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Abstract

Let G be a locally compact Abelian group, and let Ω+, Ω− be two open sets in
G. We investigate the constant C(Ω+,Ω−) = sup

{∫
G f : f ∈ F(Ω+,Ω−)

}
, where

F(Ω+,Ω−) is the class of positive de�nite functions f on G such that f(0) = 1,
the positive part f+ of f is supported in Ω+, and its negative part f− is supported
in Ω−. In the case when Ω+ = Ω− =: Ω, the problem is exactly the so-called
Turán problem for the set Ω. When Ω− = G, i.e., there is a restriction only on
the set of positivity of f , we obtain the Delsarte problem. The Delsarte problem
in Rd is the sharpest Fourier analytic tool to study packing density by translates
of a given �master copy� set, which was studied �rst in connection with packing
densities of Euclidean balls.

We give an upper estimate of the constant C(Ω+,Ω−) in the situation when
the set Ω+ satis�es a certain packing type condition. This estimate is given in
terms of the asymptotic uniform upper density of sets in locally compact Abelian
groups.
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1 Introduction

Let G be a locally compact Abelian (LCA) group. We denote by B the class of Borel
subsets of G, and by B0 the class of Borel subsets of G whose closure is compact. We
write A1 b A2 if A1 is a compact subset of A2. For a set A, A denotes the closure of A
and intA the interior of A, while χA stands for the characteristic function (indicator
function) of A.

We denote by mG the Haar measure on G. The convolution of two functions
f, g ∈ L1(G) is de�ned by

f ∗ g :=

∫
G

f(t) g(· − t) dmG(t).

For a function f : G → C we denote its converse function as f̃(x) := f(−x). The
support of a function f is the closure of the set of all points where f takes a non-zero
value, i.e.,

supp f := {x : f(x) 6= 0}.

We will write f � 0 if f is positive de�nite, i.e., if

N∑
n=1

N∑
m=1

cncmf(xn − xm) ≥ 0 (1.1)

for all N ∈ N, x1, . . . , xN ∈ G and c1, . . . , cN ∈ C. For the basics on the harmonic
analysis on LCA groups and for the facts about positive de�nite functions consult, e.g.,
the book of Rudin [48].

Quite often positive de�niteness of functions is understood with various di�erent
meanings, which in many cases are equivalent from the point of view of the analyzed
questions, but sometimes exhibit di�erences, too. There are two further major ways of
de�ning (some kind of) positive de�nite functions di�erently, which we brie�y mention
here.

First, an almost everywhere de�ned measurable �function� (in precise terms, the
respective equivalence class of functions) is called a function of positive type, if it is
locally Haar-integrable and if for �test functions� from Cc(G) (Cc(G) denoting the
family of continuous functions of compact support) it holds∫

G
f (ũ ∗ u) dmG ≥ 0 for all u ∈ Cc(G) or, equivalently,

(ũ ∗ u ∗ f)(0) ≥ 0 for all u ∈ Cc(G). (1.2)

This de�nition follows Godement [18], but adopts the later terminology of e.g.
Folland [16]. Note the distinction between the classes of positive de�nite functions,
de�ned �nitely everywhere and satisfying (1.1), and �functions� of positive type, de�ned
only a.e. in accordance with (1.2). As a matter of fact, one can de�ne functions
of positive type with respect to a given class of functions, playing the role of Cc(G)
above�it seems that this idea was �rst analyzed by Cooper [11].
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Also, positive de�niteness is sometimes understood simply as nonnegativity of the
Fourier transform, so that positive de�nite functions are tacitly assumed to be func-
tions from the inverse image with respect to the Fourier transform of (some family of)
nonnegative functions (or measures, or distributions). This is the working assump-
tion e.g. in the paper of Logan [39]. However, there can be a huge ambiguity here
with respect to classes of functions, classical, L2, or distributional Fourier transforms
etc. Therefore, if such a situation is encountered, we prefer to make it clear that the
function in question has nonnegative Fourier transform (and in what sense).

Each positive de�nite function in the sense of (1.1) is trivially bounded by its value
at zero, i.e., |f(x)| ≤ f(0) for all x ∈ G.

A positive de�nite function needs to be neither continuous nor even measurable.
However, each measurable positive de�nite function coincides locally a.e.1 with a con-
tinuous positive de�nite function, see [27, (32.12) Theorem]. Also, for a bounded
continuous function, being a positive de�nite function is equivalent to being a function
of positive type [16, 3.35 Proposition].

By [16, 3.21 Corollary and 3.35 Proposition], every measurable and bounded func-
tion of positive type agrees locally a.e. with a continuous positive de�nite function.
Further, in the extremal quantities, what we are to investigate, our goal function (to be
maximized) is only an integral (over the full group G). Whence if we assume bounded-
ness of a function of positive type, we can as well restrict considerations to continuous
positive de�nite functions. The key lies slightly deeper when possibly unbounded func-
tions of positive type are concerned, but even for those local boundedness at zero�which
is essentially the normalization of our extremal problem, i.e. the condition f(0) = 1�
su�ces. This, however, requires (a strong version of) the celebrated Gelfand-Raikov
Theorem, too, see e.g. [18, Theoreme 3] or [17, Theorem 7]. If, however, we use the
Gelfand-Raikov Theorem, then even measures of positive type can be handled the same
way. So let us settle here with the choice that in this paper we deal primarily with
Delsarte type extremal problems involving continuous functions, positive de�nite in
the strict sense of (1.1). All, formally more general cases can be shown to reduce to
this case as regards the given extremal problem in focus. In Section 2 we will give more
details. We will also explain in Section 3 how other authors restricted their function
classes of consideration, and in what extent these are known to be equivalent (as it was
tacitly assumed or stated without proofs in the literature).

For a real-valued function f : G→ R, we use the standard notation

f+(x) := max {f(x), 0} and f−(x) := max {−f(x), 0};

the functions f+ and f− are the positive and the negative parts of f , respectively.
Let Ω+ and Ω− be two open sets in G. We will consider real-valued positive de�nite
functions f on G such that their positive and negative parts are supported in Ω+ and
Ω−, respectively. Depending on exact assumptions we put on the functions, we may

1A property is true locally almost everywhere when the exceptional set is a locally null set, i.e., its
intersection with any Borel set of �nite measure is a Borel set of zero measure, cf. [16]. This concept
is needed when one is dealing with Haar measures that are not σ-�nite.
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consider di�erent function classes. In this paper we mainly study the following function
classes:

F1(Ω+,Ω−) :=
{
f ∈ C(G) ∩ L1(G) : f � 0, f(0) = 1, supp f+ ⊂ Ω+, supp f− ⊂ Ω−

}
,

F(Ω+,Ω−) := {f ∈ C(G) : f � 0, f(0) = 1, supp f+ b Ω+, supp f− b Ω−} .
So in the class F1(Ω+,Ω−), the sets supp f+ and supp f− are closed sets that are not
necessarily compact. Obviously,

F(Ω+,Ω−) ⊂ F1(Ω+,Ω−). (1.3)

The extremal problem we consider is to maximize the value of the integral of f over
the function classes de�ned above. That is we de�ne the value of the extremal problem
as follows:

C1(Ω+,Ω−) := sup

{∫
G

f : f ∈ F1(Ω+,Ω−)

}
,

C(Ω+,Ω−) := sup

{∫
G

f : f ∈ F(Ω+,Ω−)

}
. (1.4)

Note that for any meaningful interpretation of the extremal constants, the functions in
our classes must be integrable, always. This explains the seemingly arti�cial restriction
in the de�nition of F1.

For an empty function class F = ∅ we interpret supf∈F
∫
G
f = 0. This is compatible

with the easy fact that if 0 ∈ Ω+, then F(Ω+,Ω−) ⊃ F(Ω+, ∅) 6= ∅ and C(Ω+,Ω−) > 0
(indeed, consider a properly normalized convolution χV ∗ χ̃V , where V b Ω+ with
V − V ⊂ Ω+). On the other hand, for 0 6∈ Ω+ we necessarily have f(0) ≤ 0, whence
f � 0 implies f ≡ 0, and thus F(Ω+,Ω−) = ∅.

As our �rst result we will show that the values de�ned above do not depend on a
particular choice of the function class, and thus we will denote the common value by
C(Ω+,Ω−), or by CG(Ω+,Ω−) if we want to emphasize the group we consider. This state-
ment also means that we could study further function classes lying between F1(Ω+,Ω−)
and F(Ω+,Ω−); this would not change the value of the extremal problem. In fact, one
can also extend (formally, as these would not actually increase the family of functions)
the considered function class�we will continue to comment on it later in Section 2.

For particular choices of Ω−, the problem C(Ω+,Ω−) coincides with known extremal
problems for positive de�nite functions. In the case when Ω− = Ω+ =: Ω, it is exactly
the so-called Turán extremal problem2

T (Ω) := C(Ω,Ω) = sup

{∫
G

f : f ∈ C(G), f � 0, f(0) = 1, supp f b Ω

}
. (1.5)

2The problem became formulated and widely investigated after Turán exposed to Stechkin [50]
the corresponding question for intervals on the torus T. Although in the respective literature this
extremal problem became widely known under Turán's name, earlier, closely related results of Siegel
[49], Boas and Kac [7] and even Carathédory [9] and Fejér [15] surfaced in the paper [44]. This is why
we term the extremal problem as the �so-called� Turán problem. For a more detailed survey of the
history of the problem and its background see [44].
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Note that here for precompact Ω the equivalence T (Ω) = T1(Ω) := C1(Ω,Ω) is auto-
matic, but in general we would need in principle distinguish T1(Ω) until Theorem 2.1
below is proven.

Usually, in such context, one considers complex-valued functions, i.e., f : G →
C. However, if f is positive de�nite, then also <f is positive de�nite, belongs to
the same function class, f(0) = <f(0), and

∫
G
f =

∫
G
<f . Thus, it is enough to

consider only real-valued functions in problem (1.5). Also in problem (1.4) we could
consider complex-valued functions f : G → C with (<f)+, (<f)− supported in Ω+,
Ω−, respectively. Since this does not change the value of the extremal problem, we
restrict our consideration to the case of real-valued functions.

Since f(x) = f(−x) for positive de�nite functions f , the sets supp f± are 0-
symmetric. Thus, the condition supp f± ⊂ Ω± implies also supp f± ⊂ Ω± ∩ (−Ω±),
where the latter are already symmetric sets. Therefore we can assume without loss of
generality that the sets Ω± are symmetric.

If Ω− = G, we recover the Delsarte extremal problem

D(Ω+) := C(Ω+, G) = sup

{∫
G

f : f ∈ C(G), f � 0, f(0) = 1,

supp f+ b Ω+, supp f− b G},

which, under the forthcoming Theorem 2.1, is equal to

D1(Ω+) := C1(Ω+, G)

= sup

{∫
G

f : f ∈ C(G) ∩ L1(G), f � 0, f(0) = 1, supp f+ ⊂ Ω+

}
.

The term �Delsarte's problem� refers back to a classical paper of Delsarte [12] where
Delsarte used a completely analogously formulated extremal problem in case of discrete
sets (codes) in terms of coe�cients of Gegenbauer expansions (in place of Fourier
transforms), see also [13, Theorem 4.3]. Following Delsarte, these problems were used
for obtaining estimates for densities of sphere packings, kissing numbers, cardinalities
of spherical codes, etc.; see, e.g. [2, 3, 8, 10, 19, 20, 28, 37, 38, 41, 52].

In case of sphere packings in Rd, exactly the above Delsarte extremal problem of
�nding D(B) = C(B,Rd) occurs [19, 10, 52], where B := {x ∈ Rd : |x| ≤ 1} denotes
the unit ball of Rd, apart from choosing appropriate function classes varying from
author to author but essentially equivalent to the classes F(B,Rd) and F1(B,Rd). As
mentioned above, we will show that the choice of the particular function class�at least
as long as the ball is considered�is immaterial.

Obviously, if Ω+ ⊂ Ω̃+ and Ω− ⊂ Ω̃−, then C(Ω+,Ω−) ≤ C(Ω̃+, Ω̃−). In particular,
T (Ω) ≤ D(Ω). This inequality, in general, can be strict. This is, e.g., the case for
Ω being the Euclidean ball B in Rd. Indeed, it is known for long [49, 20, 33] that
T (B) = 2−d|B| = 2−dωd with ωd = |B| denoting the volume of the unit ball in Rd. On
the other hand, for d = 8, for example, D(B) = 2−4 = 0.0625 as has been shown by
Viazovska [52], which is considerably larger than T (B) = 0.015854.... This is not just
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a numerical di�erence but a very crucial one because the Delsarte bound unlike the
Turán bound turned to be exact in this case regarding the density of sphere packing.

The �rst attempt to use such Fourier analytic extremal problems to establish bounds
for packing densities was worked out by Siegel [49] using T (Ω) but later it turned out
that the Delsarte extremal problem can give sharper bounds in most of the situations.
While the connection between the packing densities and the Turán problem were ex-
plored in [34, 44], our point here is to further the analysis to the connection of packing
type density questions and the Delsarte problem. Furthermore, our analysis reveals
that Delsarte type bounds can be applied under more general hypothesis than mere
packing.

