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Abstract

Voltage-clamp waveforms are imposed in the patch-clamp electrophysiology technique to
provoke ion currents, the particular waveform that is used is known as the ‘voltage-clamp pro-
tocol’. Designing protocols to probe and quantify how gating for a particular ion channel occurs
has typically been done manually and results in a suite of long protocols. It is desirable to gain
the same, or even more, information in a shorter time, and also to automate the process of de-
signing these protocols. In this paper we introduce a new optimal experimental design objective
for ion channel characterisation, which involves considering a 3-dimensional phase space for the
channel states combined with the voltage, using room-temperature hERG/Kv11.1 currents as
an example. A range of designs are proposed, the best of which visits 82% of the discretised
phase-voltage space in a 9 second protocol. This new protocol design strategy results in a simu-
lated current visiting a wide range of channel gating states, at a wide variety of voltages, and we
therefore expect these designs to be very useful in characterising ion currents, parameterising
models, as well as being a challenging test of assumptions made about ion channel gating.
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Introduction

Ion channels are trans-membrane proteins that permit the passage of ions from one side of a biological
membrane to the other. A general challenge is to characterise the kinetics of an ion channel — that
is its opening and closing (or gating), usually in response to transmembrane voltage changes or
ligand binding. We will be concerned here with voltage-gated ion channels and macroscopic whole-
cell electrophysiology. That is, recording the ionic current that flows through a large number of
ion channels in a cell’s membrane, rather than single-channel measurements. Some of the most
important voltage-dependent ion channels for various electrophysiological functions are selectively
expressed in excitable tissues such as neurons or muscles such as the heart.

A common method for studying ion channel gating is a whole-cell voltage-clamp experiment: through
an ingenious system including a micropipette and electrical amplifier one can clamp the cell’s trans-
membrane voltage and record the currents flowing through its ion channels. A decision then is
what membrane voltage should be applied through time to gain the most information about the
ion current’s gating behaviour. Experimenters conceptually separate processes such as activa-
tion/deactivation and inactivation/recovery to generate protocols where one process dominates. To
understand these protocols and their outputs by eye, typically they include long periods at “holding
potentials” to return channels to a resting state. A suite of ‘conventional’ protocols for studying
every process is assembled, and running the complete set of protocols takes a long time, leading to
them often having to be recorded in different cells and averages taken.

In recent studies we have proposed short and information-rich experimental protocols, although
these have been designed manually (Beattie et al., 2018; Clerx et al., 2019; Lei et al., 2019a),
without any strict mathematical criteria, but with a general aim of parameter identifiability (Fink
and Noble, 2009; Whittaker et al., 2020) as well as model/equation-structure selection and robustness
to experimental artefacts (Lei et al., 2020).

This paper describes a new space-filling methodology to design short, high-information protocols
algorithmically. It is based on exploring as many combinations of gating behaviour at different
voltages as possible by defining the possibilities as a mathematical ‘space’ that we can try to ‘fill’
by optimising voltage-clamp protocols. The method should be immediately applicable to any cur-
rent that models channel kinetics with Hodgkin-Huxley style gating variables, and could easily be
extended to more flexible Markov model representations as well.

Methods

Our method is motivated by the dynamics of a simple IKr model, illustrated in Clerx et al. (2019). In
that paper, a phase-plane analysis was presented as an educational tool to understand the motivation
behind the voltage-clamp protocols that are commonly used to interrogate the gating of hERG
channels (that carry cardiac rapid-delayed rectifying potassium current, IKr).

Ion Current Model

Our IKr or hERG model has been presented before (Beattie et al., 2018; Clerx et al., 2019; Lei et al.,
2019a), but is described here again as the gating processes are important for the experimental design
that follows. We use the standard Ohmic approach for the current dependence on the voltage and
channel open probability:

IKr = gKr ·O · (V (t)− EK). (1)
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Here “·” indicates multiplication and gKr is the maximum IKr conductance. The membrane voltage,
V (t), changes through time according to the voltage-clamp protocol, whilst O is the open probability
(itself a function of time via the protocol). EK is the reversal potential, which we will set to−88.6mV
throughout; generally it can be calculated using the Nernst equation — a function of temperature and
potassium concentrations either side of the membrane — for any particular experimental conditions
(Hille, 2001).

