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Abstract. We present new results regarding Lebesgue-type inequalities for the

Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces.

We improve earlier bounds in [19] for dictionaries satisfying a new property in-

troduced here. We apply these results to derive optimal bounds in two natural

examples of sequence spaces. In particular, optimality is obtained in the case of the

multivariate Haar system in Lp with 1 < p ≤ 2, under the Littlewood-Paley norm.

1. Introduction

This paper is devoted to theoretical aspects of sparse approximation. The main

motivation for the study of sparse approximation is that many real world signals

can be well approximated by sparse ones. In a general setting we are working in

a Banach space X with a redundant system of elements (dictionary) D. There is a

solid justification of the importance of a Banach space setting in numerical analysis

in general, and in sparse approximation in particular; see, for instance, [18, Preface].

An element (function, signal) f ∈ X is said to be N -sparse with respect to D if it has

a representation f =
∑N

j=1 cjgj, where gj ∈ D and cj is a scalar, j = 1, . . . , N . The

set of all N -sparse elements is denoted by ΣN(D). For a given element f we introduce

the error of best N -term approximation

σN(f,D) := inf
a∈ΣN (D)

‖f − a‖.

In a general setting one studies algorithms (approximation methods) A = {AN(·,D)}∞N=1

with respect to a given dictionary D. These mappings must satisfy that AN(f,D) ∈
ΣN(D), for all f ∈ X; in other words, AN provides an N -term approximant with

respect to D. It is clear that for any f ∈ X and any N we have ‖f − AN(f,D)‖ ≥
σN(f,D). We are interested in such pairs (D,A ) for which the algorithm A provides

approximation close to the best N -term approximation. We introduce the correspond-

ing definition (see [21], p.423). Let ϑ(u) be a function such that ϑ(u) ≥ 1.

DEFINITION 1.1. We say that D is a ϑ-greedy dictionary with respect to A if there

exists a constant C such that for any f ∈ X and all N ∈ N we have

(1.2) ‖f − Aϑ(N)N(f, D)‖ ≤ CσN(f, D).
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In the case ϑ(u) = C0 ≥ 1 is a constant we call D an almost greedy dictionary with

respect to A , and in the case C0 = 1 we call D a greedy dictionary. If D = Ψ is a

basis then in the above definitions we replace dictionary by basis. Inequalities of the

form (1.2) are called Lebesgue-type inequalities.

In the case that A = {GN(·,Ψ)}∞N=1 is the Thresholding Greedy Algorithm (TGA),

the theory of greedy and almost greedy bases is well developed (see [18] and [20]). We

remind that if Ψ = {ψk}∞k=1 is a normalized basis in X, and f =
∑∞

k=1 ckψk ∈ X, then

the TGA at the Nth iteration gives an approximant

GN(f,Ψ) :=
N∑
j=1

ckjψkj , where |ck1 | ≥ |ck2| ≥ . . . .

In particular, it is known (see [18], p.17) that the univariate Haar system is a greedy

basis with respect to TGA in Lp, for all 1 < p <∞. Also, it is known that the TGA

does not work well with respect to the trigonometric system (see, for instance, [21,

Ch. 8]). It was demonstrated in the paper [19] (see also [21], Ch.8) that the Weak

Chebyshev Greedy Algorithm (WCGA), which we define momentarily, works very well

for a special class of dictionaries, which includes the trigonometric system.

In this paper we further develop recent results from [19] concerning Lebesgue-type

inequalities for the WCGA in the context of uniformly smooth Banach spaces. We

mostly concentrate on the case when WCGA is applied with respect to a basis. We

also emphasize that, although the theory of these algorithms is typically stated for real

Banach spaces, our results are actually valid for both, real or complex Banach spaces;

in particular they can be applied to the standard (complex) trigonometric basis.

We now recall how this algorithm is defined; see [17] or [18, Chapter 6.2]. Let

(X, ‖ · ‖) be a Banach space over K = R or C. Given f ∈ X \ {0}, let Ff be an

associated norming functional in X∗, that is,

(1.3) ‖Ff‖X∗ = 1, and Ff (f) = ‖f‖.

Such functionals always exist by the Hahn-Banach theorem, and are unique provided

the norm ‖ · ‖ is smooth. Here we shall assume the stronger property that ‖ · ‖ is

uniformly smooth of power type, that is, there exists q > 1 and a constant γ > 0 such

that

(1.4) ρ(t) ≤ γ tq, t > 0,

where ρ(t) is the associated modulus of smoothness, given by

(1.5) 2ρ(t) = sup
‖f‖=‖g‖=1

(
‖f + tg‖+ ‖f − tg‖ − 2‖f‖

)
, t ∈ R.
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Let D = {ϕi}i∈I ⊂ X be a fixed dictionary in X, that is, a subset of unit vectors

with dense span. We also fix a weakness parameter τ ∈ (0, 1]. The WCGA associated

with (X, ‖ · ‖,D, τ) is defined as follows.

Weak Chebyshev Greedy Algorithm (WCGA). Given f ∈ X \ {0}, we let

f0 := f and define inductively vectors ϕi1 , . . . , ϕin in D and f1, . . . , fn ∈ X by the

following procedure: at step n+ 1 we pick any ϕin+1 ∈ D such that

|Ffn(ϕin+1)| ≥ τ sup
ϕ∈D
|Ffn(ϕ)|,

and let Gn+1(f) be any element in [ϕi1 , . . . , ϕin+1 ] such that

‖f − Gn+1(f)‖ = dist
(
f, [ϕi1 , . . . , ϕin+1 ]

)
.

Then we set fn+1 = f − Gn+1(f), and iterate the process (indefinitely, or until the

remainder fn+1 = 0).

It is known from [17] that ‖f − Gn(f)‖ → 0 as n → ∞, for all f ∈ X, provided

that (X, ‖ · ‖) is uniformly smooth. More recently, it has been shown in [19] that

Lebesgue-type inequalities hold for this algorithm. In this paper it is convenient to

formulate them as follows: we search for functions φ : N → N and constants C > 0

such that, for all N ≥ 1 it holds

(1.6)
∥∥f − Gφ(N)(f)‖ ≤ C σN(f), ∀ f ∈ X.

Note, in particular, that (1.6) implies exact recovery for each f ∈ ΣN after φ(N) steps.

Since the dictionary D is fixed we omit it from the notation, that is, ΣN = ΣN(D)

and σN(f) = σN(f,D).

We now state a result from [19] which gives bounds for such functions φ in terms

of suitable parameters depending on (X, ‖ · ‖,D); see also [21, Section 8.7]. These

parameters are quantified by the following properties.

Property A2. We say that (X,D) satisfies property A2(U), with parameter U ≥ 1,

if

(1.7)
∥∥∑
i∈A

aiϕi
∥∥ ≤ U

∥∥∑
i∈B

aiϕi
∥∥,

for all finite sets A ⊂ B, and all scalars ai ∈ K. When (1.7) holds only for sets with

|A| ≤ K, we say that ΣK has the property A2(U).

Property A3. We say that (X,D) satisfies property A3(r, V ), with parameters r ∈
(0, 1] and V ≥ 1, if

(1.8)
∑
i∈A

|ai| ≤ V |A|r
∥∥∑
i∈B

aiϕi
∥∥,

for all finite sets A ⊂ B, and all scalars ai ∈ K. When (1.8) holds only for sets with

|A| ≤ K, we say that ΣK has the property A3(r, V ).
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A brief discussion on the meaning of these properties and some examples, is given

in [19]; see also [21, section 8.7] or §2.2 below. The next result is a special case of

Theorem 2.8 in [19]; see also [21, Theorem 8.7.18].

THEOREM 1.9. Let N ≥ 1 and assume that (X, ‖ · ‖,D) has the following properties

(i) ρ(t) ≤ γtq, for some γ > 0 and q ∈ (1, 2];

(ii) ΣN satisfies property A3(r, V ), for some r ∈ (0, 1] and V > 0;

(iii) ΣN satisfies property A2(U), for some U ≥ 1.

Then, there is a universal constant C ≥ 1 such that, for every τ ∈ (0, 1], the Lebesgue-

type inequality in (1.6) holds with

(1.10) φ(N) =
⌊
C1(τ, γ, q)

(
log(U + 1)

)
V q′ N rq′

⌋
,

where C1(τ, γ, q) = C2(q) γq
′/q τ−q

′
.

REMARK 1.11. A similar result holds with U replaced by V N in (1.10), since A3(V, r)

for ΣN implies A2(U) with U = V N ; see [19, Theorem 2.7].

In this paper we elaborate further on these results in the following directions. First

we replace the condition (i) on (X, ‖ · ‖), by a less demanding condition involving as

well the system D.

DEFINITION 1.12. We say that (X, ‖ · ‖,D) has the property D(s, c1), for some

parameters c1 > 0 and s > 1, if

(1.13) dist(f, [ϕ]) ≤ ‖f‖
(
1− c1|Ff (ϕ)|s

)
,

for all f ∈ X \ {0} and all ϕ ∈ D.

We shall show in Proposition 2.6 below that ρ(t) ≤ γtq implies (1.13) with s = q′

and some c1 = c1(γ, q), actually for all ‖ϕ‖ = 1. However, for certain (X,D) it may

happen D(s, c1) holds with a better (smaller) value of s. For example, if X = `p,

1 < p < ∞, and D is the canonical basis, then D(s, c1) holds with s = p′, while the

modulus of smoothness has power type q = min{p, 2}. This, and the more general

example X = `p(`q), will be discussed in §4 below.

Using this new concept we shall show the following improvement over Theorem 1.9.

THEOREM 1.14. Let N ≥ 1 and assume that (X, ‖·‖,D) has the following properties

(i) (X,D) satisfies property D(s, c1), for some s > 1 and c1 > 0;

(ii) ΣN satisfies property A3(r, V ), for some r ∈ (0, 1] and V > 0;

(iii) ΣN satisfies property A2(U), for some U ≥ 1.

