ∇Uχ1,0(w) → ∇U1,0(w) in H⊗H for almost
every w ∈ W . We present only the proof of the second convergence, the proof of the first one
being simpler and similar.

We have that
∇Uχ1,0(w)[h] = (f∂2VB(Jχw) · Jχh),

28



thus proving the convergence of ∇Uχ1,0(w) in H⊗H is equivalent to proving the convergence of

(m2 −∆)−1−χ to (m2 −∆)−1 in H⊗H and the convergence of f∂2VB(Jχw) to f∂2VB(Iw) in
C0(R2). The first convergence follows from direct computation using the Fourier transform of
this operators. The second convergence follows from the fact that VB is smooth with bounded
derivatives, f decays exponentially at infinity and Jχw converges to Iw pointwise and uniformly
on compact sets since (m2−∆)−χ → idL2 , weakly as bounded operator on L2(R2) and (m2−∆)−1

is a compact operator from L2(R2) into C0
loc(R

2). ✷

Introduce the following equation for φt = φ̄t + Iξ:

(m2 −∆)φ̄t + tf∂VB(φ̄t + Iξ) = 0. (41)

Denote by λ− the infimum on y ∈ Rn over the eigenvalues of the y dependent matrix (∂2VB(y)),
and with λ+ the supremum on y ∈ Rn over the eigenvalues of the same matrix.

For t ∈
(
− m2

|λ+∧0| ,
m2

|λ−∧0|

)
we have that equation (41) has an unique solution that, by the

Implicit Function Theorem, is infinitely differentiable with respect to t when VB ∈ C∞(Rn).
Define the formal series

St(r) :=
∑

n>1

supx∈R2 |∂nt φ̄t(x)|
n!

rn. (42)

Lemma 9 Suppose that VB is a bounded function with all derivatives bounded such that

‖∂nVB‖∞ 6 Cnn!,

where the norm is the one induced by the identification of ∂nVB as a multilinear operator and

for some C ∈ R+, then the r power series St(r) is holomorphic for any t ∈
(
− m2

|λ+∧0| ,
m2

|λ−∧0|

)
.

Furthermore the radius of convergence of St(r) can be chosen uniformly for t in compact subsets

of
(
− m2

|λ+∧0| ,
m2

|λ−∧0|

)
.

Proof We define the following functions

V̄ 1(r) :=
∑

n>0

‖∂n+1V ‖∞
n!

rn, V̄ 2(r) :=
∑

n>0

‖∂n+2V ‖∞
n!

rn.

We have that the partial derivative ∂nt φ̄t solves the following equation

(m2 −∆)∂nt φ̄+ t∂2VB(φ̄t) · ∂nt φ̄t = −∂n−1
t (∂VB(φ̄t) + t∂2VB(φ̄t) · ∂tφ̄t) +

+t∂2VB(φ̄t) · ∂nt φ̄t

Using a reasoning similar to the one of Lemma 1, it is easy to prove that

‖∂nt φ̄t‖∞ 6
‖ − ∂n−1

t (∂VB(φ̄t) + t∂2VB(φ̄t) · ∂tφ̄t) + t∂2VB(φ̄t) · ∂nt φ̄t‖∞
m2 − |t|(λsign(t) ∧ 0)

,

where it is important to note that the right hand side of the previous inequality depends only
on the derivatives of order at most n− 1. The previous inequality and the method of majorants
(see [50]) of holomorphic functions permit to get the following differential inequality for St(r)

(m2 − |t|(λsign(t) ∧ 0)− rV̄ 2(St(r)))∂r(St)(r) 6 V̄ 1(St(r)). (43)
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From the previous inequality we obtain that St(r) is majorized by the holomorphic function
Ft(r) that is the solution of the differential equation (43) (where the symbol 6 is replaced by
=) depending parametrically on t with initial condition Ft(0) = 0. Since Ft(r) is majorized by
Fk(r) or by F−k(r) if |t| 6 k the thesis follows. ✷

Remark 10 An example of potential satisfying the hypotheses of Lemma 9 is given by the
family of trigonometric polynomials in Rn.

Lemma 10 Under the hypotheses of Lemma 9 and supposing that L is an entire function we

have that GL0 (t) = HL
0 (t) for any t ∈

(
− m2

|λ+∧0| ,
m2

|λ−∧0|

)
. In other words the thesis of Theorem 9

holds if λ = 0, VB satisfies Hypothesis C as well as the hypotheses of Lemma 9.

Proof By Proposition 3 we need only to prove that GL0 is real analytic in the required set. By
Corollary 2 we have that

GL0 (t) = E

[
L(Iξ(0) + φ̄t(0))e

4
∫
tVB(Iξ(x)+φ̄t(x))f

′(x)dx
]
.

Then the thesis follows from Lemma 9 and the analyticity of L and of the exponential. ✷

Proposition 4 Under Hypothesis Vλ we have that GLλ (t) = HL
λ (t) for any t ∈

(
− m2

|λ+∧0| ,
m2

|λ−∧0|

)
.

In other words the thesis of Theorem 9 holds if V satisfies Hypothesis C.

Proof By Lemma 10 we know that Theorem 9 holds for any λ = 0 and for any bounded potential
satisfying Hypothesis C and the hypothesis of Lemma 9. Thus if we are able to approximate any
potential V satisfying Hypothesis Vλ and Hypothesis C by potentials of the form requested by
Lemma 10 the thesis is proved.