In the model we use here, the open probability O can be specified as the product of two independent
Hodgkin-Huxley gating processes (Hodgkin and Huxley, 1952; Clerx et al., 2019). We will discuss
how the approach could be easily extended to Markov models with arbitrary numbers of states later.
The naming of IKr gating is somewhat confusing, as deactivation and inactivation are two different
processes. Deactivation is a relatively slow process for IKr which reduces its open probability at
low voltages, whilst inactivation is a relatively fast process that reduces open probability at high
voltages. In a Hodgkin-Huxley style current model these processes are treated as independent so
there is one gating variable (a) for activated (the term for not-deactivated channels) which specifies
the proportion channels in this state. A second gating variable (r) represents the proportion of
channels recovered from inactivation. Being independent processes, this means that the channels
can be both “activated” and “inactivated” at the same time, so the sooner we get to describing
things with mathematics rather than words, the better. The open probability is given by simply

O = a · r. (2)

The gates themselves are considered to undergo voltage-dependent chemical reactions to transition
between their activated/deactivated or inactivated/recovered states:

(1− a)
k1−⇀↽−
k2

a r
k3−⇀↽−
k4

(1− r) (3)

with k1 . . . k4 being reaction rates. Ordinary differential equations (ODEs) governing a and r can
be written as

da

dt
= k1(1− a)− k2a,

dr

dt
= −k3r + k4(1− r), (4)

based on mass-action kinetics. Following Beattie et al. (2018), each of the rates k1 to k4 follows a
first-principles rate theory reaction for movement of a voltage sensor as a function of voltage (Hille,
2001):

k1 = p1 exp(p2 · V (t)), k3 = p5 exp(p6 · V (t)), (5)

k2 = p3 exp(−p4 · V (t)), k4 = p7 exp(−p8 · V (t)). (6)

Where p1 . . . p8 are positive real scalar parameter values. Equation (4) can be recast equivalently as

da

dt
=

a∞ − a

τa
,

dr

dt
=

r∞ − r

τr
, (7)

where a∞ and r∞ denote the steady-states for each gate, and τa and τr denote the time constants.
These can be defined in terms of the transition rates as

τa = 1/(k1 + k2), τr = 1/(k3 + k4), (8)

a∞ = k1 · τa, r∞ = k4 · τr. (9)
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Note that indirectly these terms are all also dependent on time since rates themselves are voltage
dependent and V = V (t), as above. The model parameters for all our simulations in this paper
represent room-temperature IKr from Beattie et al. (2018) and are shown in Table 1.

In a typical patch-clamp experiment, multiple protocols are applied to each cell, between which
they are kept at a holding potential. For our current of interest (IKr), the holding potential is
commonly chosen to be −80mV; close to cardiac myocytes’ resting potential, where IKr channels
are mostly deactivated. For all the simulations that follow, we start with the model at its steady
state for a holding potential of −80mV, given by simply a(0) = a∞|V=−80 = 3.09 × 10−4 and
r(0) = r∞|V=−80 = 0.601, with total open probability O(0) = a(0) · r(0) = 1.86×10−4, so very little
current flows. Steady state is a reasonable approximation for experimental conditions because the
slowest timescale of decay towards the steady state (equation (7)) is τa|V=−80 = 367ms and the cells
will typically have been at holding potential for tens of seconds prior to the protocol being applied.

Table 1: Model parameter values, taken from Beattie et al. (2018) for Cell #5 of that study.

Parameter Value Unit

gKr 1.524× 10−1 µS
p1 2.260× 10−4 ms−1

p2 6.990× 10−2 mV−1

p3 3.448× 10−5 ms−1

p4 5.460× 10−2 mV−1

p5 8.730× 10−2 ms−1

p6 8.910× 10−3 mV−1

p7 5.150× 10−3 ms−1

p8 3.158× 10−2 mV−1

Many more complex Markov models have been proposed to capture the details of hERG gating
kinetics more completely (e.g. Wang et al., 1997; Clancy and Rudy, 2001; Mazhari et al., 2001;
Fink et al., 2008; Kemp et al., 2021), but even this very simple two gate Hodgkin-Huxley style ion
current model is capable of reproducing the majority of the features of IKr and predicting currents
during action potential waveforms extremely well (Beattie et al., 2018; Clerx et al., 2019; Lei et al.,
2019a,b)1.

Phase-voltage space

One way to study dynamical systems like this model is to examine behaviour in ‘phase-space’. That
is, looking at steady states and trajectories of model variables on graphs where the axes are state
variables instead of plotting trajectories through time. Generally these ‘phase portraits’ are very
informative in terms of qualitatively understanding model behaviour, evolution to steady states, etc.
(see Garfinkel et al. (2017) for an accessible introduction to phase portraits for biological modelling).

In Clerx et al. (2019) we used phase portraits to understand how ‘conventional’ voltage protocols

1As an aside, a two gate Hodgkin-Huxley scheme was used in many previous IKr models, beginning with Zeng
et al. (1995), although this (and many others) models inactivation as an instantaneous process (r ≡ r∞). Indeed,
the only other two-gate HH model that uses first-principles Eyring theory for the reaction rates is the Winslow et al.
(1999) action potential model which used an O = a ·r∞ scheme with a corresponding six kinetic parameters. The rest
of the literature hERG models appear to incorporate empirical modifications of (e.g.) a∞ or τa featuring additional
parameters or terms unrelated to the reactions shown in Eq. (3).
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Figure 1: The evolution of the model’s trajectory through phase-space for a series of voltage steps.
Top: the voltage clamp protocol, with sequential shading of different steps as they are applied
through time. This is the first +40mV test voltage of a ‘time-constant of activation protocol’
(Protocol Pr2 from Beattie et al. (2018); Clerx et al. (2019)). Bottom: in blue we show the evolution
of the model’s state variables as these steps are applied, with trajectories shown from the start
of these steps to the end of the highlighted sections above. The red line indicates the function
O∞(V ) = a∞(V ) · r∞(V ) as voltage varies from large negative voltages (top left) to large positive
voltages (bottom right). This plot is adapted from the supplementary material of Clerx et al. (2019)
under a CC-BY licence.

