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Abstract. We study the size of the largest rectangle containing no point of a given
point set in the two-dimensional torus, the dispersion of the point set. A known lower
bound for the dispersion of any point set of cardinality n ≥ 2 in this setting is 2/n. We
show that if n is a Fibonacci number then the Fibonacci lattice has dispersion exactly
2/n meeting the lower bound. Moreover, we completely characterize integration lattices
achieving the lower bound and provide insight into the structure of other optimal sets.
We also treat related results in the nonperiodic setting.

1. Introduction and main result

We identify the two-dimensional torus with [0, 1]2. Any two points x, y ∈ [0, 1]2 define a
rectangle B(x, y) in the two-dimensional torus. If x = (x1, x2), y = (y1, y2) satisfy x1 ≤ y1
and x2 ≤ y2, this is the ordinary rectangle B(x, y) = [x1, y1] × [x2, y2]. If x1 > y1 and
x2 ≤ y2, then B(x, y) =

(
[0, y1] ∪ [x1, 1]

)
× [x2, y2] is wrapped around in the direction of

the first coordinate axis. Analogously, for x1 ≤ y1 and x2 > y2, it is wrapped around the
direction of the second coordinate axis, and for x1 > y1 and x2 > y2 around both axis,
see Figure 1.

Figure 1. Periodic rectangles
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For a given finite point set P ⊂ [0, 1]2, the dispersion disp(P) of P is the area of the
largest rectangle B(x, y) containing no point of P in the interior. The following lower
bound follows as a special case from the result of M. Ullrich in [13] for the d-dimensional
torus in the case d = 2.

Theorem 1. For any n ∈ N with n ≥ 2 and any point set Pn ⊂ [0, 1]2 with #Pn = n, we
have

disp(Pn) ≥ 2

n
.
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The main purpose of this note is the investigation whether, and if so, for which sets,
this bound is sharp.

It is well understood that the Fibonacci lattice has exceptional uniform distribution
properties. We shortly discuss some results in this direction for the discrepancy and
the dispersion as measures of uniform distribution. Let (Fm)m∈N be the sequence of
Fibonacci numbers starting with F1 = F2 = 1 and defined via the recursive relation
Fm+2 = Fm + Fm+1 for m ≥ 2. The Fibonacci lattice Fm is defined as

Fm :=
{( k

Fm
,
{kFm−2

Fm

})
: k ∈ {0, 1, ..., Fm − 1}

}
.

Here, {α} denotes the fractional part of α.
The Fibonacci lattice is an example of an integration lattice. A general integration

lattice in dimension d = 2 has the form{(k
n
,
{kq
n

})
: k ∈ {0, 1, ..., n− 1}

}
.

Here n and 1 ≤ q < n are positive integers. The number q is called the generator of the
integration lattice. It is sometimes required to be coprime to n. We do not make this
additional requirement here. Observe that an integration lattice consists of n points in
[0, 1)2. For the theory of integration lattices and applications to numerical integration we
refer to [7].

It is well-known that the Fibonacci lattice has order optimal L∞- and L2-discrepancy
For the L∞-discrepancy we refer to the monograph [5] of H. Niederreiter. For the classical
L2-discrepancy this was first proved by V. Sós and S. K. Zaremba in [9]. For the periodic
L2-discrepancy it is even conjectured that the Fibonacci lattice is globally optimal among
all point sets with the same number of points, see [3]. This is proved in [3] for n = Fm ≤ 13.
Among integration lattices, the Fibonacci lattice has minimal periodic L2-discrepancy
at least if n = Fm ≤ 832040. This can be shown by a not particularly sophisticated
exhaustive search through all integration lattices using a suitable simplification of the
Warnock formula for the periodic L2-discrepancy of integration lattices.

For the dispersion, it was proved by V. Temlyakov in [12] that the Fibonacci lattice is
order optimal, i.e. that there exists a constant c such that

disp(Fm) ≤ c

Fm
.

The main purpose of this note is to show that the bound in Theorem 1 is actually sharp
for the Fibonacci lattices. In particular, we show the following theorem.