We can use the methods of the proof of Lemma 4 for approximating a potential V satisfying
Hypothesis Vλ by a sequence of potentials VB,N satisfying the hypothesis of Lemma 9. More in
detail, using the notations of Lemma 4, we have that the sequence of functions V N is composed
by smooth, bounded functions and, if V satisfies Hypothesis Vλ, they are identically equal to N
outside a growing sequence of squares QN ⊂ R2. This means that V N,p, which is the periodic
extension of V N outside the square QN , is a smooth function for any N ∈ N. Since V N,p

is periodic it can be approximated with any precision we want by a trigonometric polynomial
PN . Furthermore since V satisfies Hypothesis C, also V N,p satisfies Hypothesis C and we can
choose the trigonometric polynomial PN satisfying Hypothesis C too. In this way we construct
a sequence of potentials VB,N = PN satisfying the hypotheses of Lemma 9 and converging to V
uniformly on compact sets. Thus the thesis follows from Lemma 2, Lemma 3, Corollary 2 and
the fact that the functions of the form L(Iξ(0)+ φ̄t(0)), where L is an entire function, are dense
in the set of measurable functions in Iξ(0) + φ̄t(0) with respect to the Lp(µ) norm. ✷

4.4 Extension

Lemma 11 Under the Hypothesis Vλ we have det2(I +∇U(w)) ∈ L∞(µ).

Proof We follow the same reasoning proposed in [32] for polynomials. First of all, by the
invariance property of the determinant with respect to conjugation, we have that

det2(I +∇U(w)) = det2(I +O(w))
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where O(w) is the selfadjoint operator given by

Oij(w)[h] = (m2 −∆)−
1
2 (f∂2φiφjV (Iw) · (m2 −∆)−

1
2 h). (44)

Since V satisfies the Hypothesis QC the eigenvalues of the symmetric matrix ∂2V (y) (where
y ∈ Rn) are bounded from below. Furthermore we can write the matrix ∂2V (y) as the difference
of two commuting matrices ∂2V (y) = V+(y) − V−(y) where V+(y), V−(y) are symmetric, they
have only eigenvalues greater or equal to zero and kerV+(y) ∩ kerV−(y) = {0}. We denote by
O+, O− the two operators defined as O in equation (44) replacing ∂2V by V+ and V− respectively.
Obviously O+ and O− are positive definite and O = O+ −O−. By Lemma 3.3 [32] we have that

| det2(I +O(w))| 6 exp(2‖O−(w)‖22).

Using a reasoning similar to the one of Proposition 1 and the fact that, under the Hypothesis Vλ,
the minimum eigenvalue λ(y) of ∂2V (y) has a finite infimum λ

−
that is the same as the one for

V− we obtain
| det2(I +∇U(w))| = | det2(I +O(w))| 6 exp(Cλ0‖f‖22)

for some positive constant C. In particular we have det2(I +∇U(w)) ∈ L∞. ✷

In order to prove that exp(−δ(U)) ∈ Lp we split U into two pieces. First of all if λ(y) is the
minimum eigenvalue of ∂2V (y) we recall that λ− = infy∈Rn λ(y). Moreover we shall set

Ū := U − (λ− ∧ 0)fI(w),

and Û := U − Ū . We also set W := V + λ−

2 |y|2. We introduce a useful approximation of Ū(w)
for proving Theorem 15. Let Pn the projection of an L2(R2) function on the momenta less then
n, i.e.

Pn(h) =

∫

|k|<n

eik·xĥ(k)dk,

where ĥ is the Fourier transform of h defined on R2. We can uniquely extend the operator Pn
to all tempered distributions. In this way we define Un(w) as

Un(w) := Pn[f∂V (IPnw)] (45)

We shall denote by Ūn the expression corresponding to (45) where V is replaced by W .

Lemma 12 Under the Hypothesis Vλ there exist two positive constants C,α independent on
p > 2 and n ∈ N such that

E[|δ(Ūn − Ū)|p] 6 C(p− 1)2pn−α. (46)

Furthermore a similar bound holds also for E[|‖∇Un‖22−‖∇U‖22|p] and E[|‖Iw‖2H−‖Pn(Iw)‖2H|p].

Proof First of all we write Ū = UB + ŪU where UB = f∂VB(Iw), and we consider the
corresponding decomposition for Ūn. If we prove that an inequality analogous to (46) holds for
UB − UB,n and ŪU − ŪU,n separately then the inequality (46) holds.

In order to prove the lemma we use the following inequality (proven in [49] Proposition B.8.1)

E

[
cosh

( √
ρ

2
√
2
δ(K)

)]
6 (E[exp(ρ‖K‖2H)])

1
4 ·
(
E

[
exp

(
ρ

1− ρc
‖∇K‖22

)]) 1
4

(47)
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that holds when ‖∇K‖22 ∈ L∞, ‖∇K‖ 6 c < 1 and 0 6 ρ < 1
2c2 . Putting K = ǭ(UB − UB,n) for

ǭ small enough, since ‖∇(UB,n − UB)‖22, ‖∇(UB,n − UB)‖ ∈ L∞ with a bound uniform in n, we
have that

E[cosh(ǫδ(UB − UB,n))] 6 (E[exp(ǫ′‖UB − UB,n‖2H)])
1
4 · (E[exp(ǫ′‖∇(UB − UB,n)‖22)]), (48)

for suitable ǫ, ǫ′ > 0 and for all n ∈ N. First of all we want to give a bound for the right hand
side of (48) providing a precise convergence rate to the constant 1 of the upper bound for the
right hand side as n→ +∞. We first note that

E[exp(ǫ′‖UB − UB,n‖2H)] =

∞∑

k=1

ǫ′k

k!
E[‖UB − UB,n‖2kH ]. (49)