were designed to probe gating processes such as (e.g.) activation or inactivation. Here, one axis of
the phase portrait is the variable a and the other is the variable r. In Figure 1 we show how a model
trajectory evolves on this diagram through a series of voltage steps. Conventional electrophysiology
protocols tend to use very high or low voltages (as in the example shown in Figure 1) to push one
of the gates towards zero/one whilst probing the other. The intention is often to allow one gating
process to be ignored in data analysis — for example, whilst constructing a conductance/voltage
curve for one gate we might assume the other gate is fully open, or vice-versa. It has been acknowl-
edged that this may introduce inaccuracies in later interpretation of results (Lee et al., 2006), and
this was studied in the context of this model in terms of the inaccuracies introduced when fitting
equations (8) and (9) directly to current/voltage and time-constant/voltage summary curves (Clerx
et al., 2019).

We can visualise voltage as an additional dimension, as shown in Figure 2C, to create what we are
calling a phase-voltage cube. Note that in Figure 2 we can see how the conventional ‘time constant
of activation’ protocol predominantly stays at the sides of the phase-voltage cube. Even restricted
to exploring two perpendicular sides (or any vertical slices) of the cube shown in Figure 2C, then in
theory—assuming their independence—we should be able to measure everything we need to know
about activation and inactivation. However we may have doubts about the reaction schemes and
their independence, as most published Markov models for IKr do. For instance, we may suspect
intermediate conformational states may be involved, or an inactive state may be inaccessible from
closed states. In this case, a motivation arises to test whether the experimental system evolves as
predicted when the model is exhibiting different combinations of a and r.

Similarly, if we were happy to assume that the voltage-dependence is completely understood, and
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Figure 2: Construction of a 3D phase portrait. A: Top — the voltage clamp protocol, here sweeps
with different durations for step P2 are performed and shown in different colours. Bottom — the
resulting current. B: The phase portrait, constructed as shown in Figure 1 for the first sweep, but
here for all six sweeps, colour coded according to the sweep shown in panel A. C: The 3D portrait
showing the same trajectory through the 3D phase-voltage cube. The function O∞(V ) is represented
here by the red-dashed line (see Figure 1 caption for how this is generated). This plot is adapted
from Clerx et al. (2019, figure 1 and supplement) under a CC-BY licence.

perfectly follows equations (5)–(6), then we might examine only two voltages to identify the two
parameters in these equations. Indeed, traditional statistical optimal experimental design can result
in very high/low voltage steps being suggested, as maximum sensitivity to parameters happens at
these extremes. But if we have any doubts about the voltage-dependence of rates in equations
(5)–(6), or how their voltage-dependence interacts with any other imperfections in the model, we
might wish to test the model behaviour across the whole physiological range of voltages and gating
processes.

These notions of (i) testing the Hodgkin-Huxley independence assumption; and (ii) testing the
voltage-dependence assumptions encoded in the rates, together motivate the idea of gathering ex-
perimental data from as complete an exploration of the phase-voltage cube as possible. We are
calling the designs that aim to do this space-filling protocols.

Experimental Design Algorithm

In this section we describe the algorithm that designs space-filling protocols, with the aim of exploring
experimental behaviour across as many combinations of the two states and voltage as possible.
For simplicity, we divide the phase-voltage space into a series of discrete ‘boxes’. The principal
design aim is then simply to force the channel gating to visit as many of these boxes as possible.
We have chosen to discretise each dimension into six, for a total of 63 = 216 boxes as shown
in Figure 3. The rationale here is to balance an exhaustive exploration of the space (which more
divisions and boxes would provide) with the limited number of steps available to encode in a protocol
on automated patch platforms. A continuous version of this design approach would be possible, in
terms of maximising the distance in phase space between trajectories in some sense, but would come
with added computational complexity and a number of choices to make about distance measures.

There is a fixed 2.4 second voltage clamp section added to the start of all our protocol designs,
defined in Table 3, and shown in Figure 4. This section contains steps which we use to estimate leak
current and conductance, and being identical across all protocol designs it is also useful for quality
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Figure 3: The discretisation of the phase-voltage space into ‘boxes’ used in the optimisation of the
experimental protocol. The objective principally maximises the number of these boxes that are
visited by the model at some point during the protocol, whilst keeping the protocol short.

control (Beattie et al., 2018; Lei et al., 2019a). This pre-clamp needs to be considered in terms of
setting the initial conditions for the design phase: we run the model from an initial steady state at
−80mV at t = 0 through the fixed 2.4 second section to get state variables at t = 2.4 seconds, these
state variable values are then used as initial conditions for proposed designs discussed below. We
also record the boxes these fixed steps visit, as shown in Figure 4.

