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ABSTRACT. We investigate properties of the m-th error of approximation by polynomials with con-
stant coefficients Dm(x) and with modulus-constant coefficients D∗m(x) introduced by Berná and
Blasco (2016) to study greedy bases in Banach spaces. We characterize when liminfm Dm(x) and
liminfm D∗m(x) are equivalent to ‖x‖ in terms of the democracy and superdemocracy functions, and
provide sufficient conditions ensuring that limm D∗m(x)= limm Dm(x)= ‖x‖, extending previous very
particular results.

1. INTRODUCTION

Let (X,‖ ·‖) be a real Banach space and let B = (en)
∞
n=1 be a semi-normalized (Schauder) basis

of X with biorthogonal functionals (e∗n)
∞
n=1, that is:

(i) There exist a,b > 0 such that a≤ ‖en‖,‖e∗n‖ ≤ b for every n ∈ N,
(ii) e∗k(en) = δkn for every k,n ∈ N,

(iii) The sequence of projections Pm : X−→ X given by

Pm(x) =
m

∑
n=1

e∗n(x)en , x ∈ X

satisfy limn ‖Pm(x)− x‖= 0 for every x ∈ X. In this case, the basis constant of B is

Kb := sup
m∈N
‖Pm‖< ∞ .

We say that B is monotone whether Kb = 1.

Along the paper we will refer to every such B simply as a basis. Of course, as m increases Pm(x)
offers a good approximation of x by linear combinations of m-elements of the basis, but it is natural
to ask whether a suitable (and systematic) rearrangement can provide better convergence rates. A
natural proposal is the Thresholding Greedy Algorithm (TGA) introduced by S. V. Konyagin and V.
N. Temlyakov ([10]): given x ∈X we first consider the rearranging function ρ : N−→N satisfying
that if j < k then either |e∗

ρ( j)(x)|> |e
∗
ρ(k)(x)| or |e∗

ρ( j)(x)|= |e
∗
ρ(k)(x)| and ρ( j)< ρ(k). The m-th
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greedy sum of x is then

Gm(x) =
m

∑
j=1

e∗
ρ( j)(x)eρ( j) = ∑

k∈Λm(x)
e∗k(x)ek ,

where Λm(x) = {ρ(n) : n ≤ m} is the greedy set of x with cardinality m. Related to this, S. V.
Konyagin and V. N. Temlyakov defined in [10] the concepts of greedy and quasi-greedy bases.

Definition 1.1. We say that B is quasi-greedy if there exists a positive constant Cq such that

‖x−Gm(x)‖ ≤Cq‖x‖, ∀x ∈ X,∀m ∈ N.

P. Wojtaszczyk proved in [12] that quasi-greediness is equivalent to the convergence of the
algorithm, that is, B is quasi-greedy if and only if

lim
m→+∞

‖x−Gm(x)‖= 0, ∀x ∈ X.

Definition 1.2. We say that B is greedy if there exists a positive constant C such that

‖x−Gm(x)‖ ≤Cσm(x), ∀x ∈ X,∀m ∈ N, (1)

where

σm(x,B)X = σm(x) := inf

{∥∥∥∥∥x−∑
n∈A

anen

∥∥∥∥∥ : an ∈ F,A⊂ N, |A|= m

}
.

Konyagin and Temlykov [10] showed that, although every greedy basis is quasigreedy, the con-
verse does not holds (see also [1, Section 10.2]). They also characterize greedy bases as those
which are unconditional and democratic. To define the last notion we have to introduce some nota-
tion. For each finite subset A⊂ N and every scalar sequence ε = (εn) with |εn|= 1 for each n ∈ N
(from now on we will write |ε|= 1, for simplicity) let us denote

1A := ∑
n∈A

en and 1εA := ∑
n∈A

εn en .

As usual, |A| stands for the cardinal of A. We then define the democracy functions as

hl(m) = inf
|A|=m,|ε|=1

‖1εA‖ , hr(m) = sup
|A|=m,|ε|=1

‖1εA‖ (m ∈ N) .

and the superdemocracy functions as

h∗l (m) = inf
|A|=m,|ε|=1

‖1εA‖ , h∗r (m) = sup
|A|=m,|ε|=1

‖1εA‖ (m ∈ N) .