Using a reasoning like the one in the proof of Proposition 1 we have that

‖UB − UB,n‖2H . ‖∂VB‖2∞‖Qn(f)‖2H + ‖∂2VB‖2∞
∫

R2

(f(x)Qn(Iw)(x))2dx,

where Qn = I−Pn. From the previous inequality and the hypercontractivity of Gaussian random
fields we obtain that

E[‖UB − UB,n‖2kH ] . k

(
‖Qn(f)‖2kH +

∫

R2

f(x)kE[(Qn(Iw)(x))2 ]dx
)

. k‖Qn(f)‖2kH + k(2k − 1)k‖fk‖1E[(Qn(Iw)(x))2 ]k,

where the constants implied by the symbol . do not depend on k. The right hand side converges
then for n → +∞ to 1 as we have announced. Using the Fourier transform, the fact that f
is a Schwartz function, and the fact that Iw is equivalent to a white noise transformed by the
operator (m2 −∆) it is simple to obtain that ‖Qn(f)‖2,E[(Qn(Iw)(x))2 ] . 1

n2 . Then using the
fact that (2k − 1)k . Ck1 k! and inserting the previous inequality in equation (49) we obtain

E[exp(ǫ′‖UB − UB,n‖2)] 6 1 + C3

ǫ′

n2

(
1− C2ǫ′

n2

)2 ,

that holds when ǫ′ > 0 is small enough and for two positive constants C2, C3. Using similar
methods it is possible to prove a similar estimate for E[exp(ǫ′‖∇(UB−UB,n)‖22)]. Inserting these
estimates in the inequality (48), we obtain

E[cosh(ǫδ(UB − UB,n))]− 1 .
ǫ′

n2
, (50)

where the constants implied by the symbol . do not depend on n and on ǫ′, when ǫ′ is smaller
than a suitable ǫ′0 > 0. Using the inequality (50) we obtain that

+∞∑

k,n=1

n1/2ǫ2k

(2k)!
E[(δ(UB − UB,n))

2k] =
+∞∑

n=1

n
1
2 (E[cosh(ǫδ(UB − UB,n))]− 1) .

∞∑

n=1

ǫ′

n
3
2

< +∞.

Since the terms of an absolutely convergent series are bounded we obtain

E[(δ(UB − UB,n))
2k] .

(2k)!

ǫ2kn
1
2

. (2k − 1)4kn− 1
2 .
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Using Young inequality we obtain that the inequality (46) holds for any p > 2. The estimate for
δ(ŪU − ŪU,n) follows from the fact that ŪU is a polynomial of at most third degree and from
hypercontractivity estimates for polynomial expressions of Gaussian random fields.

The result for ‖∇U‖22 − ‖∇Un‖22 can be proved using the same decomposition of U and Un
and following a similar reasoning. The result for E[|‖fIw‖2H − ‖fPn(Iw)‖2H|p] can be proved
using hypercontractivity for polynomial expressions of Gaussian random fields. ✷

In the following we write cn = Tr(Pn ◦ I). It is important to note that

cn =

∫

|x|<n

1

|x|2 +m2
dx . log(n),

where the integral is taken on the ball |x| < n on R2.

Lemma 13 There exists a λ0 > 0 depending only on f and m2 such that for any 0 < λ < λ0
and V satisfying the Hypothesis Vλ there exist some constants α,C1, C2 > 0 such that

δ(Ūn)−R

∫

R2

f(PnIw)2dx− ‖∇Un‖22 > −C1 − C2c
α
n

for any R ∈ R+.

Proof If Tr(|∇K|) < +∞ and K ∈ W we have that δ(K) = 〈K,w〉H − Tr(∇K). Using this
relation we obtain that

δ(Ūk) =

n∑

i=1

(∫

R2

Pk(f∂φiW (PkIw))(x)wi(x)dx − TrL2(Pk(f∂
2
φiφiW (PkIw) · Pk(m2 −∆)))

)
.

From this we obtain the lower bound
∫

R2

Pk(f∂φiW (PkIw))widx =

∫

R2

f∂φiW (PkIw)(m2 −∆)(PkIwi)dx

=

∫

R2

f∂φiW (Iwk)(m2 −∆)(Iwik)dx

=

∫

R2

f∂φiφrW (Iwk)∇Iwik · ∇Iwrkdx+

−
∫

R2

(∆f)W (Iwk)dx+m2

∫

R2

fIwik∂φiW (Iwk)dx

>

∫

R2

f(m2Iwik∂φiW (Iwk)− b2W (Iwk))dx

On the other hand we have

TrL2(Pk(f∂
2
φiφiW (Iwk) · Pk(m2 −∆))) = cn

∫

R2

∂2φiφiW (Iwk)fdx

6
cpn
p

+
1

q

∫

R2

(∂2φiφiW (Iwk)(Iwk))qfdx,

where 1
q +

1
p = 1 and q < 2. Furthermore we have that

‖∇Uk‖22 6

∫

R2

1

(|x|2 +m2)2
dx

∫

R2

(∂2φiφiV (Iwk))2fdx = ℓ

∫

R2

(∂2φiφiV (Iwk))2fdx,
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where ℓ =
∫
R2

1
(|x|2+m2)2dx. Using the previous inequality we obtain that

δ(Ūn)−R

∫

R2

f |Iwk|2dx− ‖∇Un‖22

> −c
p
n

p
+

∫

R2

f(m2Iwik∂φiW (Iwk)− b2W (Iwk))dx +

−
∫

R2

f

(
(∂2φiφiW (Iwk))q

q
+ ℓ(∂2φiφi(V )(Iwk))2 +R|Iwk|2

)
dx

It is simple to see that there exists a λ0 > 0 (depending only on b2 and m2) such that for any
potential V satisfying the Hypothesis Vλ with λ < λ0 the expression

m2yik∂φiW (y)− b2W (y)−
(∂2φiφiW (y))q

q
− ℓ(∂2φiφiV (Iwk))2 −R|y|2

is bounded from below and thus the thesis of the lemma holds. ✷

Lemma 14 Given a p ∈ [1,+∞)there is a R > 0 big enough such that

exp

(
−δ(Û)−R

∫

R2

f(x)|Iw(x)|2dx
)

∈ Lp(µ).

