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1 Introduction

For a 2D velocity field (u1(x, y), u2(x, y)) at (x, y) ∈ R2, the vorticity is defined by ω = ∂yu1−∂xu2.
Interactions among high vorticity regions give rise to various complicated flow patterns. For
instance, when the fluid flow is subject to an external force in planar domains, these vorticity
regions are localized and self-organizing into beautiful stationary lattice patterns [26, 28, 30]. Such
vortex lattice structures, whose physical meaning varies depending on problems, are observed
not only in fluid flows but also in the other physical phenomena such as superconductors in
electromagnetic fields [2, 24], quantized vortex structures in superfluid helium [25, 64] and Bose-
Einstein condensates [1, 22, 23] in low-temperature physics. In order to understand the formations
of vortex lattices, we are tempted to create a phenomenological model based on the interactions
among vortex structures. In this model, we assume that the potential function describing the
interaction between two localized vortex structures has a logarithmic singularity, whose inducing
azimuthal velocity field depends on the distance r and decays as 1/r as r goes to infinity. The
model is different from process-driven partial differential equations such as the Navier-Stokes
equations and the Ginzburg-Landau/Gross-Pitaevskii equations with localized vorticity initial
data, but we can make use of it more flexibly to investigate the formation of vortex lattices for
large number of high vorticity regions. A good survey of the model’s history is given by Newton
& Chamoun [46], in which many related references are found. See also a discussion in the Nobel
Lecture by Abrikosov [3] regarding its physical relevance.

Suppose that the high vorticity regions concentrate in a finite set of isolated points. That is to
say, the vorticity distribution is represented by Dirac’s delta measures whose supports are defined
on these points, called point vortices. Owing to the singular distribution, the vorticity is no longer
a meaningful quantity since it diverges at the points, while the circulation for a small Jordan
curve around the point is well-defined. Hence, we regard the circulations as the strengths of point
vortices. For this vortex distribution, we can obtain a logarithmic interaction energy between
two point vortices, thereby investigating the equilibrium states of point vortices, which are called
vortex crystals. The study of vortex crystals in planar domains dates back to the “vortex atom”
theory of matter by Thomson [61] more than a hundred year ago. Later, Campbell & Ziff [12] and
Campbell & Kadtke [13] provided a catalogue of vortex crystals in a circular disc domain. Aref et
al. [5] and Newton [42] survey the mathematical aspects of vortex crystals and give many vortex
crystals in planar domains with/without boundaries, on a sphere and the hyperbolic plane. Fixed
vortex equilibria in multiply connected circular domains are found in [52].

In the meantime, the search of vortex crystals is related to finding “good” point configurations
that can be used for quadrature rules, computer designs and interpolation of functions in finite
element schemes. A comprehensive review of the problem on point configurations is presented by
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Hardin and Saff [31]. For a given particle-interaction energy function, one can define good point
configurations as a local minimizer of the energy function. The most famous problem is finding
a set of N points, ωN = {xi}Ni=1, over d

′-dimensional compact set A embedded in d-dimensional
Euclidean space that minimizes the following Riesz s-energy.

Es(A,N) := inf
ωN⊂A

∑
i ̸=j

|xi − xj |−s,

where s > 0 and | · | denotes the Euclidean distance. The parameter s controls the particle
interaction. If s = 1, E1(A,N) is the minimization for Coulomb energy corresponding to the
classical potential theory of charged particles. As s → ∞ with keeping N unchanged, this is
equivalent to the best packing problem. On the other hand, for s→ 0, we obtain the minimizing
problem of the following inter-particle energy,

E0(A,N) = inf
ωN⊂A

∑
i ̸=j

log |xi − xj |,

in which there appears an interaction energy with a logarithmic singularity. One of the central
concerns in this problem is clarifying the behavior of Es(A,N) as N → ∞. According to [9, 10, 32].
we obtain Es(A,N) = O(N2) for 0 < s < dH and Es(A,N) = O(N2 logN) for s ≧ dH when points
are on d-rectifiable compact manifolds with Hausdorff dimension dH . Another minimizing energy
problem in connection with quadrature rules on compact manifolds is considered by Damelin et
al. [17, 18]. Point configurations on the surface of a sphere has also been well-investigated, since
the problems of s = ∞ and s = 0 are related to Tammes problem [60] and Smale’s seventh
problem [57], respectively. In [45], a connection between vortex crystals and the optimal packings
of the spherical surface is discussed. See also the the introduction and the references of this paper,
regarding the applications to physical and biological problems.

The purpose of this article is reviewing the author’s recent studies [53, 54, 55, 56] on vortex
dynamics on the surface of a torus. Although the flows on the surface of a torus is no longer a
physical relevance to real fluid flow phenomena, it is theoretically interesting to observe whether
this geometric nature of the torus, which is a compact, orientable 2D Riemannian manifold with
non-constant curvature and one handle, yields different vortex structures that are not observed
so far. Vortex dynamics on the toroidal surface is not only an intrinsic theoretical extension in
the field of classical fluid mechanics, but it would also be applicable to modern physics such as
quantum mechanics and flows of superfluid films as discussed by Turner et al. [63]. As a matter of
fact, a vector field of superfluid confined in a thin film on a toroidal surface has been considered
analytically [14, 39]. A two-phase flow with a sharp interface on a torus was observed numerically
in [48]. On the other hand, Hardin and Saff [31] showed some examples of point configurations on
the surface of a torus that minimize Riesz s-energy: for s≪ 1, most of the points are distributed
in the outer domain of the torus where the curvature is positive, while they spread uniformly
for larger s > 1. The model of vortex dynamics proposed here adds more examples of point
configurations on the toroidal surface in terms as vortex crystals [31].

