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Abstract: The Helmholtz equation −∇ · (a∇u) − ω2u = f is
considered in an unbounded wave-guide Ω := R × S ⊂ Rd, where
S ⊂ Rd−1 is a bounded domain. The coefficient a is strictly elliptic
and (locally) periodic in the unbounded direction x1 ∈ R. For non-
singular frequencies ω, we show the existence of a solution u. While
previous proofs of such results were based on operator theory, our
proof uses only energy methods.
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1 Introduction

We investigate the existence of solutions to the Helmholtz equation

−∇ · (a∇u)− ω2u = f (1.1)

in an infinite wave-guide Ω := R × S. The cross-section S is given by a bounded
Lipschitz domain S ⊂ Rd−1, the right hand side f ∈ H−1(Ω) has compact support,
the frequency ω > 0 is assumed to be non-singular. The differential operator
Au := −∇ · (a∇u) is given by coefficients a : Ω → Rd×d of class L∞(Ω) with a(x)
symmetric and positive, satisfying λ|ξ|2 ≤ ξ·a(x)ξ ≤ Λ|ξ|2 for some 0 < λ < Λ <∞
and all ξ ∈ Rd, x ∈ Ω. The coefficient is assumed to be 1-periodic in the direction
of x1, a(x+ e1) = a(x) for every x ∈ Ω, but we also treat coefficients that are only
locally periodic. We impose Neumann conditions on ∂Ω; Dirichlet conditions can
be treated in the same way. For an illustration of the geometry see Figure 1.
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Figure 1: The wave-guide geometry in two dimensions. The coefficient a is indi-
cated by different levels of gray. It is 1-periodic in x1-direction.

We say that a function u ∈ H1
loc(Ω) solves the radiation problem if the following

three conditions are met:

(i) u solves (1.1) in Ω in the sense of distributions.
(ii) supr∈Z ‖u‖L2((r,r+1)×S) <∞.
(iii) the radiation condition of Definition 2.4 is satisfied.

One of our main results is the following existence statement.

Theorem 1.1 (Existence and uniqueness result for periodic media). Let the data Ω,
f , ω, and a be as described above. Let ω be non-singular in the sense of Assumption
2.3 below. Let a be 1-periodic in the first direction, a(x+e1) = a(x) for every x ∈ Ω.
Then there exists one and only one solution u to the radiation problem (i)–(iii).

The statement of Theorem 1.1 is not new. It is contained, e.g., in [8]. The
decisive difference between existing literature and the paper at hand regards the
method of proof. The proof in [8] uses operator theory (just as the proofs of similar
results in e.g. [9] and [16]): One constructs families of operators in subsets of the
complex plane, sketches specific curves in the complex plane and evaluates corre-
sponding line integrals of operators. The constructions provide bounded families of
operators and thus, as a result, an inverse to the Helmholtz operator. The proofs
rely on analyticity properties and exploit the operator perturbation theory of Kato.

By contrast, our proof uses only energy methods and is self-contained.
Our approach has the character of a Fredholm alternative. The assumption that

the frequency ω is non-singular implies that the homogeneous problem has only the
trivial solution. From this uniqueness property, we obtain the existence result. In
order to obtain the existence, we introduce an approximate problem which is easy
to solve. If the approximate solutions are bounded, then any limit is the desired
solution to the original problem. If the approximate solutions are unbounded, we
normalize them and obtain, in the limit, a non-trivial solution to the homogeneous
problem — in contradiction to the uniqueness property.

From the above description of the proof it is clear that the approach is very
direct. The two difficulties are 1) the construction of a useful approximate problem
and 2) the verification of the radiation condition for limits. Our choice is inspired
by constructions of [4] and [15]: We work with radiation boxes and demand that
approximate solutions look like outgoing waves in the radiation boxes. All proofs
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then rely on the flux equality for solutions: In every cross-section of the wave-guide
the solution has the same energy flux.

Our methods are very flexible and provide also other results. As an example,
we give the following result for media that are periodic in two half-spaces. For
such piecewise periodic media, even for non-singular frequencies ω, the number ω2

can be an eigenvalue of the Helmholtz operator. We therefore have to assume the
uniqueness property for the homogeneous problem. Our result has therefore very
much the character of a Fredholm alternative: If solutions are unique, then they
exist for arbitrary f .

Theorem 1.2 (Piecewise periodic media). Let Ω = R × S be the wave-guide, S
and a as above. Let a be 1-periodic at the far right and at the far left: There exists
R0 > 0 such that a(x + e1) = a(x) holds for every x ∈ Ω with |x1| > R0. Let
ω > 0 be a non-singular frequency in the sense of Assumption 2.3 below for the two
periodic media at the far right and at the far left. If the radiation problem (i)–(iii)
with f = 0 possesses only the trivial solution, then the radiation problem (i)–(iii)
has a unique solution u for arbitrary f ∈ H−1(Ω) with compact support.

Regarding literature we mention [12] for classical methods. In [10], a unique-
ness result is obtained for a small perturbation of a periodic medium. In general,
uniqueness does not hold in the situation of Theorem 1.2, see [1, 5, 6]. The work
[3] treats a similar problem and makes a connection to a Lippmann-Schwinger
equation, uniqueness is obtained there from a positive absorption parameter.

We mention that the Fredholm alternative for a limiting absorption principle
was also exploited in [18] in order improve the existence statement of [4] with a
vanishing absorption principle. The analysis of guided modes in a wave guide with
purely harmonic dependence in the unbounded direction was treated in [2]. In the
work [7], the solution to half-space problems is used for the computation of guided
modes, which is further exploited in [11].

2 Preliminaries

In this section we discuss various properties of the system and specify the setting
for our results. We start with the conservation of fluxes. This is a fundamental
property of the Helmholtz equation and our existence result is built on it. We recall
the concept of propagating modes and introduce the non-singularity assumption on
ω, which allows also to introduce a useful radiation condition in Definition 2.4. We
furthermore show some results on approximate orthogonality and the equivalence
of our radiation condition with a more standard formulation.

2.1 Conservation of fluxes and the form Q

During the entire approach, we will work with a number l ∈ N that gives the width
of a so called “radiation box”. The number is fixed throughout this article, but it
must be chosen sufficiently large. Below, we will be specific on the choice of l.
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Given l > 0, we consider the domain W0 := (0, l)× S and, for arbitrary r ∈ Z,
the shifted domains Wr := (r, r + l) × S. Later on, we will identify a function
u : Wr → C with the function ũ : W0 → C, which is obtained with a shift,
ũ(x) = u(x+ re1).

Of crucial importance in our approach will be the following sesquilinear form
Q. For u ∈ H1(W0) and v ∈ L2(W0), we define

Q(u, v) :=
1

l

∫
W0

a∇u · e1v̄ , and Q(u) := Q(u, u) , (2.1)

where the overbar denotes complex conjugation. The forms Q andQ can be used to
measure the energy flux of solutions. We also consider at one point a symmetrized
variant of Q, namely

Qs(u, v) :=
1

2

(
Q(u, v)−Q(v, u)

)
. (2.2)

The symmetrized variant satisfiesQs(u, v) = −Qs(v, u) andQs(u, u) = i ImQ(u, u) =
i ImQ(u), hence also ImQs(u, u) = ImQ(u, u) = ImQ(u).

We will repeatedly use the piecewise affine cutoff-functions ϑ that are 1 in
an interior interval and 0 outside a larger interval. More precisely, given four
consecutive points (ρ, ρ + l, r, r + l), we set: ϑ(s) = 0 for s ≤ ρ and for s ≥ r + l,
ϑ(s) = 1 for ρ + l ≤ s ≤ r, and ϑ affine linear in the two remaining intervals,
compare Figure 2. By slight abuse of notation, we identify ϑ with a cutoff-function
on Ω by setting ϑ(x) := ϑ(x1).

r + lrρ ρ+ l0

ϑ(x1)

x1

Figure 2: The cutoff function ϑ.