Then, there is a universal constant C ≥ 1 such that, for every τ ∈ (0, 1], the Lebesgue-

type inequality in (1.6) holds with

(1.15) φ(N) =
⌊
C ′1(τ, c1, s)

(
log(U + 1)

)
V sN rs

⌋
,
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where C ′1(τ, c1, s) = C ′2(s) c−1
1 τ−s.

As an application, we shall find optimal Lebesgue type inequalities for some special

pairs (X,D). We remark that no lower bounds for functions φ satisfying (1.6) seemed

to appear earlier in the literature (besides the trivial φ(N) ≥ N). Our first example

concerns the space X = `p(`q) with D the canonical basis.

THEOREM 1.16. Let X = `p(`q), with 1 < p, q < ∞, and D be the canonical basis.

Let

β = β(p, q) = max
{p′
q′
,
q′

p′

}
.

Then, there exists c = c(p, q, τ) > 0 such that the WCGA satisfies (1.6) with

φ(N) =
⌊
cNβ

⌋
.

Moreover, suppose that

(1.17) ‖x− Gψ(N)x‖ ≤ C σN(x), ∀ N ≥ 1, x ∈ X.

Then ψ(N) ≥ c′Nβ, for some c′ > 0.

Concerning this example, we shall also compare the WCGA with the usual TGA,

showing that the former performs better when p > q′; see Figure 4.1 below.

Our second application of Theorem 1.14 regards the d-variate Haar system in X =

Lp([0, 1]d). Here, however, we must renorm the space to obtain new results. We

consider the Littlewood-Paley renorming, defined as follows. LetHd
p = Hp×. . .×Hp =

{Hn}n≥0 denote the Lp-normalized d-variate Haar system (ie, the tensor product of

the 1-dimensional Haar basis Hp in [0, 1]). Given f =
∑

n≥0 cn(f)Hn ∈ Lp, we let

(1.18)
��f��

p
:=
∥∥S(f)

∥∥
Lp
, where S(f) =

(∑
n≥0

|cn(f)Hn|2
) 1

2
.

This defines an equivalent norm in Lp([0, 1]d), provided 1 < p < ∞. Our next result

gives the optimal growth for the Lebesgue type functions when 1 < p ≤ 2.

THEOREM 1.19. Let X = Lp([0, 1]d), 1 < p ≤ 2, endowed with the norm
�� · ��

p
, and

let D = Hd
p be the Haar basis. Let

h(p, d) = (d− 1)
∣∣∣1
2
− 1

p

∣∣∣.
Then, the WCGA satisfies (1.6) with

φ(N) =
⌊
c (1 + logN)p

′h(p,d)N
⌋
,

for some c = c(p, d, τ) > 0. Moreover, suppose that

(1.20)
��f − Gψ(N)f

��
p
≤ C σN(f), ∀ N ≥ 1, f ∈ X.

Then ψ(N) ≥ c′ (1 + logN)p
′h(p,d) N , for some c′ > 0.
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REMARK 1.21. In the case 2 < p < ∞, it is known that an analog of (1.20), with

� · �p replaced by the standard ‖ · ‖Lp , holds with

ψ(N) ≤ cN2/p′ ;

see [19, Example 4]. However, we do not know whether this power is optimal.

The proof of Theorem 1.19, presented in §6, is obtained as the special case q = 2

of a more general statement for a class of sequence spaces fp,q. These are defined by

norms as in (1.18), but with the square function Sf replaced by an `q-function Sqf ;

see §5 below for precise statements. The spaces `p(`q) and fp,q are discrete analogs

of the Besov and Triebel-Lizorkin spaces, so our results can be transferred as well to

these settings, see Remarks 6.1 and 6.2 below.

Finally, in the last part of the paper we discuss the significance of property A3 for

suitable classes of bases D = Ψ = {ψn}n≥1 in X = Lp. As a consequence of our results

we shall obtain the following.

THEOREM 1.22. Let X = Lp[0, 1], 1 < p <∞, and let D = Ψ be a greedy basis with

respect to the TGA. Let

(1.23) α(p) = 1 if 1 < p ≤ 2, and α(p) = 2/p′ if 2 < p <∞.

Then, there exists a universal constant C ≥ 1 such that∥∥f − GcNα(p)f
∥∥
p
≤ C σN(f), ∀ N ≥ 1, f ∈ Lp,

for some c = c(p, τ) > 0.

In particular, when 1 < p ≤ 2, greedy bases with respect to the TGA are almost

greedy with respect to the WCGA (in the sense of Definition 1.1). For p > 2, however,

we do not know whether the power α(p) = 2/p′ may be improved. These resuls are

discussed in §7, together with various additional statements under weaker assump-

tions in Ψ (such as almost-greedy, quasi-greedy, etc...), where the best exponents r in

property A3 are found for each class of bases. We remark that, in the case of X = Lp

with p > 2, we do not know whether, for some basis (or dictionary) D, the Lebesgue

inequality for the WCGA may hold with φ(N) = O(N).

2. Preliminaries

2.1. Norming functionals and distance to subspaces. Let (X, ‖ ·‖) be a Banach

space over K = R or C. Let ρ(t) be the associated modulus of smoothness, given in

(1.5). Recall that ‖ · ‖ is called uniformly smooth if ρ(t) = o(t) as t→ 0. Recall also

from (1.3) that Ff ∈ X∗ denotes the norming functional of a vector f ∈ X \ {0}. In

all our proofs below, the functional ρ(t) will only appear via the following inequality.
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PROPOSITION 2.1. For all f, g ∈ X with ‖f‖ = ‖g‖ = 1 it holds

(2.2) 0 ≤ ‖f + tg‖ − ‖f‖ − t<[Ff (g)] ≤ 2ρ(t), t ∈ R.

In particular, if ρ(t) = o(t), then <[Ff (·)] is the Fréchet derivative of ‖ · ‖ at f .

Proof. The left inequality in (2.2) follows easily from

(2.3) ‖f + tg‖ ≥ |Ff (f + tg)| ≥ <[Ff (f + tg)] = ‖f‖+ t<[Ff (g)], t ∈ R.

Define

σ(t, f, g) := ‖f + tg‖+ ‖f − tg‖ − 2‖f‖ ≥ 0, ∀ t ∈ R.

Then, using (2.3) with t replaced by −t we have

‖f + tg‖ = 2‖f‖ − ‖f − tg‖+ σ(t, f, g) ≤ 2‖f‖ − ‖f‖+ t<[Ff (g)] + σ(t, f, g),

and therefore

‖f + tg‖ − ‖f‖ − t<[Ff (g)] ≤ σ(t, f, g) ≤ 2ρ(t), t ∈ R.

This establishes the upper bound in (2.2). �

By homogeneity one deduces

COROLLARY 2.4. For every (non-null) f, g ∈ X with ‖g‖ = 1 it holds

(2.5) 0 ≤ ‖f + tg‖ − ‖f‖ − t<[Ff (g)] ≤ 2‖f‖ρ(t/‖f‖), t ∈ R.

An interesting application of (2.5) gives the following result.

PROPOSITION 2.6. Suppose that 2ρ(t) ≤ γ tq, for some γ > 0 and q > 1. Then,

there exists c1 = c1(γ, q) > 0 such that

(2.7) dist(f, [ϕ]) ≤ ‖f‖
(
1− c1|Ff (ϕ)|q′

)
,

for all f, ϕ ∈ X \ {0} with ‖ϕ‖ = 1.

Proof. Let ν = signFf (ϕ) and λ > 0. Then Corollary 2.4 implies that

‖f − λνϕ‖ ≤ ‖f‖ − λ<[Ff (νϕ)] + γ‖f‖(λ/‖f‖)q

= ‖f‖
(

1− λ
‖f‖ |Ff (ϕ)|+ γ( λ

‖f‖)
q
)
.(2.8)

Now, it is easily checked that the 1-dimensional function h(λ) = γλq − λF reaches a

minimum at λ1 = [F/(γq)]q
′−1, and that

min
λ>0

h(λ) = −c1F
q′ , with c1 =

1

q′(γq)q′−1
.

So, minimizing over λ > 0 in (2.8) one obtains (2.7). �

Thus, recalling Definition 1.12, we recover the following assertion from §1.
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COROLLARY 2.9. Suppose that ρ(t) ≤ γ tq, for some γ > 0 and q > 1. Then, for

every dictionary D, the pair (X,D) has the property D(s, c1) with s = q′ and some

c1 = c1(γ, q) > 0.

REMARK 2.10. Observe that ρ(t) ≤ γ tq can only hold for q ≤ 2, and hence q′ ≥ 2.

However, property D(s, c1) may hold in some cases with s close to 1. For instance, if

X = `p with p > 2 and D is the canonical basis, then it is not hard to verify that

(X,D) has property D(s, c1) with s = p′ and c1 = 1/p; see Proposition 4.12 below for

a more general class of such examples.

REMARK 2.11. Observe that the property D(s, c1) can also be written as∣∣∣Ff (ϕ)
∣∣∣ ≤ c−1

1

(
1− dist(f, [ϕ])

)1/s

, ∀ ‖f‖ = 1, ϕ ∈ D.

One may ask whether this property could hold for some non-uniformly smooth Banach

space (X, ‖ · ‖) and some dictionary D.

Below we shall also use the following known lemma.

LEMMA 2.12. Assume that the norm ‖ · ‖ is Gâteaux differentiable in X. Consider

a vector f ∈ X, a finite dimensional subspace Y ⊂ X, and an element g ∈ Y such that

‖f − g‖ = dist(f,Y) > 0. Then

(2.13) Ff−g(h) = 0, ∀ h ∈ Y .

Proof. Let h ∈ Y and let ν = signFf−g(h). Then, for all λ > 0 we have

dist(f,Y) ≤ ‖f − g − λνh‖ ≤ ‖f − g‖ − λ<[Ff−g(νh)] + o(λ)

= dist(f,Y)− λ|Ff−g(h)|+ o(λ).

