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Abstract By applying the Euler–Rayleigh methods to a specific representation of
the Jacobi polynomials as hypergeometric functions, we obtain new bounds for their
largest zeros. In particular, we derive upper and lower bound for 1− x2

nn(λ ), with
xnn(λ ) being the largest zero of the n-th ultraspherical polynomial P(λ )

n . For every
fixed λ > −1/2, the limit of the ratio of our upper and lower bound for 1− x2

nn(λ )
does not exceed 1.6. This paper is a continuation of [13].

1 Introduction and Statement of the Results

The extreme zeros of the classical orthogonal polynomials of Jacobi, Laguerre and
Hermite have been a subject of intensive study. We refer to Szegő’s monograph
[18] for earlier results, and to [2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 17] for some recent
developments.

Throughout this paper we use the notation

x1n(α,β )< x2n(α,β )< · · ·< xnn(α,β )

for the zeros of the n-th Jacobi polynomial P(α,β )
n , α,β > −1, and the zeros of the

n-th Gegenbauer polynomial P(λ )
n , λ >−1/2 are denoted by

Geno Nikolov
Department of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 5 James
Bourchier Blvd., 1164 Sofia, Bulgaria e-mail: geno@fmi.uni-sofia.bg

1



2 Geno Nikolov

x1n(λ )< x2n(λ )< · · ·< xnn(λ ) .

In the recent paper [13] we applied the Euler–Rayleigh method to the Jacobi and,
in particular, the Gegenbauer polynomials, represented as hypergeometric functions,
to derive new bounds for their extreme zeros. Below we state some of the bounds
obtained in [13], which improve upon some results of Driver and Jordaan [5].

Theorem A. ([13, Theorem 1.4]) For every n≥ 3 and α, β >−1, the largest zero
xnn(α,β ) of the Jacobi polynomial P(α,β )

n satisfies

1− xnn(α,β )<
2(α +1)(α +3)

(n+α +1)(n+α +β +1)
[
2− (α+1)(2n+β−1)

(n+α+1)(n+α+β+1)−(α+1)(α+2)

] .
Corollary A. ([13, Corollary 1.6]) For every n≥ 3 and λ >−1/2, the largest zero
xnn(λ ) of the Gegenbauer polynomial P(λ )

n satisfies

1− xnn(λ )<
(2λ +1)(2λ +5)

(n+2λ )(2n+2λ +1)
[
2− (2λ+1)(4n+2λ−3)

2(n+2λ )(2n+2λ+1)−(2λ+1)(2λ+3)

] .
Theorem B. ([13, Theorem 1.1]) For every n ≥ 3 and λ > −1/2, the largest zero
xnn(λ ) of the Gegenbauer polynomial P(λ )

n satisfies

1− x2
nn(λ )<

(2λ +1)(2λ +5)

2n(n+2λ )+2λ +1+ 2(λ+1)(2λ+1)2(2λ+3)
n(n+2λ )+2(2λ+1)(2λ+3)

.

The above results provide lower bounds for the largest zeros of the Jacobi and
Gegenbauer polynomials. It is instructive to compare Theorem B with the following
upper bound for the largest zeros of the Gegenbauer polynomials:

Theorem C. ([12, Lemma 3.5]) For every λ >−1/2, the largest zero xnn(λ ) of the
Gegenbauer polynomial P(λ )

n satisfies

1− x2
nn(λ )>

(2λ +1)(2λ +9)
4n(n+2λ )+(2λ +1)(2λ +5)

.

We observe that, for any fixed λ > −1/2 and large n, the ratio of the upper and
the lower bound for 1− x2

nn(λ ), given by Theorems B and C, does not exceed 2.
With Corollary 1 below this ratio is reduced to 1.6.

In the present paper we apply the Euler–Rayleigh method to the Jacobi polyno-
mial P(α,β )

n , represented as a hypergeometric function, to obtain further bounds for
the largest zeros of the Jacobi and Gegenbauer polynomials. As at some points the
calculations become unwieldy, we have used the assistance of Wolfram’s Mathe-
matica.
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The following is the main result in this paper.