The basis for our approach is the energy flux equality. In its simplest form, it
states: For a homogeneous solution φ, the energy flux quantity ImQ(φ|Wr , φ|Wr) =
ImQ(φ|Wr) is independent of the position r.

Lemma 2.1 (Simple flux equality). Let φ ∈ H1
loc(Ω) be a solution to Aφ = ω2φ on

Ω. Then, for arbitrary ρ, r ∈ R with ρ+ l ≤ r, there holds the flux equality

ImQ(φ|Wρ) = ImQ(φ|Wr) . (2.3)

Proof. We use the piecewise affine cutoff-function ϑ corresponding to the four
points (ρ, ρ+ l, r, r + l). We furthermore set Ωr1,r2 := (r1, r2)× S.
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We multiply the equation Aφ = ω2φ with ϑφ̄, we recall that the overbar stands
for complex conjugation. An integration over Ω yields

0 =

∫
Ωρ,r+l

a∇φ · ∇(φ̄ϑ)−
∫

Ωρ,r+l

ω2 φ φ̄ ϑ

=

∫
Ωρ,r+l

a∇φ · ∇φ̄ ϑ−
∫

Ωρ,r+l

ω2 φ φ̄ ϑ−
∫
Wr

a∇φ φ̄ · 1

l
e1 +

∫
Wρ

a∇φ φ̄ · 1

l
e1

=

∫
Ωρ,r+l

a∇φ · ∇φ̄ ϑ−
∫

Ωρ,r+l

ω2 |φ|2 ϑ−Q(φ|Wr , φ|Wr) +Q(φ|Wρ , φ|Wρ) .

Since the first two integrals are real, taking the imaginary part, we find (2.3).

Remark 2.2 (The flux through an interface). Let φ be a solution of Aφ = ω2φ on
Ω. Multiplication with φ̄, integration over (ρ, r)×S ⊂ Ω, and taking the imaginary
part yields

Im

∫
{ρ}×S

a∇φ · e1 φ̄ = Im

∫
{r}×S

a∇φ · e1 φ̄ . (2.4)

This shows that the expression on the right does not depend on the position r.
The fact that the surface integral is indepent of r implies that every volume

integral ImQ(φ|Wr) of (2.3) actually coincides with the expression in (2.4).

2.2 Propagating modes and radiation condition

We next study solutions to the radiation problem. We cannot expect that solutions
decay at infinity. On the other hand, in general, we cannot expect that solutions
are locally of class L∞. We therefore introduce a new norm to measure functions.
For u : Ω→ C we set

‖u‖sL := sup
r∈Z
‖u‖L2((r,r+1)×S) , (2.5)

the symbol sL is chosen since we take a supremum over L2-norms. We study the
following subspace of H1(W0):

X :=
{
u|W0

∣∣u ∈ H1
loc(Ω), ‖u‖sL <∞, Au = ω2u in Ω

}
. (2.6)

We will assume that the space X is finite-dimensional. This is indeed the case for
all but a countable number of frequencies ω.

Let us briefly recall some spectral analysis facts, for details see [8, 13, 14, 17]:
With a Floquet-Bloch transform the problem Au = ω2u can be decomposed in a
familiy of problems A(ξ)u = ω2u, where ξ ∈ [0, 2π) is the quasimoment and A(ξ)
is the operator A, restricted to ξ-quasiperiodic functions f , i.e. to functions with
f(x + e1) = eiξf(x)∀x. Every operator A(ξ) has a compact resolvent and hence a
pure point spectrum. Since the eigenvalues depend continuously on ξ (and have
increasing lower bounds), for generic values of ω, the number ω2 coincides with
eigenvalues of A(ξ) for finitely many values of ξ. The corresponding eigenfunctions
then form a basis for the space X of (2.6).
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In the following, we assume that ω2 is an eigenvalue of A(ξ) for only finitely
many ξj and that the imaginary part of the sesquilinear form Q does not vanish in
the basis functions. Our definition of non-singular frequencies coincides with the
one in [8].

Assumption 2.3 (Non-singular frequency). We assume that ω > 0 is a non-
singular frequency in the following sense:

(a) The space X of (2.6) is finite-dimensional. There exists a basis (φ+
1 , ..., φ

+
N+

,

φ−1 , ..., φ
−
N−

) with corresponding quasimoments ξ±j ∈ [0, 2π) such that the quasiperi-

odic extensions with φ±j (x+ e1) = eiξ
±
j φ±j (x) are solutions of Aφ = ω2φ in Ω.

(b) The basis functions have the property that, for every j,

ImQ(φ+
j ) > 0 and ImQ(φ−j ) < 0 . (2.7)

For a non-singular frequency ω and basis functions as above we define the
following two subspaces of H1(W0),

X+ := span{φ+
j | 1 ≤ j ≤ N+} , X− := span{φ−j | 1 ≤ j ≤ N−} . (2.8)

Every function φ+ ∈ X+ can be extended to a solution of the homogeneous problem.
Indeed, φ+ ∈ X+ implies φ+(x) :=

∑
j αjφ

+
j (x) for some coefficients αj ∈ C. The

extension φ+(x + me1) =
∑

j αje
imξ+j φ+

j (x) for every m ∈ Z is a solution to the

homogenenous problem Aφ = ω2φ in Ω. Analogously, an extension operator can
be defined for φ− ∈ X−.

Since the basis functions are linearly independent, there holds X = X+ ⊕X−.
Corresponding to this decomposition, there are two projections, ΠX,+ : X → X
onto X+ and ΠX,− : X → X onto X−. An arbitrary element u ∈ X can be uniquely

written as u =
∑N+

j=1 αjφ
+
j +

∑N−
j=1 βjφ

−
j , and the projections of this element are

ΠX,+(u) =
∑N+

j=1 αjφ
+
j and ΠX,−(u) =

∑N−
j=1 βjφ

−
j . We emphasize that the basis

function φ±j are, in general, not L2-orthogonal.
The L2(W0)-orthogonal projection onto the subspace X is denoted as ΠX :

L2(W0) → L2(W0). With the help of ΠX we define the two projections Π+ :=
ΠX,+ ◦ΠX : L2(W0)→ L2(W0) onto X+ and Π− := ΠX,− ◦ΠX : L2(W0)→ L2(W0)
onto X−.

The projections allow to introduce the radiation condition that is used in this
work. We remark that the equivalence with a more standard radiation condition
is established in Lemma 2.8. The norm ‖u‖sL was introduced in (2.5).

Definition 2.4 (Radiation condition). Let ω be non-singular in the sense of As-
sumption 2.3. Let l > 0 be a fixed width of the radiation boxes W±r and let Π±
be the above projections. We say that u : Ω → C with ‖u‖sL < ∞ satisfies the
radiation condition if

Π−(u|Wr)→ 0 and Π+(u|W−r)→ 0 as r → +∞ . (2.9)

In this formula, we identify a function on Wr with a function on W0 via a shift,
the convergence is that of X.
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2.3 Approximate orthogonality

We have to deal with the fact that the spacesX+ andX− are not orthogonal, neither
in the sense of L2(W0) nor in the sense of the form ImQ(., .). In order to have at
least an approximate orthogonality, which will be sufficient for our approach, we
choose the width l of the radiation boxes Wr very large. The choice of l ∈ N is
made in this subsection.

We always normalize the basis functions such that

1

l

∫
W0

|φ±j |2 = 1 . (2.10)

A normalized basis function remains normalized when l is changed; this is a con-
sequence of quasiperiodicity.

In the case that several basis functions, say φ+
l , ..., φ

+
m, have the same quasimo-

ment ξ, we diagonalize the functions with respect to the form Qs,

Qs(φ+
i , φ

+
j ) = 0 for all l ≤ i, j ≤ m, i 6= j . (2.11)

This is possible by a standard diagonalization procedure; we exploit Qs(φ+
j , φ

+
j ) 6=

0 for all j and the symmetry Qs(u, v) = −Qs(v, u). The orthogonalization is
performed for all basis functions φ±j that have a common quasimoment.