Theorem 2. Let m ≥ 3 be an integer. The Fibonacci lattice Fm satisfies

disp(Fm) =
2

Fm
.

It may be conjectured that, up to torus symmetries, the Fibonacci lattices are the only
point sets meeting the lower bound in Theorem 1. This is not true. The second purpose
of this note is to discuss the structure of general optimal sets. At least for integration
lattices, we get a complete characterization.

Theorem 3. If disp(Pn) = 2/n for some integration lattice Pn with n ≥ 2 points, then
n = Fm is a Fibonacci number and Pn is torus symmetric to the Fibonacci lattice Fm
or n = 2Fm is twice a Fibonacci number and Pn is torus symmetric to the lattice with
generator q = 2Fm−2.
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Clearly, Theorem 3 immediately implies Theorem 2, so we will prove only Theorem 3.
For the convenience of the reader, we provide a short proof of Theorem 1 in Section

2. In particular, this proof also shows that any point set Pn with n points satisfying
disp(Pn) = 2/n has to be of a certain structure. This structure is then further employed
in Section 4 to give examples of point sets with optimal dispersion that are not integration
lattices.

Section 3 contains the proof of our main result Theorem 2. In Section 5 we compute the
nonperiodic dispersion of the Fibonacci lattice, which turns out to be only slighty smaller
than 2/Fm. We finish with a final section containing a discussion of related results in
particular also in higher dimensions.

2. Proof of Theorem 1

We now give a simple proof of Theorem 1. This proof is basically the same as the proof
for general dimension in [13].

Fix a point set Pn with n points. For x ∈ [0, 1), let n(x) be the number of points in
the (periodic) rectangle B(x) = [x, x+ 2/n)× [0, 1). Then each point in Pn is in B(x) for

a set of x of measure exactly 2/n. Hence
∫ 1

0
n(x) dx = 2.

Assume first that n(x) < 2 for some x. Then, for this x, either n(x) = 0 or n(x) = 1.
Then, for some ε > 0, also the rectangle B = [x − ε, x + 2/n) × [0, 1) contains at most
one point of Pn. Splitting the box along the second coordinate of this point, if it exists,
we obtain a periodic rectangle of size 2/n + ε containing no points of Pn in its interior
showing that disp(Pn) > 2/n.

If n(x) > 2 for some x, then
∫ 1

0
n(x) dx = 2 implies that n(x) < 2 for some x, again

disp(Pn) > 2/n follows.
The only case not considered is the case that n(x) = 2/n for every x ∈ [0, 1). Let x be

the first coordinate of a point in the point set. Then we obtain that there exists exactly
one point in the pointset with x-coordinate in (x, x + 2/n) and that there is exactly
one point in the pointset with x-coordinate equal to x + 2/n. In particular, splitting
the rectangle (x, x + 2/n)× [0, 1] along the second coordinate of the (only) point in this
rectangle gives an empty rectangle of size 2/n and disp(Pn) ≥ 2/n follows.

Moreover, if n is odd, this implies that the x-coordinates of points of Pn form the set
{ξ + k/n : k = 0, 1, . . . , n− 1} for some ξ ∈ [0, 1/n). If n is even, the situation is a little
different. Then n(x) = 2/n for every x ∈ [0, 1) only implies that Pn is the union of two
sets {ξi + 2k/n : k = 0, 1, . . . , n/2 − 1} for some ξ1, ξ2 ∈ [0, 2/n). Similar reasoning can
be applied to the second coordinate instead of the first coordinate.

Altogether, we proved Theorem 1 together with structural properties of pointsets meet-
ing the bound. In particular, if n is odd, any pointset Pn with n points satisfying
disp(Pn) = 2/n is, up to torus symmetries, a lattice point set of the type{(k

n
,
{π(k)

n

})
: k ∈ {0, 1, ..., n− 1}

}
for some permutation π of the set {0, 1, ..., n− 1}.

