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Abstract. We show that solutions to the Robin mean value equations (RMV), introduced in
[15], converge uniformly in the limit of the vanishing radius of averaging, to the unique solution
of the Robin-Laplace boundary value problem (RL), posed on any C1,1-regular domain and with
any bounded Borel right hand side. When compared with the case of continuous right hand side,
analyzed in [15], the present more general setting presents significant technical challenges.

Along the way, we prove the asymptotic Hölder equicontinuity of solutions to (RMV): Lipschitz
in the interior and C0,α up to the boundary, for any α ∈ (0, 1). Our proofs employ martingale
techniques, where (RMV) is interpreted as the dynamic programming principle for a discrete
stochastic process, interpolating between the reflecting and the stopped-at-exit Brownian walks.

1. Introduction

In this paper, we continue the analysis of the Robin mean value equation, introduced in [15].
More precisely, we study the following family of integral problems, parametrised by ε→ 0+:

(RMV)ε uε(x) =
(
1− γsε(x)

)  
Bε(x)∩D

uε(y) dy +
ε2

2(N + 2)
f(x) for all x ∈ D̄,

which are posed on a bounded domain D ⊂ RN , with a given bounded, Borel function f , a
positive constant γ, and sε appropriately given in (2.1). The weights sε interpolate between 0 in
the interior points of D that are distanced from ∂D at least by ε, and a quantity of order ε on
∂D. It has been shown in [15] that for f continuous, the unique solutions to (RMV)ε, in the limit
of vanishing averaging radii ε→ 0, approximate the solutions to the Robin-Laplace problem:

(RL) −∆u = f in D, ∂u

∂~n
+ γu = 0 on ∂D.

The main purpose of this paper is to extend the approximation result uε ⇒ u in D̄ to all bounded,
Borel f -s. As a parallel statement, we also prove the asymptotic Hölder equicontinuity of the
family {uε}ε→0: Lipschitz in the interior and C0,α up to the boundary of D, for any α ∈ (0, 1).

We work under the following basic hypotheses:

(BH)

[
The nonempty set D ⊂ RN is open, bounded, connected and of regularity C1,1. The
function f : D̄ → R is bounded and Borel. The coefficient γ > 0 is a positive constant.

Recall that D being C1,1 regular signifies that ∂D is locally a graph of a C1,1 function, which is
equivalent to the uniform (two-sided) supporting sphere condition; see (2.2) and [14] for details.

The following is the main result of this paper:

Theorem 1.1. Assume (BH). Then {uε}ε→0 converges uniformly on D̄ to u ∈ C(D̄) that is the
unique W 2,p(D) solution to (RL).

Key words and phrases. Robin problem, third boundary value problem, oblique boundary conditions, dynamic
programming principle, random walks, finite difference approximations, viscosity solutions.
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We point out that [16, Theorem 6.30] if D has regularity C1,α and f ∈ Lp(D) with p ∈ (1, 1
1−α) then

the unique solution to (RL) has regularity u ∈ W 2,p(D). Consequently, under (BH) there holds:
u ∈ W 2,p(D) for any p ∈ (1,∞) and thus u ∈ C1,α(D̄) for any α ∈ (0, 1). The L1 convergence of
{uε}ε→0 in Theorem 1.1 can be deduced by improving the direct estimates in [15], whereas the
uniform convergence of these, in general, discontinuous approximants follows from:

Theorem 1.2. Assume (BH). There exists δ0 � 1 such that for every δ ∈ (0, δ0) there is ε̄ > 0
with the following property. For all ε < ε̄ and all x0, y0 ∈ D̄ satisfying |x0 − y0| ≤ δ, there holds:∣∣uε(x0)− uε(y0)

∣∣ ≤ Cδ( log
1

δ

)
.

The constant C above may depend on D, ‖f‖L∞(D) and γ, but not on ε, x0, y0 or δ. 1

Our proof of Theorem 1.2 is quite delicate, in particular we use martingale techniques involving
various couplings of random walks and yielding estimates on the probabilistic representations of
uε. Indeed, (RMV)ε can be naturally interpreted as the dynamic programming principle along a
discrete stochastic process {Xε

n}∞n=0, which samples uniformly on the truncated balls Bε(X
ε
n)∩D,

and stops with probability γsε(X
ε
n) at each Xε

n; the process accumulates values of f until its stop-
ping time τ ε. Alternatively, one can consider an infinite horizon process, where the accumulation
procedure never stops, but the consecutive evaluations of f are instead weighted by the probability
of not having had the opportunity to stop. As shown in [15], each uε has thus two representations:

uε(x) =
ε2

2(N + 2)
E
[ τε,x−1∑

n=0

(
f ◦Xε,x

n

)]

=
ε2

2(N + 2)
E
[ ∞∑
n=0

(
f ◦Xε,x

n

) n∏
j=1

(
1− γsε(Xε,x

j )
)]
.

(DPP)ε

Our approach suggests how to view more general, nonlinear operators (like ∆p, ∆∞) subject to the
oblique-type boundary conditions, through their local averaged approximations. This approach
has been previously successfully employed in the Dirichlet and Neumann cases [23, 22, 1].

1.1. The structure of this paper. In section 2 we recall the origin of the coefficient sε(x) in
(RMV)ε and quote the results obtained in [15]. In section 3 we recall the definition of the process
{Xε,x0

n }∞n=0 in (3.2) and construct its stationary measure in Lemma 3.1, which is equivalent to the
Lebesgue measure but more natural for the Lp estimates. In section 4 we repeat the probabilistic
representations (RMV)ε. Section 5 we begin the discussion of convergence of {uε}∞ε→0. We first
show, in Theorem 5.1, that the associations f 7→ uε are uniformly bounded as linear maps from Lp

to L1, with a bound that only depends on a given p ∈ (1,∞). By density of continuous functions
f in L∞ with respect to Lp norm, it immediately follows that {uε}∞ε→0 converges in L1 to some
limit u. This unique limit is identified as the W 2,p solution of (RL) in Theorem 5.2, where we use
the estimate on the reminder term i the Taylor expansion of u, from [15].

Sections 6 – 10 are devoted to proving Theorem 1.2. In section 6 we treat the interior case and
show the asymptotic Lipschitz continuity of {uε}ε→0 away from ∂D. To this end, we use reflection
coupling of random walks in Lemma 6.4, following [17], and employ an iterative argument in the
proof of Theorem 6.1. In section 8 we show the asymptotic Hölder equicontinuity of {uε}ε→0 in
the region close to ∂D, with the exponent 1/2. This more delicate property is shown via a different
coupling of the Robin processes. Namely, the internal supporting sphere property of D implies

1The dependence of the constant C in Theorems 1.2, 6.1, 8.1 and 10.1 on D involves only the maximal radius r
in the two-sided supporting sphere condition and the diameter of D.
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that the processes are unlikely to visit the ε neighborhood of ∂D too often, before reaching far
enough into the interior, where Theorem 6.1 can be invoked. The expected distance increase in
each such visit is bounded using a geometrical estimate in Lemma 7.2, while coupled rejection
sampling bounds the chance that one of the processes is absorbed at the boundary whereas the
other continues. In section 7 we derive the mentioned almost Lipschitz estimate (7.1) on the
quantity

ffl
Bε(x)∩D y− x dy, which is related to the Prèkopa theorem on projections of log-concave

densities and to the properties of the center of mass in truncations of a convex set as it passes a
hyperplane. At this point, asymptotic equicontinuity of of {uε}ε→0 is already established, yielding
the result in Theorem 1.1. Sections 9 and 10 improve the Hölder exponent α = 1/2 to any
α ∈ (0, 1), as claimed in Theorem 1.2.

1.2. Notation. Given a C1 domain D ⊂ RN , we denote by ~n(x) the outward unit normal vector
at x ∈ ∂D, and by π∂Dx the projection onto ∂D along the normal ~n(π∂Dx), defined for each x ∈ D̄
with sufficiently small distance from ∂D. Unless specified otherwise, by C we denote any universal
positive constant that may depend on D, γ and f , but not on ε, x or other parameter quantities.
The Landau symbols O and o likewise have the same uniformity properties. By ε� 1 and C � 1
we mean a “sufficiently small” and a “sufficiently large” positive number.

1.3. Acknowledgments. The authors are grateful to Dorin Bucur for bringing to their attention
questions related to the Robin boundary condition. M.L. acknowledges partial support from the
NSF grant DMS-1613153 and support through visits to Microsoft Research in Redmond. Also,
M.L. would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for
support and hospitality during the programme “The mathematical design of new materials” where
work on this paper was completed. This work was supported by EPSRC grant no EP/K032208/1.

2. The Robin mean value equation: basic existence and convergence results in [15]

In this section we gather the definitions, the setup and some general preliminary results obtained
in [15]. Recall that we work under the basic hypotheses (BH) and that we are concerned with the
following family of integral equations, parametrised by ε > 0:

(RMV)ε uε(x) =
(
1− γsε(x)

)  
Bε(x)∩D

uε(y) dy +
ε2

2(N + 2)
f(x) for all x ∈ D̄.

To define the coefficient sε(x) above, we introduce the notation (see Figure 2.1):

dε(x) = min
{

1,
1

ε
dist(x, ∂D)

}
∈ [0, 1] for all x ∈ D, ε > 0,

Bk
1 = B1(0) ⊂ Rk, Bk

1,d = Bk
1 ∩ {yk < d} for all d ∈ [0, 1],

sε(x) =
|BN−1

1 |
(N + 1)|BN

1,dε(x)|
· ε
(
1− dε(x)2

)N+1
2 for all x ∈ D̄, ε > 0.(2.1)

Recall also that D is said to be of class C1,1 provided that ∂D is locally a graph of a C1,1

function. Equivalently, such D satisfies the uniform (two-sided) supporting sphere condition,
stated below. This result has been first shown in [18, Section 2] and then in [14], to which we
refer for a self-contained discussion and an elementary proof:

Lemma. An open, bounded set D ⊂ RN is of class C1,1 if and only if there exists a radius r > 0
such that for every x ∈ ∂D there exist a, b ∈ RN satisfying:

Br(a) ⊂ D, Br(b) ⊂ RN \ D̄ and |x− a| = |x− b| = r.
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Figure 2.1. The referential truncated ball and the scaled distances from ∂D.

Moreover, the global Lipschitz constant of ~n can be taken as the inverse of the supporting radius:

(2.2) |~n(x)− ~n(y)| ≤ 1

r
|x− y| for all x, y ∈ ∂D.

The following important properties of the scaling coefficient sε were proved in [15]:

Lemma. Let D be as in (BH). Then, for all ε� 1 and all x ∈ D̄ we have:

|Bε(x) \ D|
|Bε(0)|

≤ C sε(x)

ε
,(2.3)

 
Bε(x)∩D

y − x dy = −sε(x)~n
(
π∂Dx

)
+O

(
εsε(x)

)
,(2.4)

 
Bε(x)∩D

(y − x)⊗2 dy =
ε2

N + 2
IdN +O

(
εsε(x)

)
.(2.5)

We now recall the main existence, uniqueness, comparison, and convergence result from [15].
It is the purpose of the present work to extend statement (ii) below to the general case of (BH).

Theorem. Assume (BH) and let ε� 1.

(i) Each problem (RMV)ε has a unique solution uε that is Borel, bounded with a bound in-
dependent of ε, and obeys the comparison principle. When f is continuous / Hölder
continuous / Lipschitz, then uε inherits the same regularity properties.

(ii) When f ∈ C(D̄), then {uε}ε→0 converges uniformly on D̄ to u ∈ C(D̄) that is the unique
viscosity solution to (RL). In fact, u coincides with the unique W 2,p(D) solution to (RL).

We conclude this section by briefly sketching the classical regularity theory in the context of
(RL). The Robin problem, called also the third boundary value problem / impedance boundary
problem / convective boundary problem, has received large attention due to its many applica-
tions in science and engineering. Using Schauder estimates, it follows [10, Chapter 6.7] that
on a bounded C2,α-regular domain D, the general strictly elliptic problem Lu = f with Cα(D̄)-
regular coefficients and f ∈ Cα(D̄), subject to the oblique boundary conditions: 〈β(x),∇u(x)〉 +
γ(x)u(x) = φ(x) posed with γ, β, φ ∈ C1,α(∂D) where γ〈β, ~n〉 > 0, has a unique solution
u ∈ C2,α(D̄) that satisfies the usual a-priori bounds. The modern theory for nonlinear bound-
ary value problems modeled on (RL), is contained in the monograph [16]. It is shown in Theorem
1.26 there, that solutions to linear oblique problems in Lipschitz domains are Hölder continuous.
Further, in Theorem 4.40 and Corollary 4.41 it is shown that regularity C1,α of D suffices for the
solution regularity u ∈ C2,α(D̄), provided that f ∈ Cα(D̄) and β ∈ C1,α(∂D). We observe that
for (RL), the obliqueness vector β = ~n is only Lipschitz and thus one cannot, in general, expect
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that u ∈ C2,α(D̄). In [16, Theorem 6.30] it is shown that if D has regularity C1,α and f ∈ Lp(D)
with p ∈ (1, 1

1−α) then the unique solution to (RL) has regularity u ∈ W 2,p(D). Consequently,

under (BH) there holds: u ∈W 2,p(D) for any p ∈ (1,∞) and thus u ∈ C1,α(D̄) for any α ∈ (0, 1).
Analysis of (RL) in non-smooth domains, including sets with a rectifiable topological boundary
having finite (N − 1)-dimensional Hausdorff measure, can be found in [20, 9, 5].