Thus, |Ff−g(h)| ≤ o(λ)/λ, which letting λ↘ 0 implies that Ff−g(h) = 0. �

REMARK 2.14. As a consequence of Lemma 2.12, the vectors ϕi1 , ϕi2 , ... chosen by

the WCGA are always linearly independent.

2.2. Properties A2 and A3 for bases. Suppose that D = Ψ = {ψn}∞n=1 is a (normal-

ized) Schauder basis in X. We denote its dual system by Ψ∗ = {ψ∗n}n≥1. We briefly

discuss the meaning of properties A2 and A3 in this case, and relate them with more

familiar concepts from the theory of thresholding greedy algorithms.

In the first result we use the standard notation

SA(f) :=
∑
n∈A

ψ∗n(f)ψn, f ∈ X,

for each finite set A ⊂ N. The next lemma is immediate from the definitions.
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LEMMA 2.15. Let Ψ be a (normalized) Schauder basis in X. Then, for each N ≥ 1,

ΣN satisfies the property A2 with parameter

(2.16) U = kN := sup
|A|≤N

‖SA‖.

In particular, (X,Ψ) has the property A2(U) if and only if Ψ is an unconditional basis,

with suppression unconditionality constant U .

The second result relates property A3 with the right-democracy function of the dual

basis Ψ∗. We use the convenient notation

1
∗
εA :=

∑
n∈A

εnψ
∗
n,

when A ⊂ N is a finite set, and ε = (εn)∞n=1 ⊂ K is such that |εn| = 1 for all n.

LEMMA 2.17. Let Ψ be a (normalized) Schauder basis in X. Then (X,Ψ) satisfies

property A3(r, V ) if and only if

(2.18)
∥∥1∗εA∥∥X∗ ≤ V |A|r

for all finite A ⊂ N, and all ε = (εn)∞n=1 ⊂ K with |εn| = 1.

Proof. Assume first (2.18), and take sets A ⊂ B and scalars an ∈ K. If εn = sign an
then∑

n∈A

|an| = 1
∗
εA

(∑
n∈B anψn

)
≤ ‖1∗εA‖X∗

∥∥∑
n∈B anψn

∥∥ ≤ V |A|r
∥∥∑

n∈B anψn
∥∥.

Conversely, assume property A3(r, V ), and pick A and ε. If f ∈ X has a finite

expansion with respect to Ψ we have

|1∗εA(f)| ≤
∑
n∈A

|ψ∗n(f)| ≤ V |A|r
∥∥ ∞∑
n=1

ψ∗n(f)ψn
∥∥ = V |A|r ‖f‖.

Therefore, ‖1∗εA‖X∗ ≤ V |A|r, and (2.18) holds. �

3. Proof of Theorem 1.14

We use the definition of WCGA given in §1. We shall follow closely the arguments

given in [19, §3]; see also [21, §8.7]. As in that paper, the proof is split into two main

steps.

3.1. The iteration inequality. In the first step we prove the following variant of

[19, Theorem 2.3]; see also [21, Theorem 8.7.12]. The proof makes use of the property

D(s, c1), and has been rewritten to simplify some steps from [19].

THEOREM 3.1. Let K ≥ 1 and assume that

(i) (X,D) has property D(s, c1), for some s > 1

(ii) ΣK has property A3(r, V ), for some r ≤ 1.
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Then, for all f ∈ X, Φ ∈ ΣK and all m,M ≥ 0 it holds

(3.2) ‖fm+M‖ ≤ e−
c2M
Krs ‖fm‖ + 2 ‖Φ− f‖,

where c2 = c(s) c1 τ
s V −s, for some c(s) > 0.

Proof. The case fm+M = 0 is trivial, so we assume ‖fm+M‖ > 0. If n ∈ [m,m + M)

then also ‖fn‖ > 0. From the definition of the algorithm and property D(s, c1),

(3.3) ‖fn+1‖ ≤ dist(fn, [ϕin+1 ]) ≤ ‖fn‖
(

1− c1|Ffn(ϕin+1)|s
)
.

When Φ =
∑

T aiϕi ∈ ΣK , we use the notation

ΦA :=
∑
A

aiϕi, for each A ⊂ T.

We also denote

(3.4) Γn := supp Gn(f) = {i1, . . . , in}, and Tn = T \ Γn.

By Lemma 2.12 and the definition of the algorithm we have

(3.5) τ |Ffn(ΦA)| = τ |Ffn(ΦA∩Tn)| ≤
∑
A∩Tn

|ai| |Ffn(ϕin+1)|.

By property A3,∑
A∩Tn

|ai| ≤ V |A|r ‖Φ− Gnf‖ ≤ V |A|r
(
‖Φ− f‖+ ‖fn‖

)
.

Therefore, inserting these estimates into (3.3) we obtain

(3.6) ‖fn+1‖ ≤ ‖fn‖
[
1− c1

( τ |Ffn(ΦA)|
V |A|r (‖Φ− f‖+ ‖fn‖)

)s]
,

for all (non-empty) sets A ⊂ T . One wants to pick the best possible set A in (3.6).

For later estimates we shall allow sets A ⊂ Tk, for a fixed k ∈ [0,m], and define

B = Tk \ A.

In this theorem it will suffice to consider k = 0 and A = T (so B = ∅), but we keep

on with the general case. Since Γk ⊂ Γn, using Lemma 2.12 we have

|Ffn(ΦA)| = |Ffn(ΦA + ΦΓk∩A − Gnf)| = |Ffn(Φ− ΦB − f + fn)|

≥ ‖fn‖ − ‖Φ− f‖ − ‖ΦB‖.

Inserting the above inequalities into (3.6), and denoting c3 = c1(τ/(2V ))s, we obtain

‖fn+1‖ ≤ ‖fn‖
(

1− c3

[‖fn‖ − ‖Φ− f‖ − ‖ΦB‖]s+
[2−1|A|r (‖Φ− f‖+ ‖fn‖)]s

)
≤ ‖fn‖

(
1− c3

[‖fn‖ − ‖Φ− f‖ − ‖ΦB‖]s+
[|A|r ‖fn‖]s

)
,
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where the last inequality is trivial when ‖fn‖ ≤ ‖Φ−f‖+‖ΦB‖, and in the complement

case follows from ‖fn‖ ≥ ‖Φ− f‖. We now use the elementary inequality

(1− u)s+ ≥ δs(1− 2u), u > 0,

which holds for some δs > 0. Applying this with u = (‖Φ − f‖ + ‖ΦB‖)/‖fn‖, and

letting c2 = c3δs, we obtain

(3.7) ‖fn+1‖ ≤ ‖fn‖
(

1− c2

|A|rs
)

+
2 c2

|A|rs
(‖Φ− f‖+ ‖ΦB‖).

This expression can be rewritten as

‖fn+1‖ − 2(‖Φ− f‖+ ‖ΦB‖) ≤
(
‖fn‖ − 2 (‖Φ− f‖+ ‖ΦB‖)

)(
1− c2

|A|rs
)
.

Denoting β = c2/|A|rs, one also has(
‖fn+1‖ − 2(‖Φ− f‖+ ‖ΦB‖)

)
+
≤ (1− β)

(
‖fn‖ − 2 (‖Φ− f‖+ ‖ΦB‖)

)
+
,

after checking the trivial negative cases. One can now iterate this inequality for

m ≤ n < m+M to obtain

‖fm+M‖ − 2(‖Φ− f‖+ ‖ΦB‖) ≤ (1− β)M
(
‖fm‖ − 2 (‖Φ− f‖+ ‖ΦB‖)

)
+

≤ (1− β)M ‖fm‖,

and therefore

(3.8) ‖fm+M‖ ≤ (1− β)M ‖fm‖ + 2(‖Φ− f‖+ ‖ΦB‖).

Since 1− β ≤ e−β and β ≥ c2/K
rs, letting B = ∅ in (3.8) gives (3.2). �

REMARK 3.9. The above proof actually shows the validity of the following more

general inequality

(3.10) ‖fm+M‖ ≤ e−c2M/|A|rs ‖fm‖ + 2(‖Φ− f‖+ ‖ΦB‖),

for any sets A ⊂ Tk and B = Tk \ A, and any 0 ≤ k ≤ m. This is the analog of the

corresponding expression in [19, (3.7)]; see also [21, (8.7.22)]. Observe that (3.10) also

makes sense for A = ∅, in which case the inequality follows trivially from

‖fk‖ ≤ ‖f − ΦΓk‖ = ‖f − Φ + ΦB‖ ≤ ‖Φ− f‖+ ‖ΦB‖.

3.2. Proof of Theorem 1.14. The second part of the proof of Theorem 1.14 is

then carried exactly as in the paper [19]; see also [21, pp. 433-440]. It is based on

appropriate choices of sets Aj and Bj in inequality (3.10), at various inductive steps.

We only remark that the quantities |Aj|rq
′

that appear in [19] can all be replaced

by |Aj|rs, according to inequality (3.10), as it is only via this inequality that the

uniform smoothness of the norm (or the property D(s, c1)) is used in this proof. All

the arguments in [19] can then be applied verbatim, so we do not write down the

details.
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�

4. The WCGA in the spaces `p(`q)

In this section we illustrate the performance of the WCGA in the space X = `p(`q),

when 1 < p, q <∞. This is the set of all sequences x = (xj,k)
∞
j,k=1 ⊂ K such that

(4.1) ‖x‖ :=
[ ∞∑
j=1

( ∞∑
k=1

|xj,k|q
) p
q
] 1
p
<∞.

Throughout this section we let D = {ej,k}j,k≥1, the canonical basis in the space X.

4.1. Norming functionals in `p(`q). It will be convenient to use the following no-

tation

∆j(x) :=
( ∞∑
k=1

|xj,k|q
) 1
q
,

so that ‖x‖ = (
∑

j≥1 ∆j(x)p)1/p.