Once packing density is mentioned, it is a point that construction of the notion of
appropriate densities is not always trivial. To obtain sharpest bounds, one is looking
for the largest reasonable variants of densities, which are well-known (and are called
asymptotic uniform upper densities or Banach densities) in classical cases like e.g. Rd

or Zd, but were not constructed to general LCA groups until recently. Already the very
formulation of our main result requires this notion, explained in �6, whence the paper
follows a natural, logical build-up where only in the �nal section �7 the main result is
formulated.

2 Equivalence of the extremal problems in various

function classes

In this section we will prove that the value of the extremal problem in (1.4) does not
depend on the particular choice of the function class as given in the above de�nitions.
Although this may seem a mere technicality, it requires a proof anyway. Moreover, note
that we will encounter variants (classes of functions with compactly supported Fourier
transform in Section 3), where this equivalence is only known in rather special cases.
Therefore, one has to be careful with underestimating these �mere technicalities�.

Theorem 2.1. If Ω+ and Ω− are open, 0-symmetric subsets of a LCA group G, then

C1(Ω+,Ω−) = C(Ω+,Ω−).

The corresponding statement for the Turán problem (1.5) was proved in [34] in a
somewhat di�erent variant. Our proof is analogous.

Proof. We only need to consider the case 0 ∈ Ω+, for if 0 6∈ Ω+ then both values
above are zero. Also, inclusion (1.3) implies C(Ω+,Ω−) ≤ C1(Ω+,Ω−), so we need to
show the converse inequality only.

Let ε > 0. There is a function f ∈ F1(Ω+,Ω−) such that
∫
G
f ≥ C1(Ω+,Ω−) − ε.

Since f ∈ L1(G), there is a compact set C b G such that
∫
G\C |f | < ε. Then, in

particular,
∫
C
f ≥ C1(Ω+,Ω−)− 2ε.

Next we will use the well-known fact that the constant one function 1 can be
approximated locally uniformly by continuous positive de�nite functions of compact
support. As we will need this several times in our paper, let us formulate it as a lemma.
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Lemma 2.1 (Approximation of unity lemma). Let C b G and ε > 0 be arbitrary.
Then there exists k � 0, k ∈ Cc(G) (so continuous with compact support) and 0 ≤
k ≤ 1, such that k|C ≥ 1− ε and ‖k‖∞ = k(0) = 1.

For the proof, see e.g. [48, 2.6.8. Theorem] (where, however, the formulation is
somewhat di�erent) or, for precisely this form, [34, Lemma 2] or [17, Lemma 5]. See
also [18, Problem 5].

Now consider g := fk. Obviously, g ∈ C(G) and g(0) = 1. Moreover, g � 0 as
a product of positive de�nite functions3. Since supp g± = supp f± ∩ supp k, i.e., an
intersection of a closed set and a compact set, it is compact, that is, supp g± b Ω±.
Thus, g ∈ F(Ω+,Ω−). Clearly,∫

G

g ≥
∫
C

f − ε
∫
C

|f | −
∫
G\C
|f | ≥ (C1(Ω+,Ω−)− 2ε)− ε‖f‖L1(G) − ε.

Since ε > 0 can be taken arbitrarily, C(Ω+,Ω−) ≥ C1(Ω+,Ω−) follows.
2

De�nition 2.1. If µ is a �nite regular Borel measure on G, then we de�ne the �local
essential supremum of the e�ect of µ� as

c(µ) := inf
0∈U open

sup
0≤u∈Cc(G), suppubU,

∫
G u=1

∫
G

u ∗ ũ dµ. (2.1)

Note that c(µ) is the proper generalization of the function value of a continuous
function at 0. Indeed, if dµ = fdmG (at least in some neighborhood of 0), with f
continuous at 0, then one can easily derive that c(µ) = f(0). Also note that c(µ) is not
necessarily �nite: but in fact, in case µ is of positive type, the property that c(µ) <∞
is equivalent to the assertion that µ is absolutely continuous and its density function
(which is determined only a.e. by the measure) can be taken a continuous function
f � 0 with f(0) = c(µ). For the proof of this converse statement one needs to use (a
strong version of) the Gelfand-Raikov Theorem�for details see e.g. [17, Theorem 7].

In view of the above, we can as well consider the more general �function class��class
of measures�normalized by assuming c(µ) = 1. Then we could write

F?(Ω+,Ω−) := {µ of positive type : c(µ) = 1, suppµ+ ⊂ Ω+, suppµ− ⊂ Ω−} .

Correspondingly, we can de�ne the respective extremal value

C?(Ω+,Ω−) := sup

{∫
G

dµ : µ ∈ F?(Ω+,Ω−)

}
.

3This is a nontrivial fact, which follows from the Schur Product Theorem: if the matrices A =
[ajk]k=1,...,n

j=1,...,n , B = [bjk]k=1,...,n
j=1,...,n ∈ Cn×n are both positive de�nite, then so is their entry-wise (Schur- or

Hadamard-) product [ajkbjk]k=1,...,n
j=1,...,n , too. See also [25, �85, Theorem 2]. The statement can be found

e.g. in [27, (32.8) (d)] and [27, (32.9) Theorem], see also [36, Lemma 12(v)], [35, Lemma 2.6.1 (iii)].
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Note that, once again, for any meaningful interpretation of the extremal problem (the
goal function itself), the measure µ must be of �nite total variation.

Then, according to the above, we would conclude that in fact the measures in
F?(Ω+,Ω−) are all locally absolutely continuous, and the density functions of the mea-
sures appearing in F?(Ω+,Ω−) can be identi�ed with the continuous positive de�nite
functions from F1(Ω+,Ω−). Therefore, the extension of the extremal problem from F1

and C1 to F? and C? is only formal, with no actual change.

3 An account of related work on Delsarte type ex-

tremal constants on various function classes

This section is only useful to see that our general investigations do indeed cover the
actual applications of the Delsarte method in e.g. sphere packing. It should have
been obvious, but in fact it is not because various authors in various papers used
di�erent formulations and in particular di�erent function classes for their formulations
of the analogous questions. Of course, the variety is basically justi�ed by the general
equivalence of most of these choices�however, these need to be proven. Moreover,
there did occur non-equivalent versions, too, which, again need to be clari�ed. The
reader should not expect any attracting details and may want to fully skip this section,
but we felt it an obligation to tediously clarify these connections, however boring.

First, to better facilitate our discussion to existing literature, we extend the de�ni-
tion of function classes F(X, Y ) and F1(X, Y )�as well as the respective Delsarte-type
constants (1.4)�to arbitrary Borel measurable and symmetric sets X, Y ∈ B. In the
large, whenever these classes and constants appear in the paper, we still refrain to open
sets�the extended de�nition will be in e�ect exclusively in this section for the sake of
the comparisons we want to explain.

As a �rst observation, we need to mention that in view of the obvious fact that
the support of a continuous function is closed, by de�nition of F1(X, Y ) we have
F1(X, Y ) =

⋃
E⊂X,F⊂Y F1(E,F ), where here the union runs on closed sets E,F con-

tained in X, Y , respectively. Therefore, we have C1(X, Y ) = sup{C1(E,F ) : E ⊂
X,F ⊂ Y, E, F closed}.

We will need a little more, namely, that the above limit or supremum relation holds
true with compact sets (in place of closed ones) as well. The easiest is to prove this by
means of Lemma 2.1 above. The argument of the proof of Theorem 2.1 goes through
mutatis mutandis. So, for general sets, too,

C1(X, Y ) = sup{C(E,F ) : E b X,F b Y },

and, consequently,
C1(X, Y ) = C(X, Y ). (3.1)

In connection to this, however, let us warn the reader that for open sets it is
not automatic that the extremal constant of the closures would match to that of the
original open sets�see the counterexample of Theorem 7 of [34]. Therefore, we will be
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prudently restricting ourselves in stating (and even proving) that nevertheless, at least
in the classical Euclidean spaces and convex sets, the equivalence of closed or open
copies holds true.

Proposition 3.1. Let X, Y ⊂ Rd be centrally symmetric (with respect to the origin)
convex sets with the origin in the interior of X. Then C(intX, intY ) = C(X,Y ).

An analogous statement holds in Td for small enough sets X, Y such that not even
the closures overlap with themselves�we leave the details to the reader.

Proof. We will use the fact that a convex set X ⊂ Rd with nonempty interior is fat,
meaning that X = intX. As 0 ∈ intX, we thus have that with an appropriately small
δ > 0 the closed ball δB ⊂ intX, whence by convexity rX + δ(1 − r)B ⊂ intX and
rX ⊂ intX for 0 ≤ r < 1.

In case X is unbounded, it is easy to see that both extremal constants become
+∞. Indeed, taking Z := λX ∩ RB with any λ < 1/2 and R > 0, the function
f := 1

|Z|χZ ∗χZ belongs to both function classes and has as large integral as |Z|, which
tends4 to |λX| =∞ with R→∞.

So let us assume thatX is bounded, which also implies that both extremal constants
are �nite: for any positive de�nite function f with supp f+ ⊂ X we have 0 ≤

∫
Rd f ≤∫

Rd f+ =
∫

supp f+
f ≤

∫
supp f+

f(0) ≤ |X| · 1 = |X| <∞.
First consider the case when also 0 ∈ intY and hence also Y is fat.
Obviously C(intX, intY ) ≤ C(X,Y ). Let us take any ε > 0 and f ∈ F(X,Y )

with
∫
Rd f ≥ C(X,Y ) − ε. Take any R > 1, put r := 1/R < 1, and consider

g(x) := f(Rx). Obviously supp g± = r supp f± b rX, rY ⊂ intX, intY , respec-
tively. Also, g � 0, g(0) = f(0) = 1 and g ∈ Cc(Rd), so g ∈ F(intX, intY ) and,
moreover,

∫
Rd g(x)dx =

∫
Rd f(Rx)dx =

∫
Rd f(y)rddy ≥ rd

(
C(X,Y )− ε

)
furnishing

C(intX, intY ) ≥ rd(C(X,Y )− ε). With this proven, we can allow R → 1 + 0, that is
r → 1− 0 and ε→ 0+, furnishing the result.

If 0 6∈ intY , then Y being centrally symmetric is actually lying in a hyperplane.
So it remains to deal with the �strange� case when intY = ∅ and |Y | = 0. As above,
take any ε > 0 and f ∈ F(X,Y ) with

∫
Rd f ≥ C(X,Y ) − ε. In principle the function

f may attain negative values (namely, on Y ), but as Y is on the boundary of Rd \ Y ,
we conclude by continuity that f is nonnegative all over Rd.

Then the same construction as above gives a function g(x) := f(Rx) belonging to
F(intX, ∅), and that yields, as above, the result.

2

In [20], Gorbachev studies Turán's problem in the following setup. For a given
centrally symmetric body Ω, he maximizes g(0) in the class of continuous even func-
tions g : Rd → R satisfying

1. g(y) =
∫

Ω
ĝ(x)e2πiyxdx,

4Note that the unbounded convex set with δB ⊂ X contains a cone of arbitrarily large height and
base δBd−1, whence has in�nite volume.
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2. g(y) ≥ 0 for all y ∈ Rd,

3. ĝ(0) =
∫
Rd g(y)dy = 1.

In this setup, ĝ corresponds to our function f . Here f = ĝ is continuous (as the
Fourier transform of an L1-function) and positive de�nite (as the Fourier transform of
a nonnegative function). By 3. we also have f(0) = 1, and thus f lies in our class
F1(Ω, ∅). The only di�erence is that in general we consider open sets Ω while in all
examples in [20] Ω is closed.

In [19], Gorbachev studies the Delsarte problem for the class of positive de�nite,
continuous, real functions f ∈ L1(Rd) with their Fourier transforms vanishing outside
of the Euclidean ball rB of a given radius r = rd. These functions are entire functions
of the spherical exponential type r. Gorbachev uses the analog of the Delsarte problem
on this class to derive an upper estimate on the density of any possible spherical
packing, and then he gives the exact solution of the Delsarte problem on this class for
the concrete radius that depends on the dimension.

The di�erence in this setting is that restriction on the function class is imposed on
the Fourier transform side, namely supp f̂ b rB. That is, the class of functions in [19]
is G(B; rB), where in general

G(W,Q) :=
{
f ∈ C(Rd) ∩ L1(Rd) : f � 0, f(0) = 1, supp f+ ⊂ W, supp f̂ ⊂ Q

}
.

(3.2)
Note that we did not mention f−�and indeed, it is only taken that supp f− ⊂ Rd,
that is, no restriction. Once a strong restriction is applied on the Fourier transform
side�e.g. if Q is bounded and hence supp f̂ is compact, meaning that f is an entire
function�it is no longer possible to restrict, e.g, to supp f− b Rd, as f+ already
supported compactly (say when W is also bounded, like in the central case when
W = B) would then imply supp f b Rd, which is not possible for entire functions (if
we assume f(0) = 1, i.e. f 6≡ 0, too). For a similar comment see the end of page 699
in [10].