3. The Robin process and its stationary measure

We first recall the basic probability setting related to the equation (RMV)ε, given in [15].

1. Consider the probability space (BN
1 ,B, 1

|BN1 |
LN ) equipped with the standard Borel σ-algebra

and the normalised Lebesgue measure, and define (Ω1,F1,P1) as the countable product of BN
1

augmented by the unit interval (likewise equipped with Borel σ-algebra and Lebesgue measure):

Ω1 = (BN
1 )N × (0, 1) =

{
(w, b); w = {wj}∞j=1, w

j ∈ BN
1 for all j ∈ N and b ∈ (0, 1)

}
.

Further, the countable product of (Ω1,F1,P1) is denoted by (Ω,F ,P), where:

Ω = (Ω1)N =
{
ω = {(wi, bi)}∞i=1; wi = {wji }

∞
j=1, w

j
i ∈ B

N
1 , bi ∈ (0, 1) for all i, j ∈ N

}
.

For each n ∈ N, the probability space (Ωn,Fn,Pn) is the product of n copies of (Ω1,F1,P1) and
the σ-algebra Fn is identified with the sub-σ-algebra of F , consisting of sets A ×

∏∞
i=n+1 Ω1 for

all A ∈ Fn. Then {Fn}∞n=0 where F0 = {∅,Ω}, is a filtration of F .

2. For every ε� 1, define the sequence of measurable functions
{
kεi : Ω×D̄ → N∪{+∞}

}∞
i=1

:

kεi (ω, x) = min
{
k ≥ 1; x+ εwki ∈ Bε(x) ∩ D

}
for all ω ∈ Ω, x ∈ D̄.

Since each kεi is P-a.s. finite, we further construct the sequence of vector-valued random variables
{wε,xi : Ω→ BN

1 }∞i=1, corresponding to ε� 1 and x ∈ D̄, by:

wε,xi (ω) = w
kεi (ω,x)
i for P-a.e. ω ∈ Ω.

The procedure of generating wkii is well known under the name of rejection sampling and it has the
following measure preservation property: for every ε, x as above, for every Borel set F ⊂ Bε(x)∩D:

P
(
x+ εwε,xi ∈ F

)
=
∞∑
k=1

Pi
(
{x+ εwki ∈ F} ∩ {k = kεi}

)
=

|F |
|Bε(x)|

·
∞∑
k=1

(
1− |Bε(x) ∩ D|

|Bε(x)|

)k−1
=

|F |
|Bε(x) ∩ D|

.

(3.1)

Given ε� 1, x0 ∈ D̄, we recursively define the sequence of random variables
{
Xε,x0
n : Ω→ D̄

}∞
n=0

:

(3.2) Xε,x0
0 ≡ x0, Xε,x0

n

(
w1, . . . , wn

)
= Xε,x0

n−1

(
w1, . . . , wn−1

)
+ εw

ε,X
ε,x0
n−1(w1,...,wn−1)

n .

Each Xε,x0
n is Fn-measurable and takes values in D, for n ≥ 1. We also observe that Xε,x0

n (ω) is
jointly measurable in ω and x0, by the same property of kεi . When no ambiguity arises, we will
write Xx0

n or Xn to simplify notation.

3. For each ε� 1, define the following probability measure on Borel subsets F ⊂ D̄:

µε(F ) =
1´

D
|Bε(x)∩D|
|Bε(x)| dx

·
ˆ
F

|Bε(x) ∩ D|
|Bε(x)|

dx =
1´

D |Bε(x) ∩ D| dx
·
ˆ
F
|Bε(x) ∩ D| dx.
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Figure 3.1. Positions of the process defined in (3.2).

It is clear that µε is absolutely continuous with respect to the Lebesgue measure, and that its
density function x 7→ |Bε(x) ∩ D| is Lipschitz and satisfies:

1

3
≤ |Bε(x) ∩ D|

|Bε(x)|
≤ 1 for all x ∈ D̄ and ε� 1.

Consequently, µε is equivalent to the Lebesgue measure:

|F |
3|D|

≤ µε(F ) ≤ 3|F |
|D|

We define the product probability measure P× µε on the space Ω× D̄ equipped with the product
σ-algebra of F with the Borel σ-algebra on D̄. By Lp(µε) we will denote the Banach space of
p-integrable – with respect to µε – Borel functions on D̄, for any power p ∈ (1,∞). Likewise,
Lp(P× µε) is the space of p-integrable, with respect to the measure P× µε, functions on Ω× D̄.

Lemma 3.1. Assume (BH) and let ε � 1. Then the measure µε is stationary for the Robin
process {Xε,x0

n }∞n=0. This means that there holds for all n ≥ 0:

(a) µε(F ) =
(
P× µε

)(
Xε,x0
n ∈ F

)
, for every Borel subset F ⊂ D̄

(b)

ˆ
D
g(x0) dµε(x0) =

ˆ
Ω×D̄

(
g ◦Xε,x0

n

)
(ω) d(P×µε)(ω, x0), for every Borel function g : D̄ →

R that is either nonnegative or Lebesgue integrable.

Proof. Assertion (a) for n = 1 follows by Fubini’s theorem and (3.1):(
P× µε

)(
Xε,x0

1 ∈ F
)

=

ˆ
D
P
(
x0 + εwε,x0

1 ∈ F
)

dµε(x0)

=
1´

D |Bε(x0) ∩ D| dx0
·
ˆ
D
|F ∩Bε(x0)| dx0 =

´
F |Bε(x0) ∩ D| dx0´
D |Bε(x0) ∩ D| dx0

= µε(F ).

(3.3)

We thus see that µε coincides with the push-forward measure Xε
1#(P × µε) of P × µε, via the

measurable map Ω× D̄ 3 (ω, x0) 7→ Xε,x0
1 ∈ D̄. This yields (b) for n = 1, by means of the change

of variable formula. The general case n > 1 is obtained by induction, applying (b) at n = 1 to
the nonnegative function g(y) = P(Xε,y

1 ∈ F ) twice, in:(
P× µε

)(
Xε,x0
n+1 ∈ F

)
=

ˆ
Ωn×D

P
(
Xε,X

ε,x0
n

1 ∈ F
)

d
(
P× µε

)
=

ˆ
D
P(Xε,y

1 ∈ F ) dµε(y) = µε(F ).

As before, one concludes that µε = Xε
n+1#(P× µε), which yields (b).
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4. Two probabilistic representations of uε.

For each ε� 1, x0 ∈ D̄ recall the definition of the Robin process {Xε,x0
n }∞n=0 in (3.2) and define

the F-measurable τ ε,x0 : Ω→ N ∪ {+∞} by:

τ ε,x0(ω) = min
{
n ≥ 1; bn < γsε(X

ε,x0
n−1)

}
.

We further define the random variables
{

Λε,x0
n : Ω→ R

}∞
n=0

in:

(4.1) Λε,x0
n (ω) =

n∏
j=1

(
1− γ · (sε ◦Xε,x0

j−1 )(ω)
)
,

For n = 0 we adopt the convention that Λ0 = 1. When no ambiguity arises we write Λx0
n and τx0 ,

or Λn, τ , to alleviate the notation. Note that each Λx0
n (ω) as well as τx0 jointly measurable in ω

and x0, by the same property of Xε,x0
n . We now set:

uε(x0) =

ˆ
Ω

τε,x0−1∑
i=0

ε2

2(N + 2)

(
f ◦Xε,x0

i

)
(ω) dP(ω),

ūε(x0) =
ε2

2(N + 2)
E
[ ∞∑
i=0

(f ◦Xε,x0
i )Λε,x0

i

]
=

ˆ
Ω

∞∑
i=0

ε2

2(N + 2)

(
f ◦Xε,x0

i

)
(ω) ·

i∏
j=1

(
1− γ(sε ◦Xε,x0

j−1 )(ω)
)

dP(ω).

(4.2)

Then, we show in [15] the following representation result:

Lemma. Assume (BH). For each ε � 1, the functions uε, ūε are well defined a.e. in D̄. After
adjusting on a negligible set, they coincide with the unique bounded Borel solution uε to (RMV)ε:

uε = ūε = uε.

Remark 4.1. The equivalence of the two representations in (4.2) can be seen directly. Given
x0 ∈ D̄ and ε� 1, consider the integrable random variable:

F ε,x0 =

τε,x0−1∑
i=0

f ◦Xε,x0
i =

∞∑
i=0

(
f ◦Xε,x0

i

)
· 1{i<τε,x0}.

Let G be the sub-σ-algebra of F , where we suppress the dependence on the auxiliary variables
bn. Namely, set G = (G1)N where G1 ⊂ F1 consists of all the Cartesian products of: measurable
subsets of (BN

1 )N, and the entire interval (0, 1). Then:

E
(
1{i<τε,x0} | G

)
= E

( i∏
j=1

1{bj≥γsε(X
ε,x0
j−1 )} | G

)
=

i∏
j=1

(
1− γsε(Xε,x0

j−1 )
)

= Λε,x0
i P− a.s. in Ω,

which implies:

uε(x0) =
ε2

2(N + 2)
E
[
F ε,x0

]
=

ε2

2(N + 2)
E
[
E
(
F ε,x0 | G

)]
=

ε2

2(N + 2)
E
[ ∞∑
i=0

(
f ◦Xε,x0

i

)
· E
(
1{i<τε,x0} | G

)]
=

ε2

2(N + 2)
E
[ ∞∑
i=0

(f ◦Xε,x0
i )Λε,x0

i

]
= ūε(x0).
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5. The L1 convergence.

We will use the second probabilistic representation of uε, namely ūε in (4.2). The first main
result of this section is as follows:

Theorem 5.1. Assume (BH). Fix ε � 1 and p ∈ (1,∞). The map Lp(D) 3 f 7→ uε ∈ L1(D)
given in (4.2) is well defined, linear, and it satisfies:

(5.1) ‖uε‖L1(µε) ≤
C

1− 21−1/p
‖f‖Lp(µε),

where C is a constant that is independent of p, ε and f , but it may depend on γ and D. Recall
that by Lp(µε) we denote the Banach space of µε-integrable Borel functions on D̄.

Proof. 1. Denote by vε the solution to (RMV)ε with f ≡ 1. We first observe that the following
sequence of random variables {Mn}∞n=0 is a martingale with respect to the filtration {Fn}∞n=0:

Mn = (vε ◦Xn)Λn +
ε2

2(N + 2)

n−1∑
i=0

Λi,

where we adopt the convention that M0 = vε(x0). Indeed, (RMV)ε yields:

E
(
Mn+1 −Mn | Fn

)
=
( 

Bε(Xn)∩D
vε(y) dy

)
· Λn+1 − vε(Xn) · Λn +

ε2

2(N + 2)
Λn

=
((

1− γsε(Xn)
)  

Bε(Xn)∩D
vε(y) dy − vε(Xn) +

ε2

2(N + 2)

)
Λn

= 0 P− a.s. in Ω.

Using equiboundedness of {vε}ε→0 in [15, Theorem 1.1 (a)] we get:

ε2

2(N + 2)
E
[ n∑
i=0

Λi
]
≤ E

[
Mn+1

]
+ C = E

[
M0

]
+ C = vε(x0) + C ≤ C,

where C is a constant depending only on γ and D. Since {Λi}∞i=0 is a decreasing sequence, if

follows that for nε = d2C
ε2
e we thus get: E

[
Λε,x0
nε

]
≤ C

ε2nε
≤ 1

2 for all x0 ∈ D̄. Consequently:

E
(
Λε,x0

(k+1)nε
| Fknε

)
= Λε,x0

knε
· E
(
Λ
ε,X

ε,x0
knε

nε | Fknε
)
≤ 1

2
Λε,x0

knε
P− a.s. in Ω,

and so we get by induction:

E
[
Λε,x0

knε

]
≤ 1

2k
for all x0 ∈ D̄ and all k ≥ 0

Further, denoting q = p
p−1 the Sobolev exponent dual to p, we get:

(5.2)
(ˆ

Ω×D

∣∣Λε,x0
n (ω)

∣∣q d(P× µε)
)1/q

≤
( ˆ

D
E
[
Λε,x0
n

]
dµε(x0)

)1/q
≤ 1

2k/q
for all n ≥ knε

2. Towards estimating the left hand side of (5.1), we apply Young’s inequality, followed by
Lemma 3.1 (b) used to g = |f |p ∈ L1(µε) in:

(k+1)nε∑
i=knε

∥∥(f ◦Xε,x0
i )Λε,x0

i

∥∥
L1(P×µε) ≤

(k+1)nε∑
i=knε

∥∥f ◦Xε,x0
i

∥∥
Lp(P×µε) ·

∥∥Λε,x0
i

∥∥
Lq(P×µε)

≤ nε

2k/q
‖f‖Lp(µε) for all k ≥ 0.