The construction of the article is as follows. In Section 2, we provide the derivation of our
vortex dynamics model based on the vorticity-streamline formulation. In Section 3, we consider
the discrete vorticity distributions, i.e., point vortices, to investigate vortex crystals, whose linear
stability and interactions are also discussed. In Section 4, we derive an analytic solution of a
modified Liouville equation on the surface of a torus, which corresponds to a continuous vorticity
distribution in the plane, known as the Stuart vortex [59]. The last section is summary and
discussions.
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2 Vortex dynamics on the surface of a torus

LetM be an orientable closed surface and g be the Riemannian metric onM . We derive the equa-
tion of vortex dynamics on the manifold (M, g) based on the mathematical formulation provided
by Dritschel & Boatto [21]. We first consider a special Green’s function GH(ζ, ζ0) for ζ, ζ0 ∈ M ,
called the hydrodynamic Green’s function, satisfying

∇2
MGH(ζ, ζ0) = δζ0 −

1

Area(M)
, GH(ζ, ζ0) = GH(ζ0, ζ),

where ∇2
M and δζ0 denote the Laplace-Beltrami operator and the dirac function at a point ζ0

on (M, g) respectively. Analogous to vortex dynamics in the unbounded plane R2, the vortex
dynamics on M is described in terms of the vorticity ω and the stream-function ψ. That is
to say, for a vorticity distribution ω(ζ), the stream-function ψ(ζ) satisfies Poisson’s equation,
−∇2

Mψ = ω. With the hydrodynamics Green’s function, the solution is given by the following
inversion formula.

ψ(ζ) = −
∫
M
GH(ζ, ζ0)ω(ζ0)dµ(ζ0), (1)

where µ denotes the Riemannian volume form.
We shall construct the vortex dynamics when the vorticity distribution is given on the surface

of a torus TR,r of major radius R and minor radius r, which is embedded in the three-dimensional
Euclidean space as follows [27].

ι : (θ, ϕ) ∈ TR,r 7→ ((R− r cos θ) cosϕ, (R− r cos θ) sin θ, r sin θ) ∈ E3,

in which (θ, ϕ) ∈ (R/2πZ) × (R/2πZ) is the toroidal coordinates in the latitudinal and the lon-
gitudinal directions. The modulus of the toroidal surface is given by α = R/r > 1, from which
we introduce the two real parameters A and ρ as A =

√
α2 − 1 > 0 and ρ = exp(−2πA) ∈ (0, 1).

On the other hand, the toroidal surface is endowed with a complex analytic structure through the
following stereographic projection:

ζ : (θ, ϕ) ∈ TR,r 7→ eiϕ exp

(
−
∫ θ

0

du

α− cos θ

)
∈ D ⊂ C,

in which D = {ζ ∈ C | ρ < |ζ| < 1} is an annular domain. It is conveniently written as ζ =
eiϕ exp(rc(θ)) by introducing

rc(θ) = −
∫ θ

0

du

α− cos θ
.

This function is monotonically decreasing owing to r′c(θ) < 0 for α > 1, satisfying a quasi-
periodicity rc(θ ± 2π) = rc(θ) ∓ 2πA. The Laplace-Beltrami operator ∇2

TR,r
for the toroidal

surface is then expressed explicitly by using the toroidal coordinates (θ, ϕ) as follows:

∇2
TR,r

≡ 1

r2(R− r cos θ)

∂

∂θ

(
(R− r cos θ)

∂

∂θ

)
+

1

(R− r cos θ)2
∂2

∂ϕ2
.

For the stream-function ψ(θ, ϕ) and the vorticity distribution ω(θ, ϕ) on the toroidal surface, we
consider Poisson’s equation, −∇2

TR,r
ψ = ω. By solving the equation, we can derive the incom-

pressible velocity field (uθ(θ, ϕ), uϕ(θ, ϕ)) on the toroidal surface as follows [27].

uθ(θ, ϕ) =
1

R− r cos θ

∂ψ

∂ϕ
, uϕ(θ, ϕ) = −1

r

∂ψ

∂θ
.
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Since the toroidal surface is compact without boundaries, we take Gauss’ constraint into consid-
erations. ∫∫

TR,r

ωdσ = 0, (2)

where dσ denotes the area element of the toroidal surface.
The analytic formula of the hydrodynamic Green’s function GH(ζ1, ζ2) for ζ1 = ζ(θ1, ϕ1) and

ζ2 = ζ(θ2, ϕ2) has been obtained [53]:

GH(ζ1, ζ2) =
1

2π
log

∣∣∣∣ζ2P (
ζ1
ζ2

)∣∣∣∣+ 1

4π2A
rc(θ1)rc(θ2) +F (θ1) +F (θ2)−

1

4π
rc(θ1)−

1

4π
rc(θ2), (3)

in which the Schottky-Klein prime function P (ζ) associated with the domain D and the function
F (θ) are given by

P (ζ) = (1− ζ)

∞∏
n=1

(1− ρnζ)(1− ρnζ−1), F (θ) = − 1

4πα2

∫ θ

0

αu− sinu

α− cosu
du. (4)

Note that GH(ζ1, ζ2) is a doubly periodic function on the annular domain D with respect to the
two arguments.