Gorbachev proves the estimate ∆(B) ≤ 1/DG(B, rB) (∀r > 0) for the packing
density ∆(B) of Rd by unit balls B using Poisson summation, and then computes the
exact value of DG(B, rdB), where his extremal constant is

DG(W,Q) := sup

{∫
Rd
f : f ∈ G(W,Q)

}
. (3.3)

Obviously, as is remarked in [10], one can then write ∆(B) ≤ limr→∞ 1/DG(B, rB) =
1/DG0 (B), where in general DG0 (W ) := sup

{∫
Rd f : f ∈ G0(W )

}
with

G0(W ) :=
{
f ∈ C(Rd) ∩ L1(Rd) : f � 0, f(0) = 1, supp f+ ⊂ W, supp f̂ b Rd

}
.

However, the approach in [19] found the exact constant DG(B, rB) only for the special
value rd = 2qd/2, where qd/2 is the �rst positive root of the Bessel function Jd/2 of the
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�rst kind, which is of course smaller than the actual value of DG0 (B). As a result, his
upper estimation of the packing density ∆(B) exceeded 1/DG0 (B), whence could not
be sharp.

Let us now record that our de�nition of the Delsarte constant in case of the unit
ball is equivalent to the limiting case of DG(B, rB) (as it was already stated in [19]
and is also mentioned by Cohn and Elkies on page 694 of [10] with respect to their
de�nition, see below).

In fact, this is not trivial at all; below we record the proof, kindly provided to
us by Dmitry Gorbachev in personal communication. Note that this proof was not
written down previously. We do not see a proof for the analogous fact in a more general
setting�radial symmetry is important in the construction, so already for convex bodies
W ⊂ Rd the situation is unclear.

Proposition 3.2 (Gorbachev). For the ball B ⊂ Rd, we have DG0 (B) = D(B).

Proof. (Gorbachev)
Since for any symmetric Borel set W ⊂ Rd obviously we have G0(W ) ⊂ F1(W,Rd),

we �nd DG0 (W ) ≤ D1(W ), and (3.1) yields the estimate D(W ) ≥ DG0 (W ).
The nontrivial part of the argument is thus to show that D(B) ≤ DG0 (B) for the

ball B. The proof depends on two constructions by Yudin and by Gorbachev, respec-
tively; we describe them in the following two lemmata. For reader's convenience, we
also provide full proofs.

Let Jα denote the Bessel function of the �rst kind, and let jα(t) = Γ(α+1)
(

2
t

)α
Jα(t)

be the normalized Bessel function with the property jα(0) = 1. We denote by qα the
�rst positive zero of jα.

Lemma 3.1 (Yudin). The functions

Yd(t) :=
j2
d
2
−1

(t)

1− t2/q2
d
2
−1

, t ∈ [0,∞), (3.4)

and
yd(x) := Yd(|x|), x ∈ Rd,

have the following properties:

(i) Yd(t) ≥ 0 for 0 ≤ t ≤ q d
2
−1, Yd(t) ≤ 0 for t ≥ q d

2
−1,

(ii) ŷd ≥ 0, supp ŷd b 2B, ŷd(0) = 0.

Proof. The construction presented in the lemma and the proof of the above properties
were given by Yudin in [53] in a much more general case. We give here a proof adopted
to our particular situation.

11



We use the known fact that the function u(x) = j d
2
−1

(
q d

2
−1|x|

)
is the ��rst Dirichlet

eigenfunction of the ball B�, (with the �rst eigenvalue q2
d
2
−1
), i.e.

∆u(x) = −q2
d
2
−1
u(x), x ∈ B,

u
∣∣
S

= 0,

where S := ∂B denotes the sphere of radius 1 in Rd. In fact, looking for radial
solutions of the above Dirichlet eigenvalue problem (with arbitrary eigenvalue) it is
natural to re-write the Laplace operator in radial coordinates, which then leads to a
scaled version of the Bessel di�erential equation; thus radial solutions are of the form
Cj d

2
−1 (λ|x|), where here λ must be a zero of the Bessel function j d

2
−1 in view of the

Dirichlet boundary condition u|S = 0. This argument �nds only radial solutions and
thus leaves room for hypothetical non-symmetric solutions, too, but it is clear that
any solution leads to another one, with the same eigenvalue, but now symmetric, by
spherical averaging. Take

ϕ(x) :=

{
u(x), if x ∈ B,
0, if x 6∈ B.

With q d
2
−1 being the �rst zero of j d

2
−1, the function ϕ is obviously nonnegative (and not

identically zero as ϕ(0) = 1). However, it is a general property of elliptic di�erential
operators, that for the �rst eigenvalue there is only a one-dimensional array of eigen-
functions, and these are the only ones among all eigenfunctions, which are nonnegative
[14, Section 6.5]. Therefore, ϕ ≥ 0 implies that it can only belong to the very �rst
eigenvalue, and moreover that to this eigenvalue there are no other, non-symmetric
eigenfunctions (but only scalar multiples of ϕ).

From the properties of the Bessel function we further show that

∂ϕ

∂n

∣∣∣∣
S

< 0,

where
∂

∂n
stands for the normal derivative (in the direction of the outward normal).

Indeed, it follows from d
dz

(
Jα(z)
zα

)
= −Jα+1(z)

zα
[1, (9.1.30)] that

j′α(z) = − z

2(α + 1)
jα+1(z),

which yields

∂ϕ

∂n

∣∣∣∣
S

= q d
2
−1j
′
d
2
−1

(z)

∣∣∣∣
z=q d

2−1

= −
q2
d
2
−1

d
j d

2
(q d

2
−1) < 0,

the latter inequality coming from the fact that q d
2
> q d

2
−1, see [1, (9.5.2)].
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To calculate the Fourier transform of ϕ, we use the eigenfunction property −∆ϕ =
q2
d
2
−1
ϕ and obtain

ϕ̂(s) :=

∫
Rd
ϕ(x)e−isxdx = − 1

q2
d
2
−1

∫
Rd

∆ϕ(x)e−isxdx, s ∈ Rd.

In view of ∆ exp(−isx) = −|s|2 exp(−isx) we �nd for the Fourier transform of ϕ the
formula

(|s|2 − q2
d
2
−1

)ϕ̂(s) =

∫
B

(
e−isx∆ϕ(x)− ϕ(x)∆e−isx

)
dx.

Next the second Green formula
∫
B

(f∆g − g∆f) dx =
∮
S

(
f ∂g
∂n
− g ∂f

∂n

)
dx, here applied

with f(x) := exp(−isx) and g(x) := ϕ(x) yields, taking into account the nullity of ϕ|S

(|s|2 − q2
d
2
−1

)ϕ̂(s) =

∮
S

(
exp(−isx)

∂ϕ(x)

∂n
− ϕ(x)

∂ exp(−isx)

∂n

)
dx

=

∮
S

exp(−isx)
∂ϕ(x)

∂n
dx = −

q2
d
2
−1
j d

2
(q d

2
−1)

d

∮
S

e−isxdx.

The last term
∮
S
e−isxdx can be interpreted as the Fourier transform of the regular,

bounded Borel measure dν(x), supported on the unit sphere S and absolutely contin-
uous with respect to surface area measure with the density function 1, so that

ϕ̂(s) = −
q2
d
2
−1
j d

2
(q d

2
−1)

d

ν̂(s)

|s|2 − q2
d
2
−1

.

It is well-known (see e.g. [51, Chapter IV, �3] or [22, Appendix B.4]) that

ν̂(s) :=

∫
Rd
e−isxdν(x) =

2π
d
2

Γ
(
d
2

)j d
2
−1(|s|), s ∈ Rd. (3.5)

We now introduce the new function

ψ(x) := −
∮
S

ϕ(x− u)
∂ϕ(u)

∂n
du =

q2
d
2
−1
j d

2
(q d

2
−1)

d
(ϕ ∗ dν)(x). (3.6)

Note that ϕ is supported in B and dν is supported in S, whence ψ is supported in 2B.
Its Fourier transform is

ψ̂(s) =
q2
d
2
−1
j d

2
(q d

2
−1)

d
ϕ̂(s)ν̂(s) = −

[
q2
d
2
−1
j d

2
(q d

2
−1)

d

]2

[ν̂(s)]2

|s|2 − q2
d
2
−1

=

π d
2 q d

2
−1j d

2
(q d

2
−1)

Γ
(
d
2

+ 1
)

2
j2
d
2
−1

(|s|)

1− |s|2/q2
d
2
−1

.
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Finally, we normalize this function to take the value 1 at the origin and consider

yd(s) :=

π d
2 q d

2
−1j d

2
(q d

2
−1)

Γ
(
d
2

+ 1
)

−2

ψ̂(s) = Yd(|s|), s ∈ Rd,

where Yd is given by (3.4). The property (i) of the function Yd is obvious. To prove
the property (ii), note that ŷd coincides with ψ up to a constant. The properties in (ii)
easily follow from (3.6).

2

Lemma 3.2 (Gorbachev). There exist two positive constants 0 < δ, κ, and a continuous

radial positive de�nite function h such that ĥ is compactly supported, ĥ(0) = 0, h(0) =
1, and

h(x) ≤ − κ

|x|d+1
, |x| ≥ 1− δ. (3.7)

Proof. Following [21] (see properties of the function Gα), consider the function

H(t) :=

∫ ∞
t

sYd+2(s)ds, t ≥ 0,

where Yd+2 is the Yudin function (3.4), and the continuous radial function h0(x) :=
H(|x|), x ∈ Rd.

First we show that for t large enough the estimate

H(t) ≤ − κ1

td+1
(3.8)

holds true with a certain constant κ1 > 0. From the well-known asymptotic relation
[1, (9.2.1)] which for real t takes the form

Jα(t) =

√
2

πt
cos

(
t− 1

2
απ − 1

4
π

)
+O

(
1

t

)
, t→∞,

it follows that with A := 1√
π
2α+ 1

2 Γ(α + 1) and β := απ
2

+ π
4
we have

jα(t) = A
1

tα+ 1
2

cos (t− β) +O

(
1

tα+1

)
, t→∞. (3.9)

Taking into account that 1
1−s2 = − 1

s2
+ O

(
1
s4

)
, s → ∞, we obtain with a little

trigonometry�i.e. applying cos2(γ) = 1
2
(1 + cos(2γ))�the formula

sYd+2(s) =
sj2

d
2

(s)

1− s2/q2
d
2

= −1

2
A2q2

d
2

1

sd+2

(
1 + cos(2s− 2β)

)
+O

(
1

sd+ 5
2

)
, s→∞.
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Given a large t, integrating the above asymptotic formula we are led to

H(t) = −1

2
A2q2

d
2

(
1

(d+ 1)td+1
+

∫ ∞
t

cos(2s− 2β)

sd+2
ds

)
+O

(
1

td+ 3
2

)
= −

A2q2
d
2

(2d+ 2)

1

td+1
+O

(
1

td+2

)
+O

(
1

td+ 3
2

)
≤ − κ1

td+1

with a suitable constant κ1 > 0 for t large enough.
Next we will investigate the Fourier transform of h0. It is well-known that the

Fourier transform of a radial function f(x) = F (|x|) is again radial, i.e. f̂(s) = K(|s|),
and F and K are connected by the Fourier-Bessel, or Hankel, transform:

f̂(s) = K(|s|) = (2π)
d
2 (H d

2
−1F )(|s|), (3.10)

where the Fourier-Bessel transform is de�ned for α ≥ −1
2
by the formula

(HαF )(s) :=
1

2αΓ(α + 1)

∫ ∞
0

F (u)jα(su)u2α+1du, s ≥ 0.

Note that (3.10) follows easily from (3.5) by changing to polar coordinates (see e.g.,
[51, Chapter IV, �3], [22, Appendix B.5]). Using the identity d

dz
(zαJα(z)) = zαJα−1(z)

[1, (9.1.30)], we arrive at

d

du

(
u2αjα(su)

)
= 2αu2α−1jα−1(su). (3.11)

The latter identity and integration by parts yield (taking α = d/2 in the above)

(H d
2
−1H)(s) =

1

2
d
2
−1Γ

(
d
2

) ∫ ∞
0

H(u)j d
2
−1(su)ud−1du

=
1

2
d
2
−1Γ

(
d
2

)
d

∫ ∞
0

H(u)d
(
j d

2
(su)ud

)
=

1

2
d
2 Γ
(
d
2

+ 1
) (H(u)j d

2
(su)ud

∣∣∣∞
0
−
∫ ∞

0

H ′(u)j d
2
(su)uddu

)
=

1

2
d
2 Γ
(
d
2

+ 1
) ∫ ∞

0

Yd+2(u)j d
2
(su)ud+1du

= (H d
2
Yd+2)(s).