(5.3)
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In conclusion, ūε is well defined and:

‖ūε‖L1(µε) ≤
ε2

2(N + 2)

∞∑
k=0

(k+1)nε∑
i=knε

∥∥(f ◦Xε,x0
i )Λε,x0

i

∥∥
L1(P×µε)

≤ ε2

2(N + 2)

2C + 1

ε2
‖f‖Lp(µε) ·

∞∑
k=0

1

2k/q

proving the claimed bound. The linearity of the map f 7→ ūε is obvious.

At this point, we immediately see that under assumption (BH), the family {ūε}ε→0 converges
in L1(D) to some Borel, bounded u : D̄ → R. Indeed, fix any p ∈ (1,∞) and approximate the

given f in Lp(D) by a sequence {fn ∈ C(D̄)}∞n=1. Since {ufnε }ε→0 converge uniformly on D̄ in
virtue of [15, Theorem 1.1], it follows by Theorem 5.1 that the family {ūε}ε→0 associated with f ,
is Cauchy in L1(D). In fact, the unique limit of {ūε}ε→0 can be identified as the W 2,p solution of
(RL). Towards the proof, we need to recall the following statement from [15, Theorem 7.1]:

Lemma. Assume (BH) and let u ∈ C1(D̄) be the unique W 2,p solution to (RL). Define the
following uniformly bounded sequence of Borel “reminder” functions {Rε}ε→0:

Rε(x) = u(x) =
(
1− γsε(x)

)  
Bε(x)∩D

u(y) dy − ε2

2(N + 2)
f(x).

Then, for every ε� 1 and x0 ∈ D̄ we have:

(5.4) u(x0)− uε(x0) = lim
n→∞

E
[ n∑
i=0

(Rε ◦Xε,x0
i )1{dε(X

x0
i )≥1}Λ

ε,x0
i

]
.

Moreover, there exists a family of positive Borel functions {hε : Bε(0)→ R}ε→0 that are probability
densities:

´
Bε(0) hε(y) dy = 1, and such that whenever dist(x0, ∂D) ≥ ε, there holds:

(5.5) Rε(x0) =
ε2

2(N + 2)

(  
Bε(x0)∩D

hε(x0 − y)f(y) dy − f(x0)
)
.

Here is the second main result of this section. In the next sections, we will show that the below
convergence is actually uniform.

Theorem 5.2. Assume (BH) and let u ∈ C1(D̄) be the unique W 2,p solution to (RL). Then
{uε}ε→0 converge to u in L1(D).

Proof. By (5.4) we obtain:

ˆ
D
|u− ūε| dµε ≤

∞∑
i=0

ˆ
Ω×D

(
|Rε| ◦Xε,x0

i

)
1{dε(X

ε,x0
i )≥1} · Λ

ε,x0
i d(P× µε)(ω, x0)

≤
∞∑
i=1

∥∥(Rε ◦Xε,x0
i

)
1{dε(Xi)≥1}

∥∥
Lp(P×µε) ·

∥∥Λε,x0
i

∥∥
Lq(P×µε)

=
∥∥Rε · 1{dε≥1}

∥∥
Lp(µε)

·
∞∑
i=1

∥∥Λε,x0
i

∥∥
Lq(P×µε),

(5.6)



10 MARTA LEWICKA AND YUVAL PERES

where in the last equality we used the stationarity property in Lemma 3.1 (b) to the nonnegative
Borel function g = |Rε|p · 1{dε≥1}. Now, similarly as in (5.3), using (5.2) we get:

∞∑
i=1

∥∥Λε,x0
i

∥∥
Lq(P×µε) =

∞∑
k=0

(k+1)nε∑
i=knε

∥∥Λε,x0
i

∥∥
Lq(P×µε) ≤

∞∑
k=0

nε

2k/q
≤ C

ε2
· 1

21−1/p
.

On the other hand, (5.5) gives:∥∥Rε · 1{dε≥1}
∥∥
Lp(µε)

=
ε2

2(N + 2)

∥∥hε ∗ f − f∥∥Lp(µε)
≤ Cε2

∥∥hε ∗ f − f∥∥Lp(D)
= o(ε2).

Hence (5.6) yields that:
lim
ε→0
‖u− ūε‖L1(µε) = 0

and ends the proof.

6. A proof of asymptotic equicontinuity - Lipschitz in the interior

In this section, we deduce the asymptotic equicontinuity bound in Theorem 1.2 for the interior
case, namely that of x0 located away from ∂D. Our main result is:

Theorem 6.1. Assume (BH). There exists δ0 � 1 such that for every δ ∈ (0, δ0) there is ε̄ > 0
with the following property. For all ε < ε̄ and all x0, y0 ∈ D satisfying |x0 − y0| ≤ δ we have:

(6.1) |uε(x0)− uε(y0)| ≤ C · δ

dist(x0, ∂D)
.

The constant C may depend on D, γ and f , but not on ε, x0, y0 or δ.

We begin by deriving an auxiliary estimate for the probability of exiting a ball before exiting a
half-space. This estimate has been noted in [13]; we present it here for convenience of the reader.

Lemma 6.2. Let {Y ε
n : Ω→ RN}∞n=1 be the simple ε-random walk in RN , started at Y ε

0 ≡ 0 and
given by: Y ε

n+1(ω) = Y ε
n + εwn+1, where wn+1 ∈ BN

1 . For any d ∈ [0, 1] define the stopping time:

τ εd(ω) = min
{
n ≥ 0; Y ε

n(ω) 6∈ BN
1,d

}
,

Then, for all d ∈ [0, 1] and ε� 1, there holds:

(6.2) E
[
τ εd
]
≤ N + 2

ε2
(d+ ε)(1 + ε),

(6.3) P
(
|Yτεd | ≥ 1

)
≤ N(d+ ε)(1 + ε).

Proof. To alleviate the notation, we suppress the fixed step parameter ε > 0. Consider the
sequence of random variables {Mn}∞n=0:

Mn =
(
d+ ε− 〈Yn, eN 〉

)
·
(
1 + ε+ 〈Yn, eN 〉

)
+

nε2

N + 2
,

which is a martingale with respect to the filtration {Fn}∞n=0, because:

E
(
Mn+1 −Mn | Fn

)
=
(
d− 1

)( 
Bε(Yn)

yN dy − 〈Yn, eN 〉
)
−
(  

Bε(Yn)
|yN |2 dy − 〈Yn, eN 〉2

)
+

ε2

N + 2

= −
 
Bε(0)

|yN |2 dy +
ε2

N + 2
= 0 P− a.s. in Ω.
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Apply now Doob’s Optional Stopping to the martingale {Mn∧m}∞n=0 with the stopping time τd:

(d+ ε)(1 + ε) = E
[
M0

]
= E

[
Mτd∧m

]
≥ ε2

N + 2
E
[
τd ∧m

]
.

Passing to the limit with m→∞ proves (6.2). To show (6.3), we recall that |Yn|2 − N
N+2nε

2 is a

martingale, so that Doob’s Optional Stopping and (6.2) directly yield:

E
[
|Yτd |

2
]

=
N

N + 2
ε2E
[
τd
]
≤ N(d+ ε)(1 + ε).

By Chebyshev’s inequality we easily obtain (6.3), which ends the proof of the Lemma.

By a scaling argument, we arrive at:

Corollary 6.3. Let {Y ε
n : Ω→ RN}∞n=1 be as in Lemma 6.2. For R > ρ ≥ 0 define:

τ εR = min
{
n ≥ 0; |Y ε

n | ≥ R
}
, τ ερ = min

{
n ≥ 0; 〈Y ε

n , eN 〉 ≥ r
}
.

Then, for all ε� R there holds:

(6.4) E
[
τ εR ∧ τ ερ

]
≤ N + 2

ε2
(ρ+ ε)(R+ ε),

(6.5) P
(
|YτεR∧τερ | ≥ R

)
≤ N

R2
(ρ+ ε)(R+ ε).

The following is the main technical result of this section:

Lemma 6.4. Assume (BH). There exists δ0 � 1 and η ∈ (0, 1) such that the following holds.
For every δ ∈ (0, δ0) and R > δ there is ε̄ > 0 satisfying:∣∣uε(x0)− uε(y0)

∣∣ ≤ η · sup
(x,y)∈AR,ε,x0

1

∣∣uε(x)− uε(y)
∣∣+ 2(N + 1)

δ

R
‖uε‖L∞(D) + 2Rδ‖f‖L∞(D)

for all ε < ε̄ and x0, y0 ∈ D such that |x0 − y0| ≤ δ and dist(x0, ∂D) > 2R,

where we define:

AR,ε,x0
1 =

{
(x, y) ∈ D ×D; |x− x0| < 2R and |x− y| < 3ε

}
.

Proof. 1. We fix δ � 1 and R > δ. Let x0, y0 be as in the statement of the Lemma and define
H to be the hyperplane bisecting the segment [x0, y0]. For each ε � δ, consider the following
stopping time relative to the filtration {Fn}∞n=0, given through the process {Xε,x0

n }∞n=0 in (3.2):

τH = min
{
n ≥ 0; |Xε,x0

n − x0| ≥ R or dist(Xε,x0
n , H) ≤ ε

2

}
.

To alleviate the notation, we suppress the fixed step parameter ε > 0 and the superscript x0 in
Xn. By (6.4) it follows that:

E
[
τH
]
≤ N + 2

ε2
·
(δ

2
+
ε

2

)(
R+ ε

)
,

and for ε� δ we further deduce:

(6.6) E
[
τH + 1

]
≤ (N + 3) · Rδ

ε2
.

Define the sequence of vector-valued random variables {Yn : Ω→ D}τH+1
n=0 , setting Y0 ≡ y0 and:

Yn =

{
XτH+1 if n = τH + 1 and dist(XτH , H) ≤ ε

2
with XτH+1 ∈ Bε(YτH )

reflH(Xn) otherwise,



12 MARTA LEWICKA AND YUVAL PERES

where by reflH we denote the reflection across the hyperplane H. Consider a further sequence
{Mn∧(τH+1)}∞n=0, defined through:

Mn =
∣∣uε(Xn)− uε(Yn)

∣∣+
ε2n

N + 2
‖f‖L∞(D).

2. In this step, we show that {Mn∧(τH+1)}∞n=0 is a submartingale relative to {Fn}∞n=0. Call H̃ the
hyperplane parallel to H, passing through 0. When n < τH or when n = τH and dist(Xn, H) > ε

2 :

E
(
Mn+1 | Fn

)
= E

(∣∣uε(Xn+1)− uε(Yn+1)
∣∣ | Fn)+

ε2(n+ 1)

N + 2
‖f‖L∞(D)

=

ˆ
Ω1

∣∣uε(Xn + εw1
n+1)− uε(Yn + ε reflH̃(w1

n+1))
∣∣ dP1(wn+1) +

ε2(n+ 1)

N + 2
‖f‖L∞(D)

≥
∣∣∣ 

Bε(Xn)
uε(y) dy −

 
Bε(Yn)

uε(y) dy
∣∣∣+

ε2

2(N + 2)
|f(Xn)− f(Yn)|+ ε2n

N + 2
‖f‖L∞(D)

≥
∣∣∣(  

Bε(Xn)
uε(y) dy +

ε2

2(N + 2)
f(Xn)

)
−
( 

Bε(Yn)
uε(y) dy +

ε2

2(N + 2)
f(Yn)

)∣∣∣
+

ε2n

N + 2
‖f‖L∞(D)

=
∣∣uε(Xn)− uε(Yn)

∣∣+
ε2n

N + 2
‖f‖L∞(D) = Mn P− a.s. in Ω,

where we used (RMV)ε in the penultimate equality. On the other hand, for the case when n = τH
and dist(Xn, H) ≤ ε

2 , there holds, P-a.s. in Ω:

E
(∣∣uε(Xn+1)− uε(Yn+1)

∣∣ | Fn)
=

ˆ
{Xn+εw1

n+1 6∈Bε(Yn)}

∣∣uε(Xn + εw1
n+1)− uε(Yn + reflH̃(w1

n+1))
∣∣ dP1(wn+1)

≥
∣∣∣ˆ

Ω1

uε
(
Xn + εw1

n+1

)
dP1(wn+1)

−
ˆ
{Xn+εw1

n+1∈Bε(Yn)}
uε
(
Xn + εw1

n+1

)
dP1(wn+1)

−
ˆ
{Xn+εw1

n+1 6∈Bε(Yn)}
uε
(
Yn + reflH̃(w1

n+1)
)

dP1(wn+1)
∣∣∣

=
∣∣∣ˆ

Ω1

uε
(
Xn + εw1

n+1

)
dP1(wn+1)−

ˆ
Ω1

uε
(
Yn + εw1

n+1

)
dP1(wn+1)

∣∣∣.
Applying the dynamic programming principle (RMV)ε, we conclude that:

E
(∣∣uε(Xn+1)− uε(Yn+1)

∣∣ | Fn) ≥ ∣∣∣  
Bε(Xn)

uε(y) dy −
 
Bε(Yn)

uε(y) dy
∣∣∣

=
∣∣∣(uε(Xn)− ε2

2(N + 2)
f(Xn)

)
−
(
uε(Yn)− ε2

2(N + 2)
f(Yn)

)∣∣∣
≥
∣∣uε(Xn)− uε(Yn)

∣∣− ε2

N + 2
‖f‖L∞(D) P− a.s. in Ω.
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Consequently, there follows the claimed submartingale property:

E
(
Mn+1 | Fn

)
= E

(∣∣uε(Xn+1)− uε(Yn+1)
∣∣ | Fn)+

ε2(n+ 1)

N + 2
‖f‖L∞(D)

≥
∣∣uε(Xn)− uε(Yn)

∣∣+
ε2n

N + 2
‖f‖L∞(D) = Mn P− a.s. in Ω.