Lemma 2.5 (Approximate orthogonality). For every η0 > 0 there exists l0 ∈ N
such that, for every l0 ≤ l ∈ N, there holds: Every two different elements u and v
of the set {φ+

1 , ..., φ
+
N+
, φ−1 , ..., φ

−
N−
} satisfy

|Qs(u, v)| ≤ η0 . (2.12)

Proof. In the case that u and v have the same quasimoment ξ, there holdsQs(u, v) =
0 by the orthogonalization of the basis functions, see (2.11).

Let u have the quasimoment ξ and let v have the quasimoment ζ 6= ξ. We want
to calculate the expression

Qs(u, v) =
1

2

(
Q(u, v)−Q(v, u)

)
=

1

2l

∫
W0

a∇u · e1v̄ −
1

2l

∫
W0

a∇v̄ · e1u .

We perform the argument for the first term and use once more the notation Ωr1,r2 :=
(r1, r2)× S. We can calculate

1

2l

∫
W0

a∇u · e1v̄ =
1

2l

l−1∑
k=0

∫
Ωk,k+1

a∇u · e1v̄

=
1

2l

l−1∑
k=0

∫
Ω0,1

eikξa∇u · e1 e
−ikζ v̄ =

1

2l

l−1∑
k=0

eik(ξ−ζ)
∫

Ω0,1

a∇u · e1 v̄ .

Because of ξ 6= ζ, the factor 1
l

∑l−1
k=0 e

ik(ξ−ζ) is small for all large values of l. This
allows to choose l0 large in order to have the expression in absolute value bounded
by η0/2. The other term is treated in the same way and we obtain (2.12).
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Lemma 2.6 (Sign of the sesquilinear form). For a sufficiently large width l > 0
there holds, for some γ > 0,

±ImQ(u, u) ≥ γ

l
‖u‖2

L2(W0) ∀u ∈ X± . (2.13)

Proof. Let u ∈ X+ be arbitrary, u =
∑N

j=1 αjφ
+
j . With the two numbers γ0 :=

minj ImQ(φ+
j , φ

+
j ) > 0 and η0 := maxk 6=j |Qs(φ+

k , φ
+
j )| we find

ImQ(u, u) = ImQs(u, u) =
N∑
j=1

|αj|2 ImQs(φ+
j , φ

+
j ) +

N∑
k 6=j

Im
(
αkαj Q

s(φ+
k , φ

+
j )
)

≥ γ0

N∑
j=1

|αj|2 − η0

N∑
k 6=j

|αj| |αk| .

Lemma 2.5 implies that, choosing l large, we can achieve that η0 is arbitrarily small.
With η0 sufficiently small (depending on γ0 and N) we obtain the strict positivity

ImQ(u, u) ≥ γ0

2

N∑
j=1

|αj|2 .

At this point we have exploited that the normalization (2.10) for a function φ±j
remains valid when l is varied. The immediate inequality ‖u‖2

L2(W0) ≤ Cl
∑N

j=1 |αj|2
for a constant C > 0 provides the claim for some γ > 0.

The argument for X− is analogous.

By definition of the space X, restrictions of homogeneous solutions u on Ω are
contained in X. We now turn to a more quantitative version of this fact: If u is
a homogeneous solutions on a large subdomain, then its restriction is close to an
element of X.

Lemma 2.7 (Solutions are close to X). Let l ∈ N be fixed and let η > 0 be an
arbitrary error quantifier. There exists a large number r0 ∈ N such that, for every
N 3 r > r0, there holds: Every function ur ∈ H1

loc(Ω) with the properties

Aur = ω2ur in Ω−r,r and ‖ur‖sL ≤ 1 (2.14)

satisfies
‖ur|W0 − ΠX(ur|W0)‖H1 ≤ η . (2.15)

We will later use repeatedly the following immediate consequence of (2.15),
which exploits ΠX = Π+ + Π−:

‖ur|W0 − Π+(ur|W0)− Π−(ur|W0)‖L2 ≤ η . (2.16)

Proof. The aim is to show that ur|W0 is near to an element of X.
For a contradiction argument we assume that, with l and η fixed, there exists

a sequence of functions ur with r →∞, which satisfy (2.14), but not (2.15).
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The boundedness of (2.14) allows to select a subsequence and to find a limit
function u such that ur → u locally weakly in H1(Ω). The limit u also satisfies
both properties of (2.14), the solution property and the boundedness. Locally,
the sequence ur converges even strongly in H1, as can be shown easily by testing
the equation for ur − u with (ur − u) θ, where θ is a cutoff function. The strong
convergence ur → u in H1(W0) implies that the limit u satisfies the same inequality
as the approximate functions:

‖u|W0 − ΠX(u|W0)‖H1 ≥ η . (2.17)

This provides a contradiction: u|W0 ∈ X holds by definition of X in (2.6), so the
left hand side of (2.17) vanishes.

We will later also exploit the H1-regularity of the elements φ ∈ X: For some
constant C, there holds

‖φ‖H1(W0) ≤ C‖φ‖L2(W0) (2.18)

for all elements φ ∈ X. The constant C = C(ω, λ) depends only on the frequency
ω and on the ellipticity constant λ of the coefficients. The property (2.18) can be
obtained by testing the equation with the solution and a cutoff function, but it can
be concluded for general C also immediately from the fact that the basis functions
are of class H1(W0) and that the space X is finite dimensional.

2.4 An equivalent radiation condition

Lemma 2.8 (Equivalent radiation condition). Let the coefficient a be as in The-
orem 1.2, let ω > 0 be a non-singular frequency for both periodic media, let
u ∈ H1

loc(Ω) be a function that satisfies (i) and (ii) of our solution concept, i.e.: u
solves (1.1) in the sense of distributions and supr∈Z ‖u‖L2((r,r+1)×S) <∞.

The function u satisfies the radiation condition of Definition 2.4 if and only if
the following holds: There exist φ+ ∈ X+ and φ− ∈ X−, which we identify with
their extensions to solutions on all of Ω (quasiperiodic extensions of every basis
function), such that, as r →∞,

‖(u− φ+)|Wr‖L2(Wr) → 0 and ‖(u− φ−)|W−r‖L2(W−r) → 0 . (2.19)

The proof has much similarity to the proofs of existence and uniqueness. Since
our focus is on the main results, we perform those proofs in greater detail. The
reader might therefore find it helpful to read Sections 3 and 4 first.

Proof. The “if”-part. Let u satisfy (2.19) with φ+ ∈ X+ and φ− ∈ X−. Using a
triangle inequality, boundedness of projections, and Π−(φ+|Wr) = 0, we find

‖Π−(u|Wr)‖L2(Wr) ≤ ‖Π−((u− φ+)|Wr)‖L2(Wr) + ‖Π−(φ+|Wr)‖L2(Wr)

≤ C‖(u− φ+)|Wr‖L2(Wr) → 0

by (2.19). This shows one part of (2.9), the calculation for Π+(u|W−r) is analogous.
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The “only-if”-part. Vice versa, let u satisfy the radiation condition (2.9). We
consider the right boundary. For any sequence R → ∞, the sequences u|WR

are
bounded in L2(W0) by the assumption on the boundedness of the sL-norm. We we
want to subtract the right-going part in WR: We consider φR ∈ X+, extended as a
solution to all of Ω, with Π+((u− φR)|WR

) = 0.
The sequence of functions φR|W0 is bounded inH1(W0). We select a subsequence

R → ∞ (not relabelled) and a limit function φ+ with φR|W0 → φ+, weakly in
H1(W0) and strongly in L2(W0). The space X+ is closed, hence φ+ ∈ X+. As
usual, we identify φ+ with its extension as a homogeneous solution. In particular,
φR → φ+ holds locally on all of Ω. Our aim is to show, for an arbitrary sequence
r →∞, that (u− φ+)|Wr → 0 holds in L2.