LEMMA 4.2. When x ∈ `p(`q) \ {0}, the norming functional Fx is given by

(4.3) Fx(y) =
1

‖x‖p−1

∞∑
j=1

∆j(x)p−q
∞∑
k=1

|xj,k|q−2x̄j,kyj,k.

Proof. It is straightforward to check that Fx(x) = ‖x‖. So we only need to verify that

|Fx(y)| ≤ ‖y‖. This follows from a double use of Hölder’s inequality

|Fx(y)| ≤ ‖x‖−(p−1)
∑
j

∆j(x)p−q
(∑

k

|xj,k|(q−1)q′
)1/q′

∆j(y)

= ‖x‖−(p−1)
∑
j

∆j(x)p−1 ∆j(y)

≤ ‖x‖−(p−1)
(∑

j

∆j(x)(p−1)p′
)1/p′

‖y‖ = ‖y‖.

�

We shall apply the functionals Fx to the elements ej,k of the canonical basis.

COROLLARY 4.4. If x ∈ `p(`q) \ {0} and j, k ∈ N, then

(4.5)
∣∣Fx(ej,k)

∣∣ =
∆j(x)p−q |xj,k|q−1

‖x‖p−1
.

As special cases notice that

• if suppx ⊂ {j0} × N, then |Fx(ej,k)| = δj,j0 |xj0,k|q−1/‖x‖q−1.

• if | suppx ∩ ({j} × N)| ≤ 1, for all j, then |Fx(ej,k)| = |xj,k|p−1/‖x‖p−1.
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In particular, for vectors x in these two cases, the WCGA (with τ = 1) coincides

with the usual TGA; that is, after N steps of the algorithm it picks the N largest

coefficients, and the remainder xN is the projection of x on the subspace spanned by

the remaining basis vectors.

4.2. Performance of WCGA in `p(`q). Here we compute the relevant parameters

in (i)-(iii) of Theorems 1.9 and 1.14. Since the canonical basis is unconditional we see

that property A2 holds with U = 1. Property A3 is given by the next lemma, which

follows immediately from the inclusion X ↪→ `max{p,q}.

LEMMA 4.6. For every finite set A ⊂ N× N and every x ∈ X we have∑
(j,k)∈A

|xj,k| ≤ |A|r ‖x‖, with r = max{ 1
p′
, 1
q′
}.

In particular, property A3 holds with parameters r and V = 1.

The power of uniform smoothness for the standard norm (4.1) in `p(`q) can be

estimated as follows; see [5, Proposition 17] or [13, Theorem 3.5].

LEMMA 4.7. If 1 < p, q <∞, then ρ(t) ≤ γ tσ with σ = min{p, q, 2}.

If at this point one applies Theorem 1.9, a simple computation easily leads to the

following.

COROLLARY 4.8. Let β = max{p′
q′
, q
′

p′
}. Assume also that

(4.9) min{p, q} ≤ 2.

Then there are constants C1 and C2 such that

(4.10) ‖x− GC1Nβ(x)‖ ≤ C2 σN(x), ∀N ≥ 1, x ∈ X.

REMARK 4.11. If one attempts to use Theorem 1.9 in the case min{p, q} > 2, then

σ = 2 in Lemma 4.7, and one only obtains ‖x− GC1Nβ1 (x)‖ ≤ C2 σN(x) with

β1 = max{ 2
p′
, 2
q′
} > max{p′

q′
, q
′

p′
}.

As we shall see below, this result can be improved using instead Theorem 1.14.

4.3. An improvement of the previous bound. We begin by establishing the va-

lidity of property D(s, c1).

PROPOSITION 4.12. Let 1 < p, q < ∞, and s = max{p′, q′}. Then there exists

c1 = c1(p, q) > 0 such that,

(4.13) dist(x, [ej,k]) ≤ ‖x‖
(
1− c1|Fx(ej,k)|s

)
,

for all (j, k) ∈ N× N and all x ∈ X = `p(`q) \ {0}. In particular, the canonical basis

in `p(`q) has the property D(s, c1) with s = max{p′, q′}.
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Proof. We may assume that ‖x‖ = 1 and that j = k = 1. Using the notation

∆j = ∆j(x) = (
∑

k |xj,k|q)1/q, we can write

(4.14) dist(x, [e1,1])p =
∞∑
j=2

∆p
j +

(
∆q

1 − |x1,1|q
) p
q

= 1−∆p
1 + ∆p

1

(
1− |x1,1

∆1
|q
) p
q
.

We shall often make use of the following elementary inequality.

LEMMA 4.15. Let α > 0. Then(
1− u

)α ≤ 1−min{1, α}u, u ∈ [0, 1].

In the last expression of (4.14) we apply Lemma 4.15, with u = |x1,1/∆1|q and

α = p/q, so if c = min{1, p/q} we obtain

(4.16) dist(x, [e1,1])p ≤ 1− c∆p
1 |

x1,1
∆1
|q = 1− c |Fx(e1,1)| |x1,1|,

the last equality due to (4.5). Letting s = max{p′, q′}, note that min{p− 1, q − 1} =

s′ − 1. So, using that both ∆1 and |x1,1|/∆1 are ≤ 1, it follows that

|Fx(e1,1)|s−1 = ∆
p−1
s′−1

1

∣∣∣x1,1

∆1

∣∣∣ q−1
s′−1 ≤ |x1,1|.

Therefore, we have shown

dist(x, [e1,1])p ≤ 1− c|Fx(e1,1)|s.

Finally, using again Lemma 4.15 we obtain (4.13) with c1 = c/p = min{1
p
, 1
q
}. �

Thus, Theorem 1.14 will produce the following improvement over Corollary 4.8.

COROLLARY 4.17. Let 1 < p, q < ∞, and let β = max{p′
q′
, q
′

p′
}. Then there are

constants C1 and C2 such that

(4.18) ‖x− GC1Nβ(x)‖ ≤ C2σN(x), ∀N ≥ 1, x ∈ X.

This proves the first assertion in Theorem 1.16.

4.4. Optimality of the bound in (4.18). We now prove the last assertion in Theo-

rem 1.16. The lower bounds will be obtained by testing with suitable examples. For

simplicity we assume τ = 1 and C = 1.

PROPOSITION 4.19. Let 1 < p, q <∞. Suppose that

(4.20) ‖x− Gψ(N)x‖ ≤ σN(x), ∀ N ≥ 1, x ∈ X.

Then, there exists cp,q > 0 such that

(4.21) ψ(N) ≥ cp,qN
β, with β = max{p′

q′
, q
′

p′
}.

Proof. Pick x = 1A + nα1B, where

• |A| = m and |A ∩ ({j} × N)| = 1, for 1 ≤ j ≤ m, and 0 otherwise.
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• |B| = n and B ⊂ {m+ 1} × N.

• α = p′( 1
q′
− 1

p′
).

Observe that with this choice we have

(4.22) |Fx(ej,k)| = ‖x‖−(p−1), (j, k) ∈ A ∪B.

Indeed, if (j, k) ∈ A then xj,k = ∆j(x) = 1 and (4.22) follows from (4.5). If (j, k) ∈ B
then j = m+ 1 and

∆m+1(x)p−q|xm+1,k|q−1 = nα(p−q) n
p−q
q nα(q−1) = 1.

In the case p′ ≥ q′, for each 1 ≤ ` ≤ m we shall pick G`x = 1A` , where A`−1 ⊂ A` ⊂ A

with |A`| = `. Observe that this is possible because the equality in (4.22) continues

to hold when x is replaced by each remainder x` = x − G`x. So if we let m = ψ(n),

then (4.20) implies

nα‖1B‖ = ‖x− Gmx‖ ≤ σn(x) ≤ ‖x− nα1B‖ = ‖1A‖ = m1/p.

Since ‖1B‖ = n1/q, this implies

(4.23) ψ(n) = m ≥ np(α+ 1
q

) = n
p′
q′ ,

where in the last equality we use the expression of α.

In the case q′ ≥ p′ we use the same example, except that we take |B| = 2n. For

each 1 ≤ ` ≤ n, this time we pick G`x = nα1B` where B`−1 ⊂ B` ⊂ B with |B`| = `.

To justify this choice at each step, observe that, if (j, k) ∈ B \B` then,

‖x`‖p−1|Fx`(ej,k)| = ∆m+1(x`)
p−q nα(q−1) = nα(p−1) (2n− `)

p−q
q

=
(2n− `

n

) p
q
−1

≥ 1,

while for (j, k) ∈ A we have ‖x`‖p−1|Fx`(ej,k)| = 1. So, if we let n = ψ(m), from

(4.20) we have

m1/p = ‖1A‖ ≤ ‖x− Gnx‖ ≤ σm(x) ≤ ‖x− 1A‖ = nα‖1B‖ = 2
1
qnα+ 1

q ,

which implies

(4.24) ψ(m) = n ≥ cp,qm
1

p(α+1/q) = cp,qm
q′
p′ .

Combining (4.23) and (4.24) one obtains (4.21). �

PROOF of Theorem 1.16: Combine Corollary 4.17 and Proposition 4.19.
�
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4.5. WCGA vs TGA in `p(`q). Let Gn(x) denote the usual thresholding greedy

algorithm (TGA) applied to x, with regard to the canonical basis in X = `p(`q). The

following result is a consequence of [12, Theorem 5].

PROPOSITION 4.25. Let 1 < p, q <∞. Then there are constants C1, C2 such that

(4.26) ‖x−GC1Nb(x)‖ ≤ C2 σN(x), ∀ N ≥ 1, x ∈ X,

with b = max{p
q
, q
p
}.

REMARK 4.27. The exponent b = max{p
q
, q
p
} in (4.26) is best possible, in view of

[12, Theorem 3.2].