Figure 6.1. The hyperplane H and the symmetric processes {Xn, Yn}τHn=0 in the
proof of Lemma 6.4.

3. Applying Doob’s Optional Stopping with the stopping time τH + 1, we get in virtue of (6.6):∣∣uε(x0)− uε(y0)
∣∣ = E

[
M0

]
≤ E

[
MτH+1

]
= E

[
|uε(XτH+1)− uε(YτH+1)|

]
+
ε2‖f‖L∞(D)

N + 2
· E
[
τH + 1

]
≤ E

[
|uε(XτH+1)− uε(YτH+1)|

]
+
N + 3

N + 2
Rδ · ‖f‖L∞(D).

(6.7)

To estimate the first term of (6.7), we split the effective domain of integration {XτH+1 6= YτH+1}
according to the definition of Yn, into two parts so that:

E
[
|uε(XτH+1)− uε(YτH+1)|

]
=

ˆ
{dist(XτH ,H)> ε

2
}
|uε(XτH+1)− uε(YτH+1)| dP

+

ˆ
{dist(XτH ,H)≤ ε

2
}∩{XτH+1 6∈Bε(YτH )}

|uε(XτH+1)− uε(YτH+1)| dP.
(6.8)

In the first integral above, we apply Corollary 6.3 with R and r = |x0−y0|
2 − ε

2 ≤
δ
2 −

ε
2 , to the

effect that, when ε� δ:

P
(

dist(XτH , H) >
ε

2

)
≤ N

R2

(δ
2

+
ε

2

)(
R+ ε

)
≤ (N + 1)

δ

R
.

This yields:

(6.9)

ˆ
{dist(XτH ,H)> ε

2
}
|uε(XτH+1)− uε(YτH+1)| dP ≤ 2N

δ

R
‖uε‖L∞(D).

For the second integral in (6.8), we observe that:

P
({

dist(XτH , H) ≤ ε

2

}
∩
{
XτH+1 6∈ Bε(YτH )

})
≤
∣∣Bε(0) \Bε(εeN )

∣∣
|Bε(0)|

= η ∈ (0, 1).



14 MARTA LEWICKA AND YUVAL PERES

Since on the displayed event there holds: |XτH+1− x0| ≤ R+ 2ε < 2R and |XτH+1− YτH+1| < 3ε,
we conclude that:

(6.10)

ˆ
{dist(XτH ,H)≤ ε

2
}∩{XτH+1 6∈Bε(YτH )}

|uε(XτH+1)− uε(YτH+1)| dP ≤ η · sup
(x,y)∈A1

|uε(x)− uε(y)|.

The bounds (6.7), (6.9) and (6.10) imply now the main estimate of Lemma 6.4.

Proof of Theorem 6.1.
1. Fix δ � 1 and let |x0 − y0| ≤ δ. In view of the equiboundedness of solutions {uε}ε→0 to

(RMV)ε, it suffices to prove (6.1) under the extra assumption dist(x0, ∂D) > 3δ. We first use

Lemma 6.4 with R = 1
3dist(x0, ∂D) and obtain that for all ε < ε̄� δ there holds:

∣∣uε(x0)− uε(y0)
∣∣ ≤ η · sup

{∣∣uε(x)− uε(y)
∣∣; |x− x0| <

2

3
dist(x0, ∂D) and |x− y| < 3ε

}
+ C · δ

dist(x0, ∂D)
,

(6.11)

again, in view of the equiboundedness of {uε}ε→0.

2. To conclude the proof, we will estimate |uε(x̄0) − uε(ȳ0)| for all couples (x̄0, ȳ0) ∈ D × D
satisfying dist(x̄0, ∂D) > δ and |x̄0 − ȳ0| < 3ε̄. We apply Lemma 6.4 with R = δ2 and get that:

(6.12)
∣∣uε(x̄0)− uε(ȳ0)

∣∣ ≤ η · sup

(x,y)∈Aδ
2,ε,x̄0

1

∣∣uε(x)− uε(y)
∣∣+ Cδ.

For every integer k ≥ 1 define the iterated domain:

Ak =
{

(x, y) ∈ D ×D; |x− x̄0| < 2kδ2 and |x− y| < 3ε
}
.

Applying k times the bound (6.12), we obtain the following estimate:

∣∣uε(x̄0)− uε(ȳ0)
∣∣ ≤ ηk · sup

(x,y)∈Ak

∣∣uε(x)− uε(y)
∣∣+ Cδ

k−1∑
i=0

ηi

≤ 2ηk‖uε‖L∞(D) +
Cδ

1− η
,

(6.13)

valid for all sufficiently small ε, provided that:

(6.14) δ − 2kδ2 > 2R = 2δ2.

Define k in a manner to ensure that ηk ≤ δ, namely:

k =
⌈ log δ

log η

⌉
.

It is easy to verify that the iteration validity condition (6.14) is satisfied for all δ ≤ δ0 � 1. Thus,
(6.13) and (6.11) imply (6.1), again by the invoked equiboundedness.
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7. Boundary estimates I

In this and the following section, we complete the proof of Theorem 1.2, for the case when x0

is close to ∂D. We begin by some geometrical observations that are of independent interest:

Lemma 7.1. Assume (BH). Then there exists a constant C > 0, depending only on D such that
for all x0, y0 ∈ D there holds:

(7.1)
∣∣∣ 

Bε(x0)∩D
y dy −

 
Bε(y0)∩D

y dy
∣∣∣ ≤ |x0 − y0|+ C

(
sε(x0) + sε(y0)

)
·
(
|x0 − y0|+ ε

)
.

Proof. 1. We first observe that (7.1) holds for x0, y0 6∈ ∂D + Bε(0), because then the left hand
side of (7.1) equals |x0 − y0|. Likewise, for |x0 − y0| ≥ δ, where δ > 0 is some fixed parameter:∣∣∣  

Bε(x0)∩D
y dy −

 
Bε(y0)∩D

y dy
∣∣∣ ≤ |x0 − y0|+ C

(
sε(x0) + sε(y0)

)
≤ |x0 − y0|+

C

δ

(
sε(x0) + sε(y0)

)
|x0 − y0|,

by using (2.4). It thus suffices to treat the case:

x0, y0 ∈ ∂D +Bδ(0) and |x0 − y0| < δ � min
{

1,
r

2

}
,

where r is the radius in the uniform supporting sphere condition (BH) and δ is small enough, in
particular, for the projections π∂Dx0, π∂Dy0 to be well defined. We further observe that:

(7.2)
∣∣~n(π∂Dx0)− ~n(π∂Dy0)

∣∣ ≤ 4

r
|x0 − y0|,

because by (2.2) it follows that:∣∣~n(π∂Dx0)− ~n(π∂Dy0)
∣∣ ≤ 1

r

∣∣π∂Dx0)− π∂Dy0)
∣∣

=
1

r

∣∣∣(x0 − y0) + dist(x0, ∂D)~n(π∂Dx0)− dist(y0, ∂D)~n(π∂Dy0)
∣∣∣

≤ 1

r

(
|x0 − y0|+

∣∣dist(x0, ∂D)− dist(y0, ∂D)
∣∣+ δ ·

∣∣~n(π∂Dx0)− ~n(π∂Dy0)
∣∣)

≤ 2

r
|x0 − y0|+

1

2

∣∣~n(π∂Dx0)− ~n(π∂Dy0)
∣∣.

(7.3)

Subtracting the second term in the right hand side from the left hand side, we obtain (7.2). Our
second preliminary estimate is:

(7.4)
∣∣〈π∂Dx0 − π∂Dy0, ~n(π∂Dx0)〉

∣∣, ∣∣〈π∂Dx0 − π∂Dy0, ~n(π∂Dy0)〉
∣∣ ≤ C|x0 − y0|2.

To prove (7.4), observe that the boundary projections of x0, y0 are not in the supporting balls
corresponding to y0, x0 respectively:

π∂Dy0 6∈ Br
(
π∂Dx0 − r~n(π∂Dx0)

)
∪Br

(
π∂Dx0 + r~n(π∂Dx0)

)
.

It follows that:

r2 ≤
∣∣π∂Dx0 − π∂Dy0

∣∣2 ± 2r〈π∂Dx0 − π∂Dy0, ~n(π∂Dx0)〉+ r2,

which yields, in view of (7.3) and (7.2):

±
〈
π∂Dx0 − π∂Dy0, ~n(π∂Dx0)

〉
≤ 1

2r

∣∣π∂Dx0 − π∂Dy0

∣∣2 ≤ 4

r2
|x0 − y0|2,

implying the first estimate in (7.4). The second estimate follows by a symmetric argument.
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2. Define:

w1 =
1

2

(
~n(π∂Dx0) + ~n(π∂Dy0)

)
, w2 =

1

2

(
~n(π∂Dx0)− ~n(π∂Dy0)

)
,

so that: ~n(π∂D(x0)) = ~w1 + ~w2 and ~n(π∂Dy0) = ~w1 − ~w2. By (7.2) and (7.4) there holds:

(7.5)
∣∣∣〈π∂Dx0 − π∂Dy0, ~w1

〉∣∣∣ ≤ C|x0 − y0|2 and |~w2| ≤ C|x0 − y0|.

Now, using the expansion (2.4) and (7.5) we get:∣∣∣  
Bε(x0)∩D

y dy −
 
Bε(y0)∩D

y dy
∣∣∣

≤
∣∣∣(x0 − sε(x0)~n(π∂Dx0)

)
−
(
y0 − sε(y0)~n(π∂Dy0)

)∣∣∣+ Cε
(
sε(x0) + sε(y0)

)
=
∣∣∣(π∂Dx0 − (sε(x0) + dist(x0, ∂D))~n(π∂Dx0)

)
−
(
π∂Dy0 − (sε(y0) + dist(y0, ∂D))~n(π∂Dy0)

)∣∣∣
=
∣∣∣V − (sε(x0) + sε(y0)

)
~w2

∣∣∣+ Cε
(
sε(x0) + sε(y0)

)
≤
∣∣V ∣∣+ C

(
sε(x0) + sε(y0)

)
·
(
|x0 − y0|+ ε

)
,

(7.6)

where:

V =
(
π∂Dx0 − π∂Dy0

)
−
((
sε(x0) + dist(x0, ∂D)

)
−
(
sε(y0) + dist(y0, ∂D)

))
~w1

−
(

dist(x0, ∂D)) + dist(y0, ∂D)
)
~w2.

Since 〈~w1, ~w2〉 = 0 and observing the easy decomposition:

x0 − y0 =
(
π∂Dx0 − π∂Dy0

)
−
(

dist(x0, ∂D)− dist(y0, ∂D)
)
~w1

−
(

dist(x0, ∂D) + dist(y0, ∂D)
)
~w2,

(7.7)

we directly compute:

|V |2 − |x0 − y0|2

=
(∣∣∣(sε(x0) + dist(x0, ∂D)

)
−
(
sε(y0) + dist(y0, ∂D)

)∣∣∣2 − ∣∣∣dist(x0, ∂D)− dist(y0, ∂D)
∣∣∣2)|~w1|2

− 2
〈
π∂D(x0)− π∂D(y0),

(
sε(x0)− sε(y0)

)
~w1

〉
.

The key ingredient for the further arguments is that the first term above is nonpositive. This
statement follows from the implication (7.8) that we will prove in the independent Lemma 7.2.
We now readily conclude that:

|V |2 − |x0 − y0|2 ≤ −2
〈
π∂Dx0 − π∂Dy0,

(
sε(x0)− sε(y0)

)
~w1

〉
≤ C

(
sε(x0) + sε(y0)

)
· |x0 − y0|2,

in virtue of (7.5). Consequently, it follows that:

|V | − |x0 − y0| =
|V |2 − |x0 − y0|2

|V |+ |x0 − y0|
≤ C

(
sε(x0) + sε(y0)

)
· |x0 − y0|,

yielding (7.1) in view of (10.7).