Definition 1.3. We say that B is democratic (resp. superdemocratic) if there exists C > 0 such
that hr(m)≤C hl(m) ( resp. h∗r (m)≤C h∗l (m) ) for every m ∈ N.

Another characterization of greedy bases was more recently provided by Ó. Blasco and the first
author by means of the best m-th error in the approximation using polynomials of constant (resp.
modulus-constant) coefficients:

Dm(x,B)X = Dm(x) = inf{‖x−α1A‖ : α ∈ R, A⊂ N, |A|= m}
D∗m(x,B)X = D∗m(x) = inf{‖x−α1εA‖ : α ∈ R, A⊂ N, |A|= m, |ε|= 1}

Theorem 1.4. [2, Corollary 1.8] Let B be a basis of a Banach space X. The following assertions
are equivalent:

(i) B is greedy;
(ii) There is C > 0 such that ‖x−Gm(x)‖ ≤CDm(x) for every x ∈ X and m ∈ N.
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(iii) There is C > 0 such that ‖x−Gm(x)‖ ≤CD∗m(x) for every x ∈ X and m ∈ N.

The striking feature of this theorem compared to (1) is that, while limm σm(x) = 0 for every
x ∈ X, the terms D∗m(x) and Dm(x) do not necessarily converge to zero if x 6= 0. Indeed, we have
the following examples:
B [2, Theorem 3.2],[3, Theorem 1.4] If X = H is a (separable) Hilbert space and B is an

orthonormal basis, then

lim
m→∞

Dm(x) = lim
m→∞

D∗m(x) = ‖x‖ , for every x ∈H. (2)

B [2, Proposition 3.4] If X= `p (1 < p < ∞) and B is the canonical basis, then

lim
m→+∞

Dm(1B) = lim
m→+∞

D∗m(1B) = ‖1B‖ , for every finite B⊂ N . (3)

In the present paper, we aim to delve into this aspect. Let us briefly explain the structure of the
paper. In Section 2 we show that D∗m(x) and Dm(x) do not converge to zero as m→ +∞ for any
x 6= 0. In Section 3 we prove the main result of the paper (Theorem 3.2), namely a characterization
of those bases B for which there is a positive constant c > 0 such that

c‖x‖ ≤ liminf
m→+∞

D∗m(x)≤ limsup
m→+∞

D∗m(x)≤ ‖x‖ for every x ∈ X ,

in terms of the democracy and superdemocracy functions. We also provide a quite general condi-
tion ensuring that

lim
m→+∞

D∗m(x) = ‖x‖ for every x ∈ X .

In Section 4 we deal with the notion of almost-greedy bases. We study how this property can be
also characterized in terms of polynomials of constant or modulus-constant coefficients, extending
a recent result of S. J. Dilworth and D. Khurana in [6].

Let us point out [1] as our basic reference for notation and fundamental results on greedy basis.

2. THE LIMIT OF ERRORS D∗m(x) AND Dm(x) IS NONZERO

Since D∗m(x)≤Dm(x)≤‖x‖ for every m∈N and every x∈X, it is only necessary to study lower
bounds of D∗m(x).

Proposition 2.1. Let B = (en)
∞
n=1 be a basis of a Banach space X. Then, for every x ∈ X

1
4Kb

sup
n∈N
|e∗n(x)| ≤ liminf

m→∞
D∗m(x) .

Proof. Let x ∈ X. Note that for every finite set A⊂ N, α ∈ R and |ε|= 1 it holds that

‖x−α1εA‖ ≥ sup
n∈N

|e∗n(x−α1ηA)|
‖e∗n‖

≥ supn∈N |e∗n(x−α1εA)|
2Kb

≥
supn∈N

∣∣|e∗n(x)|− |α|∣∣
2Kb

.

Let us also fix δ > 0 and n0 ∈ N with the property that

|e∗n(x)| ≤ δ for every n≥ n0 .

