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Abstract. We prove regularity of solutions of the ∂-problem in the Hölder-Zygmund spaces
of bounded, strongly C-linearly convex domains of class C1,1. The proofs rely on a new,
analytic characterization of said domains which is of independent interest, and on techniques
that were recently developed by the first-named author to prove estimates for the ∂-problem
on strongly pseudoconvex domains of class C2.

1. Introduction

Let D be a bounded domain in Cn with a defining function r that is C1-smooth on a
neighborhood of D. We say that D is strongly C-linearly convex if

(1.1) |rζ · (ζ − z)| ≥ c|ζ − z|2, z ∈ D, ζ ∈ ∂D
for a positive constant c that may depend on r.

We say that D is strictly C-linearly convex if it satisfies the weaker condition

(1.2) | rζ · (ζ − z)| > 0, ζ ∈ ∂D, z ∈ D \ {ζ}.
We say that D is weakly C-linearly convex1 if it satisfies the even milder condition

(1.3) | rζ · (ζ − z)| > 0, ζ ∈ ∂D, z ∈ D.

The notion of strong (resp., strict; weak) C-linear convexity is essentially intermediate
between strong (resp., strict; weak) convexity and strong (resp. weak) pseudoconvexity2; it
was first introduced by Behnke and Peschl [2] in 1935 and has since played a central role
in the theory of Hardy spaces and holomorphic singular integral operators. The purpose of
this paper is to extend the analysis of these domains to the ∂-problem. Strongly C-linearly
convex domains of class C2 are, in particular, strongly pseudoconvex; see [13]. Thus the
∂-problem for such domains is well understood; our main goal here is to go below the C2-
category and extend the theory of ∂ to the class C1,1. As is well known, C-linearly convex
domains support a Cauchy-Fantappié kernel, the Cauchy-Leray kernel, that is holomorphic
in the output variable z ∈ D and is “canonical” in the sense that it is independent of
the choice of defining function r (unlike other instances of Cauchy-Fantappiè kernels). The
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distinct from one another, there is no distinction between “strong” and “strict” pseudoconvexity and the
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Cauchy-Leray kernel determines a singular integral operator (the Cauchy-Leray transform
acting on functions supported in the topological boundary ∂D) whose operator-theoretic
properties depend on the boundary regularity and on the amount of C-linear convexity
enjoyed by the domain. E. M. Stein and the second-named author have shown [14] that
the Cauchy-Leray transform associated to a bounded, strongly C-linearly convex domain
D ⊂ Cn with boundary of class C1,1, initially defined for functions in C1(∂D), extends to a
bounded operator: Lp(∂D, µ)→ Lp(∂D, µ) for 1 < p <∞ and with µ belonging to a family
of boundary measures that includes induced Lebesgue measure σ. The proof relies, among
other things, on the analysis of the (suitably defined) action of the complex Hessian of r
(assumed to be only of class C1,1) over the complex tangent space of ∂D. In the subsequent
paper [15] examples were supplied that indicate that the two hypotheses of strong C-linear
convexity and class C1,1 are essentially optimal.

In this paper we provide integral formulas-based solutions to the ∂-problem for bounded,
strongly C-linearly convex domains of class C1,1: we first construct homotopy formulas
based on a hyerarchy of Cauchy-Leray-Koppelman kernels that give rise to integral operators
acting on forms of type (0, q), q = 0, . . . , n with coefficients defined on D, the closure of the
ambient domain. From these we obtain new estimates in the Hölder and Zygmund spaces
that give the expected optimal gain of 1/2 derivatives. It turns out that the classical Leray-
Koppleman homotopy formulas are in fact true under milder notions of C-linear convexity:
this is the reason why we mentioned condition (1.3) above. Strong C-linear convexity is
however needed both to justify the use of the regularity estimates that were obtained by the
first-named author in [6], and to prove a new homotopy formula in this paper.

Our proofs rely on the following characterization, which is of independent interest, of
strong C-linear convexity for domains whose boundary is assumed to be of class C1,1.

Theorem 1.1. Let D be a bounded domain of class C1,1, and let r be any defining function
for D that is of class C1,1 in a neighborhood of D. Then we have that condition (1.1) being
satisfied by r is equivalent to the same r satisfying each of the following:

(1.4) |rζ · (ζ − z)| ≥ c1|ζ − z|2 for z ∈ D and ζ ∈ U \D.

(1.5) |rζ · (ζ − z)| ≥ c2(r(ζ)− r(z) + |ζ − z|2) for z ∈ D and ζ ∈ U \D.

(1.6) |rζ · (ζ − z)| ≥ c3|ζ − z|2 for ζ, z ∈ ∂D.

Here U is a neighborhood of D which may not be the same for (1.4) and (1.5).

We obtain the following main results.

Theorem 1.2. Let D ⊂ Cn be a bounded domain of class C1,1, and suppose that D has a
C1,1 defining function r in a neighborhood U of D with the property that

(1.7) |rζ · (ζ − z)| > 0, z ∈ D, ζ ∈ U \D .