In this article, we consider the two types of vortex distributions. One is the singular vorticity
distribution consisting of δ-measures at N points, called point vortices, which is given by

ω(ζ) =

N∑
m=1

Γmδζm . (5)

Here, ζm = (θm, ϕm) ∈ TR,r represents the location of the mth point vortex and the constant
Γm ∈ R is its strength for m = 1, . . . , N . Point vortex dynamics in the unbounded plane has
been used to understand fundamental vortex interactions in flow phenomena. We can find many
references in the books by Saffman [50] and Newton [42]. The motion of point vortices is also
considered on surfaces that have various geometric features, and it reveals connections between
the geometry of flow domains and fluid evolutions. One of the most important examples is the
surface of a sphere. The evolution equation for point vortices on the spherical surface was derived
by Bogomolov [8] and Kimura & Okamoto [33], which has been utilized as theoretical models
of planetary flows on a sphere with/without rotation [19, 43, 58]. It is generalized in a unified
manner to point vortex dynamics on surfaces with constant curvature by Kimura [34]. Hally [29]
investigated the stability of vortex street with using a generalized vortex dynamics on symmetric
surfaces of revolutions. Recently, Dritschel & Boatto [21] have considered point vortex dynamics on
2D surfaces conformal to the unit sphere based on a mathematical framework of [7]. The evolution
equation of point vortices in multiply connected planar domains has been derived in [51], which
is used to investigate many physical and engineering problems such as an ocean flow [40] and an
efficient force-enhancing wing design with linear feedback control [41].

Another family of vortex distribution is the Stuart-type vortex, whose distribution is given by

ω(ζ) = cedψ + g(ζ), c, d ∈ R cd < 0. (6)

The function g(ζ) is specified depending on the Riemannian manifold M . For instance, g(ζ) = 0
whenM is the unbounded plane, which gives rise to the classical Liouville equation. This equation
appears not only in fluid dynamics but also in many problems of mathematical physics such as
the field theory and plasma physics. Owing to the physical relevance, many exact solutions have

4



been obtained in [6, 11, 15, 38]. In fluid dynamics, it is regarded as a mathematical model of free
shear layers. For instance, Stuart [59] obtained a periodic row of smooth vorticity distributions.
On the surface of the unit sphere, Crowdy [16] extended the notion of Stuart vortex, in which the
function g(ζ) is given by g(ζ) = 2/d.

3 Dynamics of point vortices

3.1 The N-vortex system and its integrability

Suppose that the initial vorticity distribution is given by the linear combination of δ-measures (5)
whose supports are located at ζm = ζ(θm, ϕm) and strength are given by Γm for m = 1, . . . , N .
We then obtain the stream-function through the inversion formula (1).

ψ(ζ) = −
∫
M
GH(ζ, ζ0)

N∑
m=1

Γmδζmdµ(ζ0) = −
N∑
m=1

ΓmGH(ζ, ζm).

By allowing the point supports of the δ-measures to move according to their inducing velocity
field, we are going to derive the evolution equation of point vortices. Since the stream-function
has a logarithmic singularity in the neighborhood of point vortex, we remove the self-singularity,
giving rise to the following modified stream-function [36, 37] associated with ζm:

ψm(ζm) = −
N∑
j ̸=m

ΓjGH(ζm, ζj)−
1

2
ΓmR(ζm),

where the function R(ζm), called the Robin function, is defined by

R(ζm) = lim
ζ→ζm

[
GH(ζ, ζm)−

1

2π
log d(ζ, ζm)

]
.

Here, d(ζ, ζm) represents the geodesic distance between two points at ζ and ζm on the toroidal
surface. According to [21, 36], the equation of motion of the mth point vortices at ζm(t) is derived
by

dζm
dt

= −2iλ−2(ζm, ζm)
∂ψm

∂ζm
,

where λ(ζ, ζ) = (R − r cos θ)/|ζ| denotes the conformal factor associated with the metric of the
toroidal surface. The equation is explicitly written down as follows [53].

r2(α− cos θm)
dθm
dt

= i

N∑
j ̸=m

Γj

[
K(ζm/ζj)−K(ζm/ζj)

4π

]
, (7)

r2(α− cos θm)
2dϕm

dt
=

N∑
j ̸=m

Γj

[
K(ζm/ζj) +K(ζm/ζj)

4π
+
αθm − sin θm

4π2α
+
rc(θj)

4π2A
− 1

4π

]

+ Γm

[
αθm − sin θm

4π2α
+
rc(θm)

4π2A
+

1

4π
sin θm

]
, (8)
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in which a special function K(ζ) is defined by K(ζ) = ζPζ(ζ)/P (ζ). We call the system of ODEs
the N -vortex system, which is formulated as a Hamiltonian system with N degrees of freedom
with Hamiltonian

H(θ1, . . . , θN , ϕ1, . . . , ϕN ) = −1

2

N∑
m=1

N∑
j ̸=m

ΓmΓjGH(ζm, ζj)−
1

2

N∑
m=1

Γ2
mR(θm). (9)

This contains the logarithmic particle-interaction energyGH(ζm, ζj) between the two point vortices
at ζm and ζj . Under the theory of Hamiltonian dynamical systems, we can discuss the integrability
of the system. Let IN be defined by

IN =

N∑
m=1

Γm(αθm − sin θm),

then we have the following results whose proofs are given in [53].

Proposition 3.1. IN is invariant in time and it is in involution with the Hamiltonian.

Theorem 3.1. The 2-vortex system is integrable for any vortex strengths.

3.2 Equilibrium states of point vortices

We find equilibrium states of point vortices, i.e., vortex crystals, in which their relative configu-
ration is unchanged. Let us rewrite the equations (7) and (8) in a simple form.