Theorem 1. For every n≥ 4 and α, β >−1, the largest zero xnn(α,β ) of the Jacobi
polynomial P(α,β )

n satisfies

1− xnn(α,β )<
4(α +1)(α +2)(α +4)

(5α +11)
[
n(n+α +β +1)+ 1

3 (α +1)(β +1)
] . (1)

Moreover, if either n≥max{4,α +β +3} or β ≤ 4α +7, then

1− xnn(α,β )<
4(α +1)(α +2)(α +4)

(5α +11)
[
n(n+α +β +1)+ 1

2 (α +1)(β +1)
] . (2)

Since P(α,β )
n (x) = (−1)nP(β ,α)

n (−x), Theorem 1 can be equivalently formulated as

Theorem 2. For every n ≥ 4 and α, β > −1, the smallest zero x1n(α,β ) of the
Jacobi polynomial P(α,β )

n satisfies

1+ x1n(α,β )<
4(β +1)(β +2)(β +4)

(5β +11)
[
n(n+α +β +1)+ 1

3 (α +1)(β +1)
] .

Moreover, if either n≥max{4,α +β +3} or α ≤ 4β +7, then

1+ x1n(α,β )<
4(β +1)(β +2)(β +4)

(5β +11)
[
n(n+α +β +1)+ 1

2 (α +1)(β +1)
] .

The assumption β ≤ 4α + 7 is satisfied, in particular, when β = α > −1. There-
fore, as a consequence of Theorem 1, we obtain a bound for the largest zero of the
ultraspherical polynomial P(λ )

n = cP(α,α)
n , α = λ − 1

2 .

Theorem 3. For every n≥ 4 and λ >−1/2, the largest zero xnn(λ ) of the Gegen-
bauer polynomial P(λ )

n satisfies

1− xnn(λ )<
(2λ +1)(2λ +3)(2λ +7)

(10λ +17)
[
n(n+2λ )+ 1

8 (2λ +1)2
] . (3)

Theorem 3 and 1− x2
nn(λ )< 2(1− xnn(λ )) imply immediately the following:

Corollary 1. For every n≥ 4 and λ >−1/2, the largest zero xnn(λ ) of the Gegen-
bauer polynomial P(λ )

n satisfies

1− x2
nn(λ )<

2(2λ +1)(2λ +3)(2λ +7)
(10λ +17)

[
n(n+2λ )+ 1

8 (2λ +1)2
] . (4)

Usually, comparison of the various bounds for the extreme zeros of the classical
orthogonal polynomials is not an easy task due to the parameters involved. At least
for large n, the bounds in Theorem 1, Theorem 3 and Corollary 1 are sharper than
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those in Theorem A, Corollary A and Theorem B, respectively. In fact, the actual
bounds obtained with the approach here are slightly sharper but are given by rather
complicated expressions; in particular, by a limit passage we reproduce a result of
Gupta and Muldoon from [8] about the smallest zero of the Laguerre polynomial.
These and some other observations are given in Section 4 of the paper.

The rest of the paper is organized as follows. In Section 2 we present the neces-
sary facts about the Euler–Rayleigh method and the Newton identities. The proof of
the results is given in Section 3.1 (for the reader’s convenience, in Section 3.2 we
include a short proof of Theorem C).

2 The Euler–Rayleigh Method

As was already mentioned, the proof of our results exploits the so-called Euler–
Rayleigh method (see [10]). Since here (and in [13]) the Euler–Rayleigh method
is applied to real-root polynomials, for the reader’s convenience we provide some
details from [13].

Let P be a monic polynomial of degree n with zeros (xi)
n
1,

P(x) = xn−b1 xn−1 +b2 xn−2−·· ·+(−1)nbn =
n

∏
i=1

(x− xi) . (5)

For k ∈ N0, the power sums

pk = pk(P) :=
n

∑
i=1

xk
i , p0 = n = degP,

and the coefficients (bi)
n
1 of P are connected by the Newton identities (cf. [20])

pr +
min{r−1,n}

∑
i=1

(−1)i pr−i bi +(−1)rr br = 0 , (bi = 0 , i > n) .

From Newton’s identities one easily obtains:

Lemma 1. Assuming n≥ r, the following formulae hold for pr, 1≤ r ≤ 4:

p1(P) = b1 ;

p2(P) = b2
1−2b2 ;

p3(P) = b3
1−3b1b2 +3b3 ;

p4(P) = b4
1−4b2

1b2 +2b2
2 +4b13b3−4b4 .

Let us set

`k(P) :=
pk(P)

pk−1(P)
, uk(P) :=

[
pk(P)

]1/k
, k ∈ N .
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The following statement is Proposition 2.2 in [13], and provides a slight modifica-
tion of Lemma 3.2 in [10].

Proposition 1. Let P be as in (5) with positive zeros x1 < x2 < · · · < xn . Then the
largest zero xn of P satisfies the inequalities

`k(P)< xn < uk(P) , k ∈ N .