We could do one large optimisation for all the protocol steps we wish to put in the design, but we
are aiming for 51 steps, which implies 102 parameters when considering the voltage and duration of
each step. This would be a very high-dimensional global optimisation problem, taking a long time to
converge, and having a low chance of terminating at the global optimum. Luckily, it is not necessary
to find the global minimum for a design to be ‘good’ (in terms of achieving many of its aims and
visiting a large if not-quite-maximal number of boxes). So to simplify the process substantially we
have adopted a sequential design process, where we optimise three steps at once, and repeat this 17
times to build up a complete protocol of 3 × 17 = 51 voltage steps. Whilst this sequential 3-step
design process is not guaranteed to find the same number of boxes as a design that parameterised
all the voltage steps at once, it results in much lower computation time and results in designs that
visit much of the space.

Three steps (s = 1, 2, 3) are parameterised with durations (ts in ms) and voltages (Vs in mV)
encapsulated in a design parameter vector:

θ = {t1, t2, t3, V1, V2, V3}.

The objective function that we minimise, f(θ), is evaluated by simulating the model states forward
under the steps proposed by the design vector θ. Output time samples are decided by the adaptive
timestep ODE solver (see below), and analysed to see which ‘box’ the simulation trajectory is in at
each time point, as we illustrated for the fixed 2.4 second initial steps in Figure 4.

Nnew is the number of new boxes that the proposed 3-steps visit that have not been visited before.
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Figure 4: Trajectories of the model through the fixed initial steps, and the boxes visited during
this part of each protocol (blue). Note that instantaneous jumps in voltage occur on steps in the
protocol, so whilst the phase-voltage plot is shown as a continuous line to assist in interpretation it
does not visit boxes ‘en-route’ whilst making the vertical jumps in voltage, as we observe here on
the left- and right-hand sides of the phase-voltage cube.

Our objective function to minimise is

f(θ) = −1000 ·Nnew +
3∑

i=1

θi.︸ ︷︷ ︸
duration of steps

+50000 · g(θ)︸ ︷︷ ︸
penalty term

. (10)

The second term of f(θ) simply keeps the protocol short. There are numerous advantages to short
patch clamp experiments, the main one being that there is a limited time available before the patch
clamp seal deteriorates — typically 10–30min. It is also preferable to record some additional in-
dependent validation experiments in the same cell, and to repeat all protocols after applying a full
specific pharmacological block to isolate the current of interest. Experimental conditions (such as
temperature, concentrations and the magnitude of leak currents and other artefacts) can also drift
over time, and this is minimised by keeping experiments short. Another benefit of very short ex-
perimental protocols is that there is time available to purposefully alter experimental conditions
of interest and re-measure currents in the same cell (e.g. to examine the effect of pharmacological
compounds or ionic concentration changes). The weight of 1000 on the first term in f(θ) a normal-
isation factor to make the first two terms approximately the same size or equally important (since
the durations are in milliseconds and we are aiming for a protocol of around 10 s duration in total,
then the second term will be O(104)).

Parameter constraints could be enforced using a constrained optimisation algorithm, or suitable
transforms, but for convenience we used an unconstrained optimisation algorithm and added the
penalty function g(θ) to the objective function, such that t1, t2, t3 ≥ 20ms and V1, V2, V3 ∈ [−120,+60]
mV. These constraints ensure that voltages stay within physiologically-relevant ranges, and that

8

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2024. ; https://doi.org/10.1101/2024.05.02.592179doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.02.592179
http://creativecommons.org/licenses/by/4.0/


steps are not so short that their currents are dominated by artefacts — our usual practice in fitting
current traces has been to discard the data in the 5ms after voltage steps as this region can be
heavily contaminated by capacitive spikes in the cell types we have worked with to date (Lei et al.,
2020). Therefore, this penalty function takes the form:

g(θ) =
3∑

i=1

(1 + 20− θi)H(20− θi)︸ ︷︷ ︸
penalty for steps under 20ms

+
6∑

i=4

(1 + θi − 60)H(θi − 60)︸ ︷︷ ︸
penalty for voltages over +60mV

+
6∑

i=4

(1 +−θi − 120)H(−θi − 120)︸ ︷︷ ︸
penalty for voltages under −120mV

, (11)

where H(·) indicates the Heaviside step function. The use of the linear terms before the Heaviside
functions gives the penalty a value of at least 1 as well as a gradient which can assist a ‘lost’ optimiser
in finding its way back into the correct area of parameter space. The factor of 5× 104 multiplying
g(θ) in Equation (10) then ensures that any penalty for infringing parameter constraints is larger
than the cost associated with the duration of the steps. When minimisation is complete, θ sets
the new 3 steps of the design, and the a and r variable states at the end of the selected voltage
steps are used as the initial conditions for the next 3-step optimisation in the sequence. We are
using a non-gradient based optimiser (details below) so discontinuities introduced by the Heaviside
functions are not a problem, continuous versions of g(θ) would be possible if needed, by introducing
tanh functions for example.

