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Abstract. We study approximation and integration problems and compare the quality of
optimal information with the quality of random information. For some problems random
information is almost optimal and for some other problems random information is much
worse than optimal information. We prove new results and give a short survey of known
results.

1. Introduction

Optimal algorithms use optimal information about the problem instances. Quite often,
we do not have access to optimal information. One reason may be that we do not know how
to choose the most significant measurements. In this paper, we assume that information
comes in randomly, which is a standard assumption in learning theory and uncertainty
quantification. We ask the following question:

What is the typical quality of random information?

Of course, random information cannot be better than optimal information. In many cases,
however, it will turn out that random information is practically as good as optimal infor-
mation while in other situations random information is a little worse. Sometimes, random
information is completely useless.

To phrase our question precisely, we need to clarify how we measure the quality of
information and what we mean by random. The first is done with the so-called radius
of information, which is the worst case error of the best algorithm that uses nothing but
the given information and the a priori knowledge about the problem instance. Random
information, on the other hand, shall be obtained from a certain number of independent
measurements that all follow the same law. We study the question for two different natural
choices of uniform distributions.

Let us go a little more into detail. A linear problem is given by a linear solution operator
S that maps from a convex and symmetric subset F of a normed space to a normed space G
and a class Λ of continuous linear functionals on F , the class of admissible measurements.
We may think of an integration problem, where S(f) is the integral of a function f , or a
recovery problem, where S is an embedding. One wants to approximate the solution S(f)

for unknown f ∈ F based on n of these measurements such that we can guarantee a small
error with respect to the norm in G. We refer the reader to [29, 36] for a detailed exposition.
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An information mapping has the form

(1) Nn : F → Rn, Nn(f) =
(
L1(f), . . . , Ln(f)

)
,

where L1, . . . , Ln ∈ Λ. The power or quality of the information mapping is measured by the
radius of information. This is the worst case error of the best algorithm An = ϕ ◦Nn based
on this information, i.e.,

(2) r(Nn) = inf
ϕ:Rn→G

sup
f∈F
‖S(f)− ϕ(Nn(f))‖G .

We say that information is optimal, and write N∗n instead of Nn, if

(3) r(N∗n) = inf
Nn

r(Nn).

Here we study random information of the form (1), where the random functionals L1, . . . , Ln ∈
Λ are independent and identically distributed. The goal is to compare

r(N∗n) vs. E[r(Nn)],

the radius of optimal information and the expected radius of random information.
If the infimum and the expected value are comparable, this means that there are many

good algorithms based on many different information mappings. In this case, optimal in-
formation and therefore optimal algorithms are not very special. On the other hand, if the
infimum is significantly smaller than the expected value, this means that optimal informa-
tion is indeed special. It seems to be an interesting characteristic of a problem whether
optimal information is special or not. Of course, the results of our comparisons heavily
depend on the distribution underlying the measurements. While the question may be inter-
esting for many distributions, we feel that there often is a natural choice. If the distribution
only depends on the class Λ of admissible measurements, collecting random information
might even be a good idea if optimal information is available. It may happen that we do
not loose much in terms of the radius but gain the following useful properties:

• Since the distribution is independent of n, it is easy to increase the number of
measurements if our current approximation is not yet satisfactory.
• The information can be used for many different input classes F , solution operators
S, and target spaces G. In that sense it is universal.

The second property does not mean that the corresponding algorithm An = ϕ ◦ Nn is
universal. The optimal choice of ϕ may depend on F , S, and G. It is well known, see again
[36], that any interpolatory algorithm is optimal up to a factor two.

We note that examples of the sort ‘random information is good ’ can be deduced from
work using the probabilistic method to prove upper bounds of r(N∗n). Here one uses upper
bounds of E[r(Nn)] and the trivial inequality r(N∗n) ≤ E[r(Nn)], see [17, 29, 31, 32, 33] for
many such results. The idea is to introduce a random family of algorithms and to show
that the expected worst case error is small. This is used to obtain the existence of good
algorithms. However, it actually implies that most of the algorithms in that family are good.
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Therefore, the expected radius of the random information underlying these algorithms must
be small as well. We note that for this approach only upper bounds of E[r(Nn)] are needed
and lower bounds are usually not studied.

2. Uniformly distributed function evaluations

If the input class F consists of functions, one natural restriction of the class of information
functionals is so called standard information consisting of function evaluations. Moreover, if
the domain of definition of functions in F carries a probability measure, a natural source of
random information are function values f(x) with x distributed according to the probability
measure. In this section, we analyze this setting for different input classes F of smooth
functions defined on the unit cube [0, 1]d. Then the random information consists of function
values f(x) with x uniformly distributed in [0, 1]d.

2.1. Integration and Approximation in univariate Sobolev spaces of smoothness
1. We consider the Lq-approximation problem

APP: W 1
p ([0, 1])→ Lq([0, 1])

given by APP(f) = f using function values as information. The Sobolev spaces W 1
p ([0, 1])

are usually normed by
‖f‖W 1

p ([0,1])
:=
(
‖f‖pp + ‖f ′‖pp

)1/p
.

It is well known that the optimal information is given by

N∗n(f) =
(
f(1/n), f(3/n), . . . , f((2n− 1)/n)

)
,

i.e., point evaluations at equidistant points. The minimal radius of information then satisfies

r(N∗n) � n−1+(1/p−1/q)+ ,

see (6).
Here and later we use asymptotic notation as follows. For sequences (an) and (bn) of

positive real numbers, we write an 4 bn and bn < an to indicate that there exists a constant
C ∈ (0,∞) such that an ≤ C bn for all n. We shall write an � bn if an 4 bn and bn 4 an.
Sometimes we use similar notation for double sequences.

We will show that information given by n independent and uniformly distributed points
in [0, 1] is as good as optimal information provided that p > q, whereas in the case p ≤ q

there is a loss of a logarithmic factor.

Theorem 1. Consider Lq-approximation of functions from W s
p ([0, 1]) with 1 ≤ p, q ≤ ∞,

using function values at uniformly distributed points in [0, 1].