3. Proof of Theorems 2 and 3

Throughout this section we fix an integration lattice

Pn =
{(k

n
,
{kq
n

})
: k ∈ {0, 1, ..., n− 1}

}
.
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containing n points with generator q ∈ {1, 2, . . . , n − 1}. We will prove Theorem 3,
Theorem 2 is a direct consequence. Our proof of Theorem 3 relies on a careful examination
of the length of the intervals obtained by splitting the torus with the points

({
kq
n

})
. To

simplify the notation, we will scale the one-dimensional torus by a factor of n and consider
the sequence

(
n
{
kq
n

})
. To this end, let y : {0, 1, ..., n−1} → {0, 1, ..., n−1} be the function

defined as

y(k) := n
{kq
n

}
.

Furthermore, let

Y` :=
(
y(k)

)`−1
k=0

denote the sequence of the first ` function values of y.
We now want to consider the distances between consecutive elements of the sequence

Y`.

Definition 4. Let (xk)
`−1
k=0 be a sequence of ` elements of the one-dimensional torus

scaled by n. Let (yk)
`−1
k=0 be the non-decreasing rearrangement of the sequence (xk)

`−1
k=0.

For a, b ∈ [0, n] with a 6= b, let d(a, b) denote the oriented scaled torus distance of the
points a and b, i.e. d(a, b) = b− a for b < a and d(a, b) = n+ b− a if b < a. We also set
d(a, a) = n. We say that c ∈ (0, n] is a distance of the sequence (xk) if there exists an
i ∈ {1, ..., `− 1} such that

d(yi−1, yi) = c

or if
d(y`−1, y0) = c.

The following lemma is a direct consequence of the Three-distance or Three-gap The-
orem conjectured by H. Steinhaus and proved in the late 1950s by V. Sós [8], J. Suránji

[10], and S. Świerczkowski [11].

Lemma 5. For any ` ∈ {1, ..., n}, the sequence Y` has at most three different distances.
If Y` has three different distances d1 > d2 > d3, then d1 = d2 + d3.

We will now investigate how often those three distances occur. The following definition
will be helpful in simplifying the notation. We also refer to the figure below for an
instructive example.

Definition 6. Let the sequence Y` have the distances d1 > d2 > d3 a1, a2, a3 times,
respectively. Then we say Y` induces the splitting

n = a1d1 + a2d2 + a3d3.

Notice that the equality holds if we interpret it algebraically. If there are only one or two
distances, the notation is used accordingly. In that case, we also use the notation above
and allow d3 = d2 if a3 = 0 and d2 = d1 if a3 = a2 = 0.

As it turns out, if we increase the number ` of points considered, we always end up
splitting the largest distance.

Lemma 7. By going from Y` to Y`+1, the largest distance from Y` is split.

Proof. If Y` only has one distance, this is trivial. Suppose now that Y` induces the splitting

n = a1d1 + a2d2 + a3d3,

where a3 ≥ 0, i.e. we also consider the case that Y` only has two different distances.
Clearly, Yn splits the torus into equidistant intervals, i.e. Yn has only one distance. Sup-
pose now that by going from Y` to Y`+1, we split either d2 or d3. Without loss of generality,
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Figure 2. Consecutive Splittings for n = 13 and q = 5

Step l Distances Notation
1 13 1x13
2 8,5 1x8+1x5
3 5,3 2x5+1x3
4 5,3,2 1x5+2x3+1x2
5 3,2 3x3+2x2
6 1 3,2,1 2x3+3x2+1x1
7 1 1 3,2,1 1x3+4x2+1x1
8 1 1 1 2,1 5x2+3x1
9 1 1 1 1 1 2,1 4x2+5x1
10 1 1 1 1 1 1 1 2,1 3x2+7x1
11 1 1 1 1 1 1 1 1 1 2,1 2x2+9x1
12 1 1 1 1 1 1 1 1 1 1 1 2,1 1x2+11x1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13x1

Splitting
13

5 8
5 5 3

2 3 5 3
2 3 2 3 3

2 2 2 3 2
2 3 2 3 2

2
2 2 2 2

2

2 2 2 2

2 2 2
2 2

we will assume we split d2. By going from Y` to Y`+1, we introduced the point y(`). This
point has a left neighbour, i.e. there exists an a < ` such that B(y(a), y(`)) contains
no other point of the sequence Y`+1. In the same way there exists a right neighbour
y(b). Since we split the distance d2, we know that d(y(a), y(b)) = d2. It is easy to see
that for any k such that ` + k < n we have that y(` + k) is in the (periodic) interval
(y(a+ k), y(b+ k). Thus, any point introduced after y(`) can only split a distance which
is at most d2. This means that the distance d1 is never split again. However, since Yn
should induce a splitting with only one distance, this is clearly a contradiction. Thus, we
always split d1. �

From now on we will make additional assumptions on n and q. On the one hand, we
assume without loss of generality that 2q ≤ n. This is possible, since the integration
lattices induced by (n, q) and (n, n − q) are torus symmetric. On the other hand, we
assume that the integration lattice has optimal dispersion 2/n, or, since we consider the
scaled torus, dispersion 2n. Since we are only interested in finding all optimal integration
lattices, this is no real restriction.

The following lemma will give us an explicit formula for the splitting of Y` that will
then directly imply Theorem 3. Here we also use Fibonacci numbers Fk with k ≤ 0, which
satisfy the same recursion as for k > 0.

Lemma 8. Let m, k, j be positive integers satisfying 3 ≤ k ≤ m, Fm ≤ n < Fm+1 and
1 ≤ j ≤ Fk−2.

If k is odd, then YFk−j induces the splitting

(3.1) n = j(Fk−3q − Fk−5n) + (Fk−1 − j)(Fk−4n− Fk−2q) + (Fk−2 − j)(Fk−1q − Fk−3n).

Moreover, the fraction n
q

satisfies

(3.2)
Fk
Fk−2

≤ n

q
≤ Fk−1
Fk−3

.

If k is even, then YFk−j induces the splitting

(3.3) n = j(Fk−5n− Fk−3q) + (Fk−1 − j)(Fk−2q − Fk−4n) + (Fk−2 − j)(Fk−3n− Fk−1q).

Moreover, the fraction n
q

satisfies

(3.4)
Fk−1
Fk−3

≤ n

q
≤ Fk
Fk−2

.
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Moreover, the inequalities (3.2) and (3.4) for 3 ≤ k ≤ m are not only necessary but
also sufficient for Pn to have minimal dispersion 2/n.

Proof. We will prove this Lemma by induction on k.
Let k = 3. The only j we need to consider is j = 1. We need to examine the splitting

YF3−1 = Y1. Y1 trivially splits the scaled torus into

n = 1(F0q − F−2n) + (F2 − 1)(F−1n− F1q) + (F1 − 1)(F2q − F0n)

= 1n.

Furthermore, since 2q ≤ n, the distances F0q − F−2n ≥ F−1n − F1q ≥ F2q − F0n are
ordered. Also (3.2), which reads as

2

1
=
F3

F1

≤ n

q
≤ F2

F0

= +∞,

holds since 2q ≤ n.
Let k = 4. Again, the only j we need to consider is j = 1. We need to examine the

splitting YF4−1 = Y2. But Y2 trivially splits the scaled torus into

n = 1(F−1n− F1q) + (F3 − 1)(F2q − F0n) + (F2 − 1)(F1n− F3q)

= 1(n− q) + 1q

as claimed. We assumed that the integration lattice has optimal dispersion, i.e. there is
no empty box of size greater than 2n. The splitting Y2 gives us a box of size 3(n − q).
Thus, we get

3(n− q) ≤ 2n ⇐⇒ n

q
≤ 3.

Together with the bound from the case k = 3, this implies

2

1
=
F3

F1

≤ n

q
≤ F4

F2

=
3

1
,

which is (3.2). Moreover, it again follows that the distances of the splitting F−1n−F1q ≥
F2p− F0n ≥ F1n− F3q are ordered.

We will now assume the Lemma has been proven for k, k + 1 with k odd and we will
prove it for k+ 2 and k+ 3. Of course, we then have to assume m ≥ k+ 2 and m ≥ k+ 3,
respectively.

We start with the proof for k + 2. We need to consider the splitting YFk+2−j for j ∈
{1, ..., Fk}. This splitting still exists, since m ≥ k + 2. We know that YFk+1−1 gave us the
splitting

n = 1(Fk−4n− Fk−2q) + (Fk − 1)(Fk−1q − Fk−3n) + (Fk−1 − 1)(Fk−2n− Fkq).