In the calculation above we used the fact that the substitution H(u)j d
2
(su)ud

∣∣∣∞
0

van-

ishes (see (3.8) for u→∞), and that H ′(u) = −uYd+2(u). Thus,

H d
2
−1H = H d

2
Yd+2. (3.12)

Re�ecting back to Lemma 3.1, applied in dimension d + 2, we see that the function
yd+2(x) = Yd+2(|x|), x ∈ Rd+2, satis�es the properties ŷd+2 ≥ 0, supp ŷd+2 b 2Bd+2,
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ŷd+2(0) = 0. So according to (3.10) (still applied in dimension d+2), we therefore have

H d
2
Yd+2 ≥ 0, suppH d

2
Yd+2 b [0, 2] and

(
H d

2
Yd+2

)
(0) = 0. Whence (3.12) furnishes

that the same is true for H d
2
−1H, so using (3.10) again�but now in dimension d�we

�nally obtain in exactly dimension d the properties

ĥ0 ≥ 0, supp ĥ0 b 2B, ĥ0(0) = 0.

Note that h0(0) > 0 since h0 is positive de�nite and not identically zero. Now consider
the function

h(x) :=
h0

(
q d

2
x
)

h0(0)
, x ∈ Rd.

Clearly h is a continuous function with ĥ ≥ 0, supp ĥ b 2q d
2
B, ĥ(0) = 0.

It remains to show (3.7). It follows from the consideration above that

h0(x) ≤ − κ2

|x|d+1

with some constant κ2 > 0 for x large enough. It is also easy to see that H(x) is
negative increasing for x ≥ q d

2
. So, also H(q d

2
) < 0. Thus by continuity, H(x) < 0 in a

small neighborhood of q d
2
, too. Therefore, with a su�ciently small value of δ > 0, and

with a suitable constant κ > 0, property (3.7) is satis�ed, too.
2

Proof of Proposition 3.2. Given ε > 0, let g ∈ F1(B,Rd) be a function such that∫
Rd g > (1− ε)D(B). Consider its perturbation f(x) := 1

1+ε
(g(x) + εh(x)), where h is

the function from Lemma 3.2. It is easy to see that f ∈ F1(B,Rd). For its integral we
have

∫
Rd f >

1−ε
1+ε
D(B). For |x| ≥ 1 we have, since g(x) ≤ 0,

f(x) ≤ ε

1 + ε
h(x) ≤ − κε

(1 + ε)|x|d+1
≤ − κε

2(1 + ε)|x|d+1
,

where κ is the constant from Lemma 3.2. Since g(x) ≤ 0 for |x| = 1 and g is continuous
(and thus uniformly continuous in each compact set containing the ball B), there exists
a small δ > 0 such that g(x) ≤ κε

2
≤ κε

2|x|d+1 for 1− δ ≤ |x| ≤ 1. Taking δ > 0 so small

that also (3.7) is ful�lled, we obtain

f(x) ≤ − κε

2(1 + ε)|x|d+1
, |x| ≥ 1− δ.

Replacing δ by min {ε, δ}, we �nally arrive at the estimate

f(x) ≤ − κδ

4|x|d+1
, |x| ≥ 1− δ. (3.13)

Let η be a radial non-negative positive de�nite Schwartz function such that η(0) = 1
and supp η ⊂ B. By the properties of Schwartz functions, there is a constant Cη > 0
such that

η̂(x) ≤ Cη
|x|2d+1

, |x| > 0.
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For R > 0, consider ϕR(x) := Rdη̂(Rx). Clearly, ϕR is a radial non-negative positive
de�nite Schwartz function such that ϕ̂R(y) = η

(
y
R

)
, ϕ̂R(0) = 1, supp ϕ̂R ⊂ RB, and

ϕR(x) ≤ Cη
Rd+1|x|2d+1

, |x| > 0. (3.14)

Next take the convolution fR := f ∗ϕR. Then f̂R = f̂ ϕ̂R. It is clear that fR belongs
to C(Rd) ∩ L1(Rd) and is a positive de�nite function with supp f̂R ⊂ RB. Further on,

fR(0) =

∫
Rd
f(t)ϕR(t) dt ≤ f(0)

∫
Rd
ϕR(t) dt = f(0) = 1

(and, on the other hand, fR(0) > 0 since fR is positive de�nite and not identically
zero). Thus, the function FR := 1

fR(0)
fR ful�lls all the properties de�ning the class

G0(B) if we show that supp (FR)+ ⊂ B. We will give a proof of this property a couple
of lines below. With this property at hand, we have FR ∈ G0(B). For the integral of
the function FR we have∫

Rd
FR = F̂R(0) =

1

fR(0)
f̂(0)ϕ̂R(0) =

1

fR(0)
f̂(0) ≥ f̂(0) =

∫
Rd
f >

1− ε
1 + ε

D(B).

Since ε > 0 can be taken arbitrarily small, it follows that D(B) ≤ DG0 (B) .

Thus, to complete the proof of the proposition we need to show that, for a su�-
ciently largeR that depend on d, δ, and on the particular choice of η, we have fR(x) ≤ 0,
|x| ≥ 1. Consider x with |x| ≥ 1. We take R in the form R = rδ−2, where the constant
r > 0 will be chosen later. In what follows C and C ′ will denote positive constants
that may depend on d and η but do not depend on f , δ and x; these constants may be
di�erent at di�erent occasions. We have

fR(x) =

∫
Rd
f(t)ϕR(x− t) dt

=

(∫
|t|<(1−δ)|x|

+

∫
(1−δ)|x|≤|t|≤2|x|

+

∫
|t|>2|x|

)
f(t)ϕR(x− t) dt =: I1 + I2 + I3.

If |t| > 2|x| ≥ 2 then f(t) ≤ 0, and thus

I3 ≤ 0.

Since f(t) ≤ f(0) = 1, we have

I1 ≤
∫
|t|<(1−δ)|x|

ϕR(x− t) dt.

If |t| < (1− δ)|x|, then |x− t| ≥ |x| − |t| > δ|x|. This and (3.14) imply

I1 ≤
∫
|t|<(1−δ)|x|

ϕR(x− t) dt ≤ Cη
Rd+1(δ|x|)2d+1

∫
|t|<|x|

dt =
Cδ

rd+1|x|d+1
. (3.15)
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If (1− δ)|x| ≤ |t| ≤ 2|x|, then also 1− δ ≤ |t|. Hence, by (3.13),

I2 ≤ −
Cδ

|x|d+1

∫
(1−δ)|x|≤|t|≤2|x|

ϕR(x− t) dt.

Further, the ball of radius δ|x| ≥ δ around x lies within the domain of integration here,
so we get taking into account also (3.14) the estimate∫

(1−δ)|x|≤|t|≤2|x|
ϕR(x− t) dt ≥

∫
δB

ϕR(s) ds = 1−
∫
|s|≥δ

ϕR(s) ds

≥ 1−
∫
|s|≥δ

Cη
Rd+1|s|2d+1

ds

= 1− C

Rd+1δd+1
= 1− Cδd+1

rd+1
≥ 1

2

for large enough r. Whence

I2 ≤ −
C ′δ

|x|d+1
.

Summarizing, we obtain the estimate

fR(x) ≤ Cδ

rd+1|x|d+1
− C ′δ

|x|d+1
=

δ

|x|d+1

(
C

rd+1
− C ′

)
,

and �nally fR(x) ≤ 0 if we choose r so large that C
rd+1 < C ′.

2

As it is only tangentially touched in the literature (for example, for the particular
case ofW = B and Q = rdB using special considerations [19]), let us note the following.

Proposition 3.3. If W ⊂ Rd is closed and it has �nite Lebesgue measure |W | < ∞
and if Q b Rd is compact, then there exists some extremal function f ∈ G(W,Q) with∫
Rd f = DG(W,Q).

Proof. By de�nition of sup, there are functions fn ∈ G(W,Q) with
∫
Rd fn >

DG(W,Q) − 1/n. Further, the family of functions G(W,Q) is equicontinuous. Indeed,
let R > 0 be such that Q b RB. Then for any f ∈ G(W,Q) by Fourier inversion and

using f̂ ≥ 0 and f̂(t) = 0 for t 6∈ RB, we get

|f(x)− f(y)| = 1

(2π)d

∣∣∣∣∫
Rd

(
eixt − eiyt

)
f̂(t)dt

∣∣∣∣ ≤ 1

(2π)d

∫
Q

∣∣∣∣2 sin

(
(x− y)t

2

)∣∣∣∣ f̂(t)dt

≤ 1

(2π)d
max
t∈RB
|(x− y)t| ·

∫
RB

f̂(t)dt = |x− y|Rf(0) = |x− y|R.

Therefore, for the modulus of continuity of f ∈ G(W,Q) we always have uniformly
ω(f ;h) ≤ Rh (h > 0).
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It is then immediate from the celebrated Arzelà-Ascoli Theorem that for any K b
Rd the family of restrictions g|K of functions g from G(W,Q) constitute a precompact
set in C(K) (equipped with the maximum norm). Taking say Kn := nB, a standard
diagonalization argument furnishes a subsequence of (fn) converging locally uniformly
to some function f ∈ C(Rd). We can assume that the subsequence itself is (fn). Then
also lim fn = f in the pointwise sense, so in view of fn � 0 also f � 0 follows, c.f.
(1.1). Further, supp f+ ⊂ W = W is obvious as W is closed and it also follows that
f(0) = 1 and |f | ≤ 1. Let us write f = f+ − f− and similarly fn = (fn)+ − (fn)−.
Then we also have (fn)± → f± pointwise. For the negative parts we may apply Fatou's
Lemma: ∫

Rd
f− ≤ lim inf

n→∞

∫
Rd

(fn)−. (3.16)

For the positive parts note that (fn)+ and f+ are all supported in W , and |(fn)+| ≤
(fn)+(0) = 1, all the functions fn belonging to G(W,Q). That is, (fn)+ ≤ χW , the
indicator function of W , which is integrable because |W | <∞. Therefore, Lebesgue's
Dominated Convergence Theorem yields∫

Rd
f+ = lim

n→∞

∫
Rd

(fn)+. (3.17)

Note that then
∫
Rd |f | =

∫
Rd f+ +

∫
Rd f− ≤ limn→∞

∫
Rd(fn)+ + lim infn→∞

∫
Rd(fn)− ≤

2 limn→∞
∫
Rd(fn)+ ≤ 2|W | because

∫
Rd(fn)− =

∫
Rd ((fn)+ − fn) ≤

∫
Rd(fn)+ for each n,

for
∫
Rd fn ≥ 0 in view of fn � 0. Therefore, we have also proved f ∈ L1(Rd), that is,

also f ∈ C(Rd)∩L1(Rd)∩L∞(Rd), whence it is also in L2(Rd). In particular, f̂ exists,
is continuous, and belongs to L2(Rd).

Now we claim that f ∈ G(W,Q). Almost all requirements of the de�nition (3.2)

were already proved; to demonstrate f ∈ G(W,Q) it remains only to show supp f̂ ⊂ Q.
Before proving this, let us note that all the functions fn and f belong to the unit

ball of L∞(Rd), which is the dual space of L1(Rd), the space L1(Rd) being separable.
By the Banach-Alaoglu Theorem the unit ball in a dual space is weak-star sequentially
compact and so for the sequence (fn) there is a weak-star convergent subsequence�
which we may assume to be the very (fn) here�resulting in 〈fn, H〉 → 〈f,H〉 for any
�xed H ∈ L1(Rd), the inner product standing for 〈f,H〉 :=

∫
fH, as usual. (That

the limit function in the weak-star sense cannot be else than f itself follows from
locally uniform convergence coupled with the availability as a particular choice of H of
characteristic functions of any compacts.) We will exploit this weak-star convergence
in the following argument.

Let us take any point z 6∈ Q, and any small enough ball δB around zero such that
z + 2δB ⊂ Rd \ Q. Then take ψ := f̂ · θ with θ(t) := (χδB ∗ χδB)(t − z). Consider

h(x) := θ̌(x) = eizx(χδB ∗ χδB )̌(x) = 1
(2π)d

eizxχ̂2
δB(x) = δ2d

(2π)d
eizxχ̂2

B(δx). Here χ̂B is the
Fourier transform of the characteristic function of B, which is well-known and directly
follows from (3.10) and (3.11) (see e.g. [22, Appendix B.5]):

χ̂B(x) =
π
d
2

Γ
(
d
2

+ 1
)j d

2
(|x|). (3.18)
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Taking into account (3.9), we see that h is an integrable function on Rd. Let g := f ∗h.
By Fourier inversion we obtain g = ψ̌. Let us record here that supp θ = z + 2δB is
disjoint from Q by construction.

Fixing a point y ∈ Rd we thus have g(y) =
∫
Rd f(x)h(y−x)dx. For the �xed function

H := hy := h(y − ·) ∈ L1(Rd) we have by consideration above 〈fn, H〉 → 〈f,H〉. So
invoking also the Plancherel formula we get

g(y) = lim
n→∞
〈fn, H〉 =

1

(2π)d
lim
n→∞
〈f̂n, ĥy〉 =

1

(2π)d
lim
n→∞

∫
Rd
f̂nĥy

=
1

(2π)d
lim
n→∞

∫
Rd
f̂n(t)eiytθ(t)dt = 0

for f̂n is supported in Q, not intersecting with the support of θ. As a result, g ≡ 0.
In view of the uniqueness of Fourier transform we thus found ψ ≡ 0. That is, f̂ · θ ≡
0, which means that outside Q the continuous function f̂ must be zero. Therefore,
supp f̂ ⊂ Q and f ∈ G(W,Q).