E[r(Nn)] �


r(N∗n) � n−1 if p > q

r(N∗n/ logn) �
(

n
logn

)−1+1/p−1/q
if p ≤ q.
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The proof of Theorem 1 is based on the following formula for the radius of information
r(Nn) for information Nn(f) =

(
f(x1), f(x2), . . . , f(xn)

)
, where we assume 0 = x0 ≤ x1 ≤

· · · ≤ xn ≤ xn+1 = 1.

Lemma 2.

r(Nn) �


(

n∑
i=0

(xi+1 − xi)(pq+p−q)/(p−q)
)1/q−1/p

if p > q

max
0≤i≤n

(xi+1 − xi)1−1/p+1/q if p ≤ q.

Proof. Note that in this case the radius of information satisfies

r(Nn) � sup
f∈W 1

p ([0,1])

Nn(f)=0

‖f‖q
‖f‖W 1

p

,

with an equivalence constant of at most 2, see [29, Section 4.2]. We start with the lower
bound in the case p ≤ q. Let i0 ∈ {0, 1, . . . , n} be such that

` = xi0+1 − xi0 = max
0≤i≤n

(xi+1 − xi)

and consider a continuous piecewise linear function f : [0, 1]→ R that is zero outside of the
interval (xi0 , xi0+1), satisfies f ′(x) = 1 in the left half of this interval and f ′(x) = −1 in the
right half. Then

Nn(f) = (0, . . . , 0), ‖f‖q � `1+1/q, and ‖f‖W 1
p
� `1/p

show that r(Nn) < `1−1/p+1/q.
We turn to the lower bound in the case p > q. In this case, let f : [0, 1] → R be

a continuous piecewise linear function satisfying f(xi) = 0 for i = 0, 1, . . . , n + 1 and
f ′(x) = `αi in the left half of each interval [xi, xi+1] and f ′(x) = −`αi in the right half, where
`i = xi+1 − xi and α = q/(p− q). Then Nn(f) = (0, . . . , 0) and

‖f‖q �

(
n∑
i=0

`
(pq+p−q)/(p−q)
i

)1/q

and ‖f‖W 1
p
�

(
n∑
i=0

`
(pq+p−q)/(p−q)
i

)1/p

show that r(Nn) <
(∑n

i=0 `
(pq+p−q)/(p−q)
i

)1/q−1/p
.

Finally, we prove the upper bound. Observe that ‖f‖∞ ≤ ‖f ′‖1 holds for any function
f ∈ W 1

1 ([0, 1]) with f(0) = 0. Consequently, ‖f‖q ≤ ‖f ′‖p holds for any function f ∈
W 1
p ([0, 1]) with f(0) = 0. By scaling, it follows that ‖f‖q ≤ (b − a)1−1/p+1/q‖f ′‖p holds for

any function f ∈ W 1
p ([a, b]) satisfying either f(a) = 0 or f(b) = 0. Let now f ∈ W 1

p ([0, 1])

be such that Nn(f) =
(
f(x1), f(x2), . . . , f(xn)

)
= (0, . . . , 0) and ‖f ′‖p = 1. Let fi be the

restriction of f to the interval [xi, xi+1]. Then

‖f‖q =

(
n∑
i=0

‖fi‖qq

)1/q

≤

(
n∑
i=0

(xi+1 − xi)q−q/p+1‖f ′i‖qp

)1/q

.
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In the case p ≤ q, let again ` be the length of the largest of the intervals [xi, xi+1]. It follows
that

‖f‖q ≤ `1−1/p+1/q

(
n∑
i=0

‖f ′i‖qp

)1/q

≤ `1−1/p+1/q

(
n∑
i=0

‖f ′i‖pp

)1/p

= `1−1/p+1/q‖f ′‖p = `1−1/p+1/q.

This implies r(Nn) ≤ `1−1/p+1/q as claimed. In the case p > q, let again `i = xi+1 − xi and
s > 0 be given by 1

s
= 1

q
− 1

p
. Using Hölder’s inequality, we arrive at

‖f‖q ≤

(
n∑
i=0

`s+1
i

)1/s( n∑
i=0

‖f ′i‖pp

)1/p

=

(
n∑
i=0

`s+1
i

)1/s

‖f ′‖p

=

(
n∑
i=0

`s+1
i

)1/s

.

This implies the claimed upper bound also when p > q. �

Proof of Theorem 1. In the case p ≤ q the proof follows from Lemma 2 and the fact that,
in expectation, the largest gap among n independent and uniformly distributed points in
[0, 1] is of order log(n)/n. This is a simple consequence of Lemma 7. In the case p > q the
proof follows from

E
[( n∑

i=0

`s+1
i

)1/s]
� 1

n

for any s > 0, where the `i are again the spacings of independent and uniformly distributed
points in [0, 1]. In fact, the lower bound follows trivially since the expected radius of random
information is larger than the radius of optimal information. To prove the upper bound
observe first that the function s 7→

(∑n
i=0 `

s+1
i

)1/s is non-decreasing, since ∑n
i=0 `i = 1, and

that Jensen’s inequality implies

E
[( n∑

i=0

`s+1
i

)1/s]
≤
(
E
[ n∑
i=0

`s+1
i

])1/s

whenever s ≥ 1.

Hence, it is enough to show that

E
[ n∑
i=0

`s+1
i

]
� n−s

for positive integers s. It was proved in [9] that

E
[ n∑
i=0

h(`i)
]

= n(n+ 1)

∫ 1

0

(1− r)n−1h(r)dr

for any integrable function h : [0, 1]→ R. With h(r) = rs+1, we obtain

E
[ n∑
i=0

`s+1
i

]
= n(n+ 1)B(s+ 2, n) =

(n+ 1)!(s+ 1)!

(n+ s+ 1)!
� n−s,
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where B(x, y) is the Beta function. This completes the proof. �

Remark 3. For the classes studied, i.e., when the smoothness is one, the radius of infor-
mation r(Nn) for the integration problem with S(f) =

∫ 1

0
f(x) dx is the same as for the

L1-approximation problem. Hence, for the integration problem for functions in W 1
p ([0, 1]),

we have

E[r(Nn)] �


r(N∗n) � n−1 if p > 1

r(N∗n/ logn) �
(

n
logn

)−1
if p = 1.