Since, by Lemma 7, we always split the largest distance and the distances in the splitting
above are ordered, YFk+1

gives us

n = Fk(Fk−1q − Fk−3n) + Fk−1(Fk−2n− Fkq).

Now we need to split the largest distance Fk+2− j−Fk+1 more times. Thus, YFk+2−j gives
us

n = j(Fk−1q − Fk−3n) + (Fk+1 − j)(Fk−2n− Fkq) + (Fk − j)(Fk+1q − Fk−1n).

This shows (3.3). It remains to check that the distances are ordered. To this end, we use
the minimality with respect to the dispersion. The splitting gives us an empty box of size
(Fk+2 − j + 1)(Fk−1q − Fk−3n). From the assumption on the dispersion we conclude that
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(Fk+2 − j + 1)(Fk−1q − Fk−3n) ≤ 2n. Of course, if this condition is satisfied for j = 1, it
is satisfied for any j ∈ {1, ..., Fk}. Thus, we have

Fk+2(Fk−1q − Fk−3n) ≤ 2n ⇐⇒ Fk+2

Fk
=

Fk+2Fk−1
Fk+2Fk−3 + 2

≤ n

q
.

Together with the bounds (3.4) with k + 1 instead of k, we get the new bounds

Fk+2

Fk
≤ n

q
≤ Fk+1

Fk−1
.

These are the bounds (3.2) with k+2 instead of k, which now also imply that the distances
of the splitting were ordered. The proof for k + 3 is completely analogous. �

Proof of Theorem 3. Assume that the integration lattice Pn satisfies disp(Pn) = 2/n. Let
q be the generator of Pn and assume that 2q ≤ n, passing to a torus equivalent integration
lattice if necessary. Let the positive integer m be such that n ∈ {Fm, ..., Fm+1− 1}. Since
n ≥ 2, we have m ≥ 3. If m is odd, Lemma 8 gives us for k = m that n

q
must satisfy the

inequalities
Fm
Fm−2

≤ n

q
≤ Fm−1
Fm−3

.

Since fractions of Fibonacci numbers are optimal rational approximations of ϕ (or in that

case ϕ2), the next rational approximation better than Fm

Fm−2
and Fm−1

Fm−3
would be Fm+1

Fm−1
. But

this is not possible, since n < Fm+1. Thus, if n
q

satisfies the above inequality, it has to be

equal to one of the two sides.
If n

q
= Fm

Fm−2
, then n = Fm and q = Fm−2 because of the restrictions on n (since

Fm+1 − 1 < 2Fm) and we have that Pn = Fm is a Fibonacci lattice.

If n
q

= Fm−1

Fm−3
, then n = 2Fm−1 because of the restrictions on n. This implies q = 2Fm−3.

We conclude that the only possible optimal integration lattices are the lattices described
in the theorem. Moreover, since the inequalities (3.2) and (3.4) for 3 ≤ k ≤ m are sufficient
for Pn to have minimal dispersion 2/n, these lattices indeed have optimal dispersion
2/n. �

Remark 9. The proof of optimality of the Fibonacci lattice without characterizing all
optimal integration lattices can be significantly simplified. In fact, it is then easier to
directly show the formula

disp(Fm) =
1

F 2
m

max
3≤k≤m

FkFm−k+3,

which also follows from the above argument. The maximum is attained for k = 3 and
k = m. This was independently observed by M. Ullrich.

4. Optimal sets that are not integration lattices

In this section, we give examples of pointsets Pn satisfying disp(Pn) = 2/n that are
not integration lattices. Of course, the restrictions given in Section 2 have to be satisfied.
These examples are obtained from the Fibonacci lattices Fm for even Fm by shifting every
other point by a fixed small vector, see Figure 4. This leads to the distorted Fibonacci
lattices

Fm,ξ,η :=
{( k

Fm
,
{kFm−2

Fm

})
: k ∈ {0, 2, ..., Fm − 2}

}
∪
{( k

Fm
+

ξ

Fm
,
{kFm−2

Fm

}
+

η

Fm

)
: k ∈ {1, 3, ..., Fm − 1}

}
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with 0 ≤ ξ, η < 1. It turns out that for small enough ξ and η, such a distortion does not
alter the dispersion of the Fibonacci lattice.