Proof This lemma is proven in [32] Lemma 3.2. ✷

Lemma 15 Suppose that f satisfies the Hypotheses CO, then there exists λ0 > 0 depending only
on f and m2 such that for any λ < λ0 and any V satisfying the Hypothesis Vλ we have that

exp(−δ(U) + (1 + ‖∇U‖22)) ∈ Lp(µ)

for any p ∈ [1,+∞).

Proof The thesis follows from Lemma 11, Lemma 12, Lemma 13 and Lemma 14 using a
standard reasoning due to Nelson (see Lemma V.5 of [46]) due to the fact that from the previous
results it follows that there exist two constants α, β > 0 independent on N such that

µ({w ∈ W|δ(UN )(w) > β(log(N))}) 6 e−N
α

.

✷

Proof of Theorem 9 By Proposition 4 in order to prove the theorem it remains only to prove
that GLλ (t) is real analytic for any t ∈ R. The proof of this fact easily follows from Lemma 15
exploiting a reasoning similar to the one used in Lemma 7. ✷

5 Removal of the spatial cut-off

In this section we prove Theorem 3 on the removal of the spatial cut-off in the setting of Hy-
pothesis C. It is important to note that, differently from Theorem 8, we explicitly require that
the potential V satisfies Hypothesis C and not only Hypothesis QC. This is not due to prob-
lems in proving the existence of solutions to equation (10) or in proving the convergence of the
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cut-offed solution to the non-cut-offed one without the Hypothesis C (see Lemma 16). The main
difficulty is instead to prove the convergence of Υf (φ)/Zf to 1. Indeed the previous factor does
not actually converge and what we can reliably expect is that

lim
f→1

Z−1
f E[Υf (φf )|σ(φf (0))] → 1, (51)

where hereafter φf denotes the solution to the equation (6) with cut-off f , i.e. Υf (φf )/Zf
becomes independent with respect to the σ-algebra generated by φf (0).

To prove (51) directly is quite difficult due to the non-linearity of the equation or equivalently
to the presence of the regularized Fredholm determinant in the expressions (23) and (22) (which
is a strongly non-local operator). For this reason we want to exploit a reasoning similar to the
one used in Section 4. With this aim we introduce the equation

(m2 −∆)φf,t + tf∂V (φf,t) = ξ (52)

and the functions
FLf (t) := Z−1

f E

[
L(φf,t(0))e

4t
∫
R2
f ′(x)V (φf,t(x))dx

]
,

where t is taken such that t∂2V (y) +m2, and FL(t) = E[L(φt(0))] (where φt is the solution to
(52) with f ≡ 1). By Lemma 9 (whose proof does not use in any point the cut-off f) FL(t)
is real analytic whenever V is a trigonometric polynomial, t∂2V (y) +m2 is definite positive for
any y ∈ Rn and L is an entire bounded function. Furthermore, by Theorem 8, FLf (t) = HL(t)

(where HL(t) =
∫
L(y)dκt(y), see Section 4) which is real analytic. Thus if we are able to prove

that limf→1 ∂
n
t F

L
f (0) = ∂nt F

L(0) we have that HL(t) = FL(t) whenever t∂2V +m2 is definite
positive proving that Theorem 3 when V is a trigonometric polynomial satisfying Hypothesis C.
The idea, then, is to apply a generalization of Lemma 2, Lemma 3, Lemma 4 and the reasoning
in the proof of Proposition 4 and in the proof of Theorem 8 in order to obtain Theorem 3.

Remark 11 Hypothesis C is required in an essential way in the proof of the holomorphy of
FL(t), in particular in Lemma 9. The fact that the cutoff is removed does not allow to reason
by approximation as we did in Theorem 9.

Since the proof is composed by many steps which are a straightforward generalization of the
results of the previous sections of the paper, we write here only some details of the parts of the
proof of Theorem 3 which largely differ from what has been obtained before.

Hereafter we denote by ωβ(x) the function

ωβ(x) := exp(−β
√
(1 + |x|2))

and introduce the space Wβ where β > 0 in the following way

Wβ := (−∆+ 1)C0
expβ(R

2;Rn),

where C0
exp β is the space of continuous function with respect to the weighted L∞ norm

‖g‖∞,expβ := sup
x∈R2

|ωβ(x)g(x)|.

The triple (Wβ ,H, µ) is an abstract Wiener space. We introduce the obvious generalization of
equation (15)

(m2 −∆)φ̄ + ∂V (φ̄+ Iξ) = 0, (53)
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where φ̄ = φ− Iξ.
Now we want to prove a result that can replace Lemma 1. Indeed Lemma 1 plays a central

role in the previous sections of the paper, allowing to prove the existence of strong solutions to
equation (6), the characterization of weak solutions in Theorem 6 and Theorem 7 and finally al-
lowing to show the convergence of weak solutions using the convergence of potentials in Lemma 2,
Lemma 3.