Moreover, {`k(P)}∞
k=1 is monotonically increasing, {uk(P)}∞

k=1 is monotonically
decreasing, and

lim
k→∞

`k(P) = lim
k→∞

uk(P) = xn .

3 Proof of the Results

3.1 Proof of Theorem 1

The starting point for the proof of Theorem 1 is the following representation of
P(α,β )

n (cf. [18, eqn. (4.21.2)]:

P(α,β )
n (x) =

(α +1)n

n! 2F1

(
−n,n+α +β +1;α +1;

1− x
2

)
(6)

(for the proof of Theorem C we used another representation of P(α,β )
n as a hyperge-

ometric function, namely, [18, eqn. (4.3.2)]). Here we use Szegő’s notation for the
hypergeometric 2F1 function,

F(a,b;c;z) = 1+
∞

∑
k=1

(a)k

k!
(b)k

(c)k
zk , (a)k := a(a+1) · · ·(a+ k−1) .

It follows from (6) that the monic polynomial

P(z) = zn +
n

∑
i=1

(−1)ibi zn−i

with coefficients

bi = bi(P) =
(

n
i

)
(n+α +β +1)i

(α +1)i
, i = 1, . . . ,n, (7)

has n positive zeros z1 < z2 < · · · < zn, connected with the zeros of P(α,β )
n by the

relation
zi =

2
1− xin(α,β )

, i = 1, . . . ,n .
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According to Proposition 1, pk+1(P)/pk(P) < zn <
[
pk(P)

]1/k, k ∈ N, and conse-
quently

2[
pk(P)

]1/k < 1− xnn(α,β )<
2pk(P)
pk+1(P)

, k ∈ N . (8)

At this point, we find it suitable to substitute

a := α +1 , b := β +1 ,
t := n(n+α +β +1) ,

thus a, b > 0 and t = n(n+a+b−1) . With this notation, the first four coefficients
bi(P) in (7) are given by

b1(P) =
t
a
, b2(P) =

t(t−a−b)
2a(a+1)

, b3(P) =
t(t−a−b)

[
t−2(a+b+1)

]
6a(a+1)(a+2)

,

b4(P) =
t(t−a−b)

[
t−2(a+b+1)

][
t−3(a+b+2)

]
24a(a+1)(a+2)(a+3)

.

On using Lemma 1, we find p1(P) = b1(P) = t/a,

p2(P) =
t
[
t +a(a+b)

]
a2(a+1)

, (9)

p3(P) =
t q2(t)

a3(a+1)(a+2)
,

q2(t) =2t2 +a(2a+3b)t +a2(a+b)(a+b+1) ,
(10)

p4(P) =
t q3(t)

a4(a+1)2(a+2)(a+3)
,

q3(t) =(5a+6)t3 +2a(3a2 +5ab+4a+6b)t2

+a2(3a3 +9a2b+6ab2 +6a2 +15ab+7b2 +2a+4b)t

+a3(a+1)(a+b)(a+b+1)(a+b+2) .

(11)

Theorem 1 follows from the right-hand inequality in (8) with k = 3. In order to
show this, we observe that, according to (10) and (11),

1− xnn(α,β )<
2p3(P)
p4(P)

=
2a(a+1)(a+3)q2(t)

q3(t)
=

4(α +1)(α +2)(α +4)
2q3(t)
q2(t)

.

Hence, to prove the first part of Theorem 1, it suffices to show that if a, b and t are
positive, then

2q3(t)
q2(t)

≥ (5a+6)
(

t +
ab
3

)
= (5α +11)

[
n(n+α +β +1)+

1
3
(α +1)(β +1)

]
.
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With the help of Wolfram’s Mathematica, we find

2q3(t)− (5a+6)
(

t +
ab
3

)
q2(t) =

a
3

r2(t) ,

where

r2(t) =(6a2 +5ab+12a+6b)t2

+a(3a3 +14a2b+6ab2 +3a2 +27ab+6b2−6a+6b)t

+a2(a+b)(a+b+1)(6a2 +ab+18a+12) .

It is clear now that r2(t) > 0: the single negative summand in the right-hand side,
−6a2t, is neutralized by 6a2t2, since t = n(n+a+b−1)> n(n−1)≥ 12 for n≥ 4.
Consequently,

2q3(t)
q2(t)

≥ (5a+6)
(

t +
ab
3

)
,

and the first part of Theorem 1 is proved.
For the proof of the second part of Theorem 1, we need to show that

2q3(t)− (5a+6)
(

t +
ab
2

)
q2(t)≥ 0 (12)

provided either β ≤ 4α +7 or n≥max{4,α +β +3}= max{4,a+b+1} .
With the assistance of Mathematica, we find

2q3(t)− (5a+6)
(

t +
ab
2

)
q2(t) =

1
2

a2(a+2)s2(a,b; t) ,

where

s2(a,b; t) = 4t2 +(2a2 +6ab−b2−2a+2b)t +a(a+b)(a+b+1)(4a−b+4) .