So one may pose the question of when WCGA performs better than TGA, in the

sense that the power β in Corollary 4.17 is smaller than the power b in (4.26). As-

suming p > q, this is equivalent to

β =
q′

p′
≤ p

q
= b ⇐⇒ qq′ ≤ pp′ ⇐⇒ q ≥ p′.

If p < q, then β ≤ b iff p ≥ q′. Thus, overall the WCGA performs better than the

TGA, in the sense that β ≤ b, if and only if q ≥ p′ (or q = p).

1
p

1
q

TGA N
p
q

WCGA

N
q′
p′

WCGA N
p′
q′

TGA

N
q
p

Figure 4.1. Number of iterations (modulo constants) of TGA or

WCGA to reach σN(x) in `p(`q).

5. The WCGA in the spaces fp,q

In this section we consider a class of sequence spaces fp,q related with the family of

Triebel-Lizorkin spaces. In the next section we shall specialize to the case q = 2, and

deduce the results for the Haar system in (Lp, � · �p) asserted in Theorem 1.19.

Throughout this section we make use of the following notation. We fix d ≥ 1 and

let Rd be the set of all dyadic rectangles I ⊂ [0, 1]d. That is, I = I1 × . . . × Id, with

each Ii = 2−ji(ki + [0, 1)), for some ji, ki ∈ N0 and 0 ≤ ki < 2ji , when i = 1, . . . , d.

When d = 1 we will write R1 = D , so that Rd = D × . . .×D .
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For fixed d ≥ 1 and 1 < p, q <∞, we consider the space X = fp,q = fp,q(Rd), defined

as the set of all sequences x = (xI)I∈Rd such that

(5.1) ‖x‖ = ‖x‖fp,q :=
∥∥∥( ∑

I∈Rd

∣∣xI1I,p∣∣q)1/q
∥∥∥
Lp([0,1]d)

,

where 1I,p = |I|−1/p
1I is the Lp-normalized characteristic function of I. We shall often

use the notation

(Sqx)(u) :=
( ∑
I∈Rd

∣∣xI1I,p(u)
∣∣q)1/q

, u ∈ [0, 1]d.

Throughout this section, D = {eI}I∈Rd will be the canonical basis in fp,q.

5.1. Norming funcionals in fp,q.

LEMMA 5.2. When x ∈ fp,q \ {0}, the norming functional Fx is given by

(5.3) Fx(y) =
1

‖x‖p−1

∫
[(Sqx)(u)]p−q

( ∑
I∈Rd

|xI |q−2 xI yI |1I,p(u)|q
)
du .

Proof. It is easy to see that Fx(x) = ‖x‖, so we only need to verify that |Fx(y)| ≤ ‖y‖.
This follows easily from a double use of Hölder’s inequality

‖x‖p−1|Fx(y)| ≤
∫

(Sqx)p−q
[∑

I

|xI |(q−1)q′
1
q
I,p

] 1
q′
[∑

I

|yI |q1qI,p
] 1
q
du

=

∫
(Sqx)p−1 (Sqy) du ≤ ‖x‖p−1 ‖y‖ .

�

If we specialize Fx to the elements eI of the canonical basis we obtain.

COROLLARY 5.4. If x ∈ fp,q \ {0} and I ∈ Rd, then

(5.5)
∣∣Fx(eI)

∣∣ =
|xI |q−1

‖x‖p−1

1

|I|q/p

∫
I

|Sqx|p−q.

REMARK 5.6. As a special case, if suppx consists of pairwise disjoint I’s, one has∣∣Fx(eI)
∣∣ = |xI |p−1/‖x‖p−1.

So, in this case WCGA and TGA coincide.

5.2. Distance to subspaces. We study the property D(s, c1) in the spaces fp,q(Rd).

This will make unnecessary to compute the modulus of smoothness for ‖ · ‖fp,q (which

seems not to appear in the literature).

LEMMA 5.7. Let 1 < p, q < ∞, and let s = s(p, q) = max{p′, q′}. Then, for all

x ∈ fp,q \ {0} it holds

(5.8) dist(x, [eI ]) ≤ ‖x‖
(

1− cp,q
∣∣Fx(eI)

∣∣s), ∀ I ∈ Rd,
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with cp,q = min{1/p, 1/q}. In particular, the canonical basis in fp,q has the property

D(s, c1) with s = max{p′, q′}.

Proof. We may assume that ‖x‖ = 1. Then,

dist(x, [eI ])
p = ‖x− xIeI‖p =

∫
(Sqx)(u)p

[
1− |xI1I,p(u)|q

(Sqx)(u)q

]p/q
du,

where it is understood that the integral is taken over the set {u : (Sqx)(u) 6= 0}.
Setting c := min{1, p/q} and applying Lemma 4.15 we obtain

(5.9) dist(x, [eI ])
p ≤

∫
(Sqx)p

[
1− c

∣∣∣xI1I,p
Sqx

∣∣∣q] du = 1 − c |xI |
∣∣Fx(eI)

∣∣,
using in the last step Corollary 5.4 (and ‖x‖ = 1). We now separate two cases:

a) Case 1 < p ≤ q. Since |xI1I,p(u)| ≤ (Sqx)(u) and p− q ≤ 0, we have

(Sqx)(u)p−q ≤ |xI1I,p(u)|p−q .

Integration over I gives∫
(Sqx)p−q 1qI,p ≤ |xI |

p−q
∫
1
p
I,p = |xI |p−q.

Then, using (5.5) we see that

|Fx(eI)| = |xI |q−1

∫
(Sqx)p−q 1qI,p ≤ |xI |

p−1.

Thus, we have obtained a lower bound for |xI |, which inserted into (5.9) gives

dist(x, [eI ])
p ≤ 1 − c

∣∣Fx(eI)
∣∣1+ 1

p−1 = 1 − c
∣∣Fx(eI)

∣∣p′ .
Finally, since c = p/q, a last use of Lemma 4.15 (with α = 1/p < 1) gives

(5.10) dist(x, [eI ]) ≤ 1 − q−1
∣∣Fx(eI)

∣∣p′ .
b) Case q < p <∞. Hölder’s inequality with exponents (p/(p− q), p/q) gives∫

(Sqx)p−q1qI,p ≤
[ ∫

(Sqx)p
] p−q

p
[ ∫

1
p
I,p

] q
p

= 1.

Then, from (5.5),

|xI |q−1 =
|Fx(eI)|∫

(Sqx)p−q1qI,p
≥ |Fx(eI)|

Inserted into (5.9) (and using c = 1) it gives

dist(x, [eI ])
p ≤ 1 −

∣∣Fx(eI)
∣∣1+ 1

q−1 = 1 −
∣∣Fx(eI)

∣∣q′ .
Hence, a last use of Lemma 4.15 (with α = 1/p < 1) implies

(5.11) dist(x, [eI ]) ≤ 1 − p−1
∣∣Fx(eI)

∣∣q′ .
�
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REMARK 5.12. Testing with explicit examples, it is possible to show that the power

s = max{p′, q′} in (5.8) cannot be replaced by any smaller number.

5.3. Property A3. Here, ΣN is the set of N -term combinations from the canonical

basis of X = fp,q(Rd). We define the exponent

h = h(p, q; d) = (d− 1)
(1

p
− 1

q

)
+
.

LEMMA 5.13. Let 1 < p, q < ∞ and N ≥ 1. Then ΣN satisfies property A3(r, V )

with V = c(logN)h and r = 1/p′, for some constant c = c(p, q, d) > 0. That is

(5.14)
∑
I∈A

|xI | ≤ c (1 + logN)(d−1)( 1
p
− 1
q

)+ |A|1/p′ ‖
∑
I∈B

xIeI‖.

for all sets A ⊂ B ⊂ Rd with |A| ≤ N and B finite.

Proof. In view of Lemma 2.17 it suffices to estimate

sup
|A|≤N

∥∥∑
n∈A

eI
∥∥

(fp,q)∗
.

Since (fp,q)
∗ = fp′,q′ , then (5.14) reduces to show that

(5.15) sup
|A|≤N

∥∥∑
n∈A

eI
∥∥
fp,q
≤ c (1 + logN)(d−1)( 1

q
− 1
p

)+ N
1
p .

When q = 2 this was proved in [23, Proposition 10], see also [15, Theorem A]. A small

modification of those proofs gives also the case q 6= 2. For completeness, we sketch

the arguments in Appendix 1 below. �

5.4. The WCGA in fp,q. A direct application of Theorem 1.14, with the parameters

obtained in Lemmas 5.7 and 5.13, gives the following.

THEOREM 5.16. Let X = fp,q(Rd), 1 < p, q < ∞, and let D be the canonical basis.

Define

h(p, q; d) = (d− 1)
(1

p
− 1

q

)
+
, and α(p, q) =

{
1 if p ≤ q

q′/p′ if q ≤ p.

Then, the WCGA satisfies (1.6) with

(5.17) φ(N) =
⌊
c (1 + logN)p

′h(p,q;d) Nα(p,q)
⌋
,

for some c = c(p, q, d, τ) > 0.

REMARK 5.18. As in Remark 4.11 above, if in the case min{p, q} > 2 we had used

Theorem 1.9 rather than Theorem 1.14, then one would have obtained a power 2/p′,

which is worse than α(p, q) (assuming that the estimate for the modulus of smoothness

in Lemma 4.7 also applies when X = fp,q).
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5.5. A lower bound for the WCGA in fp,q when p ≤ q. We show in this sub-

section that, when p ≤ q, the function φ(N) = bc (1 + logN)p
′(d−1)( 1

p
− 1
q

) Nc in (5.17)

cannot be replaced by a slower growing one.

THEOREM 5.19. In the conditions of Theorem 5.16, suppose that p ≤ q and that

(5.20)
∥∥x− Gψ(N)x

∥∥ ≤ C σN(x), ∀ N ≥ 1, x ∈ fp,q(Rd).

Then ψ(N) ≥ c′ (1 + logN)p
′(d−1)( 1

p
− 1
q

) N , for some c′ > 0.