θ̇m =

N∑
j ̸=m

ΓjFmj(θ1, . . . , θN , ϕ1, . . . , ϕN ), (10)

ϕ̇m =
N∑
j ̸=m

ΓjGmj(θ1, . . . , θN , ϕ1, . . . , ϕN ) + ΓmHm(θ1, . . . , θN ), (11)

in which · denotes the temporal derivative, and Fmj , Gmj and Hm are specified by

Fmj =
i

r2(α− cos θm)

[
K(ζm/ζj)−K(ζm/ζj)

4π

]
, (12)

Gmj =
1

r2(α− cos θm)2

[
K(ζm/ζj) +K(ζm/ζj)

4πα
+
αθm − sin θm

4π2α
+
rc(θj)

4πA
− 1

4π

]
, (13)

Hm =
1

r2(α− cos θm)2

[
αθm − sin θm

4πα2
+
rc(θm)

4π2A
+

1

4π
sin θm

]
. (14)

Suppose that N point vortices form a relative equilibrium state rotating at a constant speed V0 in
the longitudinal direction, say, θm(t) = ϑm and ϕm(t) = φm + V0t. Then the substitution of the
ansatz into the equations (10) and (11) yields the following algebraic equations for vortex crystals.

N∑
j ̸=m

ΓjFmj(ϑ1, . . . , ϑN , φ1, . . . , φN ) = 0, (15)

N∑
j ̸=m

ΓjGmj(ϑ1, . . . , ϑN , φ1, . . . , φN ) + ΓmHm(ϑ1, . . . , ϑN )− V0 = 0. (16)
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Let us remark that any vortex crystal is a critical point of the Hamiltonian function (9) containing
the logarithmic particle interaction energy term. The vortex crystal becomes a local minimizer
of the Hamiltonian H when the eigenvalues of the hessian of H are all pure imaginary, in other
words, it is neutrally stable.

There are several ways to find the solutions of the equations (15) and (16). First, one can
naively prescribe locations and strengths of point vortices, thereby confirming whether or not they
satisfy (15) and (16). Since the locations of such point vortices are usually generated under the
assumption that the configuration satisfies a certain discrete symmetry, most of the vortex crystals
obtained by this approach become symmetric. The second approach is solving the algebraic
nonlinear equations for given strengths using numerical solvers such as Newton’s method. This
allows us to obtain asymmetric vortex equilibrium states, which was used to construct vortex
crystals in the unbounded plane [4].

The other approaches are based on the linear algebraic formulation of the equations (15) and
(16). Suppose that we fix the locations (ϑm, φm) of N point vortices. Then the equations are
regarded as a linear algebraic null equation AΓ = 0, in which

A =



0 F12 · · · F1N 0
F21 0 · · · F2N 0
...

...
. . .

...
...

FN1 FN2 · · · 0 0
H1 G12 · · · GN1 −1
G21 H2 · · · G2N −1
...

...
. . .

...
...

GN1 GN2 · · · HN −1


∈ R(2N+1)×(N+1), Γ =


Γ1

Γ2
...

ΓN
V0

 ∈ RN+1.

Since the matrix A encodes the geometric information on the configuration of the point vortices,
it is referred to as the configuration matrix. The solution vector Γ consists of the strengths of
N point vortices and the latitudinal speed of rotation V0. The linear equation has a non-trivial
null space, if it satisfies det(ATA) = 0. Hence, if we find the locations of N point vortices whose
corresponding configuration matrix satisfies Rank(A) = k < N + 1, then the vector Γ belongs
to N + 1 − k dimensional null space. When k = 1 in particular, we can identify the strength
Γm of the mth point vortex uniquely up to ± sign under a certain normalization condition.
The null space of A is numerically constructed by the singular value decomposition, which is
a standard numerical tool. In the third approach, prescribing the locations of point vortices,
we check if the configuration matrix A becomes rank-deficient. In the fourth method, we use a
stochastic method, called the Brownian ratchets, where vortex crystals are searched by generating
a random walk of points until its corresponding configuration matrix becomes rank-deficient. This
method was proposed by Newton and Chamoun [44], which was successfully applied to produce
many symmetric and asymmetric point vortex equilibria in the unbounded plane [44] and on the
spherical surface [45, 47].

In what follows, we show a catalogue of vortex crystals obtained through these approaches.
The first approach yields several vortex crystals on the toroidal surface [53]. When point vortices
are located at antipodal points, the configuration is a vortex crystal for any strengths. As a matter
of fact, it is a fixed equilibria, which is a vortex crystal with V0 = 0. When N identical point
vortices are equally spaced along the line of latitude Θ0, i.e.

ϑm = Θ0, φm = 2πm/N, Γm = Γ, m = 1, · · · , N, (17)

then it is a vortex crystal, called the (latitudinal) N -ring [53].
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Proposition 3.2. Let VN (Θ0) be defined by

VN (Θ0) =
NΓ

(R− r cosΘ0)2

[
αΘ0 − sinΘ0

4π2α
+
rc(Θ0)

4π2A

]
+

Γ sinΘ0

4π(R− r cosΘ0)2
.

Then the N -ring along the line of latitude Θ0 is a relative equilibrium rotating in the longitudinal
direction at the speed VN (Θ0).