A RANDOM WALK APPROACH TO THE ROBIN BOUNDARY VALUE PROBLEM 17

The proof of Lemma 7.1 relied on the following observation, which amounts to the monotonicity
and the 1-Lipschitz continuity of the center of mass of a truncated unit ball in RN , as it passes a
hyperplane:

Lemma 7.2. The function:

Ψ(d) =
(1− d2)

N+1
2

N + 1
· 1´ d
−1(1− s2)

N−1
2

ds for all d ∈ [0, 1].

is decreasing and has Lipschitz constant 1. Consequently, for all x0, y0 ∈ D̄ there holds:

(7.8) dist(x0, ∂D) ≤ dist(y0, ∂D) ⇒ 0 ≤ sε(x0)− sε(y0) ≤ dist(y0, ∂D)− dist(x0, ∂D).

The implication (7.8) is indeed a direct consequence of the claimed properties of Ψ, because
sε(x) = εΨ(dε(x)). We will now present two proofs of Lemma 7.2. The first proof is self-contained,
whereas the second proof uses the Prèkopa theorem [24] on the log-concave functions.

The first proof of Lemma 7.2.

1. We need to show that 0 < −Ψ′ ≤ 1 on (0, 1). The first inequality is clear, because:

Ψ′(d) =
−(N + 1)d(1− d2)

N−1
2

´ d
−1(1− s2)

N−1
2 ds− (1− d2)N

(N + 1) ·
( ´ d
−1(1− s2)

N−1
2 ds

)2 < 0 for all d ∈ (0, 1).

In particular, for N = 1 we have Ψ′(d) = −1
2 and hence it remains to deduce the second claimed

inequality: −Ψ′(d) ≤ 1 for N ≥ 2. Equivalently, we will check that:

(7.9) (N + 1)d(1− d2)
N−1

2

ˆ d

−1
(1− s2)

N−1
2 ds+ (1− d2)N ≤ (N + 1) ·

(ˆ d

−1
(1− s2)

N−1
2 ds

)2
,

for all d ∈ [0, 1]. To this end, we compute the derivative of the left hand side in (7.9):

(N + 1)(1− d2)
N−3

2

( ˆ d

−1
(1− s2)

N−1
2 ds

)
· (1− d2N)− (N − 1)d(1− d2)N−1

≤ (N + 1)(1− d2)
N−1

2

ˆ d

−1
(1− s2)

N−1
2 ds

and observe that it is less than or equal to the derivative of the right hand side in (7.9), which is:

2(N + 1)
(ˆ d

−1
(1− s2)

N−1
2 ds

)
·
(
1− d2

)N−1
2 .

To conclude (7.9) it thus suffices to check its validity at d = 0, namely:
´ 1

0 (1−s2)
N−1

2 ds ≥ 1√
N+1

.

This will be implied by the following bound, proved in the next step:

(7.10)

ˆ 1

0
(1− s2)

N−1
2 ds ≥ 1√

N
.

2. We show (7.10) by induction on N . For N = 1, both sides are equal 1. For N = 2, we have:
ˆ 1

0
(1− s2)1/2 ds =

ˆ π/2

0
cos2 t dt =

π

4
≥ 1√

2
.
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For N ≥ 3 we change variable in:
´ 1

0 (1− s2)
N−1

2 ds =
´ π/2

0 cosN t dt and integrate by parts:

ˆ π/2

0
cosN t dt = (N−1)

ˆ π/2

0
cosN−2 t · sin2 t dt = (N−1)

ˆ π/2

0
cosN−2 t dt−(N−1)

ˆ π/2

0
cosN t dt.

The above is a well-known calculation, that yields by the induction assumption:
ˆ 1

0
(1− s2)

N−1
2 ds =

N − 1

N

ˆ π/2

0
cosN−2 t dt =

N − 1

N

ˆ 1

0
(1− s2)

N−3
2 ds

≥ N − 1

N
· 1√

N − 2
≥ 1√

N
.

Consequently (7.10) follows, completing the direct proof of Lemma 7.2.

The second proof of Lemma 7.2.

1. Recall that Ψ(d) = −
ffl
BN1,d

yN dy by (2.4). We will show the claimed properties of Ψ in

a more general set-up, namely when BN
1 is replaced by an arbitrary open, bounded, convex set

A ⊂ RN . Without loss of generality, we assume that the projection of A on the eN axis equals
the interval (0, h). Define the function ΨA : (0, h)→ R:

ΨA(d) = −
 
A∩{yN<d}

yN dy = −
´ d

0 tg(t) dt´ d
0 g(t) dt

for all d ∈ (0, h),

where g : R → [0,∞) is given as the (N − 1)-dimensional Lebesgue measure of the sections of A
in: g(t) =

∣∣{y ∈ RN−1; (y1 . . . yN−1, t) ∈ A}
∣∣. By convexity of A it follows that g is continuous,

and we also have: g = 0 on R \ (0, h) and g > 0 on (0, h).

2. To show that ΨA is decreasing, we simply compute:

Ψ′A(d) =
−g(t)

´ d
0 (d− t)g(t) dt´ d
0 g(t) dt

< 0 for all d ∈ (0, h).

To show that ΨA has Lipschitz constant 1, we are going to deduce that the function (0, h) 3 d 7→
−ΨA(d)− d is nonincreasing. Integrate by parts to get:

−ΨA(d)− d = −
´ d

0

´ t
0 g(s) ds dt´ d
0 g(t) dt

and observe that the claimed property is equivalent to the following function being nonincreasing:

(0, h) 3 d 7→ ḡ′(d)

ḡ(d)
where: ḡ(d) =

ˆ d

0

ˆ t

0
g(s) ds dt.

Equivalently, we will show that the above defined function ḡ : R→ [0,∞) is log-concave, i.e.:

(7.11) ḡ
(
λd1 + (1− λ)d2

)
≥ ḡ(d1)λḡ(d2)1−λ for all λ ∈ (0, 1) and all d1, d2 ∈ R.

Recall now the celebrated Prékopa theorem (the formulation we use is that of [24, Theorem 6]),
which states that if a given function h : Rn+m → [0,∞) is log-concave, then the marginal function
Rm 3 d 7→

´
Rn h(z, d) dz must be log-concave as well. We put n = N + 1, m = 1 and set h to be

the characteristic function of the following set Ã ⊂ RN+2:

Ã =
{

(y, t, d); d ∈ (0, h), t ∈ (0, d), y ∈ A, yN < t
}
.
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Since Ã is convex, h is log-concave. The Prékopa theorem yields thus log-concavity of:

R 3 d 7→
ˆ
RN+1

h(y, t, d) d(y, t) =
∣∣{(y, t) ∈ RN+1; t ∈ (0, d), y ∈ A, yN < t}

∣∣ = ḡ(t),

as requested in (7.11). This ends the second proof of Lemma 7.2.

We conclude this section by another geometric observation. Note that the exponent (−N)
below, may be replaced by any exponent less than 2−N .

Lemma 7.3. Assume (BH) and let r̄ > 0 be any radius that is strictly smaller than the uniform
inner supporting sphere radius r of D, defined in (8.1). Then there exists a constant Cl > 0,
depending only on D, r̄ such that for all ε � 1 the following holds. Consider a supporting ball
Br̄(y0) and let x0 ∈ B̄r̄(y0) \Br̄/2(y0). Then: 

Bε(x0)∩D
|y − y0|−N dy ≥ |x0 − y0|−N + Cl

(
sε(x0) + ε2

)
.

Proof. We Taylor expand the function Bε(x0) ∩ D 3 y 7→ φ(y) = |y − y0|−N at x0:

(7.12) |y − y0|−N = |x0 − y0|−N +
〈
∇φ(x0), y − x0

〉
+

1

2

〈
∇2φ(x0) : (y − x0)⊗2

〉
+O(ε3)

and calculate the relevant derivatives:

∇φ(x0) = −N |x0 − y0|−N−2(x0 − y0)

∇2φ(x0) = N |x0 − y0|−N−4
(
(N + 2)(x0 − y0)⊗2 − |x0 − y0|2IdN

)
.

The claim now follows by integrating (7.12) on Bε(x0) ∩ D and observing that:

−N |x0 − y0|−N−2
〈
x0 − y0,

 
Bε(x0)∩D

y − x0 dy
〉

= N |x0 − y0|−N−1
〈 x0 − y0

|x0 − y0|
, ~n(π∂Dx0)

〉
· sε(x0) +O

(
εsε(x0)

)
≥ Clsε(x0)

by (2.4), and:

N |x0 − y0|−N−4
〈
(N + 2)(x0 − y0)⊗2 − |x0 − y0|2IdN :

 
Bε(x0)∩D

(y − x0)⊗2 dy
〉

=
2N

N + 2
|x0 − y0|−N−2 · ε2 +O

(
εsε(x0)

)
≥ Clε2

by using (2.5). This ends the proof of the Lemma.

8. A proof of asymptotic equicontinuity - Hölder 1/2 up to the boundary

In this section, we show a boundary counterpart of Theorem 6.1, which already implies the
asymptotic equicontinuity of {uε}ε→0, albeit in a weaker regularity regime than that claimed in
Theorem 1.2. The main result of this section is:

Theorem 8.1. Assume (BH). There exists δ0 � 1 such that for every δ ∈ (0, δ0) there is
ε̄ > 0 with the following property. For all ε < ε̄ and all x0, y0 ∈ D̄ satisfying |x0 − y0| ≤ δ with

dist(x0, ∂D), dist(y0, ∂D) ≤ δ1/2, we have:

|uε(x0)− uε(y0)| ≤ Cδ1/2.

The constant C may depend on D, γ and f , but not on ε, x0, y0 or δ.
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We start with a definition of quantities that will be used throughout the remaining discussion.

Definition 8.2. Let D be as in (BH) and fix a radius ρ > 0 that is strictly smaller than some
uniform inner supporting sphere radius r of D, given by the property:

(8.1) for every x ∈ ∂D exists Br(a) ⊂ D such that |x− a| = r.

We define a continuous function Zρ : D̄ → D, satisfying:

x ∈ B̄ρ
(
Zρ(x)

)
⊂ D̄ for all x ∈ D̄,

as follows. When x ∈ D̄ and dist(x, ∂D) ≤ ρ, there exists exactly one Zρ(x) ∈ D that is the center
of the inner ρ-supporting sphere at π∂Dx. For x ∈ D with dist(x, ∂D) > ρ, we set Zρ(x) = x.
Writing now {Zε,ρ,x0

n = Zρ ◦Xε,x0
n }∞n=0, it is straightforward that there holds:

(8.2)
∣∣Zε,ρ,x0

n+1 −X
ε,x0
n+1

∣∣ ≤ ∣∣Zε,ρ,x0
n −Xε,x0

n+1

∣∣.
For every ε � 1, x0 ∈ D̄ and h ∈ (ε, ρ2 − ε), we further define the stopping time τ̄ ε,h,x0 and two
sequences of random variables {Θε,x0

n , Sε,x0
n }∞n=0 by:

τ̄ ε,h,x0 = min
{
n ≥ 0;

∣∣Xε,x0
n −Zε,ρ,x0

n

∣∣ < ρ− h
}

= min
{
n ≥ 0; dist

(
Xε,x0
n , ∂D

)
> h

}
,

Θε,x0
n = ε

n−1∑
j=0

1{dε(Xj)<1}, Sε,x0
n =

n−1∑
j=0

sε(X
ε,x0
j ).

(8.3)

Figure 8.1. The auxiliary balls Bρ(Zn) and the process {Xn}∞n=0.

Lemma 8.3. Let D be as in (BH) and let r̄ < r with r as in (8.1). Then, there exists a constant
C > 0 depending only on D and r̄, such that for every ε� 1, x0 ∈ D̄ and h ∈

(
ε, r̄2 − ε

)
:

(8.4) E
[
ε2τ̄ ε,h,x0 + Sε,x0

τ̄ε,h,x0

]
≤ Ch.