Proof. Fix n ∈ N and ~m = (m1, . . . ,md) ∈ Nd, and let m := m1 + . . .+md. Consider

the following sets

An =
{
I ∈ Rd : I ⊂ [0, 1/2]d and |I| = 2−n

}
and

B~m =
{
I1 × . . .× Id ∈ Rd : Ii ⊂ [1/2, 1] and |Ii| = 2−mi , i = 1, . . . , d

}
.

Observe that

(5.21) |An| ≈ nd−1 2n and
( ∑
I∈An

1
q
I,p(u)

)1/q

≈ n
d−1
q 2n/p, u ∈ (0, 1/2)d,

while

(5.22) |B~m| = 2m−1 and
( ∑
I∈B~m

1
q
I,p(u)

)1/q

≈ 2m/p, u ∈ (1/2, 1)d,

We build a vector

x = xAn + xB~m := a
∑
I∈An

eI + b
∑
I∈B~m

eI ,

for suitable a, b > 0 to be chosen later. Using the expression for the fp,q-norming

functionals in (5.5), and the estimates in (5.21), (5.22), one sees that

(5.23) ‖x‖p−1
∣∣Fx(eI)

∣∣ = |xI |q−1

∫
I

(Sqx)p−q 1qI,p ≈

{
ap−1n

(d−1)(p−q)
q , if I ∈ An

bp−1, if I ∈ B~m.

We now pick b such that

(5.24) bp−1 ≈ ap−1 n(d−1)(p−q)/q.

The constants can be adjusted so that the WCGA always chooses

Gk(x) = b

k∑
j=1

eIj , when k ≤ |B~m|,

for some enumeration I1, I2, . . . of B~m. At this point one should notice that (5.23)

continues to hold with x replaced by each remainder x − Gk(x), as long as k < |B~m|
(so one can still pick elements I from B~m \ {I1, . . . , Ik}).
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Finally, given N � 1, we select the largest n and the smallest m such that

(5.25) |An| ≤ N and |B~m| ≥ ψ(N).

Then, N ≈ nd−12n and ψ(N) ≈ 2m. The assumption in (5.20) gives

‖xAn‖ ≤ ‖x− Gψ(N)(x)‖ ≤ C σN(x) ≤ C ‖xB~m‖.

By (5.21) and (5.22) this implies

a n
d−1
q 2n/p ≈ ‖xAn‖ ≤ C ‖xB~m‖ ≈ b 2m/p ≈ b ψ(N)1/p.

Recalling (5.24) this amounts to

ψ(N) & (a/b)p n
(d−1)p
q 2n ≈ n

(d−1)p′
q′ 2n ≈ [logN ]

(d−1)( p
′
q′−1)

N,

using in the last step the relation N ≈ nd−12n. This proves the theorem since the

exponent in the power of the log can also be written as p′/q′ − 1 = p′(1
p
− 1

q
).

�

6. The WCGA for the d-variate Haar basis in Lp

We recall the definition of the Haar system. Consider the 1-dimensional functions

h0 = 1[0,1) and h = 1[0,1/2) − 1[1/2,1). For every dyadic interval I = 2−j(k + [0, 1)) in

[0, 1], define

hI,p(x) = 2j/ph(2jx− k), and h0,p(x) = h0(x).

Then, if 1 < p < ∞, the system Hp = {h0, hI,p}I∈D is a (normalized) unconditional

basis of Lp[0, 1]. With a slight abuse of notation we write Hp = {hI,p}I∈D̄ with

D̄ = D ∪ {0}. The d-variate Haar system is then

Hd
p = Hp × . . .×Hp = {HI,p}I∈R̄d ,

with R̄d = D̄ × . . .× D̄ , that is,

HI,p(x1, . . . , xd) =
d∏
i=1

hIi,p(xi), if I = I1 × . . .× Id ∈ R̄d.

The system D = Hd
p is an unconditional basis of Lp([0, 1]d), and moreover, for every

function f =
∑

I cI(f)HI,p ∈ Lp, the expression

��f��
p

:=
∥∥S(f)

∥∥
Lp
, where S(f) =

( ∑
I∈R̄d

|cI(f)HI,p|2
) 1

2
,

defines an equivalent norm in Lp([0, 1]d), provided 1 < p < ∞. Here, the coefficients

are given by

cI(f) := 〈 f , HI,p′ 〉, I ∈ R̄d.
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Clearly, (Lp, � ·�p) is related with the spaces fp,2 from the last section. More precisely,

the coefficient map defines an isometric isomorphism(
Lp([0, 1]d), �·�p

)
−→ fp,2(R̄d)

f 7−→
(
cI(f)

)
I∈R̄d

with the latter space defined as in §5, with the only minor change that Rd is replaced

by R̄d (so a few additional terms appear in the norm (5.1)). This change does not

affect the proofs, and all the results in §5 continue to hold for the spaces fp,q(R̄d). In

particular, Theorem 1.19 from the introduction becomes a corollary of Theorems 5.16

and 5.19, in the special case q = 2.

REMARK 6.1. One can use the previous isometric isomorphism to transfer the results

for X = fp,q in §5 into results for (univariate) wavelet bases Ψ = {ψI} in the class of

Triebel-Lizorkin spaces F r
p,q. Indeed, one can define equivalent norms in the latter of

the form

‖f‖F rp,q :=
∥∥∥(∑

I

|cI(f)1I,p|q
) 1
q

∥∥∥
Lp
,

where cI(f) = 〈 f , ψ∗I 〉 = |I|−r 〈 f , ψI,p′ 〉, with ψI,p′ = ψI/‖ψI‖p′ . Just remark that

in §5 one should modify the index set D acccording to the underlying space (say, over

R rather than [0, 1]). In the d-variate case, the use of tensor wavelet bases, gives rise

to an isometry between fp,q(Rd) and Triebel-Lizorkin classes with dominating mixed

smoothness (sometimes denoted Srp,qF ; see e.g. [22, Th. 1.12]).

REMARK 6.2. In a similar fashion, one may transfer the results for X = `p(`q) in

§4 into results for wavelet bases in the class of Besov spaces Br
q,p (or Srq,pB in the

d-variate case), using the equivalent norms

‖f‖Brq,p :=
[∑

j

(∑
k

|cI(j,k)(f)|q
) p
q
]1/p

,

with I(j, k) = 2−j(k + [0, 1)), j, k ∈ Z.

7. Property A3 for classes of bases in Lp

In this section we find optimal exponents for the property A3 in certain classes

of bases of Lp, 1 < p < ∞. These classes (greedy, almost greedy, quasi-greedy,...)

behave well with respect to the TGA, and we study the performance with respect to

the WCGA. Results of this section complement the corresponding results from [19]

(see also [21], Section 8.7.4).

Below we shall use the following known lemma, which is valid for Lp over an arbi-

trary (σ-finite) measure space. We denote by LpK the subspace of K-valued functions

in Lp.
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LEMMA 7.1. Let 1 < p <∞, and let X = Lp = LpC. Then, there exists γ = γ(p) > 0

such that

ρLp(t) := sup
‖f‖p=‖g‖p=1

(
‖f + tg‖p + ‖f − tg‖p − 2‖f‖p

)
/2 ≤ γ tq, ∀ t > 0,

with q = min{p, 2}.

Proof. This result is well-known when X = LpR; see e.g. [14, Vol II, p. 63]. We remark

that in the complex-valued case one has

ρLpC(t) = ρLpR(t) ≤ γ tq, ∀ t > 0 ,

since LpC can be isometrically embedded into some LpR; see [3, Example 4.6]. �

7.1. Greedy bases. The univariate Haar system Hp is a greedy basis of Lp[0, 1],

1 < p < ∞, and it was shown in [19, Example 4] that a Lebesgue inequality holds

with φ(N) = O(N) if 1 < p ≤ 2, and φ(N) = O(N2/p′) if 2 ≤ p < ∞. Here we

generalize this result to any greedy basis Ψ = {ψn}n≥1 of Lp, as stated in Theorem

1.22 from §1.

We begin with a computation of the parameters for the A3 property. We assume that

Ψ is normalized in Lp, and recall that a greedy basis is unconditional and democratic.

LEMMA 7.2. If Ψ is a greedy basis in Lp, then A3(r, V ) holds with r = 1/p′ and some

constant V > 0.

Proof. Let Ψ∗ = {ψ∗n}∞n=1 be the dual system to Ψ in Lp
′
. In view of Lemma 2.17 it

suffices to show that

(7.3)
∥∥∑
n∈Λ

ψ∗n
∥∥
Lp′
≤ C |Λ|1/p′ ,

for all finite sets Λ ⊂ N. We shall use a result from functional analysis [11, Theorem

4b] which says that for any (seminormalized) unconditional basis B = {bk}k≥1 of Lq,

1 < q <∞, there is a subsequence kj, j = 1, 2, . . . , such that∥∥ ∞∑
j=1

αkjbkj
∥∥
Lq
�
( ∞∑
j=1

|αkj |q
) 1
q
.

In particular, if B is unconditional and democratic, then necessarily

(7.4) ‖
∑
k∈Λ

bk‖q � |Λ|1/q,

with the constants of equivalency depending at most on B and q. Now, if Ψ is a

greedy basis in Lp, 1 < p <∞, then it was shown in [2, Theorem 5.1] that Ψ∗ is also

a greedy basis in the dual space (Lp)∗ = Lp
′
. Therefore (7.3) is just a consequence of

(7.4) with q = p′. �
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PROOF of Theorem 1.22: The proof is now a direct application of Theorem 1.9.