Some cases of Theorem 1 are known, sometimes in a slightly different language since
authors had in mind discrepancy (with optimal weights) instead of the integration problem.
The star discrepany for d = 1, i.e., p = q = 1, was studied in [38]. Here we have r(N∗n) = 1

2n
.

From Corollary 3.3 and Theorem 3.5 of [38] we know that

c log n

n
≤ E[r(Nn)] ≤ 8 log n

n

for some c ∈ (0,∞). Therefore, random information is good, but not optimal. Also the case
p = 2 and q = 1 is covered by [38, Theorems 4.2 and 4.3].

2.2. Approximation of multivariate Lipschitz functions. We study the problem of
Lq-approximation of functions from the class

(4) Fd =
{
f : [0, 1]d → R : |f(x)− f(y)| ≤ dist(x, y) ∀x, y ∈ [0, 1]d

}
.

Here, dist denotes the maximum metric on the d-torus, i.e.,

dist(x, y) = min
k∈Zd
‖x+ k − y‖∞ for x, y ∈ [0, 1]d.

We consider standard information of the form

Nn(f) = (f(x1), . . . , f(xn)), x1, . . . , xn ∈ [0, 1]d.

An optimal algorithm based on Nn works as follows:

Algorithm. For Nn as above and f ∈ Fd, we define An(f) = (f+ + f−)/2, where

f+(x) = min
i≤n

(
f(xi) + dist(x, xi)

)
and f−(x) = max

i≤n

(
f(xi)− dist(x, xi)

)
.

Note that f+ and f− are the maximal and the minimal function in Fd that interpolate
f at the nodes x1, . . . , xn. We have the following relations that we prove for the sake of
completeness, see e.g. [29, 36].

Lemma 4.
r(Nn) = sup

f∈Fd

‖f − An(f)‖q = sup
f∈Fd

Nn(f)=0

‖f‖q .
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Proof. Clearly An is of the form ϕ ◦ Nn for some mapping ϕ : Rn → Lq. The definition of
the radius yields

sup
f∈Fd

‖f − An(f)‖q ≥ r(Nn) ≥ sup
f∈Fd

Nn(f)=0

‖f‖q .

On the other hand, any f ∈ Fd satisfies the pointwise estimate

(5) |f − An(f)| ≤ f+ − f−

2
.

This implies
sup
f∈Fd

Nn(f)=0

‖f‖q ≥ sup
f∈Fd

‖f − An(f)‖q

since the right-hand side of (5) is an element of Fd that vanishes on {x1, . . . , xn}. Altogether,
we obtain the claimed identities. �

It is also well known that optimal information is given by function values on a regular
grid if n = md for some m ∈ N. The radius of optimal information N∗n satisfies

r(N∗n) � n−1/d

for all 1 ≤ q ≤ ∞. This follows from the upper bound on the complexity of uniform approx-
imation as studied in [34] and the lower bound on the complexity of numerical integration as
studied in [35]. Using the technique of proof of the latter, we even obtain a precise formula
for the radius of optimal information.

Proposition 5. Let n = md for some m ∈ N. Then

r(N∗n) =


1

2

( d

d+ q

)1/q
n−1/d if 1 ≤ q <∞,

1

2
n−1/d if q =∞.

Proof. Let Nn be as above and let Pn = {x1, . . . , xn}. Note that the function dist(·, Pn) is
contained in Fd and vanishes on Pn. On the other hand, every other function f ∈ Fd that
vanishes on Pn must satisfy

|f(x)| ≤ dist(x, Pn) for all x ∈ [0, 1]d.

This yields
r(Nn) = sup

f∈Fd
Nn(f)=0

‖f‖q = ‖dist(·, Pn)‖q .

Let us first consider the case q = ∞. Since the volume of the union of the balls B∞r (x)

over x ∈ Pn is smaller than 1 for all r < 1/(2m), there must be some x ∈ [0, 1]d with
dist(x, Pn) ≥ r. Therefore,

‖dist(·, Pn)‖∞ ≥
1

2m
,
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where equality holds when Pn = {i/m : 0 ≤ i < m}d. Let us turn to the case q < ∞. Let
λd denote Lebesgue measure on [0, 1]d. Then

r(Nn)q =

∫
[0,1]d

dist(x, Pn)q dx =

∫ ∞
0

λd (dist(x, Pn)q ≥ t) dt.

Note that

λd (dist(x, Pn)q ≥ t) = 1− λd (dist(x, Pn)q < t) ≥ 1− n · 2dtd/q,

where equality holds if the sets B∞
t1/q

(y) for y ∈ Pn are pairwise disjoint. Hence,

r(Nn)q ≥
∫ (1/2m)q

0

λd (dist(x, Pn)q ≥ t) dt

≥ 1

(2m)q
− 2dn

∫ (1/2m)q

0

td/qdt =
1

(2m)q
d

d+ q

with equality for Pn = {i/m : 0 ≤ i < m}d. This proves the statement. �

In the following, we study the expected radius of random information

Nn(f) =
(
f(x1), . . . , f(xn)

)
,

where the points x1, . . . , xn are independent and uniformly distributed in [0, 1]d. If q is
finite, the qth moment of the radius at zero can be computed precisely.

Proposition 6. Consider Lq-approximation of functions from Fd defined in (4) with 1 ≤
q <∞, using function values at uniformly distributed points in [0, 1]d. Then

E [r(Nn)q] =
1

2q
n!

(q/d+ 1) · · · (q/d+ n)
.

In particular, we have

lim
n→∞

n1/d q
√

E [r(Nn)q] =
1

2
q
√

Γ(q/d+ 1).

Proof. Let Pn = {x1, . . . , xn}. Recall that

r(Nn)q =

∫
[0,1]d

dist(x, Pn)q dx.

Using Tonelli’s theorem, we obtain

E [r(Nn)q] =

∫
[0,1]d

E
[

dist(x, Pn)q
]

dx.

We will show that the integrand of the latter integral is constant. Let us fix x ∈ [0, 1]d and
note that dist(x, Pn) ∈ [0, 1/2]. For any t ∈ [0, 1/2], we have

dist(x, Pn) ≥ t ⇐⇒ ∀i ∈ {1, . . . , n} : xi 6∈ B∞t (x).