Then there exist homotopy formulas on D

ϕ = ∂Hqϕ+Hq+1∂ϕ , q = 1, . . . , n− 1;(1.8)

ϕ = H0ϕ+H1∂ϕ, q = 0(1.9)

for forms ϕ of type (0, q) satisfying the assumption that ϕ and ∂ϕ have coefficients in C1(D).
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Furthermore, if D is strongly C-linearly convex, then for any a ∈ (1,∞) we have

|Hqϕ|Λa+1/2(D) ≤ Ca|ϕ|Λa(D), q ≥ 1,(1.10)

|H0ϕ|Λa(D) ≤ Ca|ϕ|Λa(D).(1.11)

Here Λβ is the standard Hölder space when β ∈ (0,∞) \N, and is the Zygmund space
when β is a positive integer. Note that condition (1.7) is trivially implied by e.g., condition
(1.4) in Theorem 1.1. The operators Hq, q = 0, 1, . . . n, are defined in Proposition 3.3,
where the homotopy formulas (1.8) and (1.9) are obtained. In the proof of the regularity
estimates (1.10) and (1.11) it will be important to work with a particular defining function
for D: it is well known that condition (1.1) and hence (1.6) are independent of the choice
of defining function for D in the sense that only the constants will be affected by the choice
of r. In Section 2 we show that such stability is also satisfied by conditions (1.4) and
(1.5) (see Lemma 2.3 for the precise statement). Condition (1.5) for a specialized choice
of r ∈ C1,1(U) ∩ C∞(U \ D) is then needed to justify the application to such r of the
results [6, Propositions 4.4 and 4.10] which in turn give the estimates (1.10)-(1.11).

A statement analogous to Theorem 1.2 was proved by the first-named author [6] under
the assumptions that the bounded domain D is strongly pseudoconvex and has boundary of
class C2. In Theorem 1.2 we essentially increase the amount of convexity to strong C-linear
convexity, and reduce the amount of boundary regularity to the class C1,1.

By employing condition (1.1) and adapting the method of proof of the classical C1/2

estimate for strongly pseudoconvex domains of class C2 (see [10, Theorem 2.2.2]), we also
obtain

Proposition 1.3. Let D ⊂ Cn be a bounded weakly C-linearly convex domain of class C1,1.
There exists a homotopy formula on D

(1.12) ϕ = ∂Tqϕ+ Tq+1∂ϕ , q = 1, . . . , n− 1

for forms ϕ of type (0, q) when ϕ and ∂ϕ have coefficients in C0(D). Furthermore, if D is
strongly C-linearly convex we have that

|Tqϕ|C1/2(D) ≤ C|ϕ|C0(D), q ≥ 1.

Here Tq, q = 1, . . . , n are the classical Leray-Koppelman operators [3, p. 273], which must
be suitably interpreted when D is merely of class C1,1; see Section 3 for the precise statements
and the proofs.

Note that Theorem 1.2 and Proposition 1.3 do not include data ϕ of maximal type (0, n)
because such data can be treated with techniques already available in the literature. Indeed
it was observed by the first-named author [6] that if ϕ has maximal type (0, n) and D is a
bounded Lipschitz domain, the solutions of ∂u = ϕ can be easily obtained by extending ϕ
to a form with compact support in Cn. Here ϕ is obviously ∂-closed and no convexity of D
is required. Then one obtains solutions that gain one full derivative in Hölder and Zygmund
spaces.

Theorem 1.2 and Proposition 1.3 effectively illustrate that from the point of view of the
∂-problem with data in the Hölder-Zygmund spaces, strongly C-linearly convex C1,1 domains
behave like strongly pseudoconvex C2 domains. On the other hand, this analogy may fail to
hold for data taken from other functional spaces. For instance, our proof of Proposition 1.3
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does rely on the continuity of ϕ and ∂ϕ up to D; in particular, we do not know whether
∂u = ϕ has an L∞(D)-solution when ϕ is a ∂-closed form whose coefficients are merely in
L∞(D). The answer to such question would be positive if one knew that the closure of a
strongly C-linearly convex domainD of class C1,1 can be exhausted by strongly pseudoconvex
subdomains {Dj}j whose Levi forms are positive definite on the complex tangent spaces with
bounds uniform in j, but when ∂D is merely C1,1 it is not known whether D admits such
an exhaustion; see Remark 2.7 in Section 2. It would be interesting to understand the
regularity of ∂-solutions on a domain whose boundary is locally biholomorphic to a strongly
C-linearly convex C1,1 real hypersurface (whose definition is embedded in the statement
of Proposition 2.5 below). However, it remains to be seen whether Theorem 1.2 extends to
such domains.

Finally, in the last section we derive ad-hoc estimates for the relevant counter-example in
[15] indicating that some regularity of the ∂-problem in the strong C-linearly convex category
may persist below the class C1,1; see Section 4 for the precise statements.

The study of regularity of the solutions of the ∂-problem via integral representations has
a long and rich history. A detailed review of the existing literature may be found in [20]
and, for the most recent results, [6] and [22]. Here we briefly recall that for smooth, strongly
pseudoconvex domains the optimal 1/2-estimate of Proposition 1.3 was achieved by Henkin-
Romanov [11] for ∂-closed forms after Grauert-Lieb [7], Henkin [9], Kerzman [12] proved
that a Cβ-estimate holds for any β < 1/2. Proposition 1.3 for forms that are not necessarily
∂-closed is due to Range-Siu [21]. The Ck+1/2 solutions for ∂u ∈ Ck were obtained by Siu [23]
for q = 1 and by Lieb-Range [16] for all degrees, and both require ∂D ∈ Ck+2 and k ∈ N.
The results in the aforementioned [6] were recently extended to weighted Lp Sobolev spaces
by Shi [22]. A survey of the extensive literature on the solutions of the ∂-problem with
methods other than integral formulas may be found in e.g., Harrington [8].