We fix an arbitrary error quantifier η > 0. A large number r ∈ N is chosen in
dependence of η, the choice is specified below.

We define φr corresponding to u|Wr as above, with Π+((u − φr)|Wr) = 0, and
consider w := u− φr. We assume that the number r is sufficiently large such that
the support of f is to the left of re1. Then w solves the homogeneous problem on
Ω ∩ {x1 > r} and hence satisfies the flux equality

ImQ(w|WR
) = ImQ(w|Wr) (2.20)

for every number R ∈ N, R > r + l.

Calculation of the right hand side of (2.20). The difference w|Wr −Π−(u|Wr) =
u|Wr − φr|Wr −Π−(u|Wr) = u|Wr −Π(u|Wr) is small by Lemma 2.7; more precisely,
we acchieve ‖w|Wr − Π−(u|Wr)‖H1 ≤ η when r is sufficiently large (large distance
to the support of f). This allows calculate the right hand side of (2.20) as

ImQ(w|Wr) = ImQ(Π−(u|Wr) + [w|Wr − Π−(u|Wr)])

≤ ImQ(Π−(u|Wr)) + Cη ≤ Cη ,
(2.21)

where we used ImQ(Π−(u|Wr)) ≤ 0 of Lemma 2.6 in the last step.

Calculation of the left hand side of (2.20). We exploit that, for large R, the
function w|WR

is close to an element of X+, which follows from the radiation con-
dition. Let us make this fact precise: Inserting the definition of w and using
Π+(φr|WR

) = φr|WR
, we find

w|WR
− Π+(w|WR

) = u|WR
− φr|WR

− Π+(u|WR
) + Π+(φr|WR

)

= (u|WR
− ΠX(u|WR

)) + Π−(u|WR
)→ 0

asR→∞. The smallness of the first bracket follows from Lemma 2.7, the smallness
of the last term from the radiation condition (2.9). The convergence is in L2, but
the solution property allows once more to lift the regularity order and we obtain
convergence also in H1. This can be used to calculate the left hand side of (2.20):

ImQ(w|WR
) = ImQ(Π+(w|WR

) + [w|WR
− Π+(w|WR

)])

≥ ImQ(Π+(w|WR
)) + o(1) ≥ γ

l
‖Π+(w|WR

)‖2
L2 + o(1)
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as R→∞, where we used the quantitative estimate (2.13) in the last step.

Combining the calculations for the two sides of (2.20), we have obtained the
smallness result

‖Π+(w|WR
)‖2
L2 ≤

Cl

γ
η + o(1) (2.22)

as R→∞. We evaluate the left hand side:

Π+(w|WR
) = Π+((u− φr)|WR

) = (φR − φr)|WR
.

Since both φR and φr are extensions of elements in X+, the norm of the difference
can be measured in any subdomain Wρ with equivalent results. Relation (2.22)
hence also implies, as R→∞,

‖(φ+ − φr)|Wr‖2
L2 ← ‖(φR − φr)|Wr‖2

L2 ≤ C‖(φR − φr)|WR
)‖2
L2 ≤

Cl

γ
η + o(1) .

It remains to exploit once more the radiation condition (2.9) and Lemma 2.7 to
find ‖(u− φr)|Wr)‖2

L2 = ‖u|Wr −Π+(u|Wr)‖2
L2 ≤ η for sufficiently large r. Since we

have shown that φr is close to φ+, and since η > 0 was arbitrary, we have shown
the desired result (u− φ+)|Wr → 0.

The condition on the left follows in the same way.

3 The truncated problem

We use truncated domains of the form Ω−L,R := (−L,R) × S with two natural
numbers R,L > 0. With the four consecutive points on the real line, (−L −
l,−L,R,R+ l), we define (as before) a cutoff-function ϑ : R→ R as the piecewise
affine function which vanishes to the left of the first and to the right of the fourth
point, and which is 1 between the second and the third point.

The length parameter l ∈ N is suppressed in everything that follows. We will
study solutions u to Au = ω2u on different subdomains Wr. In this process, we
exploit the following fact: For every function φ ∈ X+ and its extension to a solution
of Aφ = ω2φ, the restriction φ|Wr is again in X+ for every r ∈ Z. The same is true
for X−. This follows immediately from the extension process, see the text after
(2.8).

Definition 3.1 (Function space and sesquilinear form). For R,L ∈ N we use the
function space

VL,R :=
{
u ∈ H1(Ω−L−l,R+l)

∣∣u|WR
∈ X+ , u|W−L−l ∈ X−

}
. (3.1)

With ϑ as above, corresponding to the points (−L− l,−L,R,R + l), we introduce
the sesquilinear form

β(u, v) :=

∫
Ω−L−l,R+l

a∇u∇v̄ϑ−
∫

Ω−L−l,R+l

ω2 uv̄ϑ

−Q(u|WR
, v|WR

) +Q(u|W−L−l , v|W−L−l) .

(3.2)
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We define the following approximate problem.

Definition 3.2 (Truncated problem). Given f ∈ H−1(Ω) with support in Ω−M,M

for some M > 0, we say that a function u solves the truncated problem for N 3
R,L > M , if

u ∈ VL,R and β(u, v) = 〈f, v〉 ∀v ∈ VL,R . (3.3)

Remark 3.3 (Non-uniqueness in the truncated problem). Let (L,R) ∈ N2 be a pair
of parameters such that the truncated problem has a nontrivial solution to f = 0.
Then there exists a function u that satisfies Au = ω2u in Ω−L,R and homogeneous
Dirichlet conditions on {−L} × S and {R} × S.

Proof. Let u = uL,R 6= 0 be a solution to the truncated problem with f = 0. We use
the test-function v := u ∈ VL,R in the sesquilinear form β. With ϑ as in Definition
3.1, we find

0 = β(u, u)

=

∫
Ω−L−l,R+l

a∇u · ∇uϑ−
∫

Ω−L−l,R+l

ω2 |u|2 ϑ−Q(u|WR
) +Q(u|W−L−l) .

Taking the imaginary part yields the flux equality

ImQ(u|WR
) = ImQ(u|W−L−l) .

By definition of VL,R, there holds u|WR
∈ X+ and u|W−L−l ∈ X−. The sign property

(2.13) can be used to conclude that both flux terms vanish, and, moreover, that
u|WR

= 0 and u|W−L−l = 0.
By the H1(Ω−L−l,R+l)-property of VL,R in (3.1) we see that u is a solution on

Ω−L,R satisfying homogeneous Dirichlet conditions on {−L}×S and {R}×S.

Remark 3.3 shows that non-uniqueness in the truncated problem occurs only if
ω2 is an eigenvalue of A to Dirichlet boundary conditions at the lateral boundaries.
Independent of the subsequent lemma, we can therefore expect that uniqueness
holds for many choices of L and R.

Lemma 3.4 (Uniqueness for the truncated problem). Let ω > 0 be a non-singular
frequency in the sense of Assumption 2.3, a : Ω → R periodic in e1-direction. Let
N 3 Rk, Lk → ∞ be two sequences. Then there exists k0 ∈ N such that for every
pair (L,R) = (Lk, Rk) with k ≥ k0 there exists at most one solution to the truncated
problem of Definition 3.2.

Proof. Let us assume that, along a subsequence, the truncated problems for param-
eters (Lk, Rk) possess a nontrivial solution uk to f = 0. We normalize uk to have
supρ ‖uk|Wρ‖L2(Wρ) = 1 as in Lemma 5.1. We can extract a further subsequence
and a limit function u such that uk → u locally in H1. Lemma 5.1 provides that
the limit function u is a nontrivial radiating solution to Au = ω2u. On the other
hand, Lemma 4.1 yields that the radiation problem on Ω for f = 0 has only the
trivial solution. This provides the desired contradiction.
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We note that Lemma 3.4 improves the observation of Remark 3.3. Let us
consider the trivial example of A = −∆ in dimension d = 1. For every ω > 0
Assumption 2.3 is satisfied: With m := max{n ∈ N|2πn ≤ ω}, the quasimoments
are ξ+

1 = ω − 2πm and ξ−1 = −ξ+
1 , the basis functions are φ±1 = e±iωx. We check

that Q(φ+
1 ) = 1

l

∫ l
0
∂xφ

+
1 φ

+
1 = iω, and accordingly Q(φ+

1 ) = −iω.
In the setting of this example, we study the linear combination v(x) := φ+

1 (x)+
φ−1 (x) = 2 cos(ωx). For R = L ∈ (π/ω)(N + 1

2
), the function v solves the Dirichlet

problem that was obtained in Remark 3.3. The example shows that the statement
of Lemma 3.4 is stronger: For large numbers R,L, independent of their resonance
properties, the solution to the truncated problem is unique.