Thus
P[dist(x, Pn) ≥ t] =

(
1− (2t)d

)n
.
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The substitution s = 1− (2t1/q)d and integration by parts yield

E
[

dist(x, Pn)q
]

=

∫ 2−q

0

P[dist(x, Pn)q ≥ t] dt =

∫ 2−q

0

(
1− (2t1/q)d

)n
dt

=
q/d

2q

∫ 1

0

sn(1− s)q/d−1 ds =
1

2q
n!

(q/d+ 1) · · · (q/d+ n)
,

which implies the statement of the theorem. �

We now turn to the case of uniform approximation, i.e., q =∞. In this case, the expected
radius of information is closely related to the so called coupon collector’s problem. This is
the question for the random number τ` of coupons that a coupon collector has to collect
to obtain a complete set of ` distinct coupons. The following facts on the distribution of
τ` are well known, see [27]. Here H` =

∑`
k=1 1/k is the `th harmonic number. Note that

H` ∼ log ` as `→∞.

Lemma 7. Let (Yi)
∞
i=1 be a sequence of random variables that are uniformly distributed in

the set {1, . . . , `} and let

τ` = min {n ∈ N : {Y1, . . . , Yn} = {1, . . . , `}} .

Then

E[τ`] = `H` and Var[τ`] ≤ `2
∑̀
k=1

1/k2

and for any c ∈ (0,∞),
P
[
τ` > dc ` log `e

]
≤ `−c+1.

This leads to the following estimates of the expected radius for q =∞.

Proposition 8. Consider L∞-approximation of functions from Fd defined in (4). For n ∈
N, let

m1 = min
{
m ∈ N : md(Hmd − 2) ≥ n

}
,

m2 = max
{
m ∈ N : 2md log(md) ≤ n

}
.

Then
1

4m1

≤ E[r(Nn)] ≤ 2

m2

.

Proof. Let m ∈ N and decompose [0, 1]d into ` = md boxes
d∏
i=1

[
ki − 1

m
,
ki
m

)
, k1, . . . , kd ∈ {1, 2, . . . ,m}

of equal volume. Again, let Pn = {x1, . . . , xn}. Recall that the radius of the information
Nn(f) =

(
f(x1), . . . , f(xn)

)
is given by

r(Nn) = max
x∈[0,1]d

dist(x, Pn).



ON THE POWER OF RANDOM INFORMATION 10

Therefore, r(Nn) is bounded above by 1/m if every box contains a point of Pn, and bounded
below by 1/(2m) if one of the boxes does not contain a point of Pn. Let A be the event
that every box contains a point. Note that the number of random points xi that it takes to
hit all the boxes follows the distribution of the coupon collector’s variable τ` as defined in
Lemma 7. For the upper bound, we choose m = m2. Lemma 7 yields

P
[
Ac
]

= P[τ` > n] ≤ 1/`

and hence
E[r(Nn)] ≤ P[A] · 1

m
+ P

[
Ac
]
· 1 ≤ 2

m
.

For the lower bound, we choose m = m1. Chebyshev’s inequality yields

P[A] = P[τ` ≤ n] ≤ P[τ` ≤ `H` − 2`] ≤ Var[τ`]

4`2
≤ 1

2
.

We obtain
E[r(Nn)] ≥ P

[
Ac
] 1

2m
≥ 1

4m
,

as it was to be proven. �

We arrive at the following result on the power of random information proved in [25].
Note that the case q = ∞ is already known from [2], where the authors study the uniform
approximation of functions on [0, 1]d with bounded rth derivative.

Theorem 9 (Krieg). Consider Lq-approximation of functions from Fd defined in (4) with
1 ≤ q ≤ ∞, using function values at uniformly distributed points in [0, 1]d. Then

E[r(Nn)] �


r (N∗n) � n−1/d if q <∞

r
(
N∗n/ logn

)
�
(

n
logn

)−1/d
if q =∞.

Proof. The statements on the rate of the optimal radius of information follow from Proposi-
tion 5. The upper bound on the expected radius in the first case follows from Proposition 6,
since the expected radius is bounded above by its qth moment. The lower bound is triv-
ial. The upper and lower bound on the expected radius in the second case follow from
Proposition 8, since both md

1 and md
2 are of order n/ log n. �

Thus, in the sense of order of convergence, random information is as good as optimal
information for the problem of Lq-approximation on Fd if q < ∞. If q = ∞, we loose a
logarithmic factor.

Remark 10 (Modifications of Fd). The rates of convergence of the expected and the optimal
radius do not change if we replace the maximum metric on the torus by some equivalent
metric. The same holds true if we change the Lipschitz constant or if we switch to the
non-periodic setting.
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2.3. Classical Sobolev spaces. We study the general Lq-approximation problem for Sobolev
spaces,

APP: W s
p ([0, 1]d)→ Lq([0, 1]d)

given by APP(f) = f with standard information. A typical choice for the norm in this
space is

‖f‖W s
p ([0,1]

d) =

( ∑
β∈Nd

0 : ‖β‖1≤s

‖Dβf‖pp
)1/p

.

It is known that the radius of optimal information N∗n satisfies

(6) r(N∗n) � n−s/d+(1/p−1/q)+ ,

where we assume that s > d/p holds, to ensure that the functions are continuous. This can
be found in [28] for general Lipschitz domains and was known earlier for special cases, such
as the cube, see [28, Remark 24]. Here we ask for the expected radius of random information
Nn given by n independent and uniformly distributed points in [0, 1]d. We conjecture that
random information is as good as optimal information provided that p > q, whereas in the
case p ≤ q there is a loss of a logarithmic factor. This conjecture is true in the following
special cases:

• Section 2.1 covers univariate Sobolev spaces of smoothness 1, i.e., s = d = 1.
• Section 2.2 covers Lipschitz functions, i.e., s = 1 and p =∞.
• The paper [2] covers uniform approximation on Hölder classes, i.e., p = q =∞.

In the general case, we are only able to prove the second part of our conjecture.

Theorem 11. Consider Lq-approximation of functions from W s
p ([0, 1]d) with 1 ≤ p ≤ q ≤

∞, using function values at uniformly distributed points in [0, 1]d. Then

E[r(Nn)] � r
(
N∗n/ logn

)
�
(

n

log n

)−s/d+1/p−1/q

.