Acknowledgment. Part of this work was carried out while the second-named author was in
residence at the Isaac Newton Institute for Mathematical Sciences during the program Com-
plex Analysis: techniques, applications and computations (EPSRC grant no. EP/R04604/1).
We thank the Institute, and the program organizers, for the generous support and hospitality.

2. More about C-linear convexity

In this section we prove Theorem 1.1. We will henceforth denote small positive constants
by c, c1, c∗, and large constants by C,C1, C∗. All these constants may depend on the choice
of defining function r for the domain D when such an r is involved. We will also deal with
a neighborhood U of D in which case the constants may also depend on U .

We recall the following stability property for the notion of strong (resp. strict) C-linear
convexity, see also [14].

Lemma 2.1. Let r(j), j = 1, 2, be two defining functions for D that are of class C1 in
neighborhoods Uj of D, j = 1, 2. If r(1) satisfies condition (1.2) (resp., condition (1.1)) with
constant c = c1, then r2 also satisfies condition (1.2) (resp., condition (1.1)) with constant
c = c2.

Proof. As is well known, see Range [20, Lemma II.2.5], there is a positive and continuous
function h : U1 ∩ U2 → R+ such that

r2(z) = h(z) r1(z), z ∈ U1 ∩ U2 , and
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dr2(ζ) = h(ζ) dr1(ζ), ζ ∈ U1 ∩ U2 ∩ ∂D.
It follows from the second condition above, that

| r(2)
ζ · (ζ − z)| = h(ζ) |r(1)

ζ · (ζ − z)| for all ζ ∈ ∂D and for all z ∈ Cn,

giving the desired conclusion. �

Thus any defining function of a strongly (resp. strictly) C-linearly convex domain will
satisfy condition (1.1) (resp. (1.2)). In particular, by Whitney extension, any strongly (resp.
strictly) C-linearly convex domain admits a defining function r ∈ C∞(Cn \ ∂D) ∩ C1(Cn)
that satisfies (1.1) (resp. (1.2)). Furthermore, if the regularity of D is improved to class C1,1,
then D will admit a defining function r ∈ C∞(Cn \ ∂D) ∩C1,1(Cn)) that satisfies condition
(1.1) (resp. (1.2)).

Proof of Theorem 1.1. We first verify that (1.4) is independent of the choice of the C1,1-
defining functions by proving an equivalent condition. We will use the notation

d(z) = distE(z, ∂D)

where distE stands for Euclidean distance in Cn.

Lemma 2.2. Let D be a bounded domain with a C1,1 defining function r defined on a
neighborhood U of D. Then (1.4) is equivalent to

(2.1) |rζ · (ζ − z)| ≥ c(d(ζ) + d(z) + | Im(rζ · (ζ − z))|+ |ζ − z|2), z ∈ D, ζ ∈ U \D,
for some constant c depending on the C1,1-norm of r.

Proof. The implication (2.1) ⇒ (1.4) is trivial. Suppose now that r satisfies (1.4), and let
ζ ∈ U \D and z ∈ D. Since

(2.2) 2|rζ · (ζ − z)| ≥ |Re(rζ · (ζ − z))|+ | Im(rζ · (ζ − z))|
and

|ζ − z| ≥ d(z) + d(ζ),(2.3)

c ≤ −r(z)

d(z)
≤ C, c ≤ r(ζ)

d(ζ)
≤ C,(2.4)

it suffices to show that (1.4) implies

(2.5) |rζ · (ζ − z)| ≥ c
(
r(ζ)− r(z) + |ζ − z|2

)
for a (possibly different) constant c > 0.

Under condition (1.4) it is enough to verify (2.5) when |ζ−z| is small. By Taylor formula,
which is applicable because r ∈ C1,1, we have

(2.6) 2 Re(rζ · (ζ − z)) ≥ r(ζ)− r(z)− C0|ζ − z|2.
Note that r(ζ)− r(z) > 0. If

(2.7) 2C0|ζ − z|2 < r(ζ)− r(z)

we obtain
Re rζ · (ζ − z) ≥ (r(ζ)− r(z))/2 ≥ (r(ζ)− r(z) + c′|ζ − z|2)/4.

Thus |rζ · (ζ − z)| ≥ (r(ζ) − r(z))/2 ≥ (r(ζ) − r(z) + c′|ζ − z|2)/4, which is equivalent to
(2.5) for a possibly different constant c. If

(2.8) 2C0|ζ − z|2 ≥ r(ζ)− r(z),
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we obtain by (1.4)

|rζ · (ζ − z)| ≥ c|ζ − z|2 ≥ c(|ζ − z|2 +
c0

4
(r(ζ)− r(z)))/2,

which also gives us (2.5) for a possibly different c. �

Lemma 2.3. Let D be a bounded domain of class C1,1. Then condition (2.1) and hence
(1.4), is independent of the choice of the C1,1-defining function for D.