We now turn to existence properties. As in a Fredholm alternative, the unique-
ness property can imply an existence result. We use a limiting absorption principle
to derive this fact.

Lemma 3.5 (Existence for the truncated problem). We consider the situation of
Theorem 1.1 with Ω = R × S, f ∈ H−1(Ω) with compact support, the coefficient
a : Ω → R periodic in e1-direction. Let ω > 0 be a non-singular frequency. We
consider parameters N 3 R,L ≥ M and assume that the truncated problem of
Definition 3.2 has at most one solution. Then there exists a unique solution to the
truncated problem of Definition 3.2.

Proof. We use a limiting absorption principle. For every δ > 0, we define a modified
sesquilinear form by setting

βδ(u, v) :=

∫
Ω−L−l,R+l

a∇u∇v̄ϑ−
∫

Ω−L−l,R+l

(ω2 + iδ)uv̄ϑ

−Q(u|WR
, v|WR

) +Q(u|W−L−l , v|W−L−l) .

(3.4)

Step 1: Solution for δ > 0. We claim that the sesquilinear form βδ is coercive
on VL,R. For u ∈ VL,R we first calculate

Im βδ(u, u) = Im

∫
Ω−L−l,R+l

a∇u · ∇uϑ− Im

∫
Ω−L−l,R+l

(ω2 + iδ) |u|2ϑ

− ImQ(u|WR
) + ImQ(u|W−L−l)

≤ −
∫

Ω−L−l,R+l

δ |u|2ϑ− γ

l
‖u|WR

‖2
L2 −

γ

l
‖u|W−L−l‖2

L2 ,

where we have used (2.13). This shows the coercivity inequality

−Im βδ(u, u) ≥ γ(δ)‖u‖2
L2(Ω−L−l,R+l)

(3.5)

for γ(δ) := min{δ, γ0/l} > 0. Considering the real part of βδ(u, u), we obtain

Re βδ(u, u) ≥ λ‖∇u‖2
L2(Ω−L,R) − C0‖u‖2

L2(Ω−L−l,R+l)
, (3.6)

where we used the regularity property ‖φ|W0‖H1 ≤ C‖φ|W0‖L2 for φ ∈ X of (2.18).
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We next calculate, using first (3.6) and the Poincaré inequality and a constant
C1 = C1(R,L,C0), then once more the regularity property of (2.18), and then
(3.5):

λ‖u‖2
H1(Ω−L−l,R+l)

≤ C1

(
Re βδ(u, u) + ‖u‖2

L2(Ω−L−l,R+l)
+ ‖u|WR

‖2
H1 + ‖u|W−L−l‖2

H1

)
≤ C2

(
Re βδ(u, u) + ‖u‖2

L2(Ω−L−l,R+l)

)
≤ C2 Re βδ(u, u)− C2

γ(δ)
Im βδ(u, u)

= Re
[
C2

(
1 + iγ(δ)−1

)
βδ(u, u)

]
.

This inquality ensures coercivity of βδ on VL,R. We can apply the Lax-Milgram
lemma and obtain that the equation βδ(uδ, .) = 〈f, .〉 can be solved with uδ ∈ VL,R
for every δ > 0. The solution satisfies

‖uδ‖H1(Ω−L−l,R+l) ≤ C(δ)‖f‖H−1(Ω) . (3.7)

We note that this estimate is not helpful for the limit process δ → 0 since C(δ) ∼
1/γ(δ)→∞ for δ → 0.

Step 2: Limit δ → 0. In order to perform the limit, we distinguish two cases.
The distinction regards the numbers

Nδ := ‖uδ‖L2(W−L−l,R+l) . (3.8)

Case 1: Nδ bounded along a subsequence. If Nδ is bounded along a subsequence,
then we choose this subsequence δ → 0. The sequence uδ is not only bounded in L2,
but also in H1; this can be concluded by taking the real part of βδ(uδ, uδ) = 〈f, uδ〉,
see (3.6), and using (2.18). We therefore find a limit function u and a further
subsequence δ → 0 such that uδ ⇀ u weakly in H1(W−L−l,R+l).

The properties u|WR
∈ X+ and u|W−L−l ∈ X− are satisfied, since all uδ satisfy

these properties. This shows u ∈ VL,R. The weak convergence uδ ⇀ u is sufficient
to take the limit δ → 0 in the relation βδ(uδ, ϕ) = 〈f, ϕ〉, and we obtain β(u, ϕ) =
〈f, ϕ〉. This shows that u is a solution of the truncated problem and the existence
statement is shown.

Case 2: Nδ →∞. In this case we study the normalized functions vδ := N−1
δ uδ.

The sequence vδ has all the properties of uδ in the first case: The boundedness
implies the existence of a limit function v (weak limit in H1 and strong limit in
L2). Since vδ solves the truncated problem with fδ = N−1

δ f , the limit v solves
β(v, ϕ) = 〈0, ϕ〉. Uniqueness for the truncated problem implies v = 0. We find
a contradiction since vδ has L2-norm 1 and converges strongly to v = 0. Case 2
cannot occur.

4 Proof of Theorem 1.1

As mentioned in the introduction, we show uniqueness and existence with energy
methods, using the conservation of fluxes. The essential proofs rely on a simple
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trick that we want to describe here in loose terms. We explain the trick for the
uniqueness proof, but it is very similar in the existence proof.

Let u be a solution to the radiation problem with f = 0, our aim is to show
that u vanishes. We use a contradiction argument and assume that for a position
ρ ∈ N the function u|Wρ does not vanish. The radiation condition yields that for a
large number r ∈ N the function u|Wr is close to a right-going wave.

If we use the flux equality for u, we conclude that the flux of u in Wρ coincides
with the flux in Wr — but this information does not help, since u|Wρ can consist
of right-going and left-going waves.

The trick is to consider the following: Let φ be the projection of u|Wρ to right-
going waves. We extend φ to all of Ω and set w := u − φ. The properties of w
are the following: (a) w is a solution, since u and φ are. (b) w is (approximately)
right-going in Wr, since u and φ are. (c) w is left-going in Wρ, since we subtracted
the right-going part from u. The flux equality for w yields that the fluxes in Wρ

and Wr coincide. This is a valuable information, since the two fluxes have opposite
sign (up to small errors). We conclude that all fluxes are small, which implies that
w is small in Wρ, which implies that u has a small left-going component in Wρ.
In the same way, choosing r to the left of ρ, one concludes that u has a small
right-going component in Wρ. This yields that u is small in Wρ, in contradiction
to the choice of ρ.

We now turn to the rigorous proofs and make the above ideas precise.

4.1 Uniqueness

We recall the norm of (2.5) for u : Ω→ C, ‖u‖sL := supr∈Z ‖u‖L2((r,r+1)×S).

Lemma 4.1 (Uniqueness for the original problem). For non-singular frequencies
ω > 0, the problem of Theorem 1.1 has at most one solution. More precisely: Every
solution u ∈ H1

loc(Ω) of Au = ω2u with ‖u‖sL < ∞ that satisfies the radiation
conditions of Definition 2.4 vanishes identically.

Proof. Let us assume that u is a non-vanishing solution to the homogeneous prob-
lem. Our aim is to arrive at a contradiction.