Indeed, A2(U) holds because Ψ is unconditional, while A3(r = 1/p′, V ) was proved

in the previous lemma. By Lemma 7.1 we also have ρ(t) ≤ γtq with q = min{p, 2}.
Therefore, Theorem 1.9 implies

(7.5) ‖f − GC(t,p,Ψ)mα(p)(f)‖p ≤ Cσm(f,Ψ)p,

with α(p) = rq′, which agrees with (1.23). �

7.2. Tensor products of greedy bases. We now extend the first part of Theorem

1.19 from the multivariate Haar system to an arbitrary tensor product of univariate

greedy bases. Let Ψ be a normalized basis in Lp([0, 1)). In the space Lp([0, 1)d) we

define the system

Ψd := Ψ× · · · ×Ψ =
{
ψn(x) = ψn1(x1) · · ·ψnd(xd) : n = (n1, . . . , nd) ∈ Nd

}
.

Clearly, if Ψ is unconditional, so is Ψd. Democracy, however, does not transfer, but

one has the following result from [15] (see also [21, Ch. 8]).

PROPOSITION 7.6. Let 1 < q < ∞ and let Ψ be a greedy basis for Lq[0, 1]. Then

for any Λ with |Λ| = m ≥ 2, we have: for 2 ≤ q <∞

C1
q,dm

1/q min
n∈Λ
|cn| ≤ ‖

∑
n∈Λ

cnψn‖q ≤ C2
q,d (logm)h(q,d) m1/q max

n∈Λ
|cn|,

and for 1 < q ≤ 2

C3
q,dm

1/q(logm)−h(q,d) min
n∈Λ
|cn| ≤ ‖

∑
n∈Λ

cnψn‖q ≤ C4
q,dm

1/q max
n∈Λ
|cn|

where h(q, d) := (d− 1)|1/2− 1/q|.

Note that h(p, d) = h(p′, d). We now derive the property A3 for Ψd.

LEMMA 7.7. Consider the system Ψd in Lp([0, 1]d) defined above, where Ψ is a uni-

variate greedy basis in Lp[0, 1]. Then, for each N ≥ 1, the set ΣN(Ψd) satisfies property

A3(r, V ) with r = 1/p′ and

V = C(p, d) (1 + logN)(d−1)( 1
p
− 1

2
)+ .

Proof. By Lemma 2.17, it suffices to compute

sup
|Λ|≤N

∥∥∑
n∈Λ

ψ∗n

∥∥∥
Lp′
,

where ψ∗n = ψ∗n1
⊗ . . .⊗ψ∗nd , n ∈ Nd, are the elements of the dual system (Ψd)∗. Since

Ψ∗ is a univariate greedy basis (by [2, Thm 5.1]), we can apply Proposition 7.6 with

q = p′, and obtain

sup
|Λ|≤N

∥∥∑
n∈Λ

ψ∗n

∥∥∥
Lp′
≤ Cp,d (1 + logN)(d−1)( 1

p
− 1

2
)+ N1/p′ .
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�

THEOREM 7.8. Let 1 < p <∞. Consider the system Ψd in Lp([0, 1]d) defined above,

where Ψ is a univariate greedy basis in Lp[0, 1]. Then, the WCGA in Lp([0, 1]d) applied

to Ψd satisfies

(7.9) ‖f − Gφ(m)(f)‖p ≤ Cσm(f)p,

with φ(m) = C(t, p, d,Ψ) (1 + logm)(d−1)p′( 1
p
− 1

2
)+ mα(p), and with α(p) as in (1.23).

Proof. This is again a direct application of Theorem 1.9 and the previous lemma. �

7.3. Nikol’skii `1X property. When Ψ = {ψk}∞k=1 is a basis in Lp := Lp([0, 1)d),

1 < p < ∞, then the A3 property essentially amounts to compute the following

operator norms

‖SΛ‖p,A := ‖SΛ‖Lp→A := sup
f 6=0
‖SΛ(f)‖A/‖f‖p ,

where we denote, for each finite set Λ ⊂ N,

SΛ(f) := SΛ(f,Ψ) :=
∑
k∈Λ

ck(f)ψk, ‖SΛ(f)‖A :=
∑
k∈Λ

|ck(f)|,

and as usual ck = 〈 f , ψ∗k 〉. Then A3(r, V ) holds if and only if

‖SΛ‖p,A ≤ V |Λ|r.

The notation refers to A = {f ∈ L1 :
∑

k∈Λ |ck(f)| < ∞}, which for the trigono-

metric system is the usual Wiener algebra.

7.4. General lower bounds. We say that a Banach space X has type t if there exists

a universal constant C such that for fk ∈ X and all n ≥ 1,

(7.10)

(
Aveεk=±1‖

n∑
k=1

εkfk‖t
)1/t

≤ C

(
n∑
k=1

‖fk‖t
)1/t

.

So, given Λ ⊂ N, if we set fk = ψk, k ∈ Λ, then there exists a function f =
∑

k∈Λ εkψk
with ‖f‖p ≤ C|Λ|1/t. Thus,

‖SΛf‖A = |Λ| = |Λ|1/t′ |Λ|1/t ≥ C−1 |Λ|1/t′ ‖f‖p.

For X = Lp it is well-known that t = min{p, 2} if 1 < p <∞. Therefore, the following

lower bounds always hold

(7.11) ‖SΛ‖p,A & |Λ|1/p
′

if 1 < p ≤ 2, and ‖SΛ‖p,A & |Λ|1/2 if p > 2.

As we shall see below, there are bases Ψ for which the symbols “&” in (7.11) can be

replaced by “≈” for all Λ. Notice, from Theorem 1.9, that the WCGA will be most

effective in those situations, since the exponents will satisfy rq′ = 1, and therefore we

have φ(N) = c(t, p) (logU)N .
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7.5. Schauder bases. Let Ψ be a (normalized) Schauder basis in Lp, 1 < p < ∞.

Then, the following general upper bound holds.

PROPOSITION 7.12. There exists ε = ε(p,Ψ) > 0 and c > 0 such that

‖SΛ‖p,A ≤ c |Λ|1−ε, ∀ Λ ⊂ N.

Proof. Indeed, by a well-known theorem of Gurari-Gurari [10], there exists s <∞ and

c > 0 such that

‖
∞∑
n=1

anψn‖p ≥
1

c

( ∞∑
n=1

|an|s
)1/s

,

for all finite sequences of scalars an. So if f =
∑

n anψn we have

‖SΛf‖A =
∑
n∈Λ

|an| ≤ |Λ|1/s
′
( ∞∑
n=1

|an|s
)1/s

≤ c|Λ|1−
1
s ‖f‖p.

Thus, the result holds with ε = 1/s. �

REMARK 7.13. When no further assumption is made on the basis, the bound in the

proposition cannot be improved, even if p = 2. Indeed, for every α < 1, consider the

basis Ψ in L2 constructed in [8, Proposition 3.10]. This basis satisfies the following

property: if f =
∑2N

n=1 ψn and Λ = {1, 3, . . . , 2N − 1}, then

‖SΛf‖2 ≥ cNα ‖f‖2.

Since ‖SΛf‖2 ≤ ‖SΛf‖A (by the triangular inequality), we conclude that

‖SΛ‖2,A ≥ c |Λ|α, ∀ Λ ⊂ 2N− 1.

7.6. Uniformly bounded orthogonal bases. Suppose that Ψ = {ψk}k≥1 is an

orthonormal system in L2([0, 1]d) such that cΨ := supk≥1 ‖ψk‖L∞ <∞. These systems

satisfy c−1
Ψ ≤ ‖ψk‖p ≤ cΨ, for all k ≥ 1 and all 1 ≤ p ≤ ∞.

7.6.1. Case 2 ≤ p <∞.

PROPOSITION 7.14. If Ψ is a uniformly bounded orthogonal basis of Lp[0, 1], 2 ≤
p <∞, then

‖SΛ(·,Ψ)‖Lp→A � |Λ|1/2, ∀ Λ.

Proof. The lower bound was shown in (7.11). The upper bound follows from an

elementary argument, as in [19, Example 1]. �
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7.6.2. Case 1 < p ≤ 2. In this case the following holds

(7.15) c1 |Λ|1/2 ≤ ‖SΛ‖p,A ≤ c2 |Λ|1/p, ∀ Λ,

and some constants ci(p,Ψ) > 0. The lower bound is due to ‖SΛ‖p,A ≥ ‖SΛ‖2,A =

|Λ|1/2. The upper bound follows from the argument in [19, Example 1q]; see also [21,

Ch. 8]. The example of the univariate trigonometric system shows that the bounds

in (7.15) cannot be improved for this class of bases.

REMARK 7.16. It is known that uniformly bounded orthogonal bases cannot be

unconditional in Lp, for any p 6= 2; see [6]. Thus, when p > 2 we cannot hope to

obtain φ(N) = O(N) from Theorem 1.9 using these examples. However, it is possible

to construct such bases with φ(N) = O(N log logN); see Proposition 7.25 below.

7.7. Unconditional bases. Recall that a Banach space X has cotype q if there exists

c > 0 such that

(7.17) Aveεk=±1

[
‖

N∑
n=1

εnfn‖
]
≥ c

[ N∑
n=1

‖fn‖q
] 1
q
.

If Ψ is an unconditional basis, and we let fn = anψn, then we have

(7.18) ‖
N∑
n=1

anψn‖ ≥ c2

[ N∑
n=1

|an|q
] 1
q
,

with a constant c2 = c2(Ψ, c) > 0. Thus, if f =
∑

n anψn, for a finite sequence an, we

have

(7.19) ‖SΛf‖A =
∑
n∈Λ

|an| ≤ |Λ|1/q
′
[∑

n

|an|q
] 1
q ≤ c−1

2 |Λ|1/q
′ ‖f‖.

Now, specializing to the case when X = Lp, we know that q = max{2, p}. Therefore,

from (7.19) and (7.11) we obtain the following

Case 1 < p ≤ 2.

(7.20) c1 |Λ|1/p
′ ≤ ‖SΛ‖p,A ≤ c2 |Λ|1/2, ∀ Λ,

Case 2 ≤ p <∞.