Here and in what follows we may shrink the neighborhoods U of D in (2.1) and (1.4).

Proof. Let r ∈ C1,1(U) and r̃ ∈ C1,1(Ũ) be two defining functions for D. We are asked to
verify (2.1) for r̃, or equivalently

(2.9) |r̃ζ · (ζ − z)| ≥ c̃(d(ζ) + d(z) + |ζ − z|2), z ∈ D, ζ ∈ Ũ \D,

where Ũ is some neighborhood of D. It is clear that (2.1) for r implies that (1.4) holds for
the same r, and we will use both inequalities.

We start with r̃ = hr with h ∈ Lip(U ′) and h ∈ C1,1
loc (U ′ \ ∂D), where U ′ is an open

neighborhood of ∂D. Suppose that ζ ∈ U ′ \D. We have

(2.10) r̃ζ = hrζ + rhζ .

We may assume that c0 < h < C0 and (by Rademacher Theorem) that |hζ | < C1 for some
C0 and C1. Then

r̃ζ · (ζ − z) = h(ζ)rζ · (ζ − z) + r(ζ)hζ · (ζ − z).

Combining this with condition (1.4) applied to r, we have

(2.11) |r̃ζ · (ζ − z)| ≥ c1|ζ − z|2 − C1r(ζ)|ζ − z|.

(To be precise, we obtain the above inequality first at those points ζ ∈ U ′ where the Lipschitz
function h is differentiable, and then we extend to any ζ ∈ U ′ by the continuity of r̃ζ .) From
this inequality and (2.3)-(2.4), we see that by possibly shrinking U , it suffices to verify (2.9)
when |ζ − z| and hence r(ζ) are sufficiently small. Invoking the elementary inequality:

2ab ≤ δ2a2 + δ−2b2 for any δ > 0,

we see that

r(ζ)|ζ − z| ≤ ε|ζ − z|2 + ε−1|r(ζ)|2.

Without loss of generality, we may choose to make U ′ so small that r(ζ) < c∗ε for ζ ∈ Ũ for
a suitable small c∗ > 0, which we reserve to choose later.

Plugging the above in (2.11) we obtain

|r̃ζ · (ζ − z)| ≥ (c1 − C1ε)|ζ − z|2 − C1c∗r(ζ) ≥ c2|ζ − z|2 − C ′1c∗r̃(ζ)(2.12)

≥ c2|ζ − z|2 − C ′1c∗(r̃(ζ)− r̃(z))

where the last inequality is due to the fact that z ∈ D, that is r̃(z) < 0.
We also have

(2.13) 2|r̃ζ · (ζ − z)| ≥ 2 Re(r̃ζ · (ζ − z)) ≥ r̃(ζ)− r̃(z)− C2|ζ − z|2
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where the second inequality is obtained by applying Taylor’s theorem to r̃ (see the proof
of Lemma 2.2 for a similar argument), and we may assume without loss of generality that
C2 > 1. We now choose c∗ (and thus U ′) so that c2/(c∗C

′
1) > 8C2. This gives us

|r̃ζ · (ζ − z)| ≥ c2

4
|ζ − z|2 +

C ′1c∗
2

(r̃(ζ)− r̃(z)).

Here the inequality is obtained by invoking (2.12) if c2|ζ− z|2 > 2C ′1c∗(r̃(ζ)− r̃(z)) or if not,
by invoking (2.13) to obtain

2|r̃ζ · (ζ − z)| ≥ 1

2
(r̃(ζ)− r̃(z)) +

1

2
(r̃(ζ)− r̃(z))− C2

2
|ζ − z|2

≥ 1

2
(r̃(ζ)− r̃(z)) +

c2

4C ′1c∗
|ζ − z|2 − C2

2
|ζ − z|2

≥ 1

2
(r̃(ζ)− r̃(z)) +

C2

2
|ζ − z|2,

which proves (2.9). �

The proof of Theorem 1.1 now continues with the following

Proposition 2.4. If D is a bounded, strongly C-linearly convex domain of class C1,1, then
condition (1.1) is equivalent to (1.4) for r ∈ C1,1.

Proof. It’s clear that (1.4)⇒ (1.1); we need to show the implication: (1.1)⇒ (1.4) i.e., that

(2.14) |rζ · (ζ − z)| ≥ c0|ζ − z|2

holds for some positive c0, z ∈ D and all ζ ∈ U \ D for some neighborhood U of D. By
the assumed strong C-linear convexity of D, see i.e. (1.1), we have that the above holds for
z ∈ D and ζ ∈ ∂D for a possibly different constant c0.

By the continuity of rζ , it is clear that (2.14) holds when U \D is sufficiently “narrow”,
which we assume, and when ζ ∈ U \ D, z ∈ D and |ζ − z| > c, where c is any positive
constant and U depends on c. Without loss of generality, we assume that |ζ − z| < c∗ for a
small c∗ to be determined.

Let ζ ∈ U \D, z ∈ D, where |ζ − z| is sufficiently small, and let ζ∗ ∈ ∂D be such that

distE(ζ, ∂D) = |ζ − ζ∗| .