Step 1: Preparations. We normalize u with the condition supr∈Z ‖u|Wr‖L2(Wr) =
1. Let ρ ∈ Z be a number with ‖u|Wρ‖L2(Wρ) ≥ 1/2.

We choose a small quantifier 1 ≥ ε > 0, the choice will be specified below
after inequality (4.5). The radiation condition (2.9) allows to choose r ∈ N,
r ≥ |ρ| large, so that the smallness ‖Π−(u|Wr)‖L2 + ‖Π+(u|W−r)‖L2 ≤ ε is sat-
isfied (and remains satisfied for every larger r). Using the H1-regularity property
‖φ±‖H1(W0) ≤ C‖φ±‖L2(W0) of (2.18) we can improve the regularity to

‖Π−(u|Wr)‖H1 + ‖Π+(u|W−r)‖H1 ≤ Cε . (4.1)

We consider φ(x) :=
∑

j αjφ
+
j (x) with Π+((u− φ)|Wρ) = 0 and set w = u− φ.

There holds

Π−(w|Wr) = Π−(u|Wr)− Π−(φ|Wr) = Π−(u|Wr) ,



16 Energy methods for the Helmholtz equation in wave-guides

hence ‖Π−(w|Wr)‖L2 ≤ ε and ‖Π−(w|Wr)‖H1 ≤ Cε. This quantifies the fact that w
is approximately right-going in Wr.

Regarding boundedness, we observe that supr∈Z ‖φ‖L2(Wr) ≤ C holds, since φ is
obtained by a projection of u. As a difference, w satisfies supr∈Z ‖w‖L2(Wr) ≤ 1+C.

Step 2: Flux equality. We use a cutoff-function which is similar to that of Figure
2: We choose ϑρ corresponding to the four points (ρ, ρ+ l, r, r + l). Multiplication
of Aw = ω2w with w̄ ϑρ yields

0 =

∫
Ωρ,r+l

a∇w · ∇w̄ϑρ −
∫

Ωρ,r+l

ω2ww̄ϑρ −Q(w|Wr) +Q(w|Wρ) .

Taking the imaginary part provides the flux equality

ImQ(w|Wρ) = ImQ(w|Wr) . (4.2)

Step 3: Conclusion. The fact that w is a solution on Ω implies that w|Wr is
an element of X, we can write w|Wr = Π+(w|Wr) + Π−(w|Wr). The smallness of
Π−(w|Wr) therefore yields

‖w|Wr − Π+(w|Wr)‖H1 ≤ Cε . (4.3)

This allows to calculate the quadratic form on the right hand side of (4.2) as

ImQ(w|Wr) = ImQ (Π+(w|Wr) + [w|Wr − Π+(w|Wr)]) .

Inserting in the definition of Q, using ‖w‖L2(Wr) ≤ 1 + C and ‖w‖H1(Wr) ≤ C1, we
find

ImQ(w|Wr) ≥ ImQ(Π+(w|Wr))−
C2Λε

l
≥ −C2Λε

l
, (4.4)

where we used the positivity of Q on X+ of (2.13). The flux equality (4.2) transfers
this lower bound to the domain Wρ.

Since also u|Wρ is an element of X, there holds w|Wρ = u|Wρ − φ|Wρ = u|Wρ −
Π+(u|Wρ) = Π−(u|Wρ) ∈ X−. We calculate with (4.4), (4.2), and (2.13) to conclude

C2Λε

l
≥ −ImQ(w|Wr) = −ImQ(w|Wρ) ≥

γ

l
‖Π−(u|Wρ)‖2

L2 . (4.5)

Choosing ε > 0 so small that
√
C2Λε/γ ≤ 1/6 holds, we find ‖Π−(u|Wρ)‖L2 ≤ 1/6.

The argument can be repeated with the left-going wave φ− = Π−(u|Wρ), which
yields the same estimate for Π+(u|Wρ). Together, we obtain

‖u|Wρ‖L2 ≤ ‖Π−(u|Wρ)‖L2 + ‖Π+(u|Wρ)‖L2 ≤ 1

3
, (4.6)

in contradiction to the choice of ρ.
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4.2 Flux equality

The flux equality is the central tool of our approach to existence results. It was
formulated in Lemma 2.1 for solutions, but it actually holds also for solutions to
the truncated problem. Here, we will show something more general: The difference
of a solution and a solution of the truncated problem also satisfies the flux equality.

Lemma 4.2 (Flux equality). Let u be a solution to the truncated problem of Def-
inition 3.2 to parameters R,L ∈ N. Let φ ∈ X+ be extended to a quasiperiodic
solution of Aφ = ω2φ on Ω. Then, for every ρ ∈ N, −L ≤ ρ ≤ R− l, the difference
w = u− φ satisfies the flux equality

ImQ(w|Wρ) = ImQ(w|WR
) . (4.7)

Proof. As a solution of the truncated problem, the function u ∈ VL,R satisfies, with
the cutoff-function ϑ corresponding to the four points (−L− l,−L,R,R + l),

0 = β(u, v) =

∫
Ω−L−l,R+l

a∇u · ∇v̄ϑ−
∫

Ω−L−l,R+l

ω2 uv̄ϑ

−Q(u|WR
, v|WR

) +Q(u|W−L−l , v|W−L−l)

for every v ∈ VL,R.
We introduce the cutoff-function θ corresponding to the points (ρ, ρ + l, R +

l, R + 2l). We claim that v := wθ ∈ VL,R. Indeed, both u and φ are in X+ on the
right radiation box WR, hence also w is (θ = 1 in WR). In the left radiation box
W−L−l, the function θ vanishes, hence v := wθ is trivially in X−.

Due to these considerations, we can use v = wθ as a test-function. We note
that the product of cutoff-functions provides a new cutoff-function: ϑρ := θϑ is the
piecewise affine cutoff-function which corresponds to the four points (ρ, ρ+l, R,R+
l). Inserting v = wθ above yields

0 =

∫
Ωρ,R+l

a∇u · ∇w̄ϑρ +
1

l

∫
Wρ

a∇u · e1w̄ −
∫

Ωρ,R+l

ω2 uw̄ϑρ −Q(u|WR
, w|WR

)

=

∫
Ωρ,R+l

a∇u · ∇w̄ϑρ −
∫

Ωρ,R+l

ω2 uw̄ϑρ −Q(u|WR
, w|WR

) +Q(u|Wρ , w|Wρ) .

Regarding the solution φ of Aφ = ω2φ we can proceed as in Lemma 2.1. The
equation for φ is multiplied with v̄ = ϑρw̄ and integrated. We find essentially the
same expressions as above,

0 =

∫
Ωρ,R+l

a∇φ · ∇w̄ϑρ −
∫

Ωρ,R+l

ω2 φw̄ϑρ −Q(φ|WR
, w|WR

) +Q(φ|Wρ , w|Wρ) .

We can now subtract the relation for φ from the relation for u and obtain

0 =

∫
Ωρ,R+l

a∇w · ∇w̄ϑρ −
∫

Ωρ,R+l

ω2ww̄ϑρ −Q(w|WR
, w|WR

) +Q(w|Wρ , w|Wρ) .

Taking the imaginary part, we find the flux equality (4.7).
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4.3 Existence

Lemma 4.3 (Radiation conditions for limits). For sequences Rk, Lk → ∞, let uk
be a sequence of solutions to the truncated problems with right hand side f , we
assume that the sequence sup{‖uk|Wr‖L2(Wr) | r ∈ Z,−Lk− l ≤ r ≤ Rk} is bounded.
Let u ∈ H1

loc(Ω) be locally the weak H1-limit of the solutions uk. Then u satisfies
the radiation conditions.

Proof. We suppress the subscript k in the following and write R and L instead of Rk

and Lk. As solutions to the truncated problems, the functions uk satisfy uk ∈ VL,R,
in particular uk ∈ H1(Ω−L−l,R+l), and β(uk, v) = 〈f, v〉 for every v ∈ VL,R. It is
clear that the local limit u solves the Helmholtz equation with source term f . Our
aim is verify the radiation condition.