Subtracting (3.16) from (3.17) and using the de�nition of the extremal constant,
we get

DG(W,Q) ≥
∫
Rd
f ≥ lim sup

n→∞

∫
Rd

((fn)+ − (fn)−) = lim sup
n→∞

∫
Rd
fn ≥ DG(W,Q),

whence we have equality everywhere here and f is thus an extremal function.
2

We are not aware of results on the existence of an extremal function in the general
case when Q is not compact.

Lastly, let us turn to the works of Cohn-Elkies and Viazovska. They use the function
class

Eκ(W+,W−) := {f ∈ F1(W+,W−) : |f(x)| = O((1 + |x|)−κ) and
|f̂(x)| = O((1 + |x|)−κ) }

with some (arbitrarily given) κ := d+ δ > d and W+,W− ⊂ Rd chosen to be W+ := B
and W− := Rd. Their extremal constant is thus DE(B), where in general DE(W+) :=
CEκ(W+,Rd) and

CEκ(W+,W−) := sup

{∫
Rd
f : f ∈ Eκ(W+,W−)

}
(W+,W− ⊂ Rd).

Already there is a dependence on a parameter κ or δ here�but we do not discuss
directly that for di�erent parameters the constants CEκ(W+,W−) coincide. Instead, we
prove

Proposition 3.4. For any parameter value κ > d and for any open sets W+,W− ⊂ Rd,
we have for the extremal constants that C(W+,W−) = CEκ(W+,W−). In particular,
D(W+) = DE(W+), where DE(W+) = DEκ(W+) is in fact independent from the choice
of the parameter κ.
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Proof. Again we only need to consider the case when 0 ∈ W+. Observe that

CEκ(W+,W−) ≤ C1(W+,W−) = C(W+,W−),

for Eκ(W+,W−) ⊂ F1(W+,W−) by de�nition. It remains to see that CEκ(W+,W−) ≥
C(W+,W−).

So let ε > 0 be arbitrary, choose n > κ/(d + 1) a natural number, and let f ∈
F(W+,W−) be any function with

∫
Rd f > C(W+,W−)−ε. As supp f+ b W+ andW+ is

open, we have for an appropriately small neighborhood of 0�say with an appropriately
small closed ball ηB of radius η > 0�that supp f+ + 2nηB b W+ still holds.

Take now u to be the 2n-th convolution power of the characteristic function of B, i.e.
u := χB ∗ · · · ∗ χB︸ ︷︷ ︸

2n times

. As χB = χ̃B, this is the Boas-Kac square of the n-th convolution

power of χB, and as such, it is a positive-de�nite function; moreover, û = |χ̂B|2n.
Taking into account (3.18) and (3.9), we obtain |û(x)| = O(|x|−n(d+1)) (x→∞).

It remains to scale u to our needs: we want a function v := cu(λx) such that it be
supported in 2nηB and satisfy

∫
Rd v = 1. Obviously, λ := 1/η and c := η−d|B|−2n will

do: then supp v b 2nηB and its integral is normalized to 1, whence for g := f ∗ v we
�nd

∫
Rd g =

∫
Rd f

∫
Rd v =

∫
Rd f > C(W+,W−)− ε. Also, supp g+ b supp f+ + supp v =

supp f+ +2nηB b W+ and supp g− b Rd. Therefore, g satis�es all conditions to belong
to F(W+,W−) but for the normalization g(0) = 1. We have g(0) =

∫
Rd f(x)v(−x)dx ≤∫

supp f+
f(x)v(−x)dx ≤ f(0)

∫
supp f+

v(−x)dx ≤
∫
Rd v(x)dx = 1. Therefore, taking

h := 1
g(0)

g we �nally get h ∈ F(W+,W−) and
∫
Rd h(x)dx > C(W+,W−) − ε. Noting

that by scaling and multiplying by a constant the de�ning property of the decrease
of the Fourier transform was not spoiled, we also have |v̂| = O(|x|−n(d+1)) (x → ∞).

Finally, ĥ = 1
g(0)

f̂ v̂ shows that the same ordo estimate remains in e�ect also for ĥ (as

|f̂ | is bounded by say | supp f |f(0) = | supp f |). In all, we �nd that h ∈ Eκ(W+,W−),
and so

∫
Rd h ≤ C

Eκ(W+,W−). It follows that CEκ(W+,W−) ≥ C(W+,W−)− ε. As ε > 0
could be �xed arbitrarily, we �nally obtain CEκ(W+,W−) ≥ C(W+,W−).

2

4 Homomorphisms and the extremal problem

In this section we obtain statements about the behavior of the value CG(Ω+,Ω−) under
homomorphisms. We follow the considerations of [34].

Let G and H be two LCA groups, and let ϕ : G → H be a continuous group
homomorphism onto H. The kernel of this homomorphism K := Ker (ϕ) = ϕ−1(0) is
a closed subgroup of G, and thus it is a LCA group itself. We consider the quotient
group G/K together with the canonical or natural projection π : G → G/K which
maps an element g ∈ G to its coset, i.e., π(g) := [g] := g + K ∈ G/K. By the
de�nition of the topology on G/K, π is an open and continuous mapping. Moreover,
ψ := ϕ ◦ π−1 : G/K → H is a continuous isomorphism of the LCA groups G/K and
H. For details, see, e.g., [48, Appendices B.2 and B.6].
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The Haar measure of a group is determined up to a constant factor. However, the
choice of this factor in�uences the value CG(Ω+,Ω−). Suppose the Haar measures mG

and mH are given. As is standard, we will choose the Haar measures on K and G/K
such that dmG = dmK dmG/K , c.f. [48, (2) on page 54]. The isomorphism ψ leads
in a natural way to another Haar measure νH on H de�ned by νH := mG/K ◦ ψ−1 =
mG/K ◦ π ◦ ϕ−1. But two Haar measures are constant multiples of each other, so we
can de�ne the constant M := dmH

dνH
.

Theorem 4.1. Let G and H be LCA groups considered with the Haar measures mG

and mH , and let ϕ : G → H be a continuous open group homomorphism onto H. Let
the Haar measures of the subgroup K := Ker (ϕ) and of the quotient group G/K be
normalized such that dmG = dmK dmG/K. Let νH := mG/K ◦ π ◦ ϕ−1, where π : G →
G/K is the natural projection, and let M := dmH

dνH
.

Let Ω+ and Ω− be open, 0-symmetric subsets of G, and let Θ± := ϕ(Ω±) ⊂ H.
Then

CG(Ω+,Ω−) ≤ 1

M
CH(Θ+,Θ−) CK(Ω+ ∩K,Ω− ∩K).

This result corresponds to [34, Proposition 3] and also the proof goes along the same
lines. However, we need to point out that for this proof one really needs to assume
that ϕ is an open continuous homomorphism, somewhat restricting generality of both
statements here and in [34].

Proof. The sets Θ± and Ω± ∩K are obviously open in the corresponding topologies
of H and K, respectively, and 0-symmetric. Clearly, 0 6∈ Ω+ if and only if 0 6∈ Ω+ ∩K,
and in this case both sides of the inequality are zero. We therefore consider the case
0 ∈ Ω+. Then also 0 ∈ Ω+ ∩K and 0 ∈ Θ+. The mapping ψ := ϕ ◦ π−1 : G/K → H
is a continuous open isomorphism of the LCA groups G/K and H.

For each h ∈ H choose (invoking here the Axiom of Choice) g(h) ∈ G to be an
arbitrary representative of the inverse image ϕ−1(h), i.e. an element of the coset ψ−1(h).
Let f ∈ FG(Ω+,Ω−) where the notation emphasizes that we consider a function f on
G. De�ne F : H → R by

F (h) :=

∫
K

f(g(h) + k) dmK(k).

Now we claim that for f uniformly continuous, F is continuous, too. To show this,
take an arbitrary ε > 0: then there exists a neighborhood V = VG of 0 in G such that
|f(g1) − f(g2)| < ε for all g1, g2 ∈ G with g1 − g2 ∈ VG. Clearly VG can be taken an
open set with compact closure so that in particular mG(VG) < ∞. Let us �x h1 ∈ H
and write g1 := g(h1) ∈ ϕ−1(h1): we are to show that F is continuous at h1. Put
VH := ϕ(VG). Since ϕ is open and so is VG, also VH is a neighborhood of 0 in H.
Consider h2 ∈ H such that h1 − h2 ∈ VH . This means that h1 − h2 = ϕ(g) for some
g ∈ VG. Let g2 := g(h2)(∈ ϕ−1(h2)). Then ϕ(g1−g2) = ϕ(g1)−ϕ(g2) = h1−h2 = ϕ(g).
It follows that (g1 − g2) − g ∈ Ker(ϕ) = K, i.e. g1 − g2 − g = k∗ with some k∗ ∈ K.
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For the element g∗2 := g2 + k∗ we have ϕ(g∗2) = h2 and g1− g∗2 = g ∈ VG. By the choice
of the neighborhood VG we have |f(g1 + k)− f(g∗2 + k)| < ε for all k ∈ K. Thus,∣∣∣F (h1)− F (h2)

∣∣∣ =

∣∣∣∣∫
K

f(g1 + k) dmK(k)−
∫
K

f(g2 + k) dmK(k)

∣∣∣∣
=

∣∣∣∣∫
K

f(g1 + k)− f(g2 + k∗ + k) dmK(k)

∣∣∣∣
≤
∫
K

∣∣∣f(g1 + k)− f(g∗2 + k)
∣∣∣ dmK(k) < C ε

with C := mK((supp f − g1 + VG) ∩K) <∞. This shows that F is continuous at h1.
Now we show that suppF± b Θ±. Indeed, {h : F (h) > 0} ⊂ {h : ∃k ∈

K such that f(g(h) + k) > 0} = ϕ({g : f(g) > 0}) ⊂ ϕ(supp f+), which is compact,
whence also for the closure suppF+ b ϕ(supp f+) ⊂ ϕ(Ω+) = Θ+. The proof for
suppF− is similar.

Clearly, F (0) =
∫
K
f(k) dmK(k). By Fubini's theorem,∫

H

F (h) dmH(h) =

∫
H

∫
K

f(g(h) + k) dmK(k)M dνH(h)

= M

∫
H

∫
K

f(g(h) + k) dmK(k) dmG/K(ψ−1(h))

= M

∫
G

f(g) dmG(g). (4.1)

To prove that F is positive de�nite on H, we �rst notice that for every continuous
character χ on H the function γ := χ ◦ ϕ is a continuous character on G. What we
are to use here is that for a continuous and integrable function positive de�nitness is
equivalent to non-negativity of its Fourier transform. This follows from the inversion
theorem for the Fourier transform [48, Theorem 1.5.1] and the Bochner-Weil theorem
[48, Theorem 1.4.3]. See also [16, (4.23) Corollary] or [34, p. 483]. Applying (4.1) to
f1 := fγ and

F1(h) :=

∫
K

f1(g(h) + k)dmG(k) =

∫
K

f(g(h) + k)χ(ϕ(g(h) + k))dmG(k) = χ(h)F (h),

we obtain

F̂ (χ) =

∫
H

F (h)χ(h) dmH(h) = M

∫
G

f(g) γ(g) dmG(g) = Mf̂(γ) ≥ 0

since f is positive de�nite on G. Thus, F̂ ≥ 0 and in view of the continuity and
integrability of F , this implies F � 0 on H.

We see from the above that the function F0 := 1
F (0)

F = 1∫
K f dmK

F belongs to the

class FH(Θ+,Θ−), and thus∫
H

F dmH ≤ CH(Θ+,Θ−)

∫
K

f dmK .

23



Furthermore, f |K is positive de�nite and thus f |K ∈ FK(Ω+ ∩K,Ω− ∩K), giving the
estimate

∫
K
f dmK ≤ CK(Ω+ ∩K,Ω− ∩K). Using (4.1), we obtain∫

G

f dmG =
1

M

∫
H

F dmH ≤
1

M
CH(Θ+,Θ−) CK(Ω+ ∩K,Ω− ∩K)

for each f ∈ FG(Ω+,Ω−), which implies the desired statement.
2

Corollary 4.1. Let ϕ : G → G be a continuous open automorphism of a LCA group
G, and let Ω+,Ω− be two open5, 0-symmetric sets in G. Then

CG(ϕ(Ω+), ϕ(Ω−)) = M CG(Ω+,Ω−),

where M := mG(ϕ(Ω+))
mG(Ω+)

= mG(ϕ(Ω−))
mG(Ω−)

.