Since D is, in particular, of class C1, we have that the line through ζ and ζ∗ is perpendicular
to TR

ζ∗
(∂D), the tangent space to ∂D at ζ∗. By a translation and a unitary change of

coordinates, we may assume that

ζ∗ = 0, and ζ = (0′,−iλ), λ > 0.

Thus the real tangent space TR
0 (∂D) is defined by yn = 0 and near the origin D is defined

by

(2.15) r̂ = −yn +R(z′, xn) < 0, R(0′, 0) = 0, ∇R(0′, 0) = ~0,

where z′ ∈ Cn−1. With the above choice of coordinates, we can easily relate r̂ζ · (ζ − z) to
its value at ζ = ζ∗. Set z = (z′, xn + iyn); we have

(2.16) r̂ζ · (ζ − z) =
1

2i
(xn + i(λ+ yn)) = r̂η · (η − z)|η=0 +

1

2
λ.
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Thus

|r̂ζ · (ζ − z)| = 1

2
|xn + i(yn + λ)|,

|ζ − z|2 = |z′|2 + |xn|2 + |yn + λ|2.

By the hypothesis and Lemma 2.1, we have that

1

2
|xn + iyn| =

∣∣r̂η · (η − z)|η=0

∣∣ ≥ c1|z|2.

This shows that when xn, yn are sufficiently small, we have

(2.17) |xn|+ |yn| ≥ c1|z′|2.

We claim that it suffices to show

(2.18) |xn|+ |yn + λ| ≥ c∗|z′|2.

Indeed, assuming the truth of (2.18), we see that it and (2.16) give us

|r̂ζ · (ζ − z)| = 1

2
|xn + i(λ+ yn)|

≥ 1

4
(|xn + i(λ+ yn)|+ c∗|z′|2/2) ≥ c|ζ − z|2.

This gives us the required estimate in terms of r̂. By Lemma 2.3, we obtain (1.4) for a
possibly different U .

We are left to prove (2.18). We first give a simple argument in the case when D is strongly
convex. Indeed, for such D we have yn > 0. We immediately obtain

|xn|+ |yn + λ| = |xn|+ |yn|+ λ ≥ |xn|+ |yn| ≥ c1|z′|2,

where the last inequality follows from (2.17).
We now consider the general case, and again make use the original assumption (1.1) in the

local coordinate system. For any z′ as above, we momentarily consider an auxiliary point
z̃ := (z′, x̃n + iỹn) by setting x̃n := 0 and ỹn := R(z′, 0). Then z̃ is in ∂D. Thus by (1.1), we
get

1

2
|ỹn| = |r̂ζ · (ζ − z̃)|ζ=0| ≥ c1|z̃|2 ≥ c1|z′|2.

This shows that

|R(z′, 0)| ≥ 2c1|z′|2, ∀z′.
Now by the assumed C1,1 regularity of R and the Taylor remainder theorem, we obtain

|R(z′, xn)−R(z′, 0)− (∂xnR(z′, xn))|xn=0xn| ≤ Cx2
n, ∀z′, xn.

We have ∇R(0) = 0. When (z′, xn) is sufficiently small (recall that |ζ − z| is small), we
obtain

(2.19) |R(z′, xn)−R(z′, 0)| ≤ ε|xn|+ Cx2
n.

Here ε > 0 can be made small number by assuming that ζ, z′, xn are sufficiently small. Recall
that

yn > R(z′, xn),
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see (2.15). From the latter, we see that

yn > R(z′, xn) = R(z′, 0) + (R(z′, xn)−R(z′, 0))(2.20)

≥ c1|z′|2 − C|xn|2 − ε|xn| ≥ c1|z′|2 − ε′|xn|,
where ε′ can be arbitrarily small by assuming ζ, z to be sufficiently close. Since λ > 0, then

(2.21) |xn|+ |yn + λ| ≥ |xn|+ yn + λ ≥ |xn|+ c1|z′|2 − ε′|xn| ≥ c1|z′|2.
Thus (2.18) holds.

The above gives us the estimate for r̂ζ · (ζ − z); invoking Lemma 2.3 one more time, we
conclude that |rζ · (ζ − z)| ≥ c2|ζ − z|2 for a possibly different U , thus concluding the proof
of Proposition 2.4. �

The following result allows us to introduce the notion of strongly C-linearly convex real
hypersurface.

Proposition 2.5. Let D be a bounded domain with a C1,1 defining function r. Then (1.1)
and hence (1.4) are equivalent to (1.6):

|rζ · (ζ − z)| ≥ c|ζ − z|2, ∀ζ, z ∈ ∂D.

Of course, condition (1.6) alone cannot tell which side of ∂D is the domain D: it is the
additional assumption of boundedness of D that determines D.

Proof. Note that Proposition 2.5 is meaningful also in the 1-dimensional setting, that is
for D b C, but in this case its conclusion is obvious and so in what follows we assume
that D b Cn with n ≥ 2. The direction (1.4) ⇒ (1.6) is trivial. We prove the opposite
direction: suppose that (1.6) holds. We first show that D is strictly C-linearly convex, i.e.
that rζ · (ζ − z) 6= 0 for ζ ∈ ∂D, z ∈ D \ {ζ}, by (1.2). Indeed, suppose for the sake of
contradiction that rζ · (ζ − z) = 0 for some ζ ∈ ∂D and z ∈ D (note that case z ∈ ∂D is
ruled out by (1.6)).