A crucial step will be to derive the following property. Let (rk)k be a sequence
in N such that rk → ∞ and Rk − rk → ∞. We will suppress the subscript k also
in the sequence rk and claim that there holds, in L2(Wr),

Π−(uk|Wr)→ 0 . (4.8)

Step 1: Verification of (4.8). We choose an error quantifier η > 0.
As in other proofs, we use φ(x) :=

∑
j αjφ

+
j (x) with Π+((u − φ)|Wr) = 0 (φ is

the projection onto the right-going part). We subtract this function from uk and
consider in the following wk := uk − φ. The flux equality of Lemma 4.2 together
with the positivity of (2.13) provide

ImQ(wk|Wr) = ImQ(wk|WR
) ≥ 0 . (4.9)

We used that both uk and φ (and hence w) are right-going waves in WR.
We now study wk|Wr and the left hand side of (4.9). Because of r → ∞ and

R − r → ∞, the function wk is a solution of the homogeneous problem on a
large domain with center in r. This allows to use inequality (2.15) with the result
that ‖wk|Wr − Π+(wk|Wr)− Π−(wk|Wr)‖H1 ≤ η for all k ≥ k0(η). We observe that
Π+(w|Wr) = Π+(u|Wr)− Π+(φ|Wr) = 0 vanishes. We are therefore in the situation
that ‖wk|Wr − Π−(wk|Wr)‖H1 ≤ η is small, wk|Wr is close to a left-going wave.

We exploit this fact in a calculation of the quadratic form, starting from (4.9)
and using (2.13) in the last inequality,

0 ≤ ImQ(wk|Wr) = ImQ(Π−(wk|Wr) + [wk|Wr − Π−(wk|Wr)])

≤ ImQ(Π−(wk|Wr)) +
CΛ

l
η ≤ −γ

l
‖Π−(w|Wr)‖2

L2 +
CΛ

l
η ,

where we assumed in the second line η ≤ 1 in order to absorb the quadratic term
into the linear term. The constant depends, among others, on the bound for uk.
We obtain the smallness of

‖Π−(u|Wr)‖2
L2 = ‖Π−(w|Wr)‖2

L2 ≤
CΛ

γ
η .

Since η > 0 was arbitrary, this provides the claim of (4.8).
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Step 2: The radiation condition for u. We fix a sequence rk → ∞. Given
this sequence, we can choose subsequences (not relabeled) Lk, Rk → ∞ such that
Rk − rk → ∞ and, moreover, such that uk − u is small in L2 on the domain
Wr = Wrk (we exploit here the local convergence uk → u as L,R→∞).

The triangle inequality provides

‖Π−(u|Wr)‖L2(Wr)
≤ ‖Π−(uk|Wr)‖L2(Wr)

+ ‖Π−(u|Wr)− Π−(uk|Wr)‖L2(Wr)
.

The first term vanishes by (4.8) as k →∞. The second term is small by choice of
the subsequence (Rk)k and (Lk)k. This shows the smallness of the left hand side
for large k and thus the radiation condition for u.

Lemma 4.4 (Existence for the original problem). There exists a solution u to the
radiation problem posed in Theorem 1.1.

Proof. We use a sequence of solutions uk to the truncated problems with Lk, Rk →
∞, which exist by Lemma 3.5. We consider the sequence of real numbers

Nk := sup
{
‖uk‖L2(Wρ)

∣∣ρ ∈ Z,−Lk − l ≤ ρ ≤ Rk

}
. (4.10)

We distinguish two cases.

Case 1: The sequence Nk is bounded. In this case, the sequence uk is locally
bounded in H1. It therefore possesses (up to choosing a subsequence) locally a
weak limit u in H1. As a local limit of solutions, u satisfies Au = ω2u + f in Ω.
With the local limit u, the sequence uk satisfies all assumptions of Lemma 4.3,
which yields that u satisfies the radiation condition. The function u is the desired
solution and the existence assertion is shown.

Case 2: Along a subsequence, there holds Nk → ∞. We choose such a subse-
quence and assume from now on Nk →∞. Our aim is to arrive at a contradiction.
We study the normalized functions vk := N−1

k uk. The sequence vk has all the
properties of uk of Case 1: The local boundedness implies the existence of a local
limit function v. Since vk solves Avk = ω2vk +N−1

k f in the sense of the truncated
problem, the limit solves Av = ω2v in Ω. Lemma 4.3 implies that v satisfies the
radiation condition. Uniqueness for this problem was shown in Lemma 4.1, we
therefore obtain v = 0.

Another property of vk is the following. Using vk as a test function in the equa-
tion for vk (with right hand side N−1

k f), taking the imaginary part and exploiting
that vk is locally bounded, we find∣∣∣ImQ(vk|W−Lk−l

)− ImQ(vk|vRk )
∣∣∣ ≤ C0N

−1
k .

Since vk|WRk
is in X+ and vk|W−Lk−l

is in X−, the two flux expressions have opposite
sign. Moreover, they provide a bound for the two arguments. This yields∥∥∥vk|W−Lk−l

∥∥∥2

L2
+
∥∥∥vk|WRk

∥∥∥2

L2
≤ C1N

−1
k . (4.11)

The definition of Nk implies that there is a position ρ = ρ(k) ∈ Z with
‖vk‖L2(Wρ) ≥ 1/2. We observe that there holds |ρ(k)| → ∞. Indeed, in the opposite
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case, we find a number ρ0 ∈ Z and a constant subsequence, ρ(k) = ρ0 along the sub-
sequence. This is in contradiction with the local convergence vk|Wρ0

→ v|Wρ0
= 0.

We distinguish once more two cases.

Case 2a: Interior points. The first case is that a sequence ρ = ρ(k) can be
found with Rk − ρ(k)→∞ and ρ(k)− Lk →∞.

We argue as in Lemma 4.3. We fix an error quantifier η > 0. From the
function vk we want to subtract the right-going part in Wρ: We consider φ ∈ X+,
extended as a solution to all of Ω, with Π+((vk − φ)|Wρ) = 0 (loosely speaking,
φ = Π+(vk|Wρ)). We study the difference wk := vk − φ. The function wk satisfies
Awk = ω2wk+N−1

k f , and hence a flux equality as in Lemma 4.2, now with an error
term introduced by the right hand side N−1

k f . The flux inequality is obtained by
testing the equation for wk with the (locally bounded) function wk, we hence find∣∣∣ImQ(wk|Wρ)− ImQ(wk|WRk

)
∣∣∣ ≤ CN−1

k . (4.12)

We note that ImQ(wk|WRk
) ≥ 0 holds since wk|WRk

is in X+.
Regarding the first flux term, we note that wk|Wρ − Π−(wk|Wρ) = wk|Wρ −

Π(wk|Wρ) is small because of the fact that wk|Wρ is close to the subspace X by
Lemma 2.7 (we exploit here |ρ(k)| → ∞ and Rk−ρ(k)→∞ and ρ(k)−Lk →∞).

This allows to evaluate (up to small error) the first term in (4.12). For arbitrary
η > 0, exploiting the sign property of Lemma 2.6, we obtain

−CN−1
k ≤ ImQ(wk|Wρ) ≤ ImQ(Π−(wk|Wρ)) + η ≤ −γ

l
‖Π−(wk|Wρ)‖2

L2 + η

= −γ
l
‖Π−(vk|Wρ)‖2

L2 + η

for k sufficiently large. We therefore have the smallness

‖Π−(vk|Wρ)‖2
L2 ≤

l

γ
(CN−1

k + η) (4.13)

for k sufficiently large. With the same arguments, exchanging Π+ with Π−, we
find the same estimate for Π+(vk|Wρ). Invoking Lemma 2.7 once more (which is
possible since ρ(k) has an increasing distance to boundary points), we know that
‖vk|Wρ − Π(vk|Wρ)‖L2 is small. This is in contradiction with the normalization
‖vk‖L2(Wρ) ≥ 1/2. We conclude that Case 2a cannot occur.