Proof. (Cf. [34, Corollary 1].) We apply Theorem 4.1 with H = G. In this case
K = {0}, mK = δ0, K ∩Ω± = {0}, CK(Ω+ ∩K,Ω− ∩K) = 1, G/K = G, mG/K = mG,
and π is the identity. To calculate the constantM we observe that νG = mG ◦ϕ−1, and
for each measurable set Ω∗ ⊂ G we have M = mG(Ω∗)

mG(ϕ−1(Ω∗))
. The desired representation

of M can be obtained by taking Ω∗ = ϕ(Ω+) and Ω∗ = ϕ(Ω−), respectively.
Now, Theorem 4.1 gives

CG(Ω+,Ω−) ≤ 1

M
CG(ϕ(Ω+), ϕ(Ω−)).

Since ϕ−1 is also a continuous open automorphism, an application of Theorem 4.1 for
ϕ−1 provides the converse inequality.

2

Corollary 4.2. Let G1, . . . , Gn be LCA groups and G := G1×· · ·×Gn. Let Ωj,± ⊂ Gj,
j = 1, . . . , n, be open, 0-symmetric sets, and let Ω± := Ω1,± × · · · × Ωn,±. Then

CG(Ω+,Ω−) ≤ CG1(Ω1,+,Ω1,−) · · · CGn(Ωn,+,Ωn,−). (4.2)

Proof. (Cf. [34, Corollary 2].) The inequality follows by induction in n from Theo-
rem 4.1 with ϕ being a projection to one of the components of the direct product6.

5In view of the existence of an open continuous automorphism, the two copies of G have equivalent
topologies.

6In [34, Corollary 2], the corresponding statement for the Turán problem was considered, and it
was shown that in this case, i.e., when Ω+ = Ω−, (4.2) turns into equality. However, we cannot
guarantee equality in the current general case. This arises from the fact that the product of two
negative functions can be positive.
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2

The reader will �nd no di�culty in extending the above to the topological product
of an arbitrary number of LCA groups. However, openness of the sets Ω± imply that
apart from a �nitely many initial components the rest of the groups Gi are contained
in Ω±, whence the corresponding extremal constants CGi(Ωi,+,Ωi,−) are either 1 in case
when Gi is compact, or in�nity in case when Gi is not compact.

Corollary 4.3. Let G be a LCA group, K be a closed subgroup of G, and suppose that
the Haar measures are normalized so that dmG = dmK dmG/K. Let π : G → G/K
denote the natural projection. If Ω+,Ω− are two open, 0-symmetric sets in G, then

CG(Ω+,Ω−) ≤ CG/K(π(Ω+), π(Ω−)) CK(Ω+ ∩K,Ω− ∩K).

Proof. (Cf. [34, Corollary 3].) Apply Theorem 4.1 with H = G/K and ϕ = π which
is open and continuous. In this case νH = mG/K ◦ π ◦ ϕ−1 = mG/K , so that M = 1.

2

5 Packing, covering, tiling and the extremal problem

The main aim of the paper is to study the behavior of the constant C(Ω+,Ω−) in the
case when the positivity set Ω+ possesses some structural properties like packing and
tiling.

Let H ∈ B0. We say that the set H packs G by translation with the translation set
Λ ⊂ G if ∑

λ∈Λ

χH(x− λ) ≤ 1 a.e. x ∈ G. (5.1)

In other words, for a.e. x ∈ G there is at most one λ ∈ Λ such that x lies in the set
H + λ.

Further on, we say that the set H covers G by translation with the translation set
Λ ⊂ G if ∑

λ∈Λ

χH(x− λ) ≥ 1 a.e. x ∈ G.

In other words, H + Λ contains almost all points of G.
Finally, we say that the set H tiles G by translation with the translation set Λ ⊂ G

if H simultaneously packs and covers G with the translation set Λ, i.e.,∑
λ∈Λ

χH(x− λ) = 1 a.e. x ∈ G. (5.2)

This means that almost all x ∈ G belong to exactly one of the sets H + λ.
The slight generalization using a.e. conditions here (rather than the strict conditions

for every point x ∈ G) became widely used for its convenience when dealing with tiling:
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for a closed square we want to say that it still packs (so also tiles) space, and the same
way we also consider the open squares still covering (so even tiling) space.

In general it is tacitly assumed, see e.g. in [34] or [44], that we can always �correct�
the underlying setH by a measure zero di�erence to become a strict packing or covering
or tiling, as we wish. Therefore, if we need to apply e.g. a strict packing condition,
then we may modify the setup accordingly.

This is indeed true essentially, whence in the further discussion we will feel free to
require the following somewhat more stringent conditions, which we indeed need in the
proofs. Namely we will consider the assumption that inequality (5.1) is ful�lled for all
x ∈ G. When this holds, we will say that H packs G in the strict sense (and in case
it also covers G with the same Λ, we will accordingly say that H tiles G in the strict
sense). So we say that H tiles G in the strict sense, if H tiles G and the packing is in
the strict sense, i.e., if the tiling is disjoint�but we still do not assume the covering to
hold everywhere (but only a.e.).

It is easy to see that this packing condition in the strict sense is equivalent to

(Λ− Λ) ∩ (H −H) = {0}. (5.3)

This motivates�closely following [34] and [44]�the consideration of the following �gen-
eralized packing type condition�, where already there is no packing, but a general set
W replaces the di�erence set H −H of the packing set H in the above formulation.

De�nition 5.1. We say that a set W ∈ B0 satis�es a generalized strict packing type
condition (�packing type condition� for short) with the translation set Λ ⊂ G if

(Λ− Λ) ∩W ⊆ {0}.

Note that di�erence sets have many strong structural properties, which are exten-
sively analyzed in the literature, see e.g. [40] and the references therein, so replacing a
di�erence set by a general setW without this extra structure is indeed a generalization.

Also, re�ecting back to the original setup, it is worth noting that even if packing
by H or M ⊂ H of the same measure can be equivalent, the di�erence sets H−H and
M −M may indeed have essentially di�erent properties. Before proceeding let us see
an instructive example, explaining why we step back from the a.e. formulation.

Example 5.1. Consider G := R and let H := {−4} ∪ (−1, 1) ∪ {4}, which satis�es
a (not strict) packing (and also covering and tiling) condition with the translational
set Λ := 2Z. If we �correct� H by dropping the two isolated points to become M :=
(−1, 1), then M already satis�es a strict packing (and tiling) condition with the same
Λ = 2Z. However, the di�erence sets Q := H − H = (−5,−3) ∪ (−2, 2) ∪ (3, 5) and
W := M − M = (−2, 2) are totally di�erent. Indeed, W satis�es the (generalized,
strict) packing type condition of De�nition 5.1 with Λ = 2Z, while the same fails for
Q: in fact (Λ − Λ) ∩ Q = 2Z ∩ Q = {−4, 0, 4}. Further, if any translational set L
satis�es (L−L)∩Q = {0}, then the asymptotic density of L cannot exceed 2/5 (while
the asymptotic density of Λ was 1/2). Furthermore, even the Delsarte constants of the
two di�erence sets are essentially di�erent: D(Q) > D(W ) = 2.
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Proof. Let L ⊂ R be an arbitrary set satisfying (L− L) ∩Q = {0}. Assume (as we
may translate L) that 0 ∈ L. Let us list the positive elements of L in increasing order:
L+ := L ∩ (0,∞) = {`1 < `2 < · · · < `n < . . . }. As 0 ∈ L, we must have `1 ≥ 2, for
`1− 0 ∈ L−L cannot belong to Q. The same holds for any consecutive pairs `k+1 and
`k: we must have `k+1− `k ≥ 2. But adding this for two consecutive di�erences we �nd
`k+2 − `k ≥ 4, and, as (3, 5) ⊂ Q, we infer even `k+2 − `k ≥ 5. It follows that `2 ≥ 5
and in general `2k ≥ 5k. Arguing similarly for L− := L ∩ (−∞, 0), we �nd that the
number of points of L lying in [−5n, 5n] can be at most 4n + 1, furnishing the upper
estimate 2/5 for the asymptotic density of L. (This can indeed be attained by choosing
L := 5Z ∪ (2 + 5Z).)

The value of the Delsarte constant is easier to �nd for W = M −M , as M tiles in
the strict sense with Λ = 2Z, whence the below Proposition 5.2 provides D(W ) = 2.

In the following we estimate D(Q) showing that it exceeds 2: our construction in
fact will even prove that C(Q, ∅) > 2.

To start with, let T (t) := 1 + a cos t + b cos (4t) ≥ 0 be any nonnegative cosine
polynomial with spectrum {0, 1, 4}: we denote the set of all such polynomials by P , say.
Also recall that the usual triangle function ∆(t) := (1−|t|)+ = (χ[−1/2,1/2]∗χ[−1/2,1/2])(t)
is positive de�nite, ∆� 0.

So now consider the measure µ := δ0 +
a

2
(δ1 + δ−1) +

b

2
(δ4 + δ−4) (with δc standing

for the Dirac measure concentrated on the point c). The Fourier transform of this
measure is exactly T (t), whence if T ≥ 0 (i.e. when T ∈ P), then µ � 0 is a positive
de�nite measure, whence the convolution Φ := ∆∗µ is also a positive de�nite continuous
function (with Fourier transform T (t)·

(
sin t
t

)2 ≥ 0). Note that Φ(0) =
∫

∆(−x)dµ(x) =
∆(0) = 1. Further, Φ ≥ 0 and the support of Φ is contained in the sum of the
supports of ∆ and µ from its de�ning convolution, i.e. in [−1, 1] + {0,±1,±4} =
[−5,−3] ∪ [−2, 2] ∪ [3, 5] = Q. Therefore (essentially) we obtain Φ ∈ F(Q, ∅) entailing
C(Q, ∅) ≥

∫
Φ(x)dx =

∫ ∫
∆(x − y)dµ(y)dx = (

∫
∆) · µ(R) = 1 + a + b. (Here we

neglected a trivial dilation�taking Φε := ∆ε ∗ µ with ∆ε(x) := ∆((1 + ε)x) and then
passing to the limit when ε→ +0 could precisely show the same.)

It already proves the assertion if we �nd a cosine polynomial T ∈ P with T (0) =
1 + a + b > 2. Existence of such a polynomial, on the other hand, is kind of trivial,
for the minimum of cos t is at π (modulo 2πZ), while there the wave cos(4t) is strictly
positive: so a polynomial 1 + cos t + ε cos(4t) must be nonnegative for small enough
(but still positive) ε > 0.

A more precise analysis of such �trinomials� has been carried out (also for being ap-
plied in a more intricate question through duality) in [42]. To �nd an explicit (possibly
close to be best) value we brie�y employ the methods of [42, �2] here.

Lemma 5.1. We have sup {1 + a+ b : T (t) = 1 + a cos t+ b cos(4t) ∈ P} > 2. In
fact, the value T (0) = 2.236... is achieved by the (approximately extremal) polynomial
T0(t) := 1 + 0.989286995... cos t+ 0.246780732... cos(4t).

Proof. First note that F (T ) := T (0) = 1 + a + b is a linear functional on C(T),
whence according to [42, Lemma 2.3] its maximum on P is attained on some cosine
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polynomial from the set Z := {1− cos(4t)} ∪ Z0 ∪ Zπ with

Z0 :={hz(t) := 1 + a(z) cos t+ b(z) cos(4t) : 0 ≤ z ≤ π/4}, where

a(z) :=
4 sin(4z)

d(z)
, b(z) :=

sin z

d(z)
, d(z) := 4 cos z sin(4z)− cos(4z) sin z,

(interpreting the coe�cients of h0 by their limits as z → 0), and Zπ := {hz(x + π) =
1− a(z) cos t+ b(z) cos(4t) : hz ∈ Z0}.

Here it is immediate that maxF on P is positive, whence is not attained on 1 −
cos(4t); also, as the expression for a(z) is nonnegative for all 0 ≤ z ≤ π/4, it is clear
that hz(0) ≥ hz(π) and the maximum of the functional F on P is attained on Z0. On
this set

F (hz) = hz(0) = 1 + a(z) + b(z) = 1 +
4 sin (4z) + sin z

4 cos z sin (4z)− cos (4z) sin z
,

so in particular F (h0) = h0(0) = 1 + 16
15

+ 1
15

= 2 2
15
> 2 already. We could only �nd the

extremum numerically: the optimal value is z = 0.628... where we get the above.
2

Using the above Lemma 5.1 we �nally �nd D(Q) ≥ C(Q, ∅) = 2.23606... > 2, as
claimed.

2

In view of the above the reader may have doubts what the �measure zero correction�
can achieve. We now formally state and prove what one can certainly do in this regard.
Although the proof is standard, it is quite tedious and more complicated than one would
expect it after such a clear heuristical meaning.

Proposition 5.1. Assume that the set H ∈ B0 packs G with the translation set Λ.
Then there exists M ⊂ H with mG(H \M) = 0, such that M packs G with Λ in the
strict sense.

Proof. There is nothing to prove if mG(H) = 0, as then M = ∅ su�ces. So let us
consider the case when mG(H) > 0.