Suppose next that twoM -rings with the vortex strengths of the opposite signs are aligned along
two symmetric lines of latitudes, namely Θ1 and Θ2 with Θ1 + Θ2 = 2π. Then, the locations of
N = 2M point vortices with the strengths Γ2m−1 = Γ and Γ2m = −Γ are specified by

θ2m−1 = Θ1, ϕ2m−1 =
2π

M
m, θ2m = 2π −Θ1, ϕ2m =

2π

M
m, (18)

and

θ2m−1 = Θ1, ϕ2m−1 =
2π

M
m, θ2m = 2π −Θ1, ϕ2m =

2π

M
m+

π

M
, (19)

form = 1, . . . ,M . The configuration (18) corresponds toM vortex dipoles, while the configuration
(19) is called a staggered pair of M -rings. They are vortex crystals, which correspond to von
Kármán vortex streets on the surface of a torus.

Proposition 3.3. Let re = exp(rc(Θ1)− rc(2π −Θ1)) and V
d
M (Θ1) be defined by

V d
M (Θ1) = − Γ

(R− r cosΘ1)2

M∑
j=1

[
K(re exp(i

2π
M j)) +K(re exp(−i2πM j))− 1

4π

]

+
MΓ(rc(Θ1)− rc(2π −Θ1))

4π2A(R− r cosΘ1)2
+

Γ sinΘ1

4π(R− r cosΘ1)2
.

Then, the configuration of the M vortex dipoles (18) along the lines of latitudes Θ1 and 2π −Θ1

is a relative equilibrium moving in the longitudinal direction with speed V d
M (Θ1).

Proposition 3.4. Let re = exp(rc(Θ1)− rc(2π −Θ1)) and V
s
M (Θ1) be defined by

V s
M (Θ1) = − Γ

(R− r cosΘ1)2

M∑
j=1

[
K(re exp(i

2π
M j + i πM )) +K(re exp(−i2πM j − i πM ))− 1

4π

]

+
MΓ(rc(Θ1)− rc(2π −Θ1))

4π2A(R− r cosΘ1)2
+

Γ sinΘ1

4π(R− r cosΘ1)2
.

Then the configuration of the staggered M rings (19) along the lines of latitudes Θ1 and 2π −Θ1

is a relative equilibrium moving in the longitudinal direction with speed V s
M (Θ1).

In [56], more vortex crystals are provided with the linear algebraic formulation. With the third
method, we obtain the following vortex equilibria.

• (Longitudinal vortex rings) Suppose that N point vortices are polygonally arranged along
the line of longitude ϕ = 0. Owing to the discrete longitudinal rotational symmetry by the
angle γ0 = 2π/N , their locations are specified by

ϑm =
2π

N
(m− 1) + γ, φm = 0, m = 1, . . . , N, γ ∈ [0, γ0). (20)

The configuration (20) is referred to as a longitudinal N -ring. As far as we have confirmed,
longitudinal N -rings up to N = 400 are vortex crystals for any γ. See [56] for the strengths
of the point vortices. Figure 1(a) is an illustration of a longitudinal 6-ring on the toroidal
surface of R = 3 and r = 1 (α = 3.0) embedded in 3D Euclidean space.
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Figure 1: (a) A longitudinal 6-ring. (b) The 3-aligned 10-ring with γ = 0. (c) The 3-staggered

10-ring with γ = 0. (d) An asymmetric N = 8 point vortices on the helical line x
(p,q)
h with p = 4

and q = 1. (e) A point configuration of L = 7 helical longitudinal 19-rings aligned on the helical

line x
(p,q)
h with p = 14 and q = 19.

• (K-aligned/staggered M -rings) For positive integers K and M , we consider the configu-
ration where K latitudinal M -rings are arranged evenly in the latitudinal direction. Its
configuration is specified by

ϑk,m =
2π

K
(k − 1) + γ, φk,m =

2π

M
(m− 1) + Φk, k = 1, . . . ,K, m = 1, . . . ,M, (21)

in which γ ∈ [0, γ1), γ1 = 2π/K and Φk ∈ R/2πZ denote the longitudinal and latitudinal
phase differences betweenM - rings respectively. For Φk = 0, the configuration is called a K-
alignedM -ring, while it is referred to as a K-staggeredM -ring when Φk =

2π
M (k mod 2). We

note that N = KM is the total number of point vortices of this configuration. As examples,
the 3-aligned 10-ring and the 3-staggered 10-ring for γ = 0 are shown in Figure 1(b) and
(c) respectively. As far as we have examined, for any γ ∈ [0, 2π/K) with 3 ≦ K ≦ 10
and 3 ≦ M ≦ 10, K-aligned/staggered M -rings are vortex crystals whose corresponding
configuration matrices have a one-dimensional null-space. It is discussed that the limit of
the configuration as M → 0 for K = 3 becomes K (or 2K) longitudinal “vortex sheets”.

The Brownian ratchets scheme gives rise to asymmetric vortex crystals that are aligned along

the helical curve x
(p,q)
h (s) for p, q ∈ Z on TR,r ⊂ E3,

x
(p,q)
h : s ∈ R/2πZ 7→ ((R− r cos ps) cos qs, (R− r cos ps) sin qs, r sin ps) ∈ E3.

This curve is homotopic to a loop corresponding to the element of the fundamental group asso-
ciated with the toroidal surface, which is denoted by xpyq for the generators x and y. Letting N
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point vortices move randomly along the curve, we find asymmetric vortex crystals. An example is
shown in Figure 1(d). We can obtain more vortex crystals with a helical symmetry as follows. Let
(p, q) be a given pair of coprime positive integers. We choose L lines of longitudes, say ϕℓ ∈ R/2πZ
for ℓ = 1, . . . , L. Then, each line ϕℓ intersects with the helical curve x

(p,q)
h at q points. We thus

obtain N = Lq point configurations aligned along the helical curve, which is referred to as longi-
tudinal helical q-rings. By the Brownian ratchets for the lines of longitudes {ϕℓ}Nℓ=1, we observe

numerically that, for a certain pair of (p, q), there exists a real γ
(p,q)
L such that the longitudinal

helical q-rings at ϕℓ =
2π
L (ℓ − 1) + γ

(p,q)
L for ℓ = 1, . . . , L form a vortex crystal. One example is

shown in Figure 1(e). See more longitudinal helical q-rings in [56] and its supplemental material.
Moreover, a systematic numerical investigation yields the following conjecture.