Lemma 16 Suppose that V satisfies the Hypothesis QC and suppose that φ̄ is a classical solution
to equation (53), then there exists a β0 depending only on m2 such that, for any β < β0

‖φ̄‖∞,expβ . ‖ exp(α|Iξ|)‖∞,exp β , (54)

where ‖ exp(α|Iξ|)‖∞,exp β is almost surely finite and the constants implied by the symbol .

depend only on H and m2. Furthermore for any U open and bounded we have

‖φ̄‖C2−τ (U) . ‖ exp(αp|Iξ|)‖Uǫ,∞ exp(αp‖φ̄‖∞,expβ‖ω−1
β ‖Uǫ,∞) (55)

where Uǫ := {x ∈ R2|∃y ∈ U, |y − x| 6 ǫ} and ǫ > 0.

Proof The proof is very similar to the proof of Lemma 1. We report here only the passages
having the main differences. For any ǫ > 0 there is a βǫ > 0 and for any β < βǫ we have

∣∣∣∣
∆(ω2β(x))

ω2β(x)
− |∇ω2β(x)|2

ω4β(x)

∣∣∣∣ < ǫ, x ∈ R
2.

Without loss of generality (using the result of Lemma 1) we have that limx→∞ |φ̄(x)|2ω2β(x) = 0
and so x 7→ |φ̄(x)|2ω2β(x) has a positive maximum at x̄ ∈ R2. This means that −∆(|φ̄|2ω2β)(x̄) >

0 and ∇φ̄ = − φ̄
2ω2β

∇ω2β we have that

(m2 − ǫ)|φ̄(x̄)|2ω2β(x̄) 6
−∆(|φ̄|2ω2β)(x̄)

2
+m2|φ̄(x̄)|2ω2β(x̄)

6 −ω2β(x̄)(φ̄(x̄) · ∂V (Iξ(x̄) + φ̄(x̄))).

Using a reasoning similar to the one of Lemma 1 the thesis follows. ✷

Since the bounds (54) and (55) in C0
exp β and C2−τ

loc imply the compactness in C0
exp β′ when β′ <

β, Lemma 16 permits to prove the existence of strong solutions to equation (10), their unique-
ness when V satisfies Hypothesis C and the generalization of Lemma 2, Lemma 3, Lemma 4,
Proposition 4 and Theorem 8 needed in order to prove Theorem 3.

At this point the proof of Theorem 3 requires only the following additional statement.

Theorem 13 Let V be a trigonometric polynomial, let L be a polynomial and let fr be a sequence
of cut-offs satisfying Hypothesis CO, such that fr ≡ 1 on the ball of radius r ∈ N and such that
f ′
r(x) 6 C1 exp(−C2(|x| − r)) for some positive constants C1,C2 ∈ R+ independent on r, then

∂kt H
L(0) = lim

r→+∞
∂kt F

L
fr (0) = ∂kt F

L(0).

To make the proof easy to follow we restrict ourselves to the scalar case, i.e. the case where
n = 1. The general case is a straightforward generalization. We will also need certain results
about iterated Gaussian integrals. So let us introduce first some notations.
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We denote by T the set of rooted trees with at least a external vertex which is not the root.
We denote by τ0 the tree with only one vertex other than the root. In this set we introduce
two operations: if τ ∈ T we denote by [τ ] the tree obtained from τ by adding a new vertex at
the root which becomes the new root, and if τ ′ ∈ T we denote by τ · τ ′ the tree obtained by
identifying the root of τ and τ ′. It is possible to obtain any element of T by applying iteratively
a finite number of times the previous operations to τ0. Furthermore we define Ifτ (x) ∈ C0(R2)
by induction in the following way

Ifτ0(x) := Iξ, If[τ ](x) :=
∫

R2

G(x − y)f(y)Ifτ (y)dy, Ifτ ·τ ′(x) := Ifτ (x) · Ifτ ′(x),

where G(x) is the Green function of the operator I = (m2 −∆)−1. We need also to introduce
the following notation. Suppose that τ, τ ′ ∈ T and let Pτ,τ ′ be the set of all possible pairing
between the external vertices (excepted their roots) of the forest τ ⊔ τ ′ and let P int

τ,τ ′ ⊂ Pτ,τ ′ the
set of all possible pairing involving separately the vertices of τ and τ ′. If π ∈ P we write

I
π,f
τ,τ ′(x, y) = E[Ĩπ,fτ (x) · Ĩπ,fτ ′ (y)],

where Ĩπ,fτ (x), Ĩπ,fτ ′ (y) are the expression Ifτ (x) where ξ is replaced by some copies of Gaussian
white noises ξV one for each vertex V of τ and τ ′ which have correlation 0 if (V, V ′) 6 ∈π and
are identically correlated otherwise.

Lemma 17 With the notations and the hypotheses of Theorem 13 we have that for any τ, τ ′ ∈ T

lim
r→+∞

(
E

[
Ifrτ (0) ·

p∏

i=1

∫
f ′
r(x)Ifrτi (x)dx

]
− E[Ifrτ (0)] · E

[
p∏

i=1

∫
f ′
r(x)Ifrτi (x)dx

])
= 0.

Proof We present the proof only for the case p = 1, since the general case is a straightforward
generalization. Since Ifrτ are Gaussian random variables depending polynomially with respect
to the white noise ξ, using the notation previously introduced we have

E

[
Ifrτ (0) ·

∫
f ′
r(x)Ifrτ ′ (x)dx

]
− E[Ifrτ (0)] · E

[∫
f ′
r(x)Ifrτ ′ (x)dx

]
=

=
∑

π∈Pτ,τ′\Pint

τ,τ′

∫

R2

I
π,fr
τ,τ ′ (0, x)f

′
r(x)dx.