Let the exceptional set in (5.1) be X := {x ∈ G :
∑

λ∈Λ χH(x− λ) > 1}, in other
words X = {x ∈ G : ∃λ 6= λ′ ∈ Λ such that x ∈ (H + λ) ∩ (H + λ′)}. Let ε > 0 be
arbitrary. By assumption, mG(X) = 0, meaning that for the given ε > 0 there exists
an open set U ⊃ X with mG(U) < ε. So let us �x also the open set U .

Recall that H ∈ B0, whence H b G. Consider the compact set K := H −H and
the compactly generated subgroup G0 := 〈K〉. As H is of positive Haar measure, its
di�erence set�whence K, too�contains a neighborhood of 0, see e.g. [26, Corollary
20.17]. Therefore, G0 is also a neighborhood of 0 and G0 is thus an open subgroup,
whence a compactly generated open-closed subgroup, too.

The following fact follows from [48, 2.4.2. Lemma] and its proof, as well as from
the parts of the proof of [48, 2.6.7. Theorem], see also the proof of Theorem 7 in [44].
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Lemma 5.2. Let K be a compact neighborhood of 0 in G, and let G0 := 〈K〉 be the
subgroup in G generated by K. Then
1) There is a �nitely generated lattice L in G0 (isomorphic to Zd with some d ∈ N)
such that K ∩ L = {0}.
2) There is a set E ∈ B0 such that K ⊂ E ⊂ G0 and each x ∈ G0 can be uniquely
represented as x = e+ `, where e ∈ E and ` ∈ L. In particular, E tiles G0 in the strict
sense with the translation set L.
If G is not compact, then necessarily d ≥ 1.

Now let E and L be as in Lemma 5.2. So each translated copy ` + E with ` ∈ L
has compact closure, whence even in `+E there can only be some �nitely many points
of Λ (if we check that Λ must be discrete�this will be done in Lemma 5.3 below), and
then of course Λ0 := Λ ∩ G0 is countable. (Note that this may well fail for the whole
of G.)

The subgroup G0 partitions G into conjugate classes: let us take such a (disjoint)
partition G = ∪t∈T (G0 + t) where T is a representative set (chosen using the Axiom of
Choice) of inequivalent conjugate classes (translates) of G0 within G. Let us then take
the decomposition U = ∪t∈T ((t+G0) ∩ U).

Any of these U(t) := (t + G0) ∩ U is the intersection of open sets, whence open,
and either has a positive measure, or is empty. As for di�erent t these are also disjoint,
there can only be a set T ∗ ⊂ T of at most countably many t with (t + G0) ∩ U 6= ∅�
compare [16, (2.22) Proposition]. So, we �nd X ⊂ ∪t∈T ∗((t+G0) ∩ U) = ∪∞i=0Ui, with
Ui := ((ti +G0) ∩ U) open and T ∗ = {ti : i ∈ N} countable. (We can assume t0 ∈ G0

in numbering these representatives of conjugate classes.)
Now let us consider the countable set Λ0 := Λ ∩ G0 together with its peers Λi :=

Λ ∩ (ti + G0) for arbitrary i ∈ N. By the same reason as for Λ0, all Λi are (at most)
countable, whence so is the set Λ∗ :=

⋃∞
i=0 Λi. Note that for λ 6∈ Λ∗ and with t ∈ T

such that λ ∈ t + G0 we have (λ + G0) ∩ X = (t + G0) ∩ X ⊂ (t + G0) ∩ U = ∅ by
construction.

Taking the set Y := ∪i∈N ∪λ6=λ′∈Λi (λ − λ′ + H), the whole union is an at most
countable union, while for each member H ∩ (λ− λ′+H) is obviously of measure zero
(since (H + λ) ∩ (H + λ′) ⊂ X). So �nally de�ning C := H ∩ Y = ∪i∈N ∪λ6=λ′∈Λi

(H ∩ (λ− λ′ +H)) as �correction set�, this is a countable union of measure zero sets
and is thus of measure zero. Therefore, M := H \ C has mG(M) = mG(H).

Consider now any z ∈ (Λ − Λ) ∩ (H − H), and assume that z 6= 0: we want to
show that then z 6∈ (Λ − Λ) ∩ (M −M). By condition, z = λ − λ′ = h − h′ with
λ 6= λ′ ∈ Λ, h 6= h′ ∈ H. Take x := z + λ′ + h′ = λ + h′ = λ′ + h. Then with the
di�erent λ 6= λ′ we �nd χH(x − λ) = χH(x − λ′) = 1 and

∑
λ∈Λ χH(x − λ) > 1. This

means that x ∈ X ⊂ U = ∪∞i=1Ui. So let x ∈ Ui for some i ∈ N. Then x ∈ ti + G0, so
that λ′ = x − h and also λ = x − h′ belong to the same coset ti + G0, i.e. λ, λ

′ ∈ Λi.
Therefore, λ − λ′ + h′ = h belongs to (λ − λ′ + H) ∩H ⊂ C and so h 6∈ M = H \ C.
It follows that in the representation z = h − h′ for z we cannot have h ∈ M , whence
z 6∈ (Λ− Λ) ∩ (M −M), as wanted. This proves (Λ− Λ) ∩ (M −M) ⊂ {0}.

2
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We have already used the basic observation that a translational set Λ (of a packing
by translates of some H ∈ B0 of positive measure) is necessarily discrete, i.e. to any
point g ∈ G there is a neighborhood U of g with Λ ∩ U ⊂ {g}. (Equivalently, we may
say that Λ ∩ U is �nite, or, equivalently again, we may formulate discreteness with
postulating that Λ ∩K is �nite for every compact set K b G.) So we prove this now.

Lemma 5.3. Let the open set 0 ∈ W ⊂ G satisfy a strict packing type condition with
the set Λ, i.e. assume W ∩ (Λ− Λ) = {0}. Then Λ is discrete.

Proof. Consider an arbitrary K b G and a set of ` di�erent points λ1, . . . , λ` in
Λ ∩ K. Consider an open neighborhood V of zero, with compact closure, such that
V −V ⊂ W . (Such V exists, for 0 ∈ intW and the group operation is continuous.) The
strict packing type condition on W and Λ implies that V satis�es the strict packing
condition (5.3), i.e. (V − V ) ∩ (Λ− Λ) = {0}.

Therefore, we also have for any compact subset C b V that

mG(C +K) ≥
∫
C+K

∑
λ∈Λ

χV (x− λ)dx ≥
∫
C+K

∑̀
j=1

χC(x− λj)dx

=
∑̀
j=1

∫
C+K

χC(x− λj)dx ≥
∑̀
j=1

∫
C+λj

χC(x− λj)dx = `mG(C).

Note that C and K being compact, so is C+K, whence its Haar measure is �nite. This
shows that for an arbitrary C b V with mG(C) > 0 we must have ` ≤ mG(C+K)

mG(C)
<∞,

and ` is bounded.
2

Our next aim is to calculate C(Ω+,Ω−) in the case when Ω+ is a di�erence set of
a strict lattice tile with a �nitely generated lattice. Later a much stronger result will
be obtained, but this will be a key ingredient of the further argumentation, whence is
indispensable for our progress.

This statement, formulated below in Proposition 5.2, is known for the Turán prob-
lem T (Ω) = C(Ω,Ω) as in (1.5). In the special case when G = Rd and Ω is itself
a convex lattice tile (so that H = Ω/2 can be taken in the proposition below), the
statement was proved in [5] (see also [4]). The same follows from [33] where the result
was obtained for convex Ω that are spectral (which is the case for all convex tiles). The
analogous proposition in the general form as below for Turán's problem in compact
Abelian groups as well as in the groups Rd and Zd was obtained in [34]. Finally, it was
proved for locally compact Abelian groups in [44].

Proposition 5.2. Let G be a LCA group. Suppose that Ω+,Ω− are open, 0-symmetric
sets and

Ω+ = H −H,
where H ∈ B0 and H tiles G in the strict sense of (5.3) with the translation set Λ ⊂ G
which is a �nitely generated lattice. Then

C(Ω+,Ω−) = mG(H).
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Proof. Since the constant C(Ω+,Ω−) is monotone in the second argument Ω−, we
have

C(Ω+, ∅) ≤ C(Ω+,Ω−) ≤ C(Ω+, G).

The estimate C(Ω+, ∅) ≥ mG(H) has been proved in [44, Corollary 5]. For complete-
ness, �rst we brie�y repeat here the construction that shows this inequality, as it was
done in the proof of [44, Corollary 5]: then our proof will be completed by proving
mG(H) ≥ D(Ω+) = C(Ω+, G) below.

The proof of the inequality C(Ω+, ∅) ≥ mG(H) uses an old idea how to construct
a function giving a lower bound in the investigation of the Turán constant. Assume
as we may that mG(H) > 0. Let A b H with mG(A) > 0. Consider the function
f := χA ∗ χ̃A. Then f � 0, f ≥ 0 on G and supp f ⊂ A − A b H − H ⊂ Ω+.
Clearly, f(0) = mG(A) and

∫
G
f = mG(A)2. Thus, f0 := 1

f(0)
f ∈ F(Ω+, ∅), whence

C(Ω+, ∅) ≥
∫
G
f0 = mG(A). Since H is a Borel set, its measure can be approximated

arbitrarily closely by measures of inscribed compact sets A. Taking the supremum over
all such sets A, we obtain the desired estimate.

Lastly, we prove mG(H) ≥ D(Ω+). We take an arbitrary f ∈ F(Ω+, G). Denote
W := supp f b G. Let us consider the function

F (x) :=
∑
λ∈Λ

f(x+ λ), x ∈ G.

The sum is well-de�ned, for each x ∈ G only �nitely many summands are non-zero,
because if f(x + λ) 6= 0 then x + λ ∈ W , too, i.e. λ ∈ W − x, which is a compact set
while Λ is discrete.

Further, the set L ⊂ Λ of points λ ∈ Λ with the additional property that x+λ ∈ W
for some x ∈ H must be a �nite set. Indeed, if x+λ ∈ W , then λ ∈ W −H ⊂ W −H;
but in view of the assumption H ∈ B0, the latter is compact and so by discreteness
Λ ∩ (W −H) must be �nite. So in particular f(x + λ) = 0 for all x ∈ H and for any
λ ∈ Λ \ L. Thus we have that F (x) =

∑
λ∈L f(x+ λ) for all x ∈ H.

Next we show that F is positive de�nite. We need to show that for all M ∈ N,
x1, . . . , xM ∈ G and c1, . . . , cM ∈ C we have

M∑
k=1

M∑
k′=1

ck ck′ F (xk − xk′) =
M∑
k=1

M∑
k′=1

ck ck′
∑
λ∈Λ

f(xk − xk′ + λ) ≥ 0.

Let the lattice Λ be generated by the elements a1, . . . , ad ∈ G, i.e., Λ = {λν :=
ν1a1 + · · ·+ νdad : ν = (ν1, . . . , νd) ∈ Zd}. Since there are �nitely many points xk − xk′
in the sum above and f is compactly supported, there is a �nite set I ⊂ Zd such that

M∑
k=1

M∑
k′=1

ck ck′ F (xk − xk′) =
M∑
k=1

M∑
k′=1

ck ck′
∑
µ∈I

f(xk − xk′ + λµ). (5.4)

We have to show that this expression is non-negative.
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Take N ∈ N such that I ⊂ {−N, . . . , N}d. Using the property of the positive
de�niteness of f for the (N + 1)dM points xk + λν , ν ∈ {0, . . . , N}d, k = 1, . . . ,M ,
and taking the coe�cient corresponding to a point xk + λν to be ck, we obtain

0 ≤
M∑
k=1

M∑
k′=1

∑
ν∈{0,...,N}d

∑
ν′∈{0,...,N}d

ck ck′ f(xk + λν − xk′ − λν′)

=
M∑
k=1

M∑
k′=1

ck ck′
∑

µ∈{−N,...,N}d

d∏
j=1

(N + 1− |µj|) f(xk − xk′ + λµ)

=
M∑
k=1

M∑
k′=1

ck ck′
∑
µ∈I

d∏
j=1

(N + 1− |µj|) f(xk − xk′ + λµ).

It follows that

M∑
k=1

M∑
k′=1

ck ck′
∑
µ∈I

∏d
j=1(N + 1− |µj|)

(N + 1)d
f(xk − xk′ + λµ) ≥ 0.

Taking limit when N →∞, we obtain the desired statement about the non-negativity
of the expression (5.4).