Computational Implementation

For all the computation in this study we used MatLab™ R2023b and its ODE solver ode15s with
absolute and relative tolerances of 10−8. Note that relatively fine tolerances are needed to avoid
an adaptive time-stepping solver ‘skipping over’ certain boxes when time steps spacing is relaxed in
the less stiff parts of the protocol. Code to reproduce this study is openly available, please see the
“Data Availability” section at the end of the paper.

To get a good initial guess for θ we uniformly sample each θi from range t ∈ [20, 1000]ms or
V ∈ [−120,+60]ms as appropriate (so that the penalty term g(θ) = 0), to get 1000 initial guesses
for the design parameter vector θ. We then evaluate f(θ) for each of the 1000 initial guesses, and
select the best of these design vectors to be the initial guess for optimisation. The computation for
this step is relatively cheap with 1000 evaluations of f(θ) taking less than a second on a desktop
computer.

Having a reasonable initial guess, we then use the CMA-ES global optimisation algorithm (Hansen
et al., 2003) with a parameter-refinement stopping criterion of xtol = 2 (ms or mV). This step size
was picked by considering that voltages vary over 180mV and step durations are typically on the
order of 100 or 1000ms, and refinement below this tolerance is unlikely to materially change the
exploration of the phase-voltage cube. In fact, the first step of evaluating f(θ) is to round-up all the
parameters to the nearest millisecond or milliVolt with a ‘ceil’ call, just to produce designs that
are simple to communicate and possible to implement on any experimental patch-clamp hardware.
Because the optimiser does not know about this step, it would cause problems (a flat objective) if
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the optimiser was trying to refine parameter estimates below one millisecond or milliVolt, but the
choice of xtol circumvents this.

In practice, CMA-ES does not find an optimum that is better than the initial guess on every run, as
it is a stochastic algorithm and does not directly evaluate at the initial guess but instead uses it as
the mean for a cloud of particles spread across the domain. Here the CMA-ES population was set to
50, and the hyperparameter for the initial population variance was set to 100ms for step durations
(θ1,2,3) and 20mV for step voltages (θ4,5,6). All other CMA-ES settings were left at default values.
We then run CMA-ES repeatedly until it does improve on the score of the best of the 1000 random
guesses, in the results presented below this usually happens on the first run, rarely takes more than
2 runs, and always happened before 10 runs.

The designs we present used 17 iterations of this 3 step procedure. Following the optimisation pro-
cedure we append another fixed section of protocol that we have termed a ‘reversal ramp sequence’.
This is comprised of another 6 clamp sections: a step to cause large activation of IKr followed by
removal of inactivation then a ramp to detect at what voltage current reverses (see Lei et al., 2019a,
Fig. 10), details are in Table 3. The motivation of this reversal ramp is to observe the apparent
reversal potential, with a suggestion in other recent work that the degree of any deviation from the
Nernst potential might indicate the size and influence of experimental artefacts (Lei et al., 2020).
The complete protocol is then assembled from the 6 initial steps, plus 17× 3 = 51 optimised steps,
plus 6 reversal ramp sequence steps: a complete protocol of 63 clamp instructions which is plotted
and analysed below in terms of box coverage. The automated patch machine we initially produced
these designs for had a control software limitation of 64 sections in a single protocol definition. If
future machines have a larger limit, then extra rounds of 3-step designs could be added to attempt to
hit some of the remaining unvisited boxes, or the number of boxes (currently 63) could be increased
to explore the accessible region of the phase-voltage cube to a greater degree of refinement.

Results

Because our optimiser uses random sampling internally for placing a population of particles, every
run produces a different design. The best design we found after 100 runs of the protocol design
procedure is shown in Figure 5; this protocol visits 178/216 boxes (82.4%). For context, the ‘sinu-
soidal protocol’ introduced in Beattie et al. (2018) visits a surprisingly-low 54 boxes (25%), whilst
the ‘staircase protocol’ introduced in Lei et al. (2019a) visits 60 boxes (28%).

The five top-scoring protocols out of the 100 runs are shown in Figure 6 with the details of all steps
given in Table 2. We see some common properties emerge — sections of long steps, ensuring we
observe certain slow activation gate states at certain voltages, and also interspersed with shorter
regions of faster steps up and down which probe the inactivation processes at various voltages. As
these can be difficult to see we have shown zoomed in regions of the protocol and currents it provokes
on the right-hand side of Figure 6. As we ensured with the penalty term g(θ) and rounding procedure
described above, none of these steps are shorter than 20ms. Steps of 20ms are chosen repeatedly
though: this is not a surprise, given the need for short steps to provoke rapid transients to explore
the inactivation/recovery processes at various levels. Similarly, the extremes of the voltage range of
−120 to 60mV are commonly used to provoke fast behaviour.