Proof. As usual, we drop the superscripts ε, r̄, h and x0 to alleviate the notation. It suffices to
consider the case |x0 −Zε,r̄,x0

0 | ≥ r̄ − h. Define now the random variables:

Mn =
∣∣Xn −Zn

∣∣−N − Cl(nε2 + Sn),

where Cl is the constant from Lemma 7.3. We deduce that {Mτ̄∧n}∞n=0 is a submartingale with
respect to the filtration {Fn}∞n=0, because whenever n < τ̄ then |Xn − Zn| ∈ [ r̄2 , r̄] implies, in
virtue of Lemma 7.3, that:

E
(
Mn+1 −Mn | Fn

)
= E

(∣∣Xn+1 −Zn+1

∣∣−N | Fn)− ∣∣Xn −Zn
∣∣−N − Cl(ε2 + sε(Xn)

)
≥
 
Bε(Xn)∩D

|y −Zn|−N dy −
∣∣Xn −Zn

∣∣−N − Cl(ε2 + sε(Xn)
)
≥ 0.
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Above, we have used (8.2) to replace E
(∣∣Xn+1 − Zn+1

∣∣−N | Fn) by E
(∣∣Xn+1 − Zn

∣∣−N | Fn) and

(3.1) to further replace it by
ffl
Bε(Xn)∩D |y−Zn|

−N dy. For each fixed i ≥ 1, we may apply Doob’s

Optional Stopping to the finite stopping time τ̄ ∧ i, to the effect that:

r̄−N ≤ |x0 −Z0|−N = E
[
M0

]
≤ E

[
Mτ̄∧i

]
= E

[∣∣Xτ̄∧i −Zτ̄∧i
∣∣−N]− Cl · E[ε2(τ̄ ∧ i) + Sτ̄∧i

]
≤
(
r̄ − h− ε

)−N − Cl · E[ε2(τ̄ ∧ i) + Sτ̄∧i
]
.

Passing to the limit with i→∞, we get:

E
[
ε2τ̄ + Sτ̄

]
≤ 1

Cl

((
r̄ − h− ε

)−N − r̄−N) ≤ N(h+ ε)

Cl
· r̄−N−1,

which concludes the proof of (8.4) with C = 2Nr̄−N−1

Cl
.

Proof of Theorem 8.1.
1. Fix ε � 1 and r̄ < r with r as in (8.1). Given x0, y0 as in the statement of the Lemma,

consider the sequences of random variables {Zε,r̄,x0
n ,Zε,r̄,y0

n , Sε,x0
n , Sε,y0

n }∞n=0 as defined in Definition
8.2), together with the stopping times τ̄ ε,h,x0 , τ̄ ε,h,y0 where we set:

h = δ1/2.

To alleviate the notation, we drop the superscripts ε, h and denote:

Xn = Xx0
n , Yn = Y y0

n , τ̄ = τ̄x0 ∧ τ̄y0 .

We now define the sequence of random variables {Mn}∞n=0:

(8.5) Mn = uε(Xn) ·
n∏
k=1

(
1− γsε(Xk−1)

)
+

ε2

2(N + 2)

n−1∑
j=1

(
f(Xj) ·

j∏
k=1

(
1− γsε(Xk−1)

))
and check that it is a martingale with respect to the filtration {Fn}∞n=0. Indeed, (RMV)ε yields:

E
(
Mn+1 −Mn | Fn

)
=
(  

Bε(Xn)∩D
uε(y) dy

)
· Λn+1

− uε(Xn) · Λn +
ε2

2(N + 2)
f(Xn) · Λn = 0 P− a.s. in Ω.

Applying Doob’s Optional Stopping to the martingale {Mn∧τ̄}∞n=0 that is equibounded by the

random variable C +Cε2τ̄ whose integrability follows from (8.4) because dist(x0, ∂D) ≤ δ1/2 and

h = δ1/2, we obtain:

uε(x0) = E
[
M0

]
= E

[
Mτ̄

]
= E

[
uε(Xτ̄ ) · Λτ̄

]
+

ε2

2(N + 2)

τ̄−1∑
j=1

E
[
f(Xj) · Λj

]
.

Consequently, again by (8.4) and using the inductively validated inequality:
∏n
k=1(1 − ai) ≥

1−
∑n

k=1 ai that holds for any n-tuple {ai ∈ [0, 1]}ni=1, we arrive at:∣∣uε(x0)− E
[
uε(Xτ̄ )

]∣∣ ≤ CE[1− τ̄∏
k=1

(
1− γsε(Xk−1)

)]
+ Cε2E

[
τ̄
]
≤ CE

[
γSx0

τ̄

]
+ Cδ1/2 ≤ Cδ1/2.

Clearly, the same bound holds for the {Yn}∞n=0 process:∣∣uε(y0)− E
[
uε(Yτ̄ )

]∣∣ ≤ Cδ1/2.
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Summing the last two bounds, we get:

(8.6)
∣∣uε(x0)− uε(y0)

∣∣ ≤ E
[∣∣uε(Xτ̄ )− uε(Yτ̄ )

∣∣]+ Cδ1/2.

2. In this and the next step, we proceed to estimating E
[∣∣uε(Xτ̄ )− uε(Yτ̄ )

∣∣] in (8.6). This will
be done with the help of Corollary 6.1, where we note:

(8.7) dist(Xτ̄ , ∂D) > h = δ1/2 or dist(Yτ̄ , ∂D) > δ1/2.

To this end, we first estimate the following conditional expectation:

E
(
|Xn+1 − Yn+1|2 | Fn

)
= E

(∣∣(Xn+1 − Yn+1)− (Xn − Yn)
∣∣2 | Fn)− |Xn − Yn|2

+ 2
〈
E
(
Xn+1 − Yn+1 | Fn

)
, Xn − Yn

〉
≤ E

(
|2ε · 1{kεn+1(ω,Xn) 6=kεn+1(ω,Yn)}|2 | Fn

)
+ |Xn − Yn|2 + C

(
|Xn − Yn|2 + ε

)(
sε(Xn) + sε(Yn)

)
,

P-a.s. in Ω, using the fact that kεn+1(ω,Xn) = kεn+1(ω, Yn) implies Xn+1 − Yn+1 = Xn − Yn, and
applying (7.1) to bound the product intermediate term above. Further, (2.3) results in:

E
(
|2ε · 1{kεn+1(ω,Xn) 6=kεn+1(ω,Yn)}|2 | Fn

)
≤ 4ε2

(
E
(
1{kεn+1(ω,Xn)6=1} | Fn

)
+ E

(
1{kεn+1(ω,Yn)6=1} | Fn

)
≤ Cε

(
sε(Xn) + sε(Yn)

)
P− a.s. in Ω,

so that:

(8.8) E
(
|Xn+1 − Yn+1|2 | Fn

)
≤ |Xn − Yn|2

(
1 + C(sε(Xn) + sε(Yn))

)
+ Cε

(
sε(Xn) + sε(Yn)

)
.

Define the sequence of random variables {Qn}∞n=0 by:

Qn = |Xn − Yn|2 · e−C(S
x0
n +S

y0
n ) − Cε

(
Sx0
n + Sy0

n

)
.

We now check that {Qn}∞n=0 is a supermartingale with respect to the filtration {Fn}∞n=0:

E
(
Qn+1 −Qn | Fn

)
= E

(
|Xn+1 − Yn+1|2 | Fn

)
· e−C(S

x0
n+1+S

y0
n+1)

− |Xn − Yn|2 · e−C(S
x0
n +S

y0
n ) − Cε

(
sε(Xn) + sε(Yn)

)
≤ |Xn − Yn|2 · e−C(S

x0
n+1+S

y0
n+1)

(
1 + C

(
sε(Xn) + sε(Yn)

)
− eC(sε(Xn)+sε(Yn))

)
≤ 0,

in view of the fact that Sx0
n+1 and Sy0

n+1 are Fn-measurable, and by (8.8). Application of Doob’s Op-
tional Stopping to the supermartingale {Qn∧τ̄}∞n=0, where each |Qn∧τ̄ | is bounded by the random
variable C + Cε(Sx0

τ̄ + Sy0
τ̄ ) that is integrable in view of (8.4), yields:

(8.9) δ2 ≥ |x0 − y0|2 = E
[
Q0

]
≥ E

[
Qτ̄
]

= E
[
|Xτ̄ − Yτ̄ |2 · e−C(S

x0
τ̄ +S

y0
τ̄ )
]
− Cε · E

[
Sx0
τ̄ + Sy0

τ̄

]
.

3. We now complete estimating E
[∣∣uε(Xτ̄ )−uε(Yτ̄ )

∣∣] in (8.6). Firstly, by (8.4) and the Cheby-
shev inequality, it follows that:

(8.10) P
(
Sx0
τ̄ + Sy0

τ̄ > 1
)
≤ Cδ1/2.

Secondly, by (8.9) and if only ε� δ:

E
[
|Xτ̄ − Yτ̄ |2 · 1{Sx0

τ̄ +S
y0
τ̄ ≤1}

]
≤ eC · E

[
|Xτ̄ − Yτ̄ |2 · e−C(S

x0
τ̄ +S

y0
τ̄ )
]

≤ CεE
[
Sx0
τ̄ + Sy0

τ̄

]
+ Cδ2 ≤ Cε · δ1/2 + Cδ2 ≤ Cδ2,

so that we obtain:

(8.11) E
[
|Xτ̄ − Yτ̄ | · 1{Sx0

τ̄ +S
y0
τ̄ ≤1}

]
≤ Cδ.
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We now decompose:

E
[∣∣uε(Xτ̄ )− uε(Yτ̄ )

∣∣] = E
[∣∣uε(Xτ̄ )− uε(Yτ̄ )

∣∣ · 1{Sx0
τ̄ +S

y0
τ̄ >1}

]
+ E

[∣∣uε(Xτ̄ )− uε(Yτ̄ )
∣∣ · 1{Sx0

τ̄ +S
y0
τ̄ ≤1} · 1{|Xτ̄−Yτ̄ |≥ δ02 }

]
+ E

[∣∣uε(Xτ̄ )− uε(Yτ̄ )
∣∣ · 1{Sx0

τ̄ +S
y0
τ̄ ≤1} · 1{|Xτ̄−Yτ̄ |< δ0

2
}

]
.

(8.12)

The first term in the right hand side above is bounded by Cδ1/2 in view of (8.10). The same
estimate holds for the second term, because Chebyshev’s inequality applied to (8.11) yields:

P
({
Sx0
τ̄ + Sy0

τ̄ ≤ 1
}
∩
{
|Xτ̄ − Yτ̄ | ≥

δ0

2

})
≤ Cδ

δ0
.

To treat the last term in (8.12), recall that for each η ∈ (0, δ0), Theorem 6.1 gives ε̄ = ε̄(η) so that

|uε(x)− uε(y)| ≤ Cη

dist(x0,∂D)
holds for all ε < ε̄ and all x, y satisfying |x− y| ≤ η. Define:

ε̃ = min
{
ε̄
( 1

2k
)
;

1

2k
∈ [δ, δ0)

}
,

where we decrease the threshold for the admissible δ below δ0
2 so that the set in the definition of ε̃

is nonempty. Assume further that ε < ε̃. For each ω ∈
{
Sx0
τ̄ +Sy0

τ̄ ≤ 1
}
∩
{
|Xτ̄ −Yτ̄ | < δ0

2

}
, apply

now the above recalled statement to η = min
{

1
2k

; 1
2k
≥ max{δ, |Xτ̄ − Yτ̄ |(ω)

}
and x = Xτ̄ (ω),

y = Yτ̄ (ω). Since η ∈ [δ, δ0), it follows that:∣∣uε(Xτ̄ )− uε(Yτ̄ )
∣∣ ≤ Cη

δ1/2
≤ C · 2(δ + |Xτ̄ − Yτ̄ |)

δ1/2
≤ Cδ1/2 + C

|Xτ̄ − Yτ̄ |
δ1/2

a.s in
{
Sx0
τ̄ + Sy0

τ̄ ≤ 1
}
∩
{
|Xτ̄ − Yτ̄ | <

δ0

2

}
,

where we also used (8.7). Consequently and in virtue of (8.11), we get:

E
[∣∣uε(Xτ̄ )− uε(Yτ̄ )

∣∣ · 1{Sx0
τ̄ +S

y0
τ̄ ≤1} · 1{|Xτ̄−Yτ̄ |< δ0

2
}

]
≤ Cδ1/2 +

C

δ1/2
· E
[∣∣Xτ̄ − Yτ̄

∣∣ · 1{Sx0
τ̄ +S

y0
τ̄ ≤1}

]
≤ Cδ1/2,

Thus, (8.12) implies that:

E
[∣∣uε(Xτ̄ )− uε(Yτ̄ )

∣∣] ≤ Cδ1/2

and the claim of the Theorem 8.1 finally follows by recalling (8.6).

Combining Theorems 8.1 and 6.1, we obtain the Hölder C0,1/2-asymptotic regularity of {uε}ε→0

in D̄, which yields Theorem 1.1 in view of the L1 convergence in Theorem 5.2.

Corollary 8.4. Assume (BH). There exists δ0 � 1 such that for every δ ∈ (0, δ0) there is ε̄ > 0
with the following property. For all ε < ε̄ and all x0, y0 ∈ D̄ satisfying |x0 − y0| ≤ δ, there holds:∣∣uε(x0)− uε(y0)

∣∣ ≤ Cδ1/2.

The constant C above may depend on D, ‖f‖L∞(D) and γ, but not on ε, x0, y0 or δ.
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9. Boundary estimates II

In this section we derive further geometrical observations towards an improvement of the bound
in Theorem 8.1 and a complete proof of Theorem 1.2.

Lemma 9.1. Assume (BH). Then there exists a constant C > 0 depending only on D, such that
for all x0, y0 ∈ D̄ there holds:

(9.1)

 
Bε(y0)∩D

|y − x0|2 dy ≤ |x0 − y0|2 · eCsε(y0) + Cε2.