For simplicity, we just analyse the case η = 0 more closely, i.e., half of the Fibonacci
lattice is shifted in the direction of the first coordinate. Then the argument from the
previous section or the more direct argument mentioned in Remark 9 lead to the conclusion
that, as long as

F3Fm ≥ max
4≤k≤m−1

(Fk + ξ)Fm−k+3,

the dispersion does not grow. The maximum is attained (at least asymptotically) for
k = 4 and k = 5. So we get the condition

F3Fm ≥ (F4 + ξ)Fm−1,

which is asymptotically equivalent to

ξ ≤ lim
n→∞

F3Fm
Fm−1

− F4 = 2φ− 3 = 0.236068 . . . .

Figure 3. Fibonacci lattice, usual and distorted

The distorted Fibonacci lattices above are neither integration lattices nor lattice point
sets. We could not decide if there are lattice point sets with large cardinality that both
have optimal dispersion and are not torus equivalent to an integration lattice.

5. The nonperiodic case

In this section, we study the dispersion of the Fibonacci lattice in the non-periodic
case. Basically this means that we restrict the allowed rectangles in the definition of the
dispersion to rectangles B(x, y) where x ≤ y coordinatewise. Let disp∗(Pn) denote the
corresponding dispersion of a point set Pn ⊂ [0, 1]2.

The best known lower bound (for n ≥ 16)

(5.1) disp∗(Pn) ≥ 5

4(n+ 5)

was proved in [2]. As far as we know, until now, the best known upper bound in dimension
2 for large n is disp(Pn) ≤ 4/n if n = 2m for some positive integer m and a (0,m, 2)-net
Pn in base 2. For general n, this implies that there exist pointsets Pn of cardinality n
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with disp(Pn) ≤ 8/n. Already the periodic dispersion of the Fibonacci lattices allows
an improvement of these upper bounds. We compute the nonperiodic dispersion of the
Fibonacci lattice to further improve these bounds.

Theorem 10. Let m ≥ 6 be an integer. The Fibonacci lattice Fm without the point (0, 0)
satisfies

disp∗(Fm \ {(0, 0)}) =
2(Fm − 1)

F 2
m

.

We only sketch the proof here. The proof for the periodic case in particular shows that
the maximal periodic boxes containing no points of Fm in the interior have sidelength
Fj/Fm and Fm+3−j/Fm for some j = 3, 4, . . . ,m leading to the formula

disp(Fm) =
1

F 2
m

max {FjFm+3−j : j = 3, 4, . . . ,m}.

The maximum is attained for j = 3 and j = m. But the corresponding rectangles
with sidelength 2/Fm and Fm/Fm = 1 are true periodic rectangles wrapping around
one direction. However, it is easy to see that there are still nonperiodic rectangles with
sidelength 2/Fm and (Fm − 1)/Fm. Those rectangles have an area of 2(Fm − 1)/F 2

m.
On the other hand, for each j = 4, 5 . . . ,m − 1, there are nonperiodic rectangles with

sidelength Fj/Fm and Fm+3−j/Fm that do not contain any point of Fm in the interior. In
the nonperiodic setting, the point (0, 0) can be safely omitted. We arrive at

disp∗(Fm \ {(0, 0)}) =
1

F 2
m

max
{

2(Fm − 1),max {FjFm+3−j : j = 4, 5, . . . ,m− 1}
}

for m ≥ 5. It is not too hard to check that, for m ≥ 6, this maximum is attained for
j = 5. Clearly,

F5Fm−2
F 2
m

≤ 2(Fm − 1)

F 2
m

for m ≥ 6. This leads to the claim of the theorem.

6. Further results, final remarks and open problems

To put our results in the two-dimensional case into perspective, we now also consider
the general d-dimensional case. Let disp(n, d) and disp∗(n, d) be the minimal dispersion
of all pointsets Pn in [0, 1]d of cardinality n in the periodic and non-periodic setting,
respectively. The modifications in the definitions should be obvious.