Figure 7 summarises the properties of the 100 designs in terms of how many boxes are visited and
how long the resulting protocols are. Protocols are all between 8 and 12 seconds long, and visit
73–82% of the available discretised boxes of the phase-voltage cube.
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Figure 5: The most-optimal design that was found. Left: the voltage protocol, gating variables and
current through time for the best design. Right: the phase-voltage space with the trajectory for this
design plotted. This protocol visits 178/216 boxes (82.4%) and therefore to make this figure clearer
we highlight just those boxes that are not visited in red. Note that the plot is rotated relative to
Figure 4, again for clarity, and the un-visited boxes are are clustered in the a ≈ 1, r ≈ 1 corner.
This finding makes intuitive sense as it is difficult for both gating variables to be close to one at the
same time for any voltage given that a∞ → 1 at high voltages and r∞ → 1 at low voltages.

Identifiability

To test whether the protocols that result from this design process provide good parameter identifia-
bility for a model, a worthwhile exercise is always to simulate data with some parameter set, ‘forget’
the ion channel model parameters (p1, . . . , p8, gKr), and then attempt to re-infer them from just the
simulated current trace with noise added. We have not shown the full results of this exercise here,
but we have tested tens of the resulting designs (following the ‘Method 4’ parameterisation proce-
dure in Clerx et al. (2019), which involves simply optimising model parameters to minimise square
error between the model prediction and the full simulated current trace). In the Shuttleworth et al.
(2024) simulation study we used one of these phase-voltage cube filling designs (called “design d3”
in that paper). In that paper’s Table 3 (λ = 1 setting) results are shown of a practical identifiability
assessment for the Beattie et al. (2018) model that was used to generate the protocol design. A
realistic level of synthetic i.i.d. noise was added to the model output to generate synthetic data,
and variation in the parameter fits across repeated optimisations with 10 different instances of that
noise is shown in the Table, very small standard deviations on the true parameters are returned, and
examining the data behind those tables (see ‘Data Availability’), the maximum absolute percentage
error for any parameter in the best fits to any of these datasets was less than 0.4%.

We also tested whether this design, generated based upon the Hodgkin-Huxley model phase-voltage
cube, provides good identifiability for the Wang et al. (1997) five-state Markov model, by repeating
the same process with that model providing the synthetic data. We found that there was very good
parameter identifiability for this model as well, with a mean absolute percentage error in parameters
of 0.4% and a maximum absolute percentage error for any of the 15 model parameters across all 10
synthetic datasets of 2.9%.
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Predictions for a different model

In Figure 8 we show predictions for current under the best design from a different model, a linear
structured Markov model with three closed states, open and then inactive (C-C-C-O-I) proposed
by Wang et al. (1997). This model was re-calibrated in Beattie et al. (2018) to the same data as
the Hodgkin-Huxley model that we used for the optimal designs here. Please see the supplement
of Beattie et al. (2018) for a table of parameters. In the C-C-C-O-I model, there is no longer inde-
pendence between activation and inactivation processes (the inactivated state only being accessible
from the open state). We see how the newly designed protocol separates the model predictions well
in various parts of the protocol, the violation of Hodgkin-Huxley model assumptions appears to be
highlighted when this model undergoes the same protocol.

Discussion

In summary, these new protocol designs visit a wide range of channel gating states, at a wide variety
of voltages, and we therefore expect them to be very useful in parameterising models, as well as
being a challenging test of the assumptions we make about ion channel gating when constructing
ion current models.

We are in the process of testing these designs with real experimental hERG1a data at present, and
intend to publish a comparison of the model parameterisations that result.

Limitations

The designs here were local, that is based upon a single parameter set for a single candidate model
(described by equations (1–6)). So there is a need to understand something about the channel of
interest and to have a reasonable candidate model before running this design process. That said,
we believe such designs will be extremely useful as part of a model refinement pipeline, particularly
when moving from the simplest Hodgkin-Huxley gating variable representations to Markov models
with more parameters and flexibility.

Some of the boxes are visited for only very short amounts of time. As an example, downsampling
the output from using all the ODE solver’s timesteps (as we do in the above results), to regular
1ms steps results in a drop in box coverage for the 100 designs from 76–82% to 61–70%, implying
that around 15% of the boxes we visit are occupied for less than 1ms as we pass through them on
very fast trajectories. This is not a surprise given that the fastest time constant in the model for
this voltage range is the inactivation’s τr = 3.9ms at −120mV. The implication is that on a step
to −120mV we will get 1 − 1/e = 63.2% of the way from the initial r to r∞ in just 3.9ms, so it is
easy to see why we might spend less than 1ms in many of the boxes en-route if we start more than
a couple of boxes away. Some additional criteria within the objective to spend a good amount of
time in each box could be desirable. But extra time in certain boxes might be difficult to achieve
without just revisiting the box many times: inactivation is just a fast process at certain voltages —
a biological feature of IKr rather than a quirk of this model or approach.