Then H(ζ) := {z ∈ D : rζ · (ζ − z) = 0} is non empty. Since H(ζ) is a bounded domain in
the complex hyperplane {z ∈ Cn : rζ · (ζ−z) = 0} and n ≥ 2, the boundary of H(ζ) contains
more than one point and is a subset of ∂D. But z ∈ ∂H(ζ) \ {ζ} gives rζ · (ζ− z) = 0, which
contradicts the assumption (1.6). Thus D is strictly C-linearly convex.

Since rζ · (ζ − z) 6= 0 for ζ ∈ ∂D and z ∈ D \ {ζ}, by (1.2), then for any δ > 0

inf
{
|ζ − z|−2|rζ · (ζ − z)| : ζ ∈ ∂D, z ∈ D, |ζ − z| ≥ δ

}
> 0.

We now proceed to prove (1.4): we may assume without loss of generality that z is in a small
neighborhood of ζ ∈ ∂D. As in the proof of Proposition 2.4, by a unitary transformation
and translation, we may assume that ζ = 0 and that near the origin D is defined by

yn > R(z′, xn), R(0′, 0) = 0, ∇R(0′, 0) = ~0.

Let z = (z′, xn + iyn) with z′, xn and yn as above, and again consider the auxiliary point
z̃ := (z′, iỹn) where ỹn := R(z′, 0). Then z satisfies (2.19) and (2.20). Proceeding as in the
proof of (2.21) we find

|xn|+ |yn| ≥ |xn|+ yn ≥ c|z′|2.
For r̂ = −yn +R(z′, xn), we obtain

|r̂ζ · (ζ − z)| = 1

2
|xn + iyn| ≥

1

4
(|xn + iyn|+

1

2
(|xn|+ |yn|)) ≥

1

4
(|xn + iyn|+ c|z′|2).
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We have verified (1.1) and hence (1.4). �

In the sequel we will need the following version of the Whitney extension theorem.

Proposition 2.6. Let k ≥ 0 be an integer. Let D be a bounded domain with Lipschitz
boundary. If f ∈ Ck,β with 0 ≤ β ≤ 1, then there exists an extension Ekf ∈ Ck,β(RN) such
that Ekf = f on D and

(2.22) |∂`xEkf | ≤ Ck,`(1 + dist(x, ∂D)k+β−`), x ∈ Cn \D, ` = 0, 1, . . . .

For a proof, see [5, 6, 24]. The proof in [6] assumes that f ∈ Ck+α(D) := Ck,α(D) with
0 ≤ α < 1, but the same argument works for f ∈ Ck,1(D).

Remark 2.7. While the work carried out in this section here will be sufficient to prove
the main result Theorem 1.2, one would like to know whether the closure of a strongly
C-linearly convex domain D whose boundary is merely of class C1,1 has a basis of pseudo-
convex neighborhoods; and whether such D can be exhausted by strongly C-linearly convex
C1,1 domains that are relatively compact in D: at present we do not know the answers to
such questions.

3. Homotopy formulas

In this section, we first derive a homotopy formulas for C1,1 domains D that are weakly
C-linearly convex, see (1.3), in terms of the classical Leray-Koppelman operators Tq which
however need to be properly interpreted here, since the classical construction of Tq requires
two continuous derivatives of the (any) defining function of D and these, in our context, are
not available. These are the operators that occur in Proposition 1.3. We mention in passing
that the notion of C-linear convexity is also meaningful for domains below the C1-category
and in this context such notion is often referred to as “linear convexity”, but here it is of
no important; the interested reader is referred to [1] for a detailed discussion of this more
general setting.

We next derive a homotopy formula for bounded C1,1 domains admitting a defining func-
tion r that obeys the stronger condition (1.7) in a neighborhood U of D which, on account of
Theorem 1.1, is satisfied e.g, by strongly C-linearly convex D. Here the homotopy formulas
are given in terms of operators Hq that are constructed in Proposition 3.3 below.

3.1. The Leray-Koppelman homotopy operators and homotopy formulas for weakly
C-linearly convex domains of class C1,1. Let D be a bounded domain defined by a C1,1

function r defined on a bounded, open neighborhood U of D. We first assume that r satisfies
(1.3), which we recall here:

|rζ · (ζ − z)| > 0, ζ ∈ ∂D, z ∈ D .

Set

(3.1) g0(z, ζ) := ζ − z ; g1(z, ζ) := rζ and w = ζ − z.
Note that while g1(ζ, z) does not depend on z, we maintain this notation to conform with
the literature for Cauchy-Fantappiè forms. In particular g1 is (trivially) holomorphic in z.

Also let

V := D × (U \D) , and S := {(z, ζ) ∈ V : rζ · (ζ − z) = 0}.

Note that S is a closed subset of V , and that
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(3.2) gi · w 6= 0, i = 0, 1, whenever (z, ζ) ∈ V .
We formally define

ωi :=
1

2πi

gi · dw
gi · w

; Ωi(z, ζ) := ωi ∧ (∂ωi)n−1, i = 0, 1, and(3.3)

Ω01(z, ζ) := ω0 ∧ ω1 ∧
∑

α+β=n−2

(∂ω0)α ∧ (∂ω1)β, (ζ, z) ∈ V \ S.(3.4)

Here the implied variable (z, ζ) is taken in V , and the differentials d and ∂ are taken with
respect to both z and ζ.