If A satisfies |A|> n0, then there is j ∈ A with j > n0, and so

‖x−α1εA‖ ≥
|e∗j(x)−|α||

2Kb
≥ ||α|−δ |

2Kb
.
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In particular, combining both lower estimations we get that for |A|> n0

‖x−α1εA‖ ≥
||α|−δ |+ supn∈N

∣∣|e∗n(x)|− |α|∣∣
4Kb

≥ sup
n∈N

|e∗n(x)|−δ

4Kb
.

Therefore, for m > n0

D∗m(x)≥ sup
n∈N

|e∗n(x)|−δ

4Kb
.

�

3. MAIN RESULT: EQUIVALENCE WITH THE NORM

The issue of when liminfm D∗m(x) (resp. liminfm Dm(x)) is equivalent to ‖x‖ is going to be
determined by the behaviour of the superdemocracy functions (resp. democracy functions), see
Section 1 for the definitions. Along the present section we are going to focus on proving the
results for superdemocracy case, namely for h∗l (m), h∗r (m) and the error D∗m(x). The arguments for
the case hl(m), hr and the error Dm(x) are completely analogous. First of all, we recall a trivial
estimates of the superdemocray functions for any basis:

h∗l (k)≤ Kb h∗l (m) , h∗r (k)≤ Kb h∗r (m) for every k ≤ m .

These relations together with the trivial inequality h∗l (m)≤ h∗r (m) (m∈N) yield that there are three
possible cases:
B h∗l (m) and h∗r (m) are bounded.
B h∗l (m) is bounded and h∗r (m)→+∞ as m→+∞.
B h∗l (m),h∗r (m)→+∞ as m→+∞.

Definition 3.1. The functions h∗l (m) and h∗r (m) (resp. hl(m) and hr(m)) are said to be comparable
if they are both bounded or divergent to infinity.

The main result of the section is the following theorem.

Theorem 3.2. Let B be a basis of a Banach space X. The following assertions are equivalent:
(i) There is a positive constant c > 0 such that

c‖x‖ ≤ liminf
m→+∞

D∗m(x)≤ limsup
m→+∞

D∗m(x)≤ ‖x‖ for every x ∈ X.

(ii) h∗l (m) and h∗r (m) are comparable.
Moreover, if B is monotone and h∗l (m)→+∞ as m→+∞, then

lim
m→+∞

D∗m(x) = ‖x‖ . (4)

(The theorem also holds if we replace D∗m(x), h∗l (m), h∗r (m) respectively by Dm(x), hl(m), hr(m).)

Before going into the proof let us make a few observations:
B From Theorem 3.2 we recover (2) and (3). Indeed, if H is a (separable) Hilbert space and

B is an orthonormal basis of H then hl(m) = h∗l (m) = m1/2. On the other hand, for X= `p

with 1≤ p < ∞ and B is the canonical basis, it holds that hl(m) = h∗l (m) = m1/p.

B For X = Lp[0,1] we have that the Haar basis B is monotone (see [7, Theorem 5.18]) and
satisfies h∗l (m) = hl(m) ≈ m1−1/p for 1 ≤ p < ∞. Hence, it satisfies that limm D∗m(x) =
limm Dm(x) = ‖x‖ for every x ∈ X.
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B If B is superdemocratic (resp. democratic), then it satisfies Theorem 3.2.(ii) (resp. Theo-
rem 3.2.(ii) for hr(m) and hl(m)). However, there are easy examples showing that converse
is not true. For instance, the canonical basis of `2⊕1 `

4 satisfies that hl(m) = h∗l (m)≈m1/4

and hr(m) = h∗r (m)≈ m1/2.

B Example of basis not satisfying Theorem 3.2.(ii): Let us consider X = `1 and let B =
(xn)

∞
n=1 be the difference basis, which in terms of the canonical basis (en)

∞
n=1 is given by

x1 = e1 , xn = en− en−1 , n = 2,3, ...

By [4, Lemma 8.1], it holds that h∗l (m) = hl(m) = 1 and h∗r (m) = hr(m) = 2m.

B Example of basis satisfying limm Dm(x) = ‖x‖ for every x ∈ X, but liminfm D∗(x) is not
even equivalent to ‖x‖: Let X= c be the space of convergent sequences and let B =(sn)

∞
n=1

be the summing basis, defined as

sn := (0, . . . ,0︸ ︷︷ ︸
n−1

,1,1, . . .) , n ∈ N .