The known lower and upper bounds imply that

0 < a(d) := lim inf
n→∞

n disp(n, d) ≤ lim sup
n→∞

n disp(n, d) =: b(d) <∞

and

0 < a∗(d) := lim inf
n→∞

n disp∗(n, d) ≤ lim sup
n→∞

n disp∗(n, d) =: b∗(d) <∞.

The inequalities

(6.1) a∗(d) ≤ a(d) and b∗(d) ≤ b(d)

are trivial. It is natural to study these quantities and to determine if a(d) = b(d) and/or
a∗(d) = b∗(d), i.e., if the limits limn→∞ n disp(n, d) and/or limn→∞ n disp∗(n, d) exist. For
d = 1, equidistant points are optimal. This implies a(1) = b(1) = a∗(1) = b∗(1) = 1.
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Already the case d = 2 is much more difficult. In the periodic case, Theorems 1 and 2
show that

(6.2) a(2) = 2 and b(2) ≤ 3 +
√

5

2
= 2.6180339 . . . .

Here b(2) is estimated via monotonicity of disp(n, d) in n together with disp(n, d) = 2/n
if n is a Fibonacci number or twice a Fibonacci number. The problem, if b(2) = a(2) and,
if not, the computation of b(2) remain open. In the non-periodic case, the lower bound
(5.1), Theorem 10 and inequalities (6.1) and (6.2) show that

5

4
≤ a∗(2) ≤ 2 and b∗(2) ≤ 3 +

√
5

2
= 2.6180339 . . . .

The exact determination of a∗(2) and b∗(2) remains open.
For general d, we only know that

d ≤ a(d) ≤ 27d and b(d) ≤ 27d+1

as well as
log2 d

4
≤ a∗(d) ≤ 27d and b∗(d) ≤ 27d+1.

The upper bounds follow from a construction using digital nets due to G. Larcher, see [1].
The lower bound for a(d) follows from the result of [13], the lower bound for a∗(d) from
the main result of [1]. Further upper bounds not directly applicable to this problem or
yielding worse bounds can be found in the papers [4, 6, 12].

The lower bound from [13] for general dimension d is

disp(Pn) ≥ d

n
,

which is equal to d/n for d ≥ n. We now discuss the case of integration lattices Pn ⊂ [0, 1]d

with optimal periodic dispersion. It turns out that, in contrast to the already considered
case d = 2, such integration lattices can only exist for small n. We restrict the discussion
here to the case d = 3.

Theorem 11. There are no integration lattices in 3 dimensions which have more than 4
points and satisfy

disp(Pn) =
3

n
.

The crucial tool is the following additional information on the splittings induced by a
two-dimensional integration lattice. Here we freely use the notation and language intro-
duced in Section 3.

Lemma 12. Let Pn ⊂ [0, 1]2 be an integration lattice with n points and generator q.
Assume that the induced splitting has more than one different distance (it has distances
d1 > d2 and maybe distance d3 < d2). Then there is an empty interval of distance d1 and
an empty interval of distance at least d2 which are next to each other.

Proof. Assume we have an interval of distance d1. Let the interval on the left and right
have distance d3. This distance d3 must have come from splitting a distance d1 or a
distance d2. A distance d2 has not been split, as there is a distance d1 remaining and we
always split the largest distance. Thus, both distances of length d3 next to the d1-distance
come from splitting a d1-distance. A d1 distance is always split into a d2 and a d3 distance.
Furthermore, the d2 is always to the left of the d3 or the d2 is always to the right of the d3.
In any way, if there were distances d1 which were split to both sides of our d1 distance,
then there are now a d3 and a d2 distance next to our d1. �
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Proof of Theorem 11. Observe that the projection of an integration lattice in dimension
3 onto any of the coordinate planes produces an integration lattice in dimension 2. Let
q be the generator of one of those projected lattices. Splitting the 3-dimensional torus
along the third coordinate of a point shows that a lower bound for the dispersion of the
3-dimensional integration lattice is given by the maximal size of a periodic rectangle for
the 2-dimensional projection containing at most one point in the interior.