Conjecture 3.1. Let L and q be prime numbers, and p < q be multiples of L given above. Then

there exists a real γ
(p,q)
L ∈ [0, 2π/L) such that L longitudinal q-rings consisting of the intersection

points between the helical curve x
(p,q)
h and the lines of latitude ϕℓ =

2π
L (ℓ−1)+γ

(p,q)
L form a vortex

crystal.

Let us briefly comment on the linear stability of the vortex crystals. We discuss in Section 3.4
the stability of the latitudinal N -ring configuration in detail. On the other hand, it is numerically
confirmed that most of the vortex crystals obtained the third/fourth approaches are linearly
unstable.

3.3 Interactions of two point vortices

We examine in [53] how two point vortices interact with each other. When the two point vortices
are put in the unbounded plane and on the surface of a sphere without boundaries, the interactions
between the two point vortices are well-understood. For instance, the identical vortex pair with
Γ1 = Γ2 co-rotates around their centre point at a constant speed without changing the relative
distance. On the other hand, the vortex dipole with Γ1 = −Γ2 on these surfaces propagates
together along the geodesics at a constant speed without changing relative distance. We here
observe the interaction of two point vortices on the surface of a torus with the vortex dynamics
model.

Since the 2-vortex system is integrable, we reduce the original system into a one-degree-of-
freedom Hamiltonian system with using the two invariants H and IN . It is first shown that the
evolution of the vortex dipole is defined globally in time.

Theorem 3.2. The vortex dipole on the toroidal surface never collides.

In addition, we obtain the following symmetry with respect to the evolution of the vortex
dipole.

Lemma 3.1. ∀t ∈ R, θ1(t) = θ2(t) and ϕ1(t) + ϕ2(t) = 0 holds if and only if ∃t0 ∈ R, θ1(t0) =
θ2(t0) and ϕ1(t0) + ϕ2(t0) = 0.

This lemma indicates that when the vortex dipole is set on the same line of latitude at the
initial moment, the latitudinal components of the two point vortices remain the same for all
time. Substituting this relation into the Hamiltonian, we obtain a reduced Hamiltonian, which is
a function of θ1 and ϕ1. Since every contour line of the reduced Hamiltonian corresponds to an
orbit of the vortex dipole, we can classify the evolution of the vortex dipole by choosing appropriate
values of the Hamiltonian as we see in Figure 2(a). We find that the distance between the two
point vortices is not always constant. In addition, the topological structure of orbits changes as
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Figure 2: (a) Evolutions of the vortex dipole. (b) Evolutions of the identical vortex pair.

the initial distance between them increases. That is to say, when the two point vortices are close to
each other, the vortex dipole moves around the handle, whose orbits are homotopic to irreducible
curves. As the distance increases, the orbits of the vortex dipole become reducible. This change
occurs as s a consequence of the existence of a handle structure.

For the identical point vortices, we have not yet proven the global existence of the solution,
although the 2-vortex system is integrable. On the other hand, we can reduce the system into
a one-degree-of-freedom Hamiltonian system by using the first integral IN . By choosing several
contour lines of the reduced Hamiltonian, we observe the orbits corresponding to these contours.
Some examples are shown in Figure 2(b). The interaction of the identical point vortices is more
complicated than the vortex dipole. We see a co-rotating orbit as shown in the left panel of
the figure, which is similar to those of the identical vortex pair in unbounded plane and on the
spherical surface. On the other hand, for some other values of the Hamiltonian, the two point
vortices go along repulsive orbits around the handle (in the middle panel), or two independent
rotating orbits around the antipodal locations (in the right panel).

3.4 Linear stability of a latitudinal N-ring point vortices

As we mentioned in Section 3.2, most of the vortex crystals obtained in Section 3.1 are linearly
unstable. However, the stability of the N -ring on the line of latitude Θ0 changes depending on the
latitude Θ0 and the modulus α = R/r. We summarize the linear stability analysis of the N -ring
carried out in [54]. Introducing small perturbations to the N -ring configuration,

θm(t) = Θ0 + εϑm(t), ϕm(t) =
2πm

N
+ tVN (Θ0) + εφm(t), ε≪ 1,

we derive the linearized equation for the perturbations ϑm(t) and φm(t). We obtain all eigenval-
ues λ±0 = 0, λ±p for p = 1, . . . , N and their corresponding eigenvectors of the linearized matrix
explicitly, from which we have the following stability criterion.
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Proposition 3.5. The N -ring is neutrally stable if and only if

Λ(N)
p ≡ p

(
1− p

N

)
+

2pρp

1− ρp
≦ (α−cosΘ0)

(
α− cosΘ0

πα
+

cosΘ0

N
− 8πr2VN (Θ0) sinΘ0(α− cosΘ0)

NΓ

)
is satisfied for all p = 1, . . . , N − 1.