We use the following criterion for optimal point sets, which can be found in [28].

Lemma 12. Consider Lq-approximation of functions from W s
p ([0, 1]d) with 1 ≤ p, q ≤ ∞.

For all n ∈ N, let Pn ⊂ [0, 1]d be a point set of cardinality n,

dn = min
x,y∈Pn

‖x− y‖∞ , and rn = max
y∈[0,1]d

min
x∈Pn

‖x− y‖∞ .

If rn 4 dn, then the information Nn with nodes Pn satisfies r(Nn) � r(N∗n).

Proof of Theorem 11. Let α = s/d − 1/p + 1/q. We start with the lower bound. Let
g : Rd → R be a smooth function with support in the `∞-unit ball that is not identically
zero. Using Lemma 7, we obtain with probability 1/2 that [0, 1]d contains an `∞-ball of
radius

τn �
(

log n

n

)1/d

.
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not containing any of the points in Pn. If x0 denotes the center of this ball, then the function
f ∈ W s

p ([0, 1]d) given by f(x) = g(τ−1n (x− x0)) has support in this ball and satisfies

‖f‖W s
p ([0,1]

d) � τ−s+d/pn and ‖f‖q � τ d/qn .

This yields

E[r(Nn)] ≥ 1

2

‖f‖q
‖f‖W s

p ([0,1]
d)

� τ s−d/p+d/qn �
(

n

log n

)−α
.

We turn to the upper bound. We choose m ∈ N0 maximal such that ` = (3m)d satisfies

n ≥ (α + 1)` log `.

We split the unit cube into k = md subcubes of equal volume. Moreover, we split each of
these into 3d subcubes of equal volume. This gives us ` = (3m)d small cubes. Let A be the
event that we hit every small cube. Lemma 7 yields

(7) P
[
Ac
]

= P[τ` > n] ≤ `−α �
(

n

log n

)−α
.

Assume now that A takes place. We choose exactly one point out of the small cube in the
center of every large cube to obtain a subset Pk of Pn with cardinality k. Then

rk ≤
2

3m
≤ dk.

Let N ′k be the information map with nodes Pk. Lemma 12 yields

(8) r(Nn) ≤ r(N ′k) 4 k−α �
(

n

log n

)−α
.

Together, (7) and (8) imply the statement. �

We note that the authors of [12] study the integration problem for very general Sobolev
spaces on closed manifolds. One can obtain the optimal rate r(N∗n) � n−s/d. The authors
prove the upper bound

E[r(Nn)] 4 n−s/d log(n)s/d,

where the random points are chosen with respect to the probability measure that defines
the integral to be approximated. The given proof works with the covering radius of random
points which is an important characteristic for q =∞. For the integration problem or q = 1,
we expect, however, that the additional log factor is needed only for p = 1.

Remark 13. Another important case are tensor products of univariate Sobolev spaces.
These spaces are usually called Sobolev spaces with (dominating) mixed smoothness or in
the periodic case sometimes Korobov spaces. One of the main features is that the optimal
(main) orders of convergence are independent of the dimension, only the logarithmic terms
depend on the dimension. We refer to [11] for a survey. There exist upper bounds for the
numbers E[r(Nn)], but these bounds are weaker than for isotropic Sobolev spaces. One
reason is that Lemma 12 does not hold for these spaces and the geometrical structure of
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good sampling points is not known. See [1, 17, 20, 22, 29, 31, 32] for upper bounds on
E[r(Nn)] in various cases.

Remark 14. Recovery of functions of many variables usually suffers from the curse of
dimensionality, even for smooth C∞ functions, see [30]. To avoid the curse one can impose
structural properties, such as the sparsity with respect to the Fourier coefficients or another
orthonormal system. Then one can find an approximation of the function with relatively
few random function values, see [6, 8]. Another way to study structural properties is to
define weighted norms as was first done in [33], see [29, 31, 32] for a survey.

3. Uniformly distributed linear information

In this section we study linear information consisting of arbitrary continuous linear func-
tionals. We are going to present two recovery problems for which we compare random infor-
mation with optimal information. The first is a classical result due to Kashin, Garnaev, and
Gluskin [24, 14] on the recovery of `m1 -vectors in the Euclidean distance, while the second
are novel results of the authors on the recovery of vectors in an m-dimensional ellipsoid in
the Euclidean distance [18].

3.1. Recovery of `m1 -vectors in the Euclidean norm. We study the problem of recovery
of vectors in the unit ball of `m1 with general linear information and error measured in the
Euclidean norm. This is the approximation problem with F = `m1 and G = `m2 , i.e.,
S is the identity map `m1 ↪→ `m2 . The minimal worst case error, which is the minimal
radius of information achievable with general linear information, is closely connected to the
notion of Gelfand numbers or Gelfand widths. Gelfand numbers and their dual counterpart
Kolmogorov numbers are fundamental concepts in classical and modern approximation and
complexity theory.

For n ∈ N, the nth Gelfand number of a linear bounded operator S : F → G between
normed spaces F and G can be defined as

cn(S) = inf
Fn⊆F

codim(Fn)≤n

sup
‖f‖F≤1,f∈Fn

‖S(f)‖G.

If the subspace Fn of F is the kernel of a linear information map Nn : S → Rn, then

r(Nn, 0) = sup
‖f‖F≤1,f∈Fn

‖S(f)‖G

is the local radius of zero information. It is not hard to see that

r(Nn, 0) ≤ r(Nn) ≤ 2r(Nn, 0).

Since every subspace Fn of codimension at most n is the kernel of a linear information map
Nn : S → Rn, we have the well-known relation

cn(S) ≤ r(N∗n) ≤ 2cn(S)
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between the radius of the optimal information N∗n for the linear problem S : F → G and
the Gelfand numbers cn(S).