Let us consider the simplest case when τ = τk := [. . . [τ0] . . .] k times and τ ′ = τk′ = [. . . [τ0] . . .]
k′ times. In this case we have

I
π,fr
τ,τ ′ (0, x) =

∫
G(0 − y1)fr(y1) . . .G(yk − x1)G(x1 − x2)×

×fr(x2) . . . fr(xk′ )G(xk′ − x)dy1 · · · dykdx1 · · · dxk.
In particular, since C(x) = G ∗ G, which is the Green function of I2 = (m2 −∆)−2, is bounded
and positive, and since G is positive we obtain that

|Iπ,frτ,τ ′ (0, x)| 6 G∗ . . . ∗G︸ ︷︷ ︸
k+k′ times

(0− x) =

∫

R2

e−il·x

(|l|2 +m2)k+k′
dl.
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Thus we get

|Iπ,frτ,τ ′ (0, x)| · (|x|2 + 1) 6

∣∣∣∣
∫

R2

(−∆l + 1)
e−il·x

(|l|2 +m2)k+k′
dl.

∣∣∣∣ 6 C3,

where C3 ∈ R+. Thus

∫

R2

I
π,fr
τ,τ ′ (0, x)f

′
r(x)dx 6

∫

Bc
r

C3

(|x|2 + 1)
C1 exp(−C2(|x| − r))dx .C1,C2,C3

1

r2 + 1
→ 0.

For the general case let us note that Iπ,frτ,τ ′ (0, x) is built by taking the product and the convolution
with the functions G, fr and C = G∗G. We note that C appears one time for every pair of vertices
(V1, V2) ∈ π. Then, since π 6 ∈P int

τ,τ ′ there is at least a couple (V, V ′) ∈ π such that V is a vertex
of τ and V ′ is a vertex of τ ′. Now we can bound the function C with a constant C4 for all pairs
of vertices (V1, V2) 6 =(V, V ′) and fr by 1 obtaining, for any x ∈ R2, that

I
π,fr
τ,τ ′ (0, x) . Ck14 I

fr
τk2 ,τk3

(0, x)

for some k1, k2, k3 ∈ N. The thesis follows from the previous inequality and the bounds obtained
on I

fr
τk2 ,τk3

(0, x). ✷

Proof of Theorem 13 We write

Lfr (t) := L(φfr ,t(0)) Efr (t) := exp

(
4t

∫

R2

f ′
r(x)V (φfr ,t(x))dx

)
.

We have

∂kt F
L
fr (t) =

∑

06l6k

(
k

l

)
E

[
L
(k−l)
fr

(0) ∂lt

(
Efr (t)

E[Efr (t)]

)∣∣∣∣
t=0

]

= E[L
(k)
fr

(0)] +
∑

16l6k

∑

06p6l−1

(
k

l

)(
l

p

)
(E[L

(k−l)
fr

(0) · E(l−p)
fr

(0)] +

−E[L
(k−l)
fr

(0)]E[E
(l−p)
fr

(0)]) · ∂pt
(

1

E[Efr (t)]

)∣∣∣∣
t=0

,

where we used the Leibniz rule for the derivative of the product and the relation

∂lt

(
1

E[Efr (t)]

)∣∣∣∣
t=0

= −
∑

06p6l−1

(
l

p

)
E[E

(l−p)
fr

(0)] · ∂pt
(

1

E[Efr (t)]

)∣∣∣∣
t=0

.

Since ∂pt

(
1

E[Efr (t)]

)∣∣∣
t=0

is bounded from above and below when r → +∞ if we are able to

prove that E[L
(k)
fr

(0)] → ∂kt F
L(0) and E[L

(k−l)
fr

(0) · E(l−p)
fr

(0)]− E[L
(k−l)
fr

(0)]E[E
(l−p)
fr

(0)] → 0 the
theorem is proven.

First of all we note that

(m2 −∆)∂kt φfr ,t|t=0 = kfr∂
k−1
t (V (φfr ,t))|t=0 (56)

for k > 0 and φfr ,0 = Iξ for k = 0. This means that L
(k−l)
fr

(0),E
(l−p)
fr

(0) are given by a finite
combination of convolutions and products between the function G (i.e. the Green function of I),
the functions of the form V (l)(φfr ,0) (where V

(l) is the l-th derivative of V ), the cut-off fr and
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f ′
r. Since V is a trigonometric polynomial, by developing V and its derivative by Taylor series,
we obtain the following formal expressions

L
(k)
fr

(0) =
∑

τ∈T

AkτIfrτ (0), E
(k)
fr

(0) =
∑

l

∑

τ1,...,τl∈T

Bk,l(τ1,...,τl)

l∏

i=1

∫

R2

f ′
r(x)Ifrτi (x)dx. (57)

The previous series are not only formal but they are actually absolutely convergent series. Fur-
thermore we can change the integral, the expectation and the limit with the series.

In order to prove this we now note that there exist two positive constants C,α > 0 such that
the function V is majorized (in the meaning of the majorants method) by C exp(αx) and let

L̃ be the polynomial which majorizes the polynomial L. We now consider L̃fr (t) = L̃(φfr ,f (0))

and Ẽfr (t) =
(
tC
∫
R2 f

′
r exp(αφfr ,t(x))dx

)
. For what we said, L̃

(k)
fr

(0) and Ẽ
(p)
fr

(0) are a finite

combination of convolutions and products between G, the functions of the form V (l)(φfr ,0) (where

V (l) is the l-th derivative of V ), the cut-off fr and f ′
r. Let L̂

k
fr

and Ê
k
fr

be some random

variables having the same expression of L̃
(k)
fr

(0) and Ẽ
(p)
fr

(0) where we replace every appearance
of V (φfr ,0(x)) by C exp(α|φfr ,0(x)|), every appearance of V ′(φfr ,0(x)) with Cα exp(α|φfr ,0(x)|)
and so on. We introduce the following functions dependent on τ ∈ T and defined recursively as
follows

J fr
τ0 (x) := |Ifrτ0 (x)| J fr

[τ ](x) :=

∫

R2

G(x− y)fr(y)J fr
τ (y)dy J fr

τ ·τ ′(x) := J fr
τ (x) · J fr

τ ′ (x).