The 3-step-at-a-time approach is a limitation, in that an all-at-once optimisation should be able to
hit more boxes and potentially reach boxes that cannot be hit in only 3 steps. However we re-ran
our analysis with a 6-step design, allowing 6×9 = 54 steps in total (slightly more than the 51 shown
here). We achieved exactly the same optimum of 178 boxes in 100 runs, suggesting the 3-step design
is flexible enough to find a similar optimum to those we would get with more steps fitted at once.
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We also tried a sequential design comprised of step-ramp-step-ramp-step (with ramps continuous
with the step voltages either side), as we imagined that ramps, that visit all the voltages en-route
between two steps, would visit a lot of extra boxes in the voltage dimension. However, this time
only ten sequential optimisations could occur with the limited number of clamp commands (5 clamps
×10 = 50 steps) which led to only 68% of boxes being visited. Related to the paragraph above,
primarily this is thought to be due the removal of a lot of the fast vertical transitions in voltage
which mean that it is harder to get the inactivation state away from r∞ when using ramps rather
than steps. Code and results for both of these exercises are provided in a subfolder of the code (see
Data Availability).

Future Work

Various adaptations would be easy to include as the proposed framework is very flexible. For a rea-
sonable amount of time during the optimised protocols there are relatively small currents (Figure 6),
although overall they compare favourably with past protocols in terms of current magnitude. One
idea to increase the proportion of the protocol with large currents would be a simple penalty term
for small currents (based on |a · r · (V − EK)|), which could encourage larger currents and a better
signal-to-noise ratio. There would be caveats here, as larger currents in patch-clamp experiments
imply larger artefacts related to voltage drop over series resistance; bigger signal with lower signal-
to-noise is not always better in patch clamp experiments. Consideration of artefacts during the
fitting process may allow us to overcome this problem (Lei et al., 2020). Such an alteration would
also be at the expense of somewhat arbitrarily enhancing the weighting given to exploring certain
parts of the phase-voltage cube: it may be very useful information to observe that there really are
small currents when you expect that there should be small currents.

Extension to a higher-dimensional phase-voltage hypercube for Markov models with more than
three states, or additional Hodgkin-Huxley gates such as a 3-gate sodium m3hj model, is very
straightforward — at least mathematically and computationally, if not in terms of visualisation. For
Markov models, this extension may require more than 3 steps to be optimised at a time to get into
hidden deeper states, and the number of boxes in each dimension (here 6) might need to be reduced
to give a good exploration across the whole space with the limited number of steps available in a
practical setting. There may also be substantially more ‘inaccessible space’ in a larger Markov model
— for instance, it is difficult to imagine in a model with a long chain of closed states that a large
probability can be produced in one of the middle states with the rest being close to zero.

Conclusions

These new experimental designs for voltage-clamp experiments are short and provide plentiful infor-
mation on model kinetic parameters, as well as providing data that should probe the extent to which
the key assumptions behind the modelling approach (independence of gating processes, transition
rate dependencies on voltage) are valid.

Data Availability

Code associated with this paper is openly available under a BSD licence at https://github.com/
CardiacModelling/space-filling-designs/, a permanently archived version is available on Zen-
odo (Mirams, 2024).
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Figure 6: The five best scoring voltage-clamp designs out of 100 runs of the phase-voltage cube
optimisation procedure, and the simulated currents they provoke. Full details of the clamps are
given in Table 2. Each row is one protocol, ranked from the best at the top (also seen in Figure 5)
to 5th best at the bottom which still visits 175/216 boxes (81%). The voltage protocol is shown
in blue (left hand axis), and the resulting simulated IKr is shown in red (right hand axis). On the
left we show the full protocol, and on the right a zoom in on the grey highlighted section from the
left plot, sharing the same y axes. The horizontal grey line indicates the reversal potential EK (left
axis) and zero current (right axis).
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Figure 7: Summary statistics for 100 runs of the design process, with histograms on the axes showing
the marginal distribution of the cloud of points.
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Table 2: Details of the 5 most optimal protocols, as shown in Figure 6. These steps need to have
the two ‘bookend’ sections added (see Table 3) which are identical for all designs.

Clamp Protocol 1 (best) Protocol 2 Protocol 3 Protocol 4 Protocol 5
# t (ms) V (mV) t (ms) V (mV) t (ms) V (mV) t (ms) V (mV) t (ms) V (mV)