Note that since the components of ∇r, and hence of g1, are only Lipschitz, the formal
definitions of Ω1(z, ζ) and of Ω01(z, ζ) given above must be suitably interpreted. More
precisely, let g1

k be a smooth approximation of g1, see (3.1), where k ∈ N is sufficiently large
so that (3.2) is true with g1

k in place of g1. Hence (3.3) and (3.4) with g1
k in place of g1 give

meaningful notions of Ω1
k(z, ζ) and Ω01

k (z, ζ). The Rademacher Theorem now ensures that
the limits as k →∞ of Ω1

k(z, ζ) and Ω01
k (z, ζ) exist for every z ∈ D and a.e. ζ ∈ U \D and

are in L∞(K × (U \D)) for any compact subset K ⊂ D, and we take Ω1(z, ζ) and Ω01(z, ζ)
to be such limits. We have the following representations:

(3.5) Ωi(z, ζ) =
1

(2π
√
−1)n

gi · dζ
gi · (ζ − z)

∧
(

∂gi∧̇ dζ
gi · (ζ − z)

)n−1

,

where we have adopted the shorthand: ∂gi∧̇ dζ := ∂gi1 ∧ dζ1 + · · ·+ ∂gin ∧ dζn, and

(3.6) Ω01(z, ζ) =
1

(2π
√
−1)n

∑
α+β=n−2

g0 · dζ ∧ (∂g0∧̇ dζ)α

(g0 · (ζ − z))α+1
∧ g

1 · dζ ∧ (∂g1∧̇ dζ)β

(g1 · (ζ − z))β+1
.

Furthermore, we decompose

(3.7) Ωi(z, ζ) =
n−1∑
q=0

Ωi
0,q(z, ζ), and Ω01(z, ζ) =

n−2∑
q=0

Ω01
0,q(z, ζ).

Here both Ωi
0,q(z, ζ) and Ω01

0,q(z, ζ) have type (0, q) in the variable z; on the other hand, in

the variable ζ the type of Ωi
0,q(z, ζ) is (n, n− 1− q), while Ω01

0,q(z, ζ) has type (n, n− 2− q).
And we have set Ω1

0,−1(z, ζ) := 0 and Ω01
0,−1(z, ζ) := 0. The previous argument gives that

each term Ωi
0,q(z, ζ) and Ω01

0,q(z, ζ) in the decompositions (3.7) is in L∞(K× (U \D)) for any
compact set K ⊂ D.

Next we formally define the Leray-Koppelman operators:

(3.8) Tqϕ(z) := −
∫

ζ∈∂D

Ω01
0,q−1(z, ζ) ∧ ϕ(ζ) +

∫
ζ∈D

Ω0
0,q−1(z, ζ) ∧ ϕ(ζ), q = 1, . . . , n

where ϕ is a form of type (0, q) whose coefficients are continuous on D. In giving this
definition we face a new conceptual difficulty again stemming from the hypothesis that r is
only of class C1,1(U): the Rademacher theorem grants that the second-order derivatives of
r are in L∞(U), hence ∂2r|∂D may be undefined on ∂D as the latter has Lebesgue measure
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0 in Cn. Thus the boundary integral in (3.8) is, in principle, problematic. However one can
show that

(3.9)

∫
ζ∈∂D

Ω01
0,q−1(z, ζ) ∧ ϕ(ζ)

is nonetheless meaningful. This can be verified e.g., by expressing ∂D as the graph of a
function ψ ∈ C1,1(R2n−1) and employing the argument in [14] which we briefly recall here.
Using a partition of unity, we may assume that the coefficients of ϕ have compact support
in a small neighborhood V of ζ0 ∈ ∂D. On V , we assume that ∂D is given by

yn = ψ(z′, xn),

where ψ ∈ C1,1(R2n−1). We take r := −yn + ψ(z′, xn) and invoke the C1,1-regularity of ψ to
get a sequence of smooth functions {ψ(k)}k that converges to ψ in the C1 norm, while ∂2ψ(k)

are uniformly bounded and, furthermore, ∂2ψ(k)(ζ) → ∂2ψ(ζ) as k → ∞, whenever ζ is a
Lebesgue point of ∂2ψ.

We now work with the following defining function for D:

(3.10) r := −yn + ψ(z′, xn)

and with its smooth approximants

(3.11) r(k) := −yn + ψ(k)(z′, xn).