In other words, the condition is equivalent to say that if

max
p=1,...,N−1

Λ(N)
p ≦ (α− cosΘ0)

(
α− cosΘ0

πα
+

cosΘ0

N
− 8πr2VN (Θ0) sinΘ0(α− cosΘ0)

NΓ

)
(22)

holds, then the N -ring is neutrally stable. Note that the criterion depends on the two parameters
(Θ0, α) for given N . Hence, in order to discuss the linear stability of the N -ring, we show in
Figure 3 the stability region, say DN (Θ0, α), which is defined by

DN = {(Θ0, α) ∈ R/2πZ× (1,∞) |Θ0 andα satisfy (22)} .

In this figure, the domains with the symbol “s” represent the domain of stability, while that with
“u” is the parameter region where the N -ring becomes linearly unstable. The region is symmetric
with respect to Θ0 = π. First, we observe small connected components of D4 in the neighborhood
of (Θ0, α) = (π/2, 1) and (3π/2, 1), while they no longer exist in D7. Next, in both of D4 and
D7, we find that there exists an aspect ratio, say α0(N), such that a connected component of DN

exists inside the region (Θ0, α) ∈ [0, π/2)× [α0(N),∞)∪ (3π/2, 2π]× [α0(N),∞). The boundaries
of these components tend to the lines Θ0 = π/2 and Θ0 = 3π/2 as α → ∞. This indicates that
the N -rings located at the inner side of the toroidal surface is neutrally stable, while those on the
outer side are linearly unstable. Also, we see α0(4) < α0(7). As a matter of fact, we have observed
numerically that α0(N) is monotonically increasing as N gets larger. This indicates that, for every
fixed α, the N -ring on the surface of a torus with the aspect ratio α becomes linearly unstable for
sufficiently large N . The observations above are confirmed mathematically as follows.

For sufficiently small α > 1, we show the existence of the small connected components in the
stability region for 2 ≦ N ≦ 6.
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Figure 4: Examples of unstable periodic orbits of a perturbed 4-ring.

Theorem 3.3. For sufficiently small ε0 > 0 and for any α satisfying 1+ ε0 > α > 1, there exists
δ > 0 such that for all Θ0 ∈ (π/2− δ, π/2+ δ)∪ (3π/2− δ, 3π/2+ δ), the N -ring is neutrally stable
if 2 ≦ N ≦ 6, and unstable if N ≧ 7.

This result is closely related to the classical results on the linear stability of the N -ring in the
unbounded plane and on the spherical surface: It has been shown in [20, 62] that the N -ring in
the plane is neutrally stable for N ≦ 7 and unstable for N > 7. A stability analysis of the N -ring
on a line of latitude of the sphere reveals that the N -ring around the pole is nonlinearly stable for
N < 7, neutrally stable for N = 7 and unstable for N > 7, although the stability depends largely
on the line of latitude where they are placed [49]. For sufficiently small α ⪆ 1, the stability of the
N -ring around Θ0 = π/2 and 3π/2, where Gauss curvature is zero, is similar to the planar and
the spherical cases.

For fixed α and Θ0, the following claims that the N -ring becomes linearly unstable for suffi-
ciently large number of N .

Theorem 3.4. For all α > 1 and Θ0 ∈ [0, 2π), there exists N0(Θ0, α) ≧ 1 such that the N -ring
is unstable for all N ≧ N0.

The final result indicates that, for any N , there exists α0(N) > 1 such that the N -ring on the
toroidal surface with the spect ratio α > α0(N) is linearly unstable.

Theorem 3.5. For all N ≧ 2, p = 1, . . . , N − 1 and Θ0 ∈ [0, 2π), there exists α0 > 1 such that
for all α ≧ α0 the following holds.

1. Θ0 ∈ [0, 2π) \ [π/2, 3π/2] =⇒ Reλ±p = 0;

2. Θ0 ∈ (π/2, 3π/2) =⇒ Reλ+p > 0 > Reλ−p ;

3. Θ0 = π/2, 3π/2 and p ≧ 2 =⇒ Reλ±p = 0;

4. Θ0 = π/2, 3π/2 and p = 1 =⇒ Reλ+p > 0 > Reλ−p .

In the same paper [53], the evolution of the linearly unstable N -ring under a small perturbation
is also considered. Since the N point vortex system is not integrable for N ≧ 3, the evolution
of the perturbed N -ring is chaotic in general. However, owing to a discrete symmetry of the
N -ring, one can obtain some unstable periodic orbits by restricting the Hamiltonian system with
N degrees of freedom into a reduced Hamiltonian system with one degree of freedom. Figure 4
shows some unstable periodic orbits when the 4-ring is perturbed in the reduced 2-dimensional
phase space. When the aspect ratio changes, each orbit of the point vortex is homotopic to a
longitudinal curve (Figure 4(a)), a latitudinal curve (Figure 4(b)) and a point (Figure 4(c)).
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4 Steady solution of Stuart-type vortex distribution

We consider a continuous distribution of the Stuart-type vortex on the toroidal surface, satisfying
the following modified Liouville equation [55].

∇2
TR,r

ψ = cedψ + g(ζ), c, d ∈ R, cd < 0.

The functional form of g(ζ) is determined so that the solution of this equation is induced from
that of the Liouville equation in the plane, ∇2

R2ψp = cedψp , which is expressed as follows [15]:

ψp(ζ, ζ) =
1

d
log

[
2|f ′(ζ)|2

−cd(1 + |f(ζ)|2)

]
,

where f(ζ) is a given analytic function on C. After some calculations, we find that the function
g(ζ) is equivalent to Gauss curvature of the toroidal surface,

g(θ) = −2

d

cos θ

r(R− cos θ)
≡ 2

d
κ(TR,r).