By [4, Lemma 8.1] we know that h∗l (m)≈ 1 and h∗r (m)≈ m, so Theorem 3.2.(ii) does not
hold. On the other hand, B is monotone and hl(m) ≈ hr(m) ≈ m by the same reference.
Thus, limm Dm(x) = ‖x‖ for every x ∈ X.

B Condition Theorem 3.2.(ii) is not preserved for dual bases: If (en)
∞
n=1 is the canonical basis

of `1, let us consider the sequence xn = en− (e2n+1 + e2n+2)/2, n ∈ N and the space

X := span{xn : n ∈ N}`
1

.

This is known as the Lindenstrauss space [8] and the sequence B = (xn)
∞
n=1 is actually a

monotone basis for X (see [11, pg 457]). In [4, Section 8.2] it is shown that h∗l (m) ≈ m.
On the other hand, in the same reference it is proved that the dual space X∗ with the
corresponding dual basis B∗ satisfies h∗l (m)≈ 1 and h∗r (m)≈ ln(m).

3.1. Proof of the main result.

Proposition 3.3. Let B be a basis of a Banach space X. Then,

sup
A⊂N
f inite,|η |=1

liminf
m→+∞

D∗m(1ηA) ≤ (1+Kb) liminf
m→+∞

h∗l (m) ≤ ∞ , (5)

sup
A⊂N
f inite

liminf
m→+∞

Dm(1A) ≤ (1+Kb) liminf
m→+∞

hl(m) ≤ ∞ . (6)

Proof. We explain the argument for (5), as the proof of (6) is completely analogous with the obvi-
ous replacements. Let us fix a finite set A⊂ N and η ∈ {±1}A, and let us take λ ∈ R satisfying

λ < liminf
m→+∞

D∗m(1ηA). (7)

We can then find m0,n0 ∈ N with the following properties:

B λ ≤ ‖1ηA−α1εB‖ for every α ∈ R, |ε|= 1 and B⊂ N with |B| ≥ m0 ,
B A⊂ {1, . . . ,n0} .
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Let C ⊂ N be a finite set with |C| ≥ m0 +n0. Then,

1εC−Pn0(1εC) = 1εC′

where C′ :=C \{1, . . . ,n0}. Notice that |C′| ≥ m0, so in particular

λ ≤ ‖1ηA−1(ηA)∪(εC′)‖= ‖1εC′‖ ≤ ‖ Id−Pn0‖‖1εC‖ ≤ (1+Kb)‖1εC‖.
Thus, we have the relation

λ ≤ (1+Kb) liminf
m→+∞

hε
l (m).

Taking supremums on λ according to (7) we conclude that

liminf
m→+∞

D∗m(1ηA) ≤ (1+Kb) liminf
m→+∞

hε
l (m).

�

Theorem 3.4. Let B be a basis of a Banach space X. Assume that there is a constant C > 0
satisfying

sup
n∈N

h∗r (n)≤C sup
n∈N

h∗l (n) ≤ ∞ .

Then, for every x ∈ X
1

C+Kb(1+C)
‖x‖ ≤ liminf

m
D∗m(x) ≤ limsup

m
D∗m(x) ≤ ‖x‖ . (8)

Proof. Let us fix x∈X. We just have to show that the left hand-side of (8) holds. For, let 0 < δ < 1
and m0,n0 ∈ N such that

‖Pn(x)− x‖ ≤ δ ‖x‖ for every n≥ n0 ,

h∗r (n0) ≤ C (1−δ )h∗l (m0) .