Assume first that β ≤ 4α +7, which is equivalent to b≤ 4a+4 . Then obviously
the constant term in the quadratic s2(a,b; ·) is non-negative. We shall prove that the
sum of the other two terms is positive. Indeed, since for n≥ 4 we have

t = n(n+a+b−1)≥ 4(a+b+3)> 0 ,

we need to show that 4t +2a2 +6ab−b2−2a+2b > 0 . The latter follows from

4t +2a2 +6ab−b2−2a+2b≥ 16(a+b+3)+2a2 +6ab−b2−2a+2b

= 2a2 +b(6a+18−b)+14a+48

≥ 2a2 +b(2a+14)+14a+48 > 0 .

Now, assume that n≥max{4,α +β +3}= max{4,a+b+1}. We observe that

t = n(n+a+b−1)≥ 2(a+b)(a+b+1) . (13)
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Therefore,

4t2+(2a2+6ab−b2−2a+2b)t ≥ 8(a+b)(a+b+1)t+(2a2+6ab−b2−2a+2b)t

= (10a2 +22ab+7b2 +6a+10b)t > 0 .

Using the latter inequality and applying (13) once again, we conclude that

s2(a,b; t)≥ (10a2 +22ab+7b2 +6a+10b)t +a(a+b)(a+b+1)(4a−b+4)

≥ (a+b)(a+b+1)
[
20a2 +44ab+14b2 +12a+20b+a(4a−b+4)

]
= (a+b)(a+b+1)(24a2 +43ab+14b2 +16a+20b)> 0 .

Thus, (12) holds true in the case n ≥ max{4,α +β +3}, too, which completes the
proof of the second part of Theorem 1.

3.2 Proof of Theorem C

The original proof of Theorem C in [12] exploits an idea from [18, Paragraph 6.2],
based on the following observation of Laguerre: if f is a real-valued polynomial of
degree n having only real and distinct zeros, and f (x0) = 0, then

3(n−2)
[

f ′′(x0)
]2−4(n−1) f ′(x0) f ′′′(x0)≥ 0 . (14)

In [15] Uluchev and the author proved a conjecture of Foster and Krasikov [7],
stating that if f is a real-valued polynomial of degree n, then for every integer m
satisfying 0≤ 2m≤ n the following inequalities hold true:

2m

∑
j=0

(−1)m+ j
(

2m
j

)
(n− j)!(n−2m+ j)!
(n−m)!(n−2m)!

f ( j)(x) f (2m− j)(x)≥ 0, x ∈ R .

It was shown in [15] that these inequalities provide a refinement of the Jensen in-
equalities for functions from the Laguerre-Pólya class, specialized to the subclass
of real-root polynomials. In [4], (14) was deduced from the above inequalities in the
special case m = 2, and then exploited for the derivation of certain bounds for the
zeros of classical orthogonal polynomials.

Let us substitute in (14) f = P(λ )
n and x0 = xnn(λ ). We make use of f (x0) = 0

and the second order differential equations for f and f ′,

(1− x2) f ′′− (2λ +1)x f ′(x)+n(n+2λ ) f = 0 ,
(1− x2) f ′′′− (2λ +3)x f ′′(x)+(n−1)(n+2λ +1) f ′ = 0 ,

to express f ′(x0) and f ′′′(x0) in terms of f ′′(x0) as follows:
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f ′(x0) =
1− x2

0
(2λ +1)x0

f ′′(x0) ,

f ′′′(x0) =
[2λ +3)x0

1− x2
0
− (n−1)(n+2λ +1)

(2λ +1)x0

]
f ′′(x0) .

Putting these expressions in (14), canceling out the positive factor
[

f ′′(x0)
]2 and

solving the resulting inequality with respect to x2
0, we arrive at the condition

x2
0 ≤

(n−1)(n+2λ +1)

(n+λ )2 +3λ + 5
4 +3 (λ+1/2)2

n−1

.

Hence,

x2
0 <

(n−1)(n+2λ +1)
(n+λ )2 +3λ + 5

4

= 1− (2λ +1)(2λ +9)
4n(n+2λ )+(2λ +1)(2λ +5)

.

This accomplishes the proof of Theorem C.