Proof. We decompose: 
Bε(y0)∩D

|y − x0|2 = |y0 − x0|2 + 2
〈
y0 − x0,

 
Bε(y0)∩D

y − y0 dy
〉

+

 
Bε(y0)∩D

|y − y0|2 dy

≤ |y0 − x0|2 + 2
〈
y0 − x0,

 
Bε(y0)∩D

y − y0 dy
〉

+ ε2.

(9.2)

To estimate the linear term above, observe first that it is null when dist(y0, ∂D) > ε. In the
opposite case, we will use the representation (7.7), recalling the definitions:

w1 =
1

2

(
~n(π∂Dx0) + ~n(π∂Dy0)

)
, w2 =

1

2

(
~n(π∂Dx0)− ~n(π∂Dy0)

)
,

as in the proof of Lemma 7.1. Since by (2.4) we have: 
Bε(y0)∩D

y − y0 dy = −sε(y0)
(
w1 − w2

)
+O(ε2),

it follows that:〈
π∂Dy0 − π∂Dx0,

 
Bε(y0)∩D

y − y0 dy
〉
≤ Csε(y0) · |y0 − x0|2 +O(ε2),

(
dist(x0, ∂D)− dist(y0, ∂D)

)〈
w1,

 
Bε(y0)∩D

y − y0 dy
〉
≤ sε(y0) · dist(y0, ∂D) +O(ε2) = O(ε2),

(
dist(x0, ∂D) + dist(y0, ∂D)

)〈
w2,

 
Bε(y0)∩D

y − y0 dy
〉
≤ Csε(y0) · |y0 − x0|2 +O(ε2),

where we used (7.5) in the second and third estimate, and the assumption dist(y0, ∂D) ≤ ε in the
second estimate. Summing the three above bounds, and recalling (9.2), we get: 

Bε(y0)∩D
|y − x0|2 dy ≤ |y0 − x0|2

(
1 + C̄usε(y0)

)
+ C̄uε

2,

where the linear term in (9.2) is bounded by Csε(y0)|y0 − x0|2 +O(ε2). The proof is done.

Corollary 9.2. Assume (BH). Then for every x0 ∈ D̄ and ε � 1, the following sequence of
random variables is a supermartingale with respect to the filtration {Fn}∞n=0:{

|Xε,x0
n − x0|2 · exp

(
−C

n−1∑
j=0

sε(X
ε,x0
j )

)
− Cnε2

}∞
n=0

,

with the same constant C > 0 as in (9.1).
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Proof. The proof is straightforward, because:

E
(
|Xn+1−x0|2 · exp

(
−C

n∑
j=0

sε(Xj)
)
− C(n+ 1)ε2 | Fn

)
=

 
Bε(Xn)∩D

|x− x0|2 dx · exp
(
−C

n∑
j=0

sε(Xj)
)
− C(n+ 1)ε2

≤ |Xn − x0| · exp
(
−C

n−1∑
j=0

sε(Xj)
)
− Cnε2,

by applying (9.1) to x0 and y0 = Xn.

Lemma 9.3. Let D be as in (BH) and let r̄ < r with r as in (8.1). Then, there exists a constant
Cu > 1 depending only on D and r̄, such that for every ε� 1, x0 ∈ D̄ and h ∈

(
ε, r̄2 − ε

)
:

(9.3) E
[
Θε,x0

τ̄ε,h,x0

]
≤ Cuh.

Moreover, for all k ≥ 1 there holds:

(9.4) P
(

Θε,x0

τ̄ε,h,x0
≥ k

(
ε+ 2Cuh

))
≤ 1

2k
.

Proof. 1. Given r̄, h, ε, x0 as in the statement and a constant λ > 0, consider the sequence of
random variables {Mn}∞n=0 in:

Mn = λΘn − Sn+1 = λε
( n−1∑
j=0

1{dε(X
ε,x0
j )<1}

)
−
( n∑
j=0

sε(X
ε,x0
j )

)
,

adopting the convention that M0 = −sε(x0). We claim that {Mn}∞n=0 is a supermartingale with
respect to the filtration {Fn}∞n=0 provided that λ = λ(D) is chosen appropriately. Indeed:

E
(
Mn+1 −Mn | Fn

)
= λε1{dε(Xn)<1} − E

(
sε(Xn+1) | Fn

)
≤ 0 P− a.s. in Ω,

follows by observing that on the event {dist(Xn, ∂D) ≥ ε} the quantity above is clearly nonpositive,
whereas on the event {dist(Xn, ∂D) < ε} it is still nonpositive upon choosing λ so small that:

E
(
sε(Xn+1) | Fn

)
=

 
Bε(Xn)∩D

sε(y) dy ≥ cε
 
Bε(Xn)∩D

(1− dε(y)2)
N+1

2 dy ≥ λε.

The supermartingale property and Doob’s theorem applied to the finite stopping times τ̄ ∧ i yield:

E
[
λΘτ̄∧i

]
= E

[
Mτ̄∧i

]
+ E

[
S(τ̄∧i)+1

]
≤ E

[
M0

]
+ E

[
Sτ̄+1

]
≤ E

[
Sτ̄
]

+ ε ≤ Ch,

in virtue of (8.4). Consequently, (9.3) follows with Cu = C/λ by passing to the limit i→∞.

2. To show (9.4), we first use Chebyshev’s inequality in (8.4), to arrive at:

(9.5) P
(

Θτ̄ ≥ 2Cuh
)
≤ 1

2
.

The general case k > 1 follows by induction. To this end, for each k ≥ 1, define the stopping time:

Tk = min
{
n ≥ 0; Θn ≥ k

(
ε+ 2Cuh

)}
.

Then (9.4) is equivalent to: P
(
Tk ≤ τ̄

)
≤ 1/2k. Observe that:{

Tk+1 ≤ τ̄
}

=
{
Tk ≤ τ̄

}
∩
{

Θ
XTk
τ̄ ≥ 2Cuh

}
.
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Taking conditional expectations we get:

P
(
Tk+1 ≤ τ̄

)
= E

[
1{Tk+1≤τ̄}

]
= E

[
1{Tk≤τ̄} · E

(
1{

Θ
XTk
τ̄ ≥2Cuh

} | FTk)] ≤ 1

2
E
[
1{Tk≤τ̄}

]
≤ 1

2k+1
,

by (9.5) applied with XTk in place of x0, and by the induction assumption. The proof is done.

10. A proof of asymptotic equicontinuity - Hölder α up to the boundary, α ∈ (0, 1)

The main result of this section is:

Theorem 10.1. Assume (BH). There exists δ0 � 1 such that for every δ ∈ (0, δ0) there is
ε̄ > 0 with the following property. For all ε < ε̄ and all x0, y0 ∈ D̄ satisfying |x0 − y0| ≤ δ with
dist(x0, ∂D), dist(y0, ∂D) ≤ 1

9Cu log
(

1/δ
) , we have:

|uε(x0)− uε(y0)| ≤ Cδ · log
(1

δ

)
.

The threshold constant Cu is as in Lemma 9.3, whereas the constant C > 0 may depend on D, γ
and f , but not on ε, x0, y0 or δ.

We start by defining yet another useful coupling.

Definition 10.2. Given x0, y0 ∈ D̄ and ε � 1, recall the set-up for the process {Xε,x0
n }∞n=0 in

(3.2), and define the coupled process {Y ε,y0,x0
n }∞n=0 inductively as follows. Set Y0 = y0. At each n,

denote by Hn the hyperplane in RN that is orthogonal to and bisecting the segment [Xn, Yn]. By
reflHn, denote the reflection across Hn. Then, we set:

Y ε,y0,x0
n+1 = reflHn

(
Xn + εw

k̃ε(ω,Xn)
n+1

)
,

where k̃εn+1 = min
{
k̃ ≥ 1; reflHn

(
Xn + εwk̃n+1

)
∈ D

}
.

Lemma 10.3. Let D be as in (BH) and let r̄ < r with r as in (8.1). For a given x0, y0 ∈ D̄,

ε� 1 and h ∈ (ε,min{ r̄2 − ε, 1}, we define the sequence of random variables {Qε,h,x0,y0
n }∞n=0 in:

Qε,h,x0,y0
n =

(
4h− |Xε,x0

n − Y ε,y0,x0
n |

)
· |Xε,x0

n − Y ε,y0,x0
n |,

where the coupled process Y ε,y0,x0
n is as in Definition 10.2. Then there exists a constant C > 0

depending only on D and r̄, such that:

(i) For every δ ∈ (0, h), conditions: |Xn − Yn| ∈ (δ2, 3h) and ε < 1
2δ

4 imply:

E
(
Qn+1 −Qn | Fn

)
≤ Chε

(
1{dε(Xn)<1} + 1{dε(Yn)<1}

)
|Xn − Yn| −

4

N + 2
ε2 P− a.s. in Ω.

(ii) In the setting of (i) there further holds:

E
(
Qn+1 | Fn

)
≤ Qn · exp

(
Cε(1{dε(Xn)<1} + 1{dε(Yn)<1})

)
− 4

N + 2
ε2 P− a.s. in Ω.

(iii) Fix δ ∈ (0, h), and assume the conditions: |x0 − y0| < δ and ε < 1
2δ

4. Define the sequence

of random variables {Q̄ε,h,x0,y0
n }∞n=0 in:

Q̄ε,h,x0,y0
n = Qε,h,x0,y0

n · exp
(
− C(Θε,x0

n + Θε,y0,x0
n )

)
+ e−3Cnε2,

where, consistently with (8.3), we set:

Θε,y0,x0
n = ε

n−1∑
j=0

1{dε(Y
ε,y0,x0
j )<1}.
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Define also the stopping time:

σε,h,δ,x0,y0 = min
{
n ≥ 0; |Xε,x0

n − x0| ≥ h or |Y ε,y0,x0
n − y0| ≥ h

or |Xε,x0
n − Y ε,y0,x0

n | ≤ δ2 or Θε,x0
n + Θε,y0,x0

n ≥ 2
}
.

(10.1)

Then,
{
Q̄ε,h,x0,y0

n∧σε,h,δ,x0,y0

}∞
n=0

is a supermartingale with respect to the filtration {Fn}∞n=0.

Proof. 1. Fix x0, y0, h, ε as in the statement and let δ be as in (i). Assume that |Xn−Yn| ∈ (δ2, 3h),
where as usual we suppress the parameter superscripts in order to alleviate the notation. The
first observation is that on the event {dε(Xn) = dε(Yn) = 1}, there holds Yn+1 = reflHnXn+1 and
hence the vectors Xn+1 − Yn+1 and Xn − Yn are parallel. A direct calculation now gives:

|Xn+1 − Yn+1| − |Xn − Yn| = 2
〈
εw1

n+1,
Xn − Yn
|Xn − Yn|

〉
,

|Xn+1 − Y 2
n+1| − |Xn − Yn|2 = −4

〈
εw1

n+1,
Xn − Yn
|Xn − Yn|

〉2
+ 4
〈
εw1

n+1, Xn − Yn
〉
.

Thus, we conclude (i) in this case:

E
(
Qn+1 −Qn | Fn

)
= 4E

(〈
εw1

n+1, 2h
Xn − Yn
|Xn − Yn|

− (Xn − Yn)
〉
| Fn

)
+ 4E

(〈
εw1

n+1,
Xn − Yn
|Xn − Yn|

〉2 | Fn
)

= −4ε2
 
BN1

y2
1 dy = − 4ε2

N + 2
P− a.s. in Ω.

(10.2)

2. On the other hand, on the event {dε(Xn) < 1} ∪ {dε(Yn) < 1}, we write:

Qn+1 −Qn = φ(Xn+1 − Yn+1)− φ(Xn − Yn),

where the function φ : RN → R is given by: φ(v) = (4h − |v|)|v|. We will apply the Taylor
expansion below to v = Xn − Yn and w = (Xn+1 − Yn+1)− (Xn − Yn):

φ(v + w)− φ(v) =
〈
4h

v

|v|
− 2v, w

〉
+O

( h
|v|

+ 1
)
|w|2.

This expansions is valid, with the uniform bound in O, for all v 6= 0 and |w| < 1
2 |v|. Therefore:

E
(
Qn+1 −Qn | Fn

)
=E

(( 4h

|Xn − Yn|
− 2
)〈
Xn − Yn, (Xn+1 − Yn+1)− (Xn − Yn)

〉
| Fn

)
+O

( h

|Xn − Yn|
+ 1
)
ε2 P− a.s. in Ω.