1 672 29 648 29 643 29 645 29 645 29
2 84 −101 53 −109 145 −103 53 −109 53 −109
3 52 −13 27 −7 22 −1 23 −2 23 −2
4 20 −112 24 −98 22 −95 37 −116 20 −106
5 101 60 105 59 109 60 151 −1 99 60
6 195 −90 196 −90 195 −90 27 −90 195 −90
7 170 29 170 29 21 59 108 60 169 29
8 281 −87 280 −87 281 −87 194 −90 280 −87
9 20 −1 21 −3 21 −6 21 −42 22 −3
10 20 −119 20 −66 20 −118 169 29 20 −118
11 22 −36 20 −116 20 −33 20 −82 20 −31
12 20 −77 20 −33 20 −80 20 54 20 −83
13 147 58 132 60 204 60 47 −80 184 57
14 306 −59 69 −87 77 −90 697 29 394 −57
15 37 −6 21 −2 53 −16 333 −57 53 −7
16 63 −90 317 −60 314 −60 21 60 41 −43
17 144 60 20 −120 20 −119 62 −120 58 −90
18 26 −90 21 −33 24 −41 29 −40 26 52
19 20 24 513 29 43 −90 239 58 29 60
20 40 −119 34 −106 144 24 78 −90 33 −120
21 24 −40 21 58 70 −52 77 −18 32 −35
22 31 −89 53 −90 177 29 514 −51 20 −77
23 288 25 80 60 42 −90 45 −120 30 29
24 167 −114 21 −60 21 −4 20 −61 20 −91
25 73 60 20 54 82 60 802 48 174 60
26 24 −60 20 −119 21 −60 20 −95 28 −90
27 20 27 20 26 20 −117 188 −16 21 13
28 24 59 21 −19 55 57 59 17 22 −120
29 20 −97 21 −116 24 −94 37 −98 23 −1
30 21 25 23 −36 412 29 41 19 20 −59
31 20 −59 34 −120 24 47 30 −120 322 58
32 20 −120 24 −2 34 −57 30 4 26 −93
33 20 −23 20 −115 35 −15 32 −45 138 −21
34 20 8 179 60 33 −92 255 −120 22 −57
35 21 −60 20 −95 232 38 48 30 21 −120
36 20 50 20 28 103 −26 206 −116 20 15
37 45 −120 21 60 35 −120 20 −66 47 60
38 31 −9 21 −78 20 12 20 −1 20 −95
39 21 −41 20 −12 20 −114 20 −75 20 −19
40 235 60 42 −118 544 58 178 60 106 60
41 22 −94 154 −18 33 −92 20 −95 20 −95
42 41 −15 63 −62 92 15 20 59 20 59
43 20 41 50 12 22 −105 20 −120 20 −120
44 20 −99 41 −54 20 −60 20 −25 20 −33
45 20 −26 34 37 20 22 20 −28 20 −42
46 88 60 152 60 20 −118 163 38 48 −120
47 20 −95 20 −95 20 −51 20 −118 23 −2
48 20 60 20 60 20 −25 685 −11 20 −51
49 40 −120 20 −101 20 60 20 −116 22 −16
50 20 −38 20 −26 20 −96 47 60 44 −90
51 20 −58 20 −33 20 −29 20 −39 25 33
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Table 3: Details of the start and end clamp sections for all designs. ‘t’ indicates the duration of the
clamp section, and ‘V ’ the relevant voltage(s) for this clamp. Where ‘Ramp’ is specified it is a linear
ramp over time between the voltages shown, as opposed to a constant voltage clamp for a ‘Step’.

Clamp Initial steps: for leak and conductance End: reversal ramp sequence
# Step/Ramp t (ms) V (mV) Step/Ramp t (ms) V (mV)

1 Step 250 −80 Step 1000 −80
2 Step 50 −120 Step 500 40
3 Ramp 400 −120 to −80 Step 10 −70
4 Step 200 −80 Ramp 100 −70 to −110
5 Step 1000 40 Step 390 −120
6 Step 500 −120 Step 500 −80

0 2 4 6 8

Time (s)

-100

-50

0

50

V
ol

ta
ge

 (
m

V
)

Sinusoidal protocol (calibration)

0 2 4 6 8

Time (s)

-4

-2

0

2

C
ur

re
nt

 (
nA

)

Beattie model
C-C-C-O-I

0 2 4 6 8

Time (s)

-100

-50

0

50

V
ol

ta
ge

 (
m

V
)

Space-filling design

0 2 4 6 8

Time (s)

-5

0

5

10

15

C
ur

re
nt

 (
nA

)

4.5 5 5.5 6

Time (s)

-100

-50

0

50

V
ol

ta
ge

 (
m

V
)

Space-filling design - zoom

4.5 5 5.5 6

Time (s)

-5

0

5

10

15

C
ur

re
nt

 (
nA

)

Figure 8: Predictions of the C-C-C-O-I model by Wang et al. (1997) re-calibrated to data gathered
under the sinusoidal protocol (done by Beattie et al. (2018) using their ‘Cell #5’ data, which is the
same data used to calibrate the Hodgkin-Huxley model used for designs here). Top row: voltage
clamp protocol, Bottom row: simulated current. Left: sinusoidal protocol — both models display
similar currents. Middle: under the best design — the two models that closely agreed for almost
all the sinusoidal protocol show greater divergence under the space-filling design. Right: a zoomed
in view of part of the space-filling predictions.

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2024. ; https://doi.org/10.1101/2024.05.02.592179doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.02.592179
http://creativecommons.org/licenses/by/4.0/