We, then, obtain that

L̂
(k)
fr

=
∑

τ∈T

ÂkτJ fr
τ (0) Ê

(k)
fr

=
∑

l

∑

τ1,...,τl∈T

B̂k,l(τ1,...,τl)

ll

i=1

∫

R2

f ′
r(x)J fr

τi (x)dx.

By our construction we have that Âkτ , B̂
k,l
τ,i are all greater or equal than zero and also the following

inequalities hold |Akτ | 6 Âkτ , |Bk,l(τ1,...,τl)
| 6 B̂k,l(τ1,...,τl)

. Furthermore we have |Ifrτ (x)| 6 J fr
τ (x).

Finally E[|L̂(k)
fr

|p],E[|Ĝ(k)
fr

|p] are finite for any p, since the x1, . . . , xl function

E

[
exp

(
βα

l∑

i=1

|φfr ,0(xi)|
)]

6 +∞,

for any β > 0. Since G is positive the bounds on E[|L̂(k)
fr

|p],E[|Ĝ(k)
fr

|p] can be chosen uniformly
on r. This implies that the series (57) are absolutely convergent and by Lebesgue’s dominate
convergence theorem we can exchange the series with the summation and the limit. This means
that

limr→+∞ E[L
(k)
fr

(0) · E(l)
fr
(0)]− E[L

(k)
fr

(0)]E[E
(l)
fr
(0)] =

= limr→+∞
∑
l∈N

∑
τ,τ1,...,τl∈T A

k
τB

k,l
(τ1,...,τl)

(
E

[
Ifrτ (0) ·∏l

i=1

∫
f ′
r(x)Ifrτi (x)dx

]
+

−E[Ifrτ (0)] · E
[∏l

i=1

∫
f ′
r(x)Ifrτi (x)dx

])
=

=
∑

l∈N

∑
τ,τ1,...,τl∈T A

k
τB

k,l
(τ1,...,τl)

limr→+∞

(
E

[
Ifrτ (0) ·∏l

i=1

∫
f ′
r(x)Ifrτi (x)dx

]
+

−E[Ifrτ (0)] · E
[∏l

i=1

∫
f ′
r(x)Ifrτi (x)dx

])
= 0,
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where in the last line we used Lemma 17. In a similar way it is simple to prove that

E[L
(k)
fr

(0)] → ∂kt F
L(0),

and this concludes the proof. ✷

A Transformations in abstract Wiener spaces

This appendix summarizes the results of [49] which are used in the paper and establish the related
notations. Hereafter we consider an abstract Wiener space (W,H, µ) where W is a separable
Banach space, H is an Hilbert space densely and continuously embedded in W (with inclusion
map denoted by i : H → W ) called Cameron-Martin space and µ is the Gaussian measure on
W associated with the Cameron-Martin space, i.e. µ is the centered Gaussian measure on W

such that for any w∗ ∈ W ∗ we have µ̂(w∗) =
∫
W

exp(i〈w∗, w〉)dµ(w) = exp
(
− ‖i∗(w∗)‖2

H

2

)
where

i∗ :W ∗ → H is the dual operator of i.
If u :W → R is a measurable non-linear functional we denote by ∇u :W → H the following

non-linear operator

∇u(w)[h] = 〈∇u(w), h〉H := lim
ǫ→0

u(w + ǫh)− u(w)

ǫ
.

The operator ∇ is called Malliavin derivative and it is possible to prove that it is closable
(with unique closure) on the set of measurable Lp(µ) functions. We denote the domain of ∇
in Lp(µ) by Dp,1. The previous operation can be extended for functional u : W → H⊗k where
∇u :W → H⊗k+1 with its natural topology. Also this extension of the operator ∇ is closable.

If the measurable non-linear operator F : W → H , where |F |H ∈ Lp(µ), is such that
E[〈F,∇u〉H ] = E[F̃ u] for some F̃ ∈ Lp(µ), we say that F is in the domain of the operator δ
and we denote by δ(F ) = F̃ ∈ Lp(µ) the Skorokhod integral of the measurable operator F . The
following expression for δ(F ) used in the following holds: suppose that F (w) ∈ i∗(W ) and that
∇F (w) is a trace class operator on H for µ almost every w ∈W then

δ(F )(w) = 〈i∗,−1(F (w)), w〉 − Tr(∇F (w)). (58)

We introduce a definition for studying the random transformations defined on abstract Wiener
spaces.

Definition 2 Let U : W → H be a measurable map. We say that U is a H − C1 map if for µ
almost every w ∈ W the map Uw : H → H, defined as h 7−→ Uw(h) := U(w + h), is a Fréchet
differentiable function in H and if ∇Uw : H → H⊗2, defined as h 7−→ ∇Uw(h) := ∇U(w + h)
where ∇ is the Malliavin derivative, is continuous for almost every w ∈ W and with respect to
the natural (Hilbert-Schmidt) topology of H⊗2.