The systematic study of the Gelfand numbers of identity maps `mp ↪→ `mq has a long
tradition and is the basis for the study of Gelfand numbers of embeddings of Sobolev spaces
and, therefore, also for the complexity of Lq-approximation of functions from Sobolev spaces.
We want to discuss here the case p = 1 and q = 2 which was one of the difficult cases. Its
solution is an example for the power of random information. While lower bounds had been
obtained before, the breakthrough regarding the upper bounds was made using random
approximation, a groundbreaking method having its origin in the work of Kashin [24]. The
problem was finally settled in the series of papers by Kashin [23, 24], Gluskin [15, 16], and
Garnaev and Gluskin [14].

Let us consider now the particular case of the identity `m1 ↪→ `m2 , which is of importance in
information based complexity since it also demonstrates that non-linear recovery algorithms
can be much better than linear ones. Although the results in the literature are usually
formulated in the language of Gelfand numbers, we discuss the results directly for the
radius of information.

Recall that we now allow arbitrary linear information Nn : `m1 → Rn. The random
information we consider is Gaussian information, where Nn = Nn,m is given by an n ×m-
matrix with independent standard normal entries. The kernels of these maps are distributed
according to the Haar measure on the Grassmannian manifold of n-codimensional subspaces
in Rm. In this sense, we can speak about uniformly distributed linear information.

In [24, Theorem 1], Kashin introduced his fundamentally new approach via random
subspaces and obtained that

E
[
r(Nn,m)

]
4

1√
n

(
1 + log

m

n

)3/2

.

Through a refinement of Kashin’s arguments, Garnaev and Gluskin [14] were able to decrease
the power 3/2 to a square root, while at the same time providing the matching lower bounds.
Altogether, we have the following result.

Theorem 15 (Kashin, Garnaev, Gluskin). Consider the recovery problem of vectors from
`m1 in the Euclidean norm and Gaussian information. Then

E
[
r(Nn,m)

]
� r(N∗n,m) � min

{
1,

√
log(1 + m

n
)

n

}
.

We want to sketch the proof of the upper bound

E
[
r(Nn,m)

]
4 min

{
1,

√
log(1 + m

n
)

n

}
of Theorem 15 and demonstrate the power of the probabilistic method of Kashin, Garnaev,
and Gluskin.
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Step 1. As already explained, one considers a Gaussian random matrix G = (gij)
n,m
i,j=1 with

independent and identically distributed standard normal entries and defines the random
information mapping

Nn : Rm → Rn, Nn(x) = Gx.

Step 2. One defines the mapping ϕ to be

ϕ : Rn → Rm, y 7→ argminx∈Rm, Nn(x)=y ‖x‖1

and considers the corresponding random algorithm An = ϕ ◦Nn.
Step 3. One can now prove that with high probability the error of the random algorithm
is small for any x ∈ Bm1 . More precisely, if δ ∈ (0,∞), then taking

n � logm

ε2
+ log

2

δ

yields a worst case error
sup
x∈Bm

1

‖x− An(x)‖2 ≤ ε

for the random algorithm An with probability at least 1− δ.

As a matter of fact, one actually shows that most linear information mappings Nn :

Rm → Rn lead to a small error and so random information is essentially as good as optimal
information. We want to emphasize that no explicit construction for such a mapping is
known. So the optimal information is not accessible in this case and one has to settle
for random information. We also want to mention that linear algorithms corresponding to
linear widths or approximation numbers are much worse than nonlinear algorithms for this
recovery problem.

Let us mention that Garnaev and Gluskin actually obtained sharp bounds in the more
general setting of recovery of vectors from `m1 in the `mq -norm or Gelfand numbers of the
identity `m1 ↪→ `mq . If the random information Nn,m is again Gaussian information and
1 < q ≤ 2, then

E
[
r(Nn,m)

]
� r(N∗n,m) � min

{
1,

(
log(1 + m

n
)

n

)1−1/q }
.

Later, Gelfand widths have also attracted quite some attention in the area of compressive
sensing over the last two decades, see, e.g., [3, 4, 7, 10]. The goal of compressive sensing is
to recover compressible vectors x ∈ Rm (those which are close to sparse vectors with only
few non-zero coordinates) from n pieces of incomplete linear information. In fact, vectors
in the unit ball of `mp with 0 < p ≤ 1 serve as a good model for sparse vectors. In this
context, also the recovery of vectors in `mp with 0 < p ≤ 1 or the Gelfand numbers of the
identity `mp ↪→ `mq were studied. Donoho [10] and Foucart, Pajor, Rauhut, and T. Ullrich
[13, Theorem 1.1] extended the Garnaev-Gluskin result also to the case 0 < p ≤ 1 and
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p < q ≤ 2 and proved

E
[
r(Nn,m)

]
� r(N∗n,m) � min

{
1,

(
log(1 + m

n
)

n

)1/p−1/q }
.

Again, it is not known how two explicitly construct measurement maps performing almost
as good as N∗n,m.

A further problem in compressed sensing is the matrix recovery problem. The analogon to
the recovery problem of vectors from `mp in the `mq -norm is the recovery problem of matrices
from Schatten p-classes in the Schatten q-norm. The particular case q = 2 is is the Frobenius
norm. This problem was studied in [5, 21].

3.2. Recovery of vectors from an ellipsoid. We continue with another recovery problem
and recent results of the authors concerning the quality of random information for `2-
approximation, see [18].

Let F be a centered ellipsoid in Rm with semi-axes σ1 ≥ · · · ≥ σm. Clearly, F can
be seen as the unit ball of some Hilbert space. We want to recover x ∈ F from the data
Nn(x) ∈ Rn with linear information mapping Nn ∈ Rn×m and measure the error in the
Euclidean distance. While the power of the information mapping is

r(Nn) = inf
ϕ:Rn→Rm

sup
x∈F
‖ϕ(Nn(x))− x‖2 ,

it is known that, for linear problems in Hilbert spaces, the worst data is the zero data and
so

r(Nn) = sup
x∈F∩En

‖x‖2 ,

where En is the kernel of Nn, see [29, 36]. In this case, the power or radius of optimal
information is given by r(N∗n) = σn+1. The question is now how good random information
Nn is for the `2-recovery problem, when random information is provided by a Gaussian
random matrix G = (gij)

n,m
i,j=1? Is it comparable to optimal information?