Case 2b: Large values near boundaries. It remains to treat the case that we
cannot find points ρ = ρ(k) with Rk − ρ(k) → ∞ and ρ(k) − Lk → ∞ satisfying
‖vk‖L2(Wρ) ≥ 1/2. In this case, along the sequence, the distance of ρ(k) to a
boundary point remains bounded. Without loss of generality, let this be Rk, hence
Rk − ρ(k) ≥ 0 remains bounded. We can select a constant subsequence: Without
loss of generality we can assume for D ∈ N that Rk − ρ(k) = D for all k.

We consider shifted versions of the sequence vk, defined by ṽk(x) = vk(x +
Rke1). The functions ṽk are defined on domains Ω−Lk−Rk−l,l and have the following
properties. In the subdomain W0 the solution ṽk is outgoing, but even more is true:
By (4.11), ṽk|W0 is vanishing in L2 as k → ∞. In contrast, the L2-norm in the



Ben Schweizer 21

subdomain W−D is bounded from below by a positive number by the choice of ρ.
For arbitrary L0 ∈ Z, in the domains W−Rk+L0 , the solutions ṽk converge to 0 by
local convergence of vk to v = 0. As in Case 2a regarding interior points, we can
conclude that vk is small on any sequence of domains Wσ with σ = σ(k) satisfying
Z 3 σ(k)→ −∞ and σ(k) +Rk →∞.

The local boundedness of the functions ṽk allows to find a local limit ṽ. The limit
function solves the homogeneous problem Aṽ = ω2ṽ in Ω−∞,0 and has vanishing
Dirichlet data on {0} × S. We can extend ṽ as an odd function to all of Ω. This
provides a solution to the homogeneous problem in all of Ω, vanishing at x1 → ±∞,
but different from 0 on W−D. This is a contradiction to (a) of Assumption 2.3.

5 Piecewise periodic media

The aim of this section is to prove Theorem 1.2 about piecewise periodic media.
We use the same methods as in the problem with periodic media. We start with
a lemma that will be used to show the uniqueness for the truncated problems.
Uniqueness for the truncated problems will, in turn, provide the existence of a
solution to the fullspace problem.

Lemma 5.1 (Limits of normalized solutions). Let Ω = R × S be a wave-guide
and let a : Ω→ R satisfy the general assumptions. We assume that a is piecewise
periodic as in Theorem 1.2: There exists R0 > 0 such that a(x+e1) = a(x) holds for
every x ∈ Ω with |x1| > R0. Let ω > 0 be a non-singular frequency in the sense of
Assumption 2.3 for both periodic media. Let uk : Ω→ C be a normalized sequence
of solutions to the truncated problems with Lk, Rk and f = 0 that converges locally,

sup
ρ
‖uk|Wρ‖L2(Wρ) = 1 , uk → u locally in H1 , (5.1)

the supremum is taken over all integers ρ with −Lk − l ≤ ρ ≤ Rk. Then the limit
is a radiating solution to Au = ω2u with does not vanish, u 6= 0.

Proof. The proof has much similarity with that of Lemma 4.4. Because of the
local convergence, there holds ‖u‖sL ≤ 1. Since locally uk are solutions, also u
is a distributional solution to Au = ω2u. Lemma 4.3 provides that u solves the
radiation condition. The important information of Lemma 5.1 is u 6= 0. We argue
by contradiction and assume u = 0. We furthermore select a sequence ρ = ρ(k)
with ‖uk|Wρ‖L2(Wρ) = 1. Once more, we have to distinguish three cases.

Case 1: ρ(k) bounded. If there exists a bounded subsequence ρ(k), then a
further subsequence is constant: We find ρ0 ∈ Z such that ρ(k) = ρ0 for all k.
Since uk → u strongly in L2 locally, the limit function u satisfies ‖u|Wρ0

‖L2 = 1
and we find a contradiction to u = 0.

Case 2: ρ(k) unbounded. Since Case 1 is excluded, we know |ρ(k)| → ∞.
Without loss of generality, we assume that ρ(k)→∞.

To prepare the further arguments, we note that uk can be used as a test-function
for the truncated problem. Because of f = 0 there holds β(uk, uk) = 〈f, uk〉 = 0.
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Taking the imaginary part and exploiting the sign properties of Q yields uk|WRk
=

uk|W−Lk−l
= 0.

Case 2a: Interior points. We assume that Rk − ρ(k) → ∞, which means that
the critical point ρ(k) has a large distance to both 0 and Rk.

As in earlier proofs, we consider φ ∈ X+, extended as a solution to all of Ω,
with Π+((uk − φ)|Wρ) = 0. The difference wk := uk − φ satisfies the flux equality
of Lemma 4.2,

ImQ(wk|Wρ) = ImQ(wk|WRk
) . (5.2)

The right hand side is positive because of uk|WRk
, φ|WRk

∈ X+. Actually, uk|WRk

even vanishes (see the arguments of Case 2), hence only φ|WRk
remains in the

argument. For the left hand side of (5.2) we use that, by choice of φ, there holds
Π+(wk|Wρ) = 0; this implies the smallness of wk|Wρ − Π−(wk|Wρ) by Lemma 2.7.
The left hand side of (5.2) therefore can be calculated to satisfy ImQ(wk|Wρ) ≤
ImQ(Π−(wk|Wρ)) + η for any small error quantifier η > 0. Equation (5.2) yields

ImQ(φ|WRk
)− ImQ(Π−(wk|Wρ)) ≤ η .

We obtain that both φ|WRk
(and hence Π+(uk|Wρ)) and Π−(wk|Wρ) = Π−(uk|Wρ)

are small. Using Lemma 2.7 again, we find a contradiction to ‖uk|Wρ‖L2(Wρ) = 1.

Case 2b: Large values close to boundaries. This case is very much like Case 2b
of Lemma 4.4. For a subsequence, the shifted sequence ũk (shifted by Rk) consists
of solutions to the homogeneous problem with vanishing Dirichlet data on {0}×S,
but not vanishing in some subdomain, ‖ũk|W−D‖L2(W−D) = 1 for all k and for some
D ∈ N. We find a local limit function ũ. The limit shares the above properties of
ũk.

For every L0, the solutions ũk|W−Rk+L0
converge to 0 by assumption (local con-

vergence of uk to u = 0). The usual argument (subtracting the right going part φ
from ũk) we find that ũk|Wrk

converges to 0 for any sequence rk with rk →∞ and
Rk − rk →∞.

This implies that the limit ũ vanishes as x1 → −∞, but is different from 0 on
W−D. With an odd extension of ũ, we see that this is in contradiction to (a) of
Assumption 2.3.

We can now conclude the proof of our main result on non-periodic media.

Proof of Theorem 1.2. We select sequences Lk, Rk → ∞ and want to solve the
truncated problems. We claim that we can select the sequences Lk, Rk → ∞ in
such a way that the truncated problems have a uniqueness property.

Indeed, let us assume that for Lk, Rk → ∞ a sequence of nontrivial solutions
for the truncated problems with f = 0 exists. After normalization of these, they
converge locally to a nontrivial solution to the full problem by Lemma 5.1. Since
we have excluded the existence of such a function in the assumptions of Theorem
1.2, there cannot exist sequences Lk, Rk →∞ with non-uniqueness.

From now on, we fix Lk, Rk →∞ such that uniqueness holds along the sequence.
With the proof of Lemma 3.5, we conclude that the truncated problems possess
solutions. This provides a sequence uk.
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The convergence of uk to a solution u of the original problem (along a subse-
quence) is shown literally as in Section 4.3: Lemma 4.3 yields that every limit of
sL-bounded sequences satisfies the radiation condition. The arguments of Lemma
4.4 provide that the approximate solutions are necessarily sL-bounded. This yields
that a local limit u exists. As a limit, it also satisfies Au = ω2u+ f in Ω.
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