Let us remember that the functional form of g(ζ) for Stuart vortex on the surface of the unit sphere
is given by 2

d . This is consistent with the present result, since the curvature of the spherical surface
is κ(S2) = 1. We thus obtain the analytic formula of the modified Liouville equation as follows.

ψ(ζ, ζ) = ψp(ζ, ζ)−
2

d
log

[
R− r cos θ

2|ζ|

]
= ψp(ζ, ζ)−

2

d
log λ(ζ, ζ), (23)

where λ(ζ, ζ) is the conformal factor associated with the metric of the toroidal surface. We also
note that the analytic solution for Stuart vortex on the surface of the unit sphere [16] is represented
by the same formula with the conformal factor of the surface, i.e., λ = (1 + |ζ|2)2. Let us also
remark that the existence of the modification function does not affect Gauss’ constraint (2) in this
case, since Gauss-Bonnet theorem assures the total curvature over the toroidal surface vanishes:∫∫

TR,r

κ(TR,r)dσ = 2πχ(TR,r) = 0,

where χ(M) denotes the Euler characteristics of the manifoldM . Hence, after the explicit solution
(23) is obtained by specifying the analytic function f(ζ), we then confirm that the following Gauss’
condition is satisfied. ∫∫

TR,r

edψdσ = 0.

The choice of the analytic function f(ζ) is not arbitrary when we consider the solution on the
toroidal surface, since the function is not only analytic on the annular domain D = {ζ ∈ C | ρ <
|ζ| < 1}, but it should also be doubly periodic with respect to θ 7→ θ ± 2mπ and ϕ 7→ ϕ ± 2nπ
for any n,m ∈ Z. Stuart [59] used f(ζ) = tan(z) = sin(z)/ cos(z) to construct a solution in
the plane with the periodic boundary condition. We extend the choice of the function to the
doubly periodic case. That is to say, introducing the conformal mapping ζ = ez from D to
Dz = {z ∈ C | − 2πA ≦ Rez ≦ 0, 0 ≦ Imz ≦ 2π}, which is a rectangular fundamental domain, we
choose the analytic function as follows.

f(z) =
sn(z)

cn(z)
=

sn(log ζ)

cn(log ζ)
,
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(a) (b)

Figure 5: Solution of the Liouville equation with Stuart-type vorticity distribution on the surface
of a torus with the aspect ratio α = 2.0. (a) Stream-function and (b) vorticity.

in which sn(z) and cn(z) are the Jacobi elliptic functions with the quarter periods K = πA and
K ′ = π. Plugging it into the formula (23), we obtain the solution

ψ(ζ, ζ) =
1

d
log

[
− 2|dn(log ζ)|2

cd(|sn(log ζ)|2 + |cn(log ζ)|2)2(R− r cos θ)2

]
.

The function

w(z, z) =
|dn(z)|2

(|sn(z)|2 + |cn(z)|2)2

in this formula is doubly periodic with respect to z 7→ z + 2K and z 7→ z + 2iK ′ with K = πA
and K ′ = π. We also find that the function has two simple zeros at α1 = iK ′ = π and α2 =
K+ iK ′ = πA+πi in the fundamental domain Dz. Since the complex potential for a point vortex
at z = α is locally represented by ψ(z, z) ∼ − Γ

2π log |z − α|, there exist two point vortices with
the identical strength −4π/d at z = α1 and α2, which correspond to the antipodal locations on
the toroidal surface. Since two point vortices located at the antipodal positions are always vortex
crystal for arbitrary strengths as we see in Section 3.1, the formula yields the steady solution on
the surface of a torus. It is also shown that the solution satisfies Gauss’ constraint (2). Figure 5
shows the stream-function and the vorticity distribution of the solution on the toroidal surface
with the aspect ratio α = 2.0.

5 Summary and future direction

In this review article, we have introduced several recent results on vortex dynamics on the surface
of a torus. The model equation is derived based on the mathematical formulation starting from
Poisson’s equation for the stream-function and the vorticity. For vorticity distributions such as
point vortices and Stuart-type vorticity distribution, we have constructed the stream-function
explicitly. With this model, we consider the problems finding vortex crystals, which is a critical
point of the Hamiltonian containing a logarithmic particle-interaction energy. The linear stability
of vortex crystals and the interactions between point vortices are also discussed. Moreover, we find
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an analytic formula of a modified Liouville equation on the surface of a torus, which is the counter-
part of Stuart vortex with a continuous vorticity distribution. One issue of this mathematical
derivation is that we don’t take the circulation theorem around the handle into considerations
in this mathematical formulation when we allow point vortices to move. In order to make this
model satisfy the circulation theorem, we may need to introduce a certain external flow, called
“pore flow” as discussed in [14, 39]. In connection with the configurations of quantized vortices,
as shown in [56], the strengths of the vortex crystals except the antipodal vortex crystals and the
N -ring cannot be normalized as an integer generically. In this sense, vortex crystals fail to have
quantized strengths. This may be remedied by combining point vortices with the Stuart-type
vortex distributions as considered in [35]. It will be a future direction of the present study.

Let us finally comment on the relation between the minimizing point configurations and vortex
crystals on compact surfaces. The point configurations of the vortex crystals are spreading in the
longitudinal as well as latitudinal directions evenly, which are different from the point configu-
rations minimizing the Riesz energy, although the Hamiltonian (9) has a logarithmic singularity
as E0(A,N). Investigating the relation between the enery-minimizing point configurations and
vortex crystals will also be another interesting future topic.
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