4 Concluding Remarks

1. As was mentioned in the introduction, at least for large n, the bounds given in
Theorem 1, Theorem 3 and Corollary 1 are sharper than those in Theorem A, Corol-
lary A and Theorem B, respectively. For instance, for fixed α, β > −1 the upper
bounds for 1− xnn(α,β ) in Theorem A and Theorem 1 are respectively

(α +1)(α +3)
n2 +o(n−2),

4(α +1)(α +2)(α +4)
(5α +11)n2 +o(n−2) , n→ ∞ ,

and

(α +1)(α +3)− 4(α +1)(α +2)(α +4)
5α +11

=
(α +1)3

5α +11
> 0 , α >−1 .

The same conclusion is drawn for the other two pairs of bounds when λ >−1/2 is
fixed and n is large (it follows from the above consideration with λ = α−1/2).

2. Theorem 1 is deduced from the second inequality in (8) with k = 3. Note that (8)
with k = 2 together with (9) and (10) implies the estimate

1− xnn(α,β )<
2(α +1)(α +3)

2n(n+α +β +1)+(α +1)(β +1)
,

which however is less precise than the estimate in Theorem C, and also than the
estimate of Driver and Jordaan from [5],
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1− xnn(α,β )<
2(α +1)(α +3)

2n(n+α +β +1)+(α +1)(α +β +2)
.

Of course, having found the power sums pi(P), 1≤ i≤ 4, one could apply Propo-
sition 1 for derivation of lower bounds for 1− xn,n(α,β ) as well. For instance, the
first inequality in (8) with k = 4 yields

1− xnn(α,β )>
2[

p4(P)
]1/4

with p4(P) given by (11) and a = α +1, b = β +1, t = n(n+α +β +1). However,
the expression on the right-hand side looks rather complicated to be of any use.

3. In [8] Gupta and Muldoon proved the following upper bound for the smallest zero
x1n(α) of the n-th Laguerre polynomial L(α)

n :

x1n(α)<
(α +1)(α +2)(α +4)(2n+α +1)

(5α +11)n(n+α +1)+(α +1)2(α +2)
. (15)

Let us demonstrate how this result can be deduced from the proof of Theorem 1 and
the well-known limit relation

x1n(α) = lim
β→∞

β

2
(
1− xnn(α,β )

)
.

Since
1
2
(
1− xnn(α,β )

)
≤ p3(P)

p4(P)
=

a(a+1)(a+3)q2(t)
q3(t)

with a = α + 1, b = β + 1, t = n(n+α + β + 1), and q2(t), q3(t) given in (10) -
(11), we have

x1n(α) = lim
β→∞

β

2
(
1− xnn(α,β )

)
≤ a(a+1)(a+3) lim

b→∞

bq2(t)
q3(t)

. (16)

On using

lim
b→∞

t
b
= n

and the explicit form of q2(t) and q3(t), we find

lim
b→∞

bq2(t)
q3(t)

= lim
b→∞

q2(t)/b2

q3(t)/b3

=
2n2 +3an+a2

(5a+6)n3 +2a(5a+6)n2 +a2(6a+7)n+a3(a+1)

=
2n+a+1

(5a+6)n(n+a)+a2(a+1)
.
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By substituting the latter expression in (16) and setting a = α +1, we arrive at (15) .

4. We already mentioned in the introduction that, for every fixed λ >−1/2, the ratio
r(λ ,n) of the upper and the lower bound for 1− x2

nn(λ ), given by Theorem 1 and
Theorem C, respectively, tends to a limit which does not exceed 1.6. More precisely,

r(λ ,n) = ρ(λ )ψ(λ ,n) ,

where

ρ(λ ) =
8(2λ +3)(2λ +7)
(2λ +9)(10λ +17)

, ϕ(λ ,n) =
n(n+2λ )+(2λ +1)(2λ +5)/4

n(n+2λ )+(2λ +1)2/8
.

5 10 15 20
λ

1.1

1.2

1.3

1.4

1.5

ρ(λ)

Fig. 1 The graph of ρ(λ ).

The function ρ(λ ) is monotonically increasing in the interval (−1/2,∞) as-
suming values between 1 and 1.6 (see Fig. 1) while, for a fixed λ > −1/2,
limn→∞ ϕ(λ ,n) = 1.

5. The Euler–Rayleigh approach assisted with symbolic algebra has been applied in
[17] for the derivation of bounds for the extreme zeros of the Laguerre polynomials,
and in [1, 14, 16] for the estimation of the extreme zeros of some non-classical
orthogonal polynomials, which are related to the sharp constants in some Markov-
type inequalities in weighted L2 norms.
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