As F is positive de�nite, it holds F (x) ≤ F (0) for all x ∈ G. Consequently,∫
H

F ≤ F (0)mG(H). (5.5)

For the integral we have∫
H

F =

∫
H

∑
λ∈L

f(x+ λ) =
∑
λ∈L

∫
H

f(x+ λ) =
∑
λ∈L

∫
G

χH+λ(y)f(y) (5.6)

=

∫
W

(∑
λ∈L

χH+λ(y)

)
f(y) =

∫
W

(∑
λ∈Λ

χH+λ(y)

)
f(y) =

∫
W

1 · f(y) =

∫
G

f,

using that H tiles with Λ so that (5.2) applies.
As we have the strict packing condition (5.3) we must have f(λ) ≤ 0 for all λ 6= 0

and λ ∈ Λ; hence,

F (0) =
∑
λ∈Λ

f(λ) ≤ f(0) = 1. (5.7)

>From (5.5), (5.6) and (5.7) we obtain∫
G

f =

∫
H

F ≤ F (0)mG(H) ≤ mG(H),

which proves the inequality D(Ω+) ≤ mG(H).
2
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6 Asymptotic uniform upper density on LCA groups

Asymptotic uniform upper density was introduced in R and Z by Kahane [29, 30, 31,
32], see also [6] and [24]. The notion was, however, not extended to LCA groups for
long. A concept has been introduced by the second named author [43], [45], [46], see
also [44]. An equivalent construction occurred also in the paper [23]. We already know
several equivalent de�nitions and constructions and the notion seems to be handy for
applications [45].

De�nition 6.1. Let G be a LCA group, and mG the Haar measure. Let ν be another
measure on G with the σ-algebra of measurable sets S. The asymptotic uniform upper
density (a.u.u.d.) of the measure ν is then de�ned by

D(ν,mG) := inf
CbG

sup
V ∈S∩B0

ν(V )

mG(C + V )
.

In particular, if Λ ⊂ G is a discrete set and γΛ :=
∑

λ∈Λ δλ is the counting measure of
Λ, then

D
#

(Λ) := D(γΛ,mG) = inf
CbG

sup
V ∈B0

#(Λ ∩ V )

mG(C + V )
. (6.1)

For the motivation for this de�nition and properties of the a.u.u.d., see [43]. In
particular, if G = Rd and the Haar measure on Rd is normalized to be equal to the
volume | · |, then for every convex body K ⊂ Rd with unit volume |K| = 1 the a.u.u.d.
D(ν,mG) of the measure ν on Rd coincides with the classical notion of asymptotic
uniform upper density of the measure ν with respect to K de�ned as

DK(ν) := lim sup
r→∞

supx∈Rd ν(rK + x)

|rK|
.

The latter is a natural generalization of the frequently used notions of the asymptotic
uniform upper density of a measurable set A ⊂ Rd with respect to K de�ned as

DK(A) := lim sup
r→∞

supx∈Rd |A ∩ (rK + x)|
|rK|

,

on the one hand, and of the asymptotic uniform upper density of a discrete set Λ ⊂ Rd

with respect to K de�ned as

D
#

K(Λ) := lim sup
r→∞

supx∈Rd #(Λ ∩ (rK + x))

|rK|
,

on the other hand.
Some connections between the a.u.u.d. and structural properties such as packing,

covering and tiling have been established in [44]. We quote three results from this
paper.
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Proposition 6.1. ([44, Proposition 2]) Assume that H ∈ B0, Λ ⊂ G and H packs G
in the strict sense with the translation set Λ, i.e., (H −H) ∩ (Λ− Λ) = {0}. Then

D
#

(Λ) ≤ 1

mG(H)
.

Proposition 6.2. ([44, Proposition 3]) Assume that H ∈ B0, Λ ⊂ G and H covers G
with the translation set Λ. Then

D
#

(Λ) ≥ 1

mG(H)
.

Corollary 6.1. ([44, Corollary 3]) Assume that H ∈ B0, Λ ⊂ G and H tiles G in the
strict sense with the translation set Λ. Then

D
#

(Λ) =
1

mG(H)
.

We will also need the following simple result.

Proposition 6.3. If G is compact with the Haar measure normalized such thatmG(G) =

1, and if Λ is �nite, then D
#

(Λ) = #Λ.

Proof. Taking C = G in the de�nition of a.u.u.d (6.1), we obtain

D
#

(Λ) ≤ sup
V ∈B0

#(Λ ∩ V )

mG(G)
= sup

V ∈B0

#(Λ ∩ V ) = #Λ.

On the other hand, taking V = G in (6.1), we get

D
#

(Λ) ≥ inf
CbG

#(Λ ∩G)

mG(C +G)
=

#(Λ ∩G)

mG(G)
= #Λ.

2

Finally, let us note a simple consequence of the above Proposition 6.1.

Proposition 6.4. If the open set 0 ∈ Ω ⊂ G satis�es a strict packing type condition
with the translational set Λ, then Λ is discrete, moreover, the a.u.u.d. of its counting

measure is �nite: D
#

(Λ) <∞.

Proof. Discreteness was given in Lemma 5.3. As it is done there, we pick an arbitrary
open neighborhood W of 0 satisfying (W −W )∩ (Λ−Λ) = {0}. Then Proposition 6.1

applies and we �nd D
#

(Λ) ≤ 1/mG(W ) <∞ (for mG(W ) > 0 in view of openness).
2
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7 The strict packing type condition and the Delsarte

extremal problem

The main result of the paper is the following statement.

Theorem 7.1. Let G be a LCA group. Suppose Ω+ ⊂ G is an open 0-symmetric
neighborhood of 0 satisfying the strict packing type condition with a translation set
Λ ⊂ G:

Ω+ ∩ (Λ− Λ) = {0}.

Then

D(Ω+) ≤ 1

D
#

(Λ)
. (7.1)

The corresponding statement for the Turán extremal problem has been obtained in
[34] in the cases when G is a compact Abelian group or G is one of the groups Rd and
Zd, and in [44] in the general case of a LCA group G.

Proof.
1) First we consider the case when G is a compact Abelian group with the Haar

measure normalized such that mG(G) = 1. Due to Proposition 6.3, it is enough to
show that

∫
G
f ≤ 1

#Λ
for each function f ∈ F(Ω+, G). This can be done by almost

verbatim repetition of the proof of Theorem 2 in [34]. We give the details for the sake
of completeness.

Since G is compact and Λ is discrete by Lemma 5.3, Λ is �nite. Take an arbitrary
f ∈ F(Ω+, G). Consider the function

Φ(x) :=
∑
λ∈Λ

∑
λ′∈Λ

f(x+ λ− λ′), x ∈ G.

For this derived function Φ = f ∗ δΛ ∗ δ̃Λ, it is easy to see that Φ � 0, see e.g. [27,
(32.8) (d)]. Further, ∫

G

Φ = (#Λ)2

∫
G

f, (7.2)

and, since (Λ− Λ) ∩ Ω+ = {0} and f(0) = 1,

Φ(0) = #Λ · f(0) +
∑
λ∈Λ

∑
λ′∈Λ
λ′ 6=λ

f(λ− λ′) ≤ #Λ.

It follows from the positive de�niteness of Φ that Φ(x) ≤ Φ(0), x ∈ G, and thus∫
G

Φ ≤ Φ(0)mG(G) ≤ #Λ ·mG(G) = #Λ,

which yields the desired estimate, when compared to (7.2).
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2) Now we consider the less trivial case when G is not compact. Our proof uses ideas

from the proof of Theorem 7 in [44]. Assume, as we may, D
#

(Λ) > 0 (as otherwise
there is nothing to prove).

Fix α > 0 satisfying α < D(Ω+). There is a function f ∈ F(Ω+, G) such that∫
G

f > α.

Take K to be a compact neighborhood of 0 such that supp f+ ⊂ intK ⊂ K = K. Let
G0 = 〈K〉, and let the lattice L (isomorphic to Zd, d ≥ 1) and the set E ∈ B0 be as
described in Lemma 5.2. For n = (n1, . . . , nd) ∈ Zd, de�ne ‖n‖ := maxj=1,...,d |nj|. Let
V0 := E and for N ∈ N

LN := {` ∈ L : ‖`‖ ≤ N} and VN := E + LN ⊂ G0.

Clearly, VN tiles G0 in the strict sense with the lattice (2N + 1)L.
We now establish that there is an s ∈ N such that E + E ⊂ Vs = E + Ls.
Indeed, if (E+E)∩ (E+ `) 6= ∅, then for an element x ∈ (E+E)∩ (E+ `) we have

x = e1+e2 = e3+` with e1, e2, e3 ∈ E. Thus, ` = e1+e2−e3 ∈ E+E−E. Since E+E−E
has a compact closure and L is discrete, the set (E + E − E) ∩ L is �nite and thus
(E+E−E)∩L ⊂ Ls with some s ∈ N. Then also E+E ⊂ G = E+L = ∪`∈L(E+`) and
thus E+E ⊂ ∪`∈L((E+E)∩(E+`)) implies that for any ` occurring with a nonempty
set here on the right hand side we must have ` ∈ Ls, whence also E + E ⊂ E + Ls.

We will need the following statement from [44].

Lemma 7.1. ([44, Lemma 2]) Let G be a LCA group, and let ν be a Borel measure on
G with D(ν,mG) =: ρ > 0. For each V ∈ B0 and for each ε > 0, there exists z ∈ G
such that

ν(V + z) ≥ (ρ− ε)mG(V ).

We apply this lemma to the counting measure of the translation set Λ with ρ :=

D
#

(Λ) > 0, and with an arbitrary 0 < ε < ρ.
Consider the set VN with a large N ∈ N. The set VN has compact closure, hence,

#(Λ ∩ (VN + z)) <∞ for each z ∈ G. Take z ∈ G like in Lemma 7.1, i.e.,

M := #(Λ ∩ (VN + z)) ≥ (ρ− ε)mG(VN) = (ρ− ε)mG0(VN) (7.3)

with �xing the Haar measure of G0 as the restriction of mG to G0. Let Λ′ := Λ∩ (VN +
z) = {λ1, . . . , λM}. De�ne

Φ(x) :=
∑
λ∈Λ′

∑
λ′∈Λ′

f(x+ λ− λ′), x ∈ G.

Since the sum consists of �nitely many summands, Φ is well-de�ned and continuous,
moreover, Φ � 0 as above. Further on, supp Φ b G since it is closed and supp Φ ⊂
supp f+Λ′−Λ′ which is a compact set. Thus also supp Φ+ b G. For the latter we have
supp Φ+ ⊂ supp f+ +Λ′−Λ′ ⊂ supp f+ +(VN +z)− (VN +z) ⊂ E+VN −VN ⊂ VN+s−
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VN+s. In particular, supp Φ+ ⊂ G0. Thus, Φ0 := 1
Φ(0)

Φ|G0 ∈ FG0(VN+s − VN+s, G0).

Since VN+s tiles G0 in the strict sense with the translation set (2N + 2s + 1)L which
is a �nitely generated lattice, we can apply Proposition 5.2 and obtain∫

G0

Φ0 =
1

Φ(0)

∫
G0

Φ ≤ DG0(VN+s − VN+s) = mG0(VN+s). (7.4)

On the other hand, since supp f+ ⊂ G0,∫
G0

Φ = M2

∫
G0

f ≥M2

∫
G

f > M2 α, (7.5)

and, since (Λ− Λ) ∩ Ω+ = {0},

Φ(0) = M f(0) +
∑
λ∈Λ′

∑
λ′∈Λ′
λ′ 6=λ

f(λ− λ′) ≤M. (7.6)

Summarizing, we obtain from (7.4), (7.5), (7.6) and (7.3)

mG0(VN+s) ≥
1

Φ(0)

∫
G0

Φ ≥M α ≥ (ρ− ε)mG0(VN)α

so that

α ≤ 1

ρ− ε
mG0(VN+s)

mG0(VN)
.

Finally, since E is a tile, mG0(VN) = mG0(E + LN) = (2N + 1)dmG0(E), and

α ≤ 1

ρ− ε
(2N + 2s+ 1)d

(2N + 1)d
.

Taking limit when N →∞, we obtain

α ≤ 1

ρ− ε
.

Letting ε → 0, we obtain α ≤ 1/ρ for all α < D(Ω+), whence the desired statement
follows.

2

Corollary 7.1. Let G be a LCA group. Suppose Ω+ ⊂ G is an open 0-symmetric
neighborhood of 0 satisfying the strict packing type condition with a translation set
Λ ⊂ G:

Ω+ ∩ (Λ− Λ) = {0}.
Let Ω− be an open, 0-symmetric set. Then

C(Ω+,Ω−) ≤ 1

D
#

(Λ)
.
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Remark. There are situations when the estimate in Theorem 7.1 is exact. This is,
for example, the case, when Ω+ = H − H with H ∈ B0 which tiles G in the strict
sense with the translation set Λ. In [44, Corollary 5] it was proved that in this case
T (Ω+) = mG(H) (see also Proposition 5.2). On the other hand, Corollary 6.1 gives

D
#

(Λ) = 1
mG(H)

. Combining this with the result of Theorem 7.1 and noting that

T (Ω+) ≤ D(Ω+), we obtain

D(Ω+) = mG(H) =
1

D
#

(Λ)
.

One further example, a very important one, is the result of Viazovska for the Eu-
clidean ball B in R8 [52]. In this situation the Delsarte constant gives the exact upper
estimate for the density of any spherical packing, which estimate is actually attained
by the E8 root lattice. Thus, once again, equality occurs in (7.1).
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