Given α ∈ R, A ⊂ N with |A| ≥ m0 + n0 and ε ∈ {±1}A, we are going to establish two lower
bounds for ‖x−α1εA‖.
B Since |A∩(n0,+∞)| ≥m0 we can find n≥ n0 such that |A∩(n,+∞)|= m0. Thus, applying

the operator Id−Pn to x−α1εA we have that

‖x−α1εA‖ ≥
1

Kb +1
‖(Id−Pn)(x)−α1ε(A∩(n,+∞))‖ ≥

1
Kb +1

(
|α|h∗l (m0)−δ ‖x‖

)
. (9)

B As |A| ≥ n0 we can find n≥ n0 with |A∩ [1,n]|= n0, so that

‖x−α1εA‖ ≥
1

Kb

(
‖Pn(x)−α1ε(A∩[1,n])‖

)
≥ 1

Kb

(
‖x‖(1−δ )−|α|h∗r (n0)

)
(10)

≥ 1−δ

Kb

(
‖x‖−C |α|h∗l (m0)

)
(11)

Note that the lower estimations (9) and (11) are respectively increasing and decreasing linear func-
tions f (t) and g(t) on t = |α|. Moreover these functions have a unique point of intersection t0 > 0
which can be easily checked to satisfy

t0 =
‖x‖

h∗l (m0)
· (1−δ )(1+Kb)+δ Kb

C(1−δ )(1+Kb)+Kb
. (12)

Thus

‖x−α1εA‖ ≥max{ f (|α|),g(|α|)} ≥ f (t0) = g(t0) =
‖x‖

1+Kb

[
(1−δ )(1+Kb)+δ Kb

C(1−δ )(1+Kb)+Kb
−δ

]
.
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Taking the infimum of ‖x−α1εA‖ on α ∈R and A satisfying the conditions above, we deduce that

liminf
k→+∞

D∗k (x)≥ inf
k≥m0+n0

D∗k (x)≥
‖x‖

1+Kb

[
(1−δ )(1+Kb)+δ Kb

C(1−δ )(1+Kb)+Kb
−δ

]
.

Finally, making δ → 0+ we get the desired conclusion. �

Proof of Theorem 3.2. To check (i)⇒ (ii), note that using Proposition 3.3 we then deduce that

sup
m∈N

h∗r (m) = sup
A⊂N
f inite,|η |=1

‖1ηA‖ ≤ sup
A⊂N
f inite,|η |=1

liminf
m→+∞

D∗m(1ηA) ≤ (1+Kb) liminf
m→+∞

h∗l (m) ≤ ∞.

It is clear from this inequality that h∗l (m) and h∗r (m) are then comparable. To see the converse (ii)
⇒ (i), note first that if h∗l (m) and h∗r (m) are comparable, then there exists C > 0 such that

sup
m∈N

h∗r (m)≤ sup
m∈N

C h∗l (m) (13)

and so Theorem 3.4 applies. The second statement of the theorem follows also from Theorem
3.4 since B being monotone means that Kb = 1, and condition limm h∗l (m) = +∞ means that (13)
holds for every C > 0. �

4. ALMOST-GREEDINESS AND POLYNOMIALS WITH CONSTANT COEFFICIENTS

Definition 4.1. Let B = (en)
∞
n=1 be a basis of a Banach space X. We say that B is almost-greedy

if there exists a constant C > 0 such that

‖x−Gm(x)‖ ≤C σ̃m(x)

where
σ̃m(x,B)X = σ̃m(x) := inf{‖x−∑

n∈A
e∗n(x)en‖ : A⊂ N, |A|= m}.

This notion was introduced by S. J. Dilworth, N. J. Kalton, D. Kutzarova and V. N. Temlyakov
in [5], together with two characterizations. First, that a basis is almost-greedy if and only if it is
quasi-greedy and democratic. The second characterization is given in the next theorem.

Theorem 4.2 ([5, Theorem 3.3]). Let B be a basis of a Banach space X. Then, B is almost-greedy
if and only if for some (resp. every) λ > 1, there exists a positive constant Cλ such that

‖x−G[λm](x)‖ ≤Cλ σm(x) , for every x ∈ X, m ∈ N.

Indeed, Cλ ≈ 1
λ−1 .

As in the case of greedy basis, we can replace the error σm(x) by the m-th error of approximation
by polynomials with constant (resp. modulus-constant) coefficients.

Theorem 4.3. Let B be a basis of a Banach space X and let λ > 1. The following assertions are
equivalent:

(i) B is almost-greedy.

(ii) There is C > 0 such that ‖x−G[λm](x)‖ ≤Cλ Dm(x) for every x ∈ X and every m ∈ N.