(10.3)

Also, the same calculation as in (3.1), combined with the estimate (7.1) yield:

E
(
Xn+1 − Yn+1 | Fn

)
=

ˆ
Ω1

Xn + εw
kn+1

n+1 dP1(wn+1) +

ˆ
Ω1

reflHn
(
Xn + εw

k̃n+1

n+1

)
dP1(wn+1)

=
∣∣∣  

Bε(Xn)∩D
y dy −

 
Bε(Yn)∩D

y dy
∣∣∣

≤ |Xn − Yn|+ C
(
sε(Xn) + sε(Yn)

)(
|Xn − Yn|+ ε

)
P− a.s. in Ω.
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In conclusion and using the facts that | 4h
|Xn−Yn| −2| ≤ 8h

|Xn−Yn| and 2ε < h|Xn−Yn|, following from

the assumed relative magnitudes of ε, δ, h and |Xn − Yn|, the expansion (10.3) gives:

E
(
Qn+1 −Qn | Fn

)
≤ 8h · C

(
sε(Xn) + sε(Yn)

)(
|Xn − Yn|+ ε

)
+O

( h

|Xn − Yn|
+ 1
)
ε2

≤ Chε|Xn − Yn|+O
(hε2
δ2

)
≤ Ch|Xn − Yn| ≤ Chε|Xn − Yn| −

4

N + 2
ε2 P− a.s. in Ω.

(10.4)

The estimates (10.2) and (10.4) conclude the proof of (i). Finally, since Qn ≥ h|Xn − Yn|, the
bound (i) directly implies (ii), because:

E
(
Qn+1 | Fn

)
≤ Qn + Cε(1{dε(Xn)<1} + 1{dε(Yn)<1})Qn −

4

N + 2
ε2 P− a.s. in Ω.

3. To show (iii), fix n < σ. Then the assumptions listed in (ii) hold, we have:

E
(
Q̄n+1 | Fn

)
= E

(
Qn+1 · exp

(
− C(Θx0

n+1 + Θy0,x0
n+1 )

)
| Fn

)
+ e−3C(n+1)ε2

≤ Qn · exp
(
Cε(1{dε(Xn)<1} + 1{dε(Yn)<1}

))
· exp

(
− C(Θx0

n+1 + Θy0,x0
n+1 )

)
− 4ε2

N + 2
exp

(
− C(Θx0

n+1 + Θy0,x0
n+1 )

)
+ e−3C(n+ 1)ε2

≤ Qn · exp
(
− C(Θx0

n + Θy0,x0
n )

)
− 4e−2C

N + 2
ε2 − e−3C(n+ 1)ε2

≤ Qn · exp
(
− C(Θx0

n + Θy0,x0
n )

)
− e−3C(n+ 1)ε2 = Q̄n P− a.s. in Ω.

This ends the proof of the Lemma.

Corollary 10.4. Let D be as in (BH) and let r̄ < r with r as in (8.1). Then there exists a
constant C > 0, depending on D and r̄, such that for every set of parameters as below:

0 < δ < h < min
{ r̄

4
, 1
}
, ε < min

{ r̄
4
,
1

2
δ4
}
, for every x0, y0 ∈ D̄ such that |x0 − y0| < δ,

the following holds:

(i) ε2E
[
σε,h,δ,x0,y0

]
≤ Chδ,

(ii) P
(
|Xε,x0

σε,h,δ,x0,y0
− x0| ≥ h

)
+ P

(
|Y ε,y0,x0

σε,h,δ,x0,y0
− y0| ≥ h

)
≤ Cδ

h
,

(iii) E
[
|Xε,x0

σε,h,δ,x0,y0
− x0|

]
+ E

[
|Y ε,y0,x0

σε,h,δ,x0,y0
− y0|

]
≤ Cδ ·

(
log

1

δ

)
,

(iv) If additionally: dist(x0, ∂D), dist(y0, ∂D) < r̄
2 − (h+ ε), then:

E
[
Sε,x0

σε,h,δ,x0,y0
+ Sε,y0,x0

σε,h,δ,x0,y0

]
≤ Cδ ·

(
log

1

δ

)
,

where consistently with (8.3) we have defined: Sε,y0,x0
n =

∑n−1
j=0 sε(Y

ε,y0,x0
j ).

Proof. 1. By the supermartingale property in Lemma 10.3 (iii), Doob’s Optional Stopping applied
to the stopping time σ = σε,h,δ,x0,y0 yields:

e−3Cε2E
[
σ
]
≤ E

[
Q̄ε,h,x0,y0
σ

]
≤ E

[
Q̄0

]
= (4h− |x0 − y0|)|x0 − y0| ≤ 4hδ,
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as claimed in (i). For (ii), we apply Corollary 9.2 and Doob’s Optional Stopping again, in:

E
[
|Xσ − x0|2 · exp

(
− C

σ−1∑
j=0

sε(Xj)
)]
≤ Cε2E

[
σ
]
,

where the constant C is as in (9.1). Since
∑σ−1

j=0 sε(Xj) ≤ Θε,x0
σ ≤ 2 + ε, the assertion in (i) gives:

E
[
|Xσ − x0|2

]
≤ Chδ.

Consequently, by Chebyshev’s inequality we conclude the following inequality in (ii):

P
(
|Xσ − x0| ≥ h

)
= P

(
|Xσ − x0|2 ≥ h2

)
≤ 1

h2
E
[
|Xσ − x0|2

]
≤ Cδ

h
.

The parallel bound for the coupled process {Y ε,y0,x0
n } is deduced by observing that the coupling in

Definition 10.2 is symmetric in distribution. Namely, for every n ≥ 0 and every Borel set F ⊂ D̄,
the same calculation as in (3.1) yields:

(10.5) P
(
Y ε,y0,x0
n ∈ F

)
= P

(
Xε,y0
n ∈ F

)
, P

(
Y ε,x0,y0
n ∈ F

)
= P

(
Xε,y0
n ∈ F

)
.

2. To prove (iii), we integrate the distribution function (effectively, the integration takes place
on the interval (0, h+ ε)), and apply the bound (ii):

E
[
|Xε,x0

σε,h,δ,x0,y0
− x0|

]
=

ˆ ∞
0

P
∣∣(Xε,x0

σε,h,δ,x0,y0
− x0| ≥ t

)
dt

≤
ˆ ∞

0
P
(
|Xε,x0

σε,t,δ,x0,y0
− x0| ≥ t

)
+ P

(
|Y ε,y0,x0

σε,t,δ,x0,y0
− y0| ≥ t

)
dt

≤ ε+ δ +

ˆ h

δ
P
(
|Xε,x0

σε,t,δ,x0,y0
− x0| ≥ t

)
+ P

(
|Y ε,y0,x0

σε,t,δ,x0,y0
− y0| ≥ t

)
dt

≤ 2δ +

ˆ h

δ

Cδ

t
dt = 2δ + Cδ ·

(
log

1

δ
+ log h

)
≤ Cδ ·

(
log

1

δ

)
.

The estimate on E
[
|Y ε,y0,x0

σε,h,δ,x0,y0
− y0|

]
follows in the same fashion, in view of (10.5).

3. As in the proof of Lemma 8.3, we deduce that {Mσε,h,δ,x0,y0∧n}∞n=0 is a submartingale with
respect to the filtration {Fn}∞n=0, where we define:

Mn = |Xε,x0
n −Zε,r̄,x0

n |−N − ClSε,x0
n ,

with the constant Cl > 0 is as in Lemma 7.3. In the proof of this fact, we use that dist(Xn, ∂D) < r̄
2

for n < σε,h,δ,x0,y0 in view of the assumed bound on dist(x0, ∂D). Applying now Doob’s Optional
Stopping to the stopping time σ = σε,h,δ,x0,y0 , and applying the mean value theorem to the function
v 7→ |v|−N while noting |Xε,x0

σ −Zε,r̄,x0
σ | > r̄

2 , we get:

ClE
[
Sε,x0
σ

]
= E

[
|Xε,x0

σ −Zε,r̄,x0
σ |−N

]
− E

[
Mσ

]
≤ E

[
|Xε,x0

σ −Zε,r̄,x0
σ |−N − |x0 − Z r̄(x0)|−N

]
≤ E

[(
|Xε,x0

σ −Zε,r̄,x0
σ |−N − |x0 − Z r̄(x0)|−N

)
+

]
≤ 1

N(r̄/2)N+1
· E
[(
|x0 − Z r̄(x0)| − |Xε,x0

σ − Z r̄(Xε,x0
σ )|

)
+

]
≤ CE

[
|x0 −Xε,x0

σ |
]
≤ Cδ · log

(1

δ

)
.

In the last two inequalities above we also used the fact that Z r̄ is a projection, and the already
established bound in (iii). The parallel estimate on E

[
Sε,y0,x0

σε,h,δ,x0,y0

]
follows by recalling (10.5).
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Proof of Theorem 10.1.
1. Let r̄ < r with the radius r as in (8.1). Take δ0 > 0 so small that for every δ ∈ (0, δ0) the

following threshold quantity satisfies δ < h(δ) < min{ r̄4 , 1}:

h(δ) =
1

9Cu · log(1/δ)
.

We set ε̄ = 1
2δ

4, let ε ∈ (0, ε̄) and take x0, y0 ∈ D̄ with the properties indicated in the statement
of the Theorem. To alleviate the notation, we will be writing h = h(δ).

Applying (9.4) with an integer k ∈ [2 log 1
δ , 3 log 1

δ ], we obtain:

(10.6) P
(
Θε,x0

τ̄ε,h,x0
≥ 1
)
≤ P

(
Θε,x0

τ̄ε,h,x0
≥ k(ε+ 2Cuh)

)
≤ 1

2k
≤ 1

ek/2
≤ δ,

since k ≤ 1/(3Cu log 1
h) ≤ 1/(ε+ 2Cuh).

2. Recall that by (RMV)ε, the sequence of random variables {Mn}∞n=0 defined in (8.5):

Mn = uε(X
ε,x0
n )Λε,x0

n +
ε2

2(N + 2)

n−1∑
j=0

f(Xε,x0
j ) · Λε,x0

j

is a martingale with respect to the filtration {Fn}∞n=0. Applying Doob’s Optional Stopping with
the stopping time σ = σε,h,δ,x0,y0 , the same calculation as in the proof of Theorem 8.1 in section
8, leads to the estimate:∣∣uε(x0)− E

[
uε(X

ε,x0
σ )

]
≤ C

(
E
[
γSε,x0

σ

]
+ ε2E

[
σ
])
≤ Cδ · log

(1

δ

)
,

in virtue of Corollary 10.4 (i) and (iv). Similarly, the coupling symmetry (10.5) result is:∣∣uε(y0)− E
[
uε(X

ε,y0
σ )

]
=
∣∣uε(y0)− E

[
uε(Y

ε,y0,x0
σ )

]
≤ Cδ · log

(1

δ

)
,

and we see that:

(10.7) |uε(x0)− uε(y0)| ≤ E
[∣∣uε(Xε,x0

σ )− uε(Y ε,y0,x0
σ )

∣∣]+ Cδ · log
(1

δ

)
We now estimate the expectation in the right hand side above, separately on the four events

indicated in the definition (10.1). Firstly, by Corollary 10.4 we get:

(10.8) E
[∣∣uε(Xε,x0

σ )− uε(Y ε,y0,x0
σ )

∣∣ · 1{|Xσ−x0|≥h or |Yσ−y0|≥h}
]
≤ Cδ

h
≤ Cδ · log

(1

δ

)
.

Secondly, by (10.6) and since σ ≤ τ̄ ε,h,x0 , we have:

E
[∣∣uε(Xε,x0

σ )− uε(Y ε,y0,x0
σ )

∣∣ · 1{Θε,x0
σ +Θ

ε,y0,x0
σ ≥2}

]
≤ C

(
P
(
Θε,x0
σ ≥ 1

)
+ P

(
Θε,y0,x0
σ ≥ 1

))
≤ C

(
P
(
Θε,x0

τ̄ε,h,x0
≥ 1
)

+ P
(
Θε,y0,x0

τ̄ε,h,y0
≥ 1
))
≤ Cδ.

(10.9)

Finally, the weak bound in Corollary 8.4 gives:

E
[∣∣uε(Xε,x0

σ )− uε(Y ε,y0,x0
σ )

∣∣ · 1{|Xε,x0
σ −Y ε,y0,x0

σ |≤δ2}
]
≤ Cδ.(10.10)

Combining (10.7), (10.8), (10.9) and (10.10), concludes the proof.

This ends the proof of Theorem 1.2, in view of (6.1). Recall that the family {uε}ε→0 is
equibounded. The asymptotic equi-Hölder estimate in Theorem 1.2 implies also the asymptotic
equicontinuity, in the sense that for every η > 0 there exist δ, ε0 > 0 satisfying:

|uε(x0)− uε(y0)| ≤ η for all ε < ε0 and x0, y0 ∈ D such that |x0 − y0| ≤ δ.
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Thus, a version of the Ascoli-Arzelà theorem yields uniform convergence of {uε}ε→0 in D̄, up to
a subsequence. Combining this observation with Theorem 5.2 we conclude the result of Theorem
1.1. We also recover the Hölder continuity of the limiting function: u ∈ C0,α(D̄) for any α ∈ (0, 1),
because t log(1/t) ≤ tα as t→ 0, when α < 1.
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