As is explained in [18], rephrased in geometric terms, one is interested in the circumradius
of the intersection of a centered ellipsoid F in Rm with a random subspace En of codimension
n. While the maximal radius is the length of the largest semi-axis σ1, the minimal radius
is the length of the (n+ 1)st largest semi-axis σn+1. But how large is the radius of a typical
intersection? Is it comparable to the minimal or the maximal radius or does it behave
completely different?

Using various probabilistic tools, such as exponential estimates for sums of chi-squared
random variables, Gordon’s min-max theorem for Gaussian processes, or estimates for the
extreme singular values of (structured) Gaussian matrices, the authors obtained upper and
lower bounds on the radius of Gaussian information for the `2-approximation problem which
hold with overwhelming probability. In many cases these bounds are sharp up to absolute
constants and show that random information is comparable to optimal information.
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Let us only present one case which is of particular importance, where the semi-axes
behave like the singular values of Sobolev embeddings [18, Corollary].

Theorem 16 (Hinrichs, Krieg, Novak, Prochno, Ullrich). For k ∈ N let

σk � k−α ln−β(k + 1),

where α ∈ (0,∞) and β ∈ R. Then

E[r(Nn)] �


σ1 for n < cm, if α < 1/2 or β ≤ α = 1/2,

σn+1

√
ln(n+ 1) for n <

√
m, if β > α = 1/2,

σn+1 for n < m, if α > 1/2,

with

cm =


cm1−2α ln−max{2β,0}m for α < 1/2,

c ln1−max{2β,0}m for β < α = 1/2,

c ln lnm for β = α = 1/2,

where c ∈ (0,∞) is an absolute constant.

This means that random information is just as good as optimal information if the singular
values decay with a polynomial rate greater than 1/2. Then, in geometric terms, the size of
a typical intersection ellipsoid is comparable to the size of the smallest intersection. On the
other hand, if the singular values decay too slowly, random information is rather useless,
which means that a typical intersection ellipsoid is almost as large as the largest.

The ellipsoid recovery problem can be considered in an infinite dimensional setting as
well, even though our geometric intuition might fail. In this case, wherem =∞, we consider
the ellipsoid

F =

{
x ∈ `2 :

∑
j∈N

x2j
σ2
j

≤ 1

}
and the matrix (gij)1≤i≤n,j∈N with independent standard Gaussian entries as random infor-
mation mapping Nn.

As a consequence of the probabilistic estimates derived in [18, Theorems 3 and 4], one
obtains an `2-dichotomy showing that random information is useful if and only if σ ∈ `2 [18,
Corollary 5].

Theorem 17 (Hinrichs, Krieg, Novak, Prochno, Ullrich). If σ 6∈ `2, then r(Nn) = σ1 holds
almost surely for all n ∈ N. If σ ∈ `2, then

lim
n→∞

√
nE[r(Nn)] = 0.

Remark 18. Such an `2-dichotomy is known from a related problem. There F is the unit
ball of a reproducing kernel Hilbert space H, i.e., H ⊂ L2(D) consists of functions on a
common domain D and the evaluation functional f 7→ f(x) is a bounded operator on H

for every x ∈ D. The optimal linear information Nn for the L2-approximation problem is
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given by the singular value decomposition and has radius σn+1. This information might be
difficult to implement and hence one might allow only information Nn of the form

Nn(f) =
(
f(x1), . . . , f(xn)

)
, x1, . . . , xn ∈ D.

The goal is to relate the power of function evaluations to the power of all continuous linear
functionals and one would like to prove that their power is roughly the same. Unfortunately,
this is not true in general. When σ /∈ `2 the convergence of optimal algorithms that may
only use function values can be arbitrarily slow [19]. The situation is much better if we
assume that σ ∈ `2. It was shown in [26] and [37] that function values are almost as good as
general linear information. We refer to [32, Chapter 26] for a presentation of these results.

Acknowledgement

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for
support and hospitality during the programme ‘Approximation, sampling and compression
in data science’ when work on this paper was undertaken. This work was supported by
EPSRC Grant Number EP/R014604/1.

A. Hinrichs and J. Prochno are supported by the Austrian Science Fund (FWF) Projects
F5509-N26 and F5508-N26, which are part of the Special Research Program “Quasi-Monte
Carlo Methods: Theory and Applications”. A. Hinrichs was also supported by a grant from
the Simons Foundation. J. Prochno is also supported by a Visiting Professor Fellowship of
the Ruhr University Bochum and its Research School PLUS.

References

[1] F. Bach. On the equivalence between kernel quadrature rules and random feature expansions. J. Mach.
Learn. Res., 18: Paper No. 21, 38, 2017.

[2] B. Bauer, L. Devroye, M. Kohler, A. Krzyżak, and H. Walk. Nonparametric estimation of a function
from noiseless observations at random points. J. Multivariate Anal., 160: 93–104, 2017.

[3] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2): 489–509, 2006.

[4] D. Chafaï, O. Guédon, G. Lecué, and A. Pajor. Interactions between compressed sensing random matri-
ces and high dimensional geometry, volume 37 of Panoramas et Synthèses [Panoramas and Syntheses].
Société Mathématique de France, Paris, 2012.

[5] J. A. Chávez-Domínguez and D. Kutzarova. Stability of low-rank matrix recovery and its connections
to Banach space geometry. J. Math. Anal. Appl., 427(1): 320–335, 2015.

[6] A. Chkifa, N. Dexter, H. Tran, and Webster C. G. Polynomial approximation via compressed sensing
of high-dimensional functions on lower sets. Math. Comp., 87(311): 1415–1450, 2018.

[7] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation. J. Amer.
Math. Soc., 22(1): 211–231, 2009.

[8] A. Cohen, R. DeVore, S. Foucart, and H. Rauhut. Recovery of functions of many variables via com-
pressive sensing. In Proc. SampTA 2011, Singapore, 2010.

[9] D. A. Darling. On a class of problems related to the random division of an interval. Ann. Math.
Statistics, 24: 239–253, 1953.

[10] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4): 1289–1306, 2006.



ON THE POWER OF RANDOM INFORMATION 19

[11] D. Dung, V.T. Temlyakov, and T. Ullrich. Hyperbolic Cross Approximation. Advanced Courses in
Mathematics - CRM Barcelona. Springer International Publishing, 2018.