We introduce the shift T : W → W associated with U , i.e. the map defined as T (w) =
w + U(w), and the non-linear functional ΛU :W → R as follows

ΛU (w) = det2(IH +∇U(w)) exp

(
−δ(U)(w) − 1

2
|U(w)|2H

)
, (59)

where det2(IH + ·) is the regularized Fredholm determinant (see [47] Chapter 9) at it is well
defined for any Hilbert-Schmidt operator K. In particular if K is self adjoint we have

det2(I +K) =
∏

i∈N

(1 + λi)e
−λi ,
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where λi are the eigenvalues of the operator K.
Suppose that U(w) ∈ i∗(W ) and that ∇U(w) is a trace class operator for almost any w ∈ W ,

then using the expression (58) and the properties of det2 we obtain

ΛU (w) = det(IH +∇U(w)) exp

(
−〈i∗,−1(U(w)), w〉W − 1

2
|U(w)|2H

)
, (60)

where det(IH + ·) is the standard Fredholm determinant. The functional ΛU is closely related
to the transformation of the measure µ with respect the transformation T . Indeed suppose that
W is finite dimensional then we have

dµ = exp

(
−1

2
〈w,w〉H

)
dx

Z
= exp

(
−1

2
〈i∗,−1(w), w〉W

)
dx

Z
,

where Z ∈ R+ is a suitable renormalization constant and dx is the Lebesgue measure on W .
Thus, if T is a diffeomorphism on W , we evidently have, thanks to equation (60),

T∗(µ) =

∣∣∣∣det(I +∇U(w)) exp

(
−〈i∗,−1(U(w)), w〉W − 1

2
〈i∗,−1(U(w)), U(w)〉W

)∣∣∣∣ = |ΛU (w)|.

The previous relation can be extended to the case where W and H are infinite dimensional and
the transformation T is not a diffeomorphism but it is only a H − C1 map.

First of all we need the following generalization to the abstract Wiener space context of the
finite dimensional Sard Lemma.

Proposition 5 Let T be a H−C1 map and letM ⊂ W be the set of the zeros of det2(I+∇U(w))
then the µ measure of the set T (M) is zero, i.e. µ(T (M)) = 0.

Proof See Theorem 4.4.1 [49]. ✷

The following is the change of variable theorem for (generally not invertible) H −C1 maps.

Theorem 14 Let T be an H − C1 map and let be f, g two positive measurable functions then

∫

W

f ◦ T (w)g(w)|ΛU |dµ(w) =
∫

W

f(w)




∑

y∈T−1(w)

g(y)


 dµ(w). (61)

In particular if K ⊂W is a measurable subset where T |K is invertible we
∫

K

f ◦ T (w)|ΛU |dµ(w) =
∫

T (K)

f(w)dµ(w).

Proof See Theorem 4.4.1 [49]. ✷

In order to prove Theorem 9, and so the relationship between the weak solutions to equa-
tion (6) and the integrals with respect to the signed measure ΛUdµ, it is not enough to consider
Theorem 14 but we need a relationship analogous to (61) with |ΛU | replaced by ΛU . In order to
achieve this result we need some more hypotheses on the map U :

Hypothesis DEG1 The map U : W → H →֒ W is a Fréchet differentiable map from W into
itself and furthermore it is C1 with respect to the usual topology of W ;

Hypothesis DEG2 The map T is proper (i.e. inverse images of compact subsets are compact)
and the equation T−1(y) = w has a finite number of solution y for µ almost every w ∈ W .
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Under the Hypothesis DEG1 and DEG2 we can define the following number

DEG(w, T ) :=
∑

y∈T−1(w)

sign(det2(IW +∇U(y))).

This index is a suitable modification of the Leray-Schauder degree of a Fredholm non-linear
operator described, for example, in [10] Section 5.3C, where the following definition is given: if
B is a bounded set of W such that T−1(w) ∩ ∂B = ∅ and ∇T (y) 6 =0 for y ∈ T−1(w) ∩ B we
have

DEGB(w, T ) =
∑

y∈T−1(w)

(−1)(number of egative eigenvalues of ∇T (y)).

It is evident that under the Hypothesis DEG2 and, as a consequence of Proposition 5, we have

lim
B→W

DEGB(w, T ) = DEG(w, T )

for almost all w ∈ W .

Theorem 15 Under the Hypotheses DEG1 and DEG2 we have that DEG(w, T ) is µ almost
surely equal to the constant DEG(T ) ∈ Z independent on w and for any f bounded function such
that f ◦ T · ΛU ∈ L1(µ) we have

∫

W

f ◦ T (w)ΛU (w)dµ(w) = DEG(T ) ·
∫

W

f(w)dµ(w).

Proof The proof can be found in [49] Theorem 9.4.1 and Theorem 9.4.6. ✷

In general is not simple to compute DEG(T ) but this computation simplified under the
following Hypothesis:

Hypothesis DEG3 The map Tǫ(w) = w+ ǫU(w) has bounded level set uniformly in ǫ ∈ [0, 1],
i.e. if B ⊂W is bounded ∪ǫ∈[0,1]T

−1
ǫ (B) is a bounded set in W .

Theorem 16 Under the Hypotheses DEG1, DEG2 and DEG3 we have that, fro any ǫ ∈ [0, 1]:

DEG(T ) = DEG(w, T ) = DEG(w, Tǫ) = 1.

Proof The proposition follows from the invariance of DEGB under homotopies of the operator
T . In other words for any B such that T−1

ǫ (w) ∩ ∂B = ∅ we have DEGB(w, Tǫ) = DEGB(w, T ).
Under the Hypothesis DEG3 we can choose B big enough such that DEGB(w, Tǫ) = DEG(w, Tǫ)
for any ǫ ∈ [0, 1]. Since DEG(w, T0) = DEG(w, idW ) = 1 the thesis follows. ✷
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