(iii) There is C > 0 such that ‖x−G[λm](x)‖ ≤Cλ D∗m(x) for every x ∈ X and every m ∈ N.
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Proof. Implication (i) ⇒ (iii) ⇒ (ii) are clear using Theorem 4.2 and the inequalities σm(x) ≤
D∗m(x)≤Dm(x). To show that (ii)⇒ (i) we follow the ideas from the proof of Theorem 4.2: using
the hypothesis, we argue that B is democratic and quasi-greedy.

To see that it is democratic, let m∈N and A,B⊂N with |A|= m and |B|= [λm]. Let us consider
a set E ⊃ A,B with |E|=m+[λm], let δ > 0 and consider the element x = 1A+(1+δ )1E\A. Then,

‖1A‖= ‖x−G[λm](x)‖ ≤Cλ Dm(x)≤Cλ‖1B\A +(1+δ )1B∩A‖ .
As δ > 0 is arbitrary, taking supremum over A and infimum over B we deduce that

hr(m)≤Cλ hl(λm)≤Cλ Kb hl(m) ,

where in the last inequality we have used the estimations mentioned at the beginning of Section 2.
Let show now that the basis B is quasi-greedy. For, take m ∈ N and r ∈ N∪ {0} such that

[λ r]≤ m < [λ (r+1)]. Then,

‖x−Gm(x)‖ ≤ ‖x−G[λ r](x)‖+‖G[λ r](x)−Gm(x)‖ .
Note that G[λ r](x)−Gm(x) contains at most m− [λ r]< λ summands of the form e∗n(x)en, so that

‖G[λ r](x)−Gm(x)‖ ≤
(
λ sup

n∈N
‖en‖ sup

n∈N
‖e∗n‖

)
‖x‖ .

On the other hand, using the hypothesis

‖x−G[λ r](x)‖ ≤Cλ Dm(x)≤Cλ ‖x‖ .
Thus, the basis is quasi-greedy. �

Recently, S. J. Dilworth and D. Khurana provided the following characterization of almost-
greedy bases in the same spirit of Theorem 1.4. In order to present it we have to introduce some
notation: if A,B⊂ N are finite sets, we will write A < B if maxA < minB.

Hm(x) := inf{‖x−α1A‖ : α ∈ R , |A|= m and either A < Λm(x) or A > Λm(x)}
where recall that Λm(x) is the m-th greedy set associated to x introduced in Section 1.

Theorem 4.4. [6] Let B be a basis of a Banach space X. Then, B is almost-greedy if and only if
there exists C > 0 such that

‖x−Gm(x)‖ ≤ C inf
1≤n≤m

Hn(x) for every x ∈ X and m ∈ N.

Inspiring on the previous theorem , we can prove the following result which is again strinking as
Dm(x) ≤Hm(x) and so liminfHm(x) ≈ ‖x‖ when hl(m) and hr(m) are comparable by Theorem
3.2.

Corollary 4.5. Let B be a basis of a Banach space X. Then, B is almost-greedy if and only if
there exists C > 0 such that

‖x−Gm(x)‖ ≤CHm(x) for every x ∈ X and m ∈ N. (14)

Proof. If B is quasi-greedy then 14 holds by Theorem 4.4. To see the converse we use the afore-
mentioned characterization of almost-greedy bases as those being quasi-greedy and democratic.
The fact that B is quasi-greedy follows from the hypothesis and the trivial inequality Hm(x)≤‖x‖.
Let us show that B is democratic. Let A,B ⊂ N be finite subsets of cardinality m, and take
E ⊂ N also with |E| = m and moreover A < E and B < E. Fixed δ > 0 consider the elements
x = 1A +(1+δ )1E and y = 1E +(1+δ )1B. Then,

‖1A‖= ‖x−1E‖= ‖x−Gm(x)‖ ≤CHm(x)≤C‖x−1A‖=C (1+δ )‖1E‖ .
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Analogously,

‖1E‖= ‖y−1B‖= ‖y−Gm(y)‖ ≤CHm(y)≤C‖y−1E‖=C (1+δ )‖1B‖ .
Since δ > 0 was arbitraty, we conclude that hr(m)≤C2 hl(m) for every m ∈ N, and so the basis is
democratic. �
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