(7.21) c1 |Λ|1/2 ≤ ‖SΛ‖p,A ≤ c2 |Λ|1/p
′
, ∀ Λ,

These inequalities cannot be improved for the whole class of unconditional bases.

Indeed, when Ψ is the univariate Haar basis we have, for all 1 < p <∞,

(7.22) ‖SΛ‖p,A � |Λ|1/p
′
, ∀ Λ.

On the other hand, it is known that Lp ≈ Lp ⊕ `2, when 1 < p < ∞. Consider

the basis {ϕn}∞n=1 in Lp ⊕ `2, where {ϕ2n−1} is the Haar system in Lp, and {ϕ2n} is
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the canonical basis in `2. Then, the above isomorphim produces a (seminormalized)

unconditional basis Ψ in Lp, with the property

(7.23) ‖SΛ‖p,A ≈ |Λ|1/2, ∀ Λ ⊂ 2N.

7.8. Quasi-greedy bases. If Ψ is a (normalized) quasi-greedy basis in a Banach

space X of cotype q, then letting fn = ψn in (7.17) we obtain

‖
∑
n∈Λ

ψn‖ ≥ c1 |Λ|1/q,

for some c1(Ψ) > 0. This is weaker than (7.18), but using [9, Lemma 4.1] we have

‖(an)‖`q,∞ ≤ C ‖
∑
n

anψn‖.

If f =
∑

n anψn, for a finite sequence (an), and (a∗j) denotes its decreasing rearrange-

ment, then

‖SΛf‖A =
∑
n∈Λ

|an| ≤
|Λ|∑
j=1

a∗j ≤ ‖(an)‖`q,∞
|Λ|∑
j=1

j−
1
q

≤ C ′ |Λ|1/q′ ‖f‖.(7.24)

When X = Lp, using the corresponding value for the cotype q, one obtains again the

bounds in (7.20) and (7.21).

From the examples in (7.22) and (7.23) it is clear that these bounds cannot be

improved in the class of all quasi-greedy bases. Notice further that within this class

one can replace the example in (7.23) by the following construction.

PROPOSITION 7.25. There exists a uniformly bounded orthonormal system Ψ =

{ψk}∞k=1, consisting of trigonometric polynomials, which is a quasi-greedy basis in

Lp[0, 1], for all 1 < p <∞. Moreover, Ψ is democratic with ‖
∑

k∈Λ ψk‖p � |Λ|1/2, for

all finite Λ ⊂ N.

For details on this construction, we refer to [16] and [4] (see also [20, Ch 3] and [21,

Ch 3]). The example Ψ in Proposition 7.25 produces the bounds

(7.26) ‖SΛ‖p,A ≈ |Λ|1/2, ∀ Λ ⊂ N.

Also, quasi-greedness implies that ΣN has property A2 with U . logN ; see [1, Lemma

8.2]. In particular, when p > 2, the Lebesgue inequality for the WCGA which one

obtains from Theorem 1.9 holds with φ(N) = O(N log logN); see [19] or [21, p. 445].

So far, we do not know any example of a basis (or even a dictionary) in Lp, p > 2,

with φ(N) = O(N).
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7.9. Almost greedy bases. This class is a subset of the previous case, and therefore

‖SΛ‖p,A satisfies the same bounds (7.20) and (7.21). The examples in (7.22) and

(7.26) show that the assumption that Ψ is additionally democratic does not imply

any improvement in those bounds.

7.10. Greedy bases. This class is also a subset of the previous three cases, but this

time we obtain the following improvement. The proof follows easily from the same

arguments we already gave in (7.4).

PROPOSITION 7.27. Let Ψ be a greedy basis of Lp, 1 < p <∞. Then

(7.28) ‖SΛ‖p,A � |Λ|1/p
′
, ∀ Λ ⊂ N.

8. Appendix 1

In this section we prove the following result, which was asserted in (5.15).

PROPOSITION 8.1. Let X = fp,q(Rd), 1 < p, q <∞, with norm defined as in (5.1).

Then

(8.2) sup
|A|≤N

∥∥∑
n∈A

eI
∥∥
fp,q(Rd)

≤ cN
1
p (1 + logN)(d−1)( 1

q
− 1
p

)+ .

For q = 2 this was proved in [23, 15]. Here we adapt the arguments to the case

of a general q. We split the proof into several lemmas, which have an independent

interest. Recall that, for a sequence x = (xλ)λ∈Λ, over a set of indices Λ, we define its

support as suppx = {λ ∈ Λ : xλ 6= 0}.

LEMMA 8.3. Let p ≥ q. If x0,x1,x2, . . . have disjoint supports, then

(8.4)
∥∥∥∑n≥0 xn

∥∥∥
fp,q
≤
(∑

n≥0

∥∥xn∥∥qfp,q)1/q

.

Proof. The support condition implies that

Sq(
∑

n≥0 xn)q =
∑

n≥0 Sq(xn)q.

Then, the definition of norm in (5.1) and Minkowski’s inequality (since p/q ≥ 1) give∥∥∥∑n≥0 xn

∥∥∥
fp,q

=
∥∥∥Sq(∑n≥0 xn)

∥∥∥
Lp

=
∥∥∥∑n≥0 Sq(xn)q

∥∥∥1/q

Lp/q

≤
(∑

n≥0

∥∥Sq(xn)q
∥∥
Lp/q

)1/q

=
(∑

n≥0

∥∥xn∥∥qfp,q)1/q

.

�

In the next two lemmas we shall assume that d = 1, so that R1 = D . We denote

by `p,q = `p,q(D) the discrete Lorentz space indexed by D . We shall use the follow-

ing (equivalent) quasi-norm: if x = (xI)I∈D and if (x∗j = |xIj |)j≥1 is its decreasing
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rearrangement, then ∥∥x∥∥
`p,q

:=
(∑
j≥0

|2j/px∗2j |q
)1/q

.

LEMMA 8.5. Let d = 1 and p ≥ q. Then, `p,q(D) ↪→ fp,q(D) ↪→ `p(D), that is

(8.6) ‖x‖`p ≤ ‖x‖fp,q ≤ c ‖x‖`p,q .

Proof. The left inequality is trivial, since q ≤ p implies fp,q ↪→ fp,p = `p(D). We prove

the right inequality. Let x = (xI)I∈D and let |xI1| ≥ |xI2| ≥ . . . be its decreasing

rearrangement. Define

xn =
∑

2n≤j<2n+1

xIjeIj ,

so that x =
∑

n≥0 xn and the vectors xn have disjoint supports. Then, (8.4) holds.

Moreover, for each n ≥ 0

‖xn‖fp,q ≤ x∗2n
∥∥∑

2n≤j<2n+1 eIj
∥∥
fp,q
≤ cp,q x

∗
2n 2n/p,

where the last inequality is due to the p-democracy of the canonical basis in fp,q(D)

when d = 1; see [7, Prop. 3.2]. Thus,

‖x‖fp,q ≤
(∑
n≥0

‖xn‖qfp,q
)1/q

.
(∑
n≥0

|2n/px∗2n|q
)1/q

= ‖x‖`p,q .

�

LEMMA 8.7. Let d = 1 and 1 < q < p < ∞. Then, for all A ⊂ D with |A| ≤ N , it

holds ∥∥∥∑
I∈A

xIeI

∥∥∥
fp,q(D)

≤ c′
[
1 + logN

] 1
q
− 1
p

(∑
I∈A

|xI |p
)1/p

.

Proof. By (8.6) and Hölder’s inequality we have

(8.8) ‖x‖fp,q . ‖x‖`p,q ≤ ‖x‖1−θ
`p,1 ‖x‖

θ
`p,p ,

with θ = (1− 1
q
)/(1− 1

p
). Another use of Hölder’s inequality gives

‖x‖`p,1 =

blog2 |A|c∑
j=0

2j/px∗2j ≤ (1 + log2 |A|)1/p′ ‖x‖`p,p .

Inserting this into (8.8) and using that ‖x‖`p,p ≈ ‖x‖`p the result follows. �

PROOF of Proposition 8.1: The proof for p ≤ q is trivial, since `p = fp,p ↪→ fp,q,

and ∥∥∑
n∈A

eI
∥∥
fp,q
≤
∥∥∑
n∈A

eI
∥∥
`p

= |A|1/p.
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So from now on we consider p > q. The result is known for d = 1 by the p-democracy of

fp,q(D); see [7, Prop. 3.2]. So we proceed by induction, and will prove (8.2) assuming

its validity with d replaced by d− 1. Let A ⊂ Rd with |A| ≤ N , and define

A1 = {I1 ∈ D : ∃ I ′ ∈ Rd−1 s.t. I1 × I ′ ∈ A}

and for each I1 ∈ A1,

A′(I1) = {I ′ ∈ Rd−1 : I1 × I ′ ∈ A}.

Then ∥∥∑
I∈A

eI‖pfp,q(Rd) =

∫
u′

∫
u1

∣∣∣ ∑
I1∈A1

( ∑
I′∈A′(I1)

1
q
I′,p

)
1
q
I1,p

∣∣∣p/q du1 du
′

.
∫
u′

(1 + logN)( 1
q
− 1
p

)p
∑
I1∈A1

∣∣∣ ∑
I′∈A′(I1)

1
q
I′,p

∣∣p/q du′,
using Lemma 8.7 in the inner integral, since |A1| ≤ N . The last displayed expression

equals

(1 + logN)( 1
q
− 1
p

)p
∑
I1∈A1

∫
u′

∣∣∣ ∑
I′∈A′(I1)

1
q
I′,p

∣∣p/q du′
. (1 + logN)( 1

q
− 1
p

)p
∑
I1∈A1

(1 + logN)(d−2)( 1
q
− 1
p

)p|A′(I1)|

=
[
(1 + logN)(d−1)( 1

q
− 1
p

)|A|1/p
]p
,

using in the middle step the induction hypothesis (since |A′(I1)| ≤ N).
�
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