Now, assume that the first k points o induce the splitting

n = a1d1 + a2d2 + a3d3

for the 2-dimensional projected lattice. Then, we observe the following: if a1 > a2 + a3,
an application of the pigeonhole principle shows that there are two empty intervals of size
d1 next to each other. In any other case, Lemma 12 tells us that there is an interval of
size d1 next to an interval of size d2. Thus, in the first case, there is a two-dimensional
box of size (k + 1) ∗ (d1 + d1) and in the second case there is a two-dimensional box of
size (k + 1) ∗ (d1 + d2) which contains only one point. The sizes of those boxes are lower
bounds for the 3-dimensional dispersion.

Assume now that the 3-dimensional integration lattice has dispersion 3/n. We will show
a contradiction if n is sufficiently large. Without loss of generality, assume q ≤ n. We
consider now the projected 2-dimensional lattice with generator q. The first two points
induce the splitting

n = 1(n− q) + 1q

and give rise to a relevant box of size

(2 + 1) · (n− q + q) = 3n ≤ 3n.

The first 3 points induce the splitting

n = 1(n− 2q) + 2q.

The proof will be finished by a giant case distinction:

(1) n− 2q < q ⇐⇒ n < 3q. We have the largest box of size

4(q + q) ≤ 3n⇐⇒ 8q

3
≤ n.

Together, we obtain 8q/3 ≤ n < 3q. The next splitting is

n = 1q + 2(n− 2q) + 1(3q − n).

We again need to distinguish two cases.
(a) n− 2q < 3q − n⇐⇒ n < 5q/2. This is a contradiction.
(b) n− 2q ≥ 3q − n⇐⇒ n ≥ 5q/2. We have the largest box

5(q + n− 2q) ≤ 3n⇐⇒ n ≤ 5q

2
.

This is a contradiction.
(2) n− 2q ≥ q ⇐⇒ n ≥ 3q. We have the largest box

4(n− 2q + q) ≤ 3n⇐⇒ n ≤ 4q.

Together, we obtain 3q ≤ n ≤ 4q. The next splitting is

n = 1(n− 3q) + 3q.

We again need to distinguish two cases.
(a) n − 3q ≥ q ⇐⇒ n ≥ 4q. Together with n ≤ 4q we have n = 4q. This is a

contradiction for n > 4.
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(b) n− 3q < q ⇐⇒ n < 4q. We have the largest box

5(q + q) ≤ 3n⇔ 10q

3
≤ n.

Together, we obtain 10q/3 ≤ n < 4q. The next splitting is

n = 2q + 2(n− 3q) + 1(4q − n).

We again need to distinguish two cases.
(i) n− 3q ≤ 4q − n⇐⇒ n ≤ 7q/2. We have the largest box

6(q + 4q − n) ≤ 3n⇐⇒ 10q/3 ≤ n.

Together, we obtain 10q/3 ≤ n ≤ 7q/2. The next splitting is

n = q + 2(4q − n) + 3(n− 3q).

Luckily, we do not need a case distinction here, as we already know the
ordering of the distances. We have the largest box

7(q + 4q − n) ≤ 3n⇐⇒ 7q/2 ≤ n.

Thus, n = 7q/2. This is a contradiction for all n, except for n = 7 and
q = 2. This case can be excluded separately by exhaustively trying all
possibilities.

(ii) n− 3q > 4q − n⇐⇒ n > 7q/2. We have the largest box

6(q + n− 3q) ≤ 3n⇐⇒ n ≤ 4q.

In total, 7q/2 < n < 4q. The next splitting is

n = q + 3(n− 3q) + 2(4q − n).

Again, we do not need a case distinction. We have the largest box

7(q + n− 3q) ≤ 3n⇐⇒ n ≤ 7q/2.

This is a contradiction.

Every branch of the case distinction failed for n > 4. This proves the theorem. �
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[10] J. Suránji. Über die Anordnung der Vielfachen einer reellen Zahl mod 1. Ann. Univ. Sci. Budapest,
Eötvös Sect. Math., 1:107–111, 1958.
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