[12] M. Ehler, M. Graef, and C. J. Oates. Optimal Monte Carlo integration on closed manifolds. arXiv
e-prints, page arXiv: 1707.04723, Jul 2017. Statistics and Computing, to appear.

[13] S. Foucart, A. Pajor, H. Rauhut, and T. Ullrich. The Gelfand widths of `p-balls for 0 < p ≤ 1. J.
Complexity, 26(6): 629–640, 2010.

[14] A. Yu. Garnaev and E. D. Gluskin. The widths of a Euclidean ball. Dokl. Akad. Nauk SSSR, 277(5):
1048–1052, 1984. English translation: Soviet Math. Dokl. 30 (1984), no. 1, 200–204.

[15] E. D. Gluskin. On some finite-dimensional problems of width theory. Physis—Riv. Internaz. Storia
Sci., 23(2): 5–10, 124, 1981.

[16] E. D. Gluskin. Norms of random matrices and diameters of finite-dimensional sets. Mat. Sb. (N.S.),
120(162)(2): 180–189, 286, 1983.

[17] S. Heinrich, E. Novak, G. W. Wasilkowski, and H. Woźniakowski. The inverse of the star-discrepancy
depends linearly on the dimension. Acta Arith., 96(3): 279–302, 2001.

[18] A. Hinrichs, D. Krieg, E. Novak, J. Prochno, and M. Ullrich. Random sections of ellipsoids and the
power of random information. arXiv e-prints, page arXiv: 1901.06639, Jan 2019.

[19] A. Hinrichs, E. Novak, and J. Vybíral. Linear information versus function evaluations for L2-
approximation. J. Approx. Theory, 153(1): 97–107, 2008.

[20] A. Hinrichs, J. Oettershagen, and M. Ullrich. Numerical integration of smooth functions using random
point sets. In preparation.

[21] A. Hinrichs, J. Prochno, and J. Vybíral. Entropy numbers of embeddings of Schatten classes. J. Funct.
Anal., 273(10): 3241–3261, 2017.

[22] M. Kanagawa, B. K. Sriperumbudur, and K. Fukumizu. Convergence guarantees for kernel-based quad-
rature rules in misspecified settings. arXiv e-prints, page arXiv: 1605.07254, May 2016. 29th Conference
on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

[23] B. S. Kašin. Kolmogorov diameters of octahedra. Dokl. Akad. Nauk SSSR, 214: 1024–1026, 1974.
[24] B. S. Kašin. The widths of certain finite-dimensional sets and classes of smooth functions. Izv. Akad.

Nauk SSSR Ser. Mat., 41(2): 334–351, 478, 1977. English translation: Math. USSR-Izv. 11 (1977), no.
2, 317–333 (1978).

[25] D. Krieg. Algorithms and Complexity of some Multivariate Problems. PhD thesis, Friedrich Schiller
University Jena, 2019.

[26] F. Y. Kuo, G. W. Wasilkowski, and H. Woźniakowski. On the power of standard information for
multivariate approximation in the worst case setting. J. Approx. Theory, 158(1): 97–125, 2009.

[27] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American Mathematical
Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson.

[28] E. Novak and H. Triebel. Function spaces in Lipschitz domains and optimal rates of convergence for
sampling. Constr. Approx., 23(3): 325–350, 2006.

[29] E. Novak and H. Woźniakowski. Tractability of multivariate problems. Vol. 1: Linear information,
volume 6 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2008.

[30] E. Novak and H. Woźniakowski. Approximation of infinitely differentiable multivariate functions is
intractable. J. Complexity, 25(4): 398–404, 2009.

[31] E. Novak and H. Woźniakowski. Tractability of multivariate problems. Volume II: Standard information
for functionals, volume 12 of EMS Tracts in Mathematics. European Mathematical Society (EMS),
Zürich, 2010.



ON THE POWER OF RANDOM INFORMATION 20

[32] E. Novak and H. Woźniakowski. Tractability of multivariate problems. Volume III: Standard information
for operators, volume 18 of EMS Tracts in Mathematics. European Mathematical Society (EMS),
Zürich, 2012.

[33] I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high-dimensional
integrals? J. Complexity, 14(1): 1–33, 1998.

[34] A. G. Sukharev. An optimal method for the construction of the best uniform approximations for a
certain class of functions. Ž. Vyčisl. Mat. i Mat. Fiz., 18(2): 302–313, 523, 1978. English translation:
U.S.S.R. Comput. Math. Math. Phys. 18 (1978), no. 2, 21–31.

[35] A. G. Sukharev. Optimal formulas of numerical integration for some classes of functions of several
variables. Dokl. Akad. Nauk SSSR, 246(2): 282–285, 1979. English translation: Soviet Math. Dokl. 20
(1979), no. 3, 472–475.

[36] J. F. Traub, G. W.Wasilkowski, and H. Woźniakowski. Information-based complexity. Computer Science
and Scientific Computing. Academic Press, Inc., Boston, MA, 1988. With contributions by A. G.
Werschulz and T. Boult.

[37] G. W. Wasilkowski and H. Woźniakowski. On the power of standard information for weighted approx-
imation. Found. Comput. Math., 1(4): 417–434, 2001.

[38] H. Weyhausen. Expected Discrepancies. PhD thesis, Friedrich Schiller University Jena, 2015.

(A. Hinrichs, M. Ullrich) Institut für Analysis, Johannes Kepler Universität Linz, Al-

tenbergerstrasse 69, 4040 Linz, Austria

(D. Krieg, E. Novak) Mathematisches Institut, Universität Jena, Ernst-Abbe-Platz 2, 07743

Jena, Germany

(J. Prochno) Institut für Mathematik & Wissenschaftliches Rechnen, Karl-Franzens-

Universität Graz, Heinrichstrasse 36, 8010 Graz, Austria


	1. Introduction
	2. Uniformly distributed function evaluations
	2.1. Integration and Approximation in univariate Sobolev spaces of smoothness 1
	2.2. Approximation of multivariate Lipschitz functions
	2.3. Classical Sobolev spaces

	3. Uniformly distributed linear information
	3.1. Recovery of l_1^m-vectors in the Euclidean norm
	3.2. Recovery of vectors from an ellipsoid

	Acknowledgement
	References