We define the form g1 and smooth approximations {g1
k}k using this choice of r. This

gives an approximation of Ω01(z, ζ) by smooth forms Ω01
k (z, ζ) which admit a decomposition

analogous to (3.7) as a sum of (0, q) forms Ω01
(0,q) k(z, ζ) with smooth coefficients. Proceeding

as in [14] (Rademacher theorem in the variables (z′, xn) ∈ R2n−1) one can show that each
coefficient of Ω01

(0,q) k(z, ζ) converges a.e. ζ ∈ ∂D to a limit which is in L∞(K × ∂D) for any

compact subset K ⊂ D, which must agree with (the corresponding coefficient of) the limit
Ω01

0,q(z, ζ) that was previously determined. In short, we have that

(3.12) Ω01
0,q(z, ζ) ∈ L∞(K × (U \D)) ∩ L∞(K × ∂D)

for any compact subset K ⊂ D. It follows that∫
ζ∈∂D

Ω01
(0,q−1) k(z, ζ) ∧ ϕ(ζ) −

∫
ζ∈∂D

Ω01
0,q−1(z, ζ) ∧ ϕ(ζ)→ 0

uniformly on the compact subsets of D as k → ∞. This shows that (3.9), and hence Tq is
indeed well-defined for r as in (3.10).

The above arguments also show that the conclusions of Koppelman Lemma:

∂ζΩ
1
0,q(z, ζ) + ∂zΩ

1
0,q−1(z, ζ) = 0, q = 0, . . . , n− 1(3.13)

∂ζΩ
01
0,q(z, ζ) + ∂zΩ

01
0,q−1(z, ζ) = Ω0

0,q(z, ζ)− Ω1
0,q(z, ζ), q = 0, . . . , n− 1(3.14)

are valid for our choice of Ωi
0,q, i = 0, 1 and Ω01

0,q, q = 0, . . . , n− 1, for

(3.15) (z, ζ) ∈ V \ S = D × (U \D) \ {(z, ζ) : rζ · (ζ − z) = 0}.
Indeed, by the classical Koppelman lemma [3, p. 263], identities (3.13) and (3.14) are valid
for Ωi

(0,q) k(z, ζ), i = 0, 1 and Ω01
(0,q) k(z, ζ) for any k ∈ N and

(3.16) (z, ζ) ∈ V \ Sk := D × (U \D) \ {(z, ζ) : r
(k)
ζ · (ζ − z) = 0}.
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Taking the limit as k →∞ we obtain (3.13) and (3.14).

Lemma 3.1. Let D ⊂ Cn be a bounded, weakly C-linearly convex domain of class C1,1. The
definition of the Leray-Koppelman homotopy operators Tq, i.e. (3.8), is independent of the
choice of C1,1 defining function for D.

Proof. Recall that Tqϕ was defined via a partition of unity for D and local graph defining
function of ∂D. To verify that Tqϕ is independent of the choice of r ∈ C1,1, we again use a
partition of unity and the above local defining function. For any defining function r̃ ∈ C1,1

of D, using (3.10) we have

r̃ = hr, r̃ζ = hrζ , ζ ∈ ∂D.
Here h ∈ Lip. We now compute Ω01 defined by (3.6) with g1 = rζ being replaced by g̃1 = r̃ζ .
We first note that with g̃ ∈ C1,1, we have d(g̃1 · dζ) ∈ L∞(∂D). Thus Tqϕ is well-defined
when g1 is replaced by g̃1. With h ∈ Lip additionally, we conclude that on ∂D,

g̃1 · dζ ∧ (dζ(g̃
1 · dζ))α = hg1 · dζ ∧ (dζ(hg

1 · dζ))α = hα+1g1 · dζ ∧ (dζ(g
1 · dζ))α.

We can also verify that the above expressions have L∞ coefficients, and the identities hold
in the sense of distributions. Approximating ϕ ∈ C0 by C1 functions, we conclude that Tqϕ
is independent of the r̃. �

Proposition 3.2. Let D be a bounded weakly C-linearly convex domain with a defining
function r ∈ C1,1. Then on D

ϕ(z) = ∂zTqϕ+ Tq+1∂zϕ, 1 ≤ q ≤ n,(3.17)

ϕ(z) =

∫
∂D

Ω1
0,0ϕ+ T1∂ϕ, q = 0,(3.18)

hold for for any (0, q)-form ϕ ∈ C0(D) whose distributional derivatives ∂ϕ on D extend to
a form whose coefficients are in C0(D).

Proof. By the Whitney extension theorem, we may assume that r ∈ C∞(U \ ∂D). By
Lemma 2.1, we have that such an r satisfies condition (1.2):

|rζ · (ζ − z)| > 0, ζ ∈ ∂D, z ∈ D.

Let D′ be any relatively compact subdomain of D. We get from the above that

(3.19) |rζ · (ζ − z)| > c, ζ ∈ ∂D, z ∈ D′.

We now define

Dj := {r < −c/j} where c is a small positive number.

Note that Dj is relatively compact in D and Dj increase to D as j → ∞. Thus we may
henceforth assume that D′ is relatively compact in each Dj (for j > j0), and that (3.19)
holds for z ∈ D′ and ζ ∈ ∂Dj.

As before, we take a sequence of smooth functions {r(k)}k that tend to r in the C1(D)-norm,
while ∇2r(k) are uniformly bounded, and ∂2r(k) → ∂2r pointwise a.e. on a neighborhood of
D. Thus, replacing r in (3.19) with r(k), we have

(3.20) |r(k)
ζ · (ζ − z)| > 0, ζ ∈ ∂Dj, z ∈ D′.
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We next let ϕε ∈ C∞(Dj) be such that and ∂ϕε − ∂ϕ tend to 0 in sup norm on Dj as

ε→ 0, on account of the assumption that ϕ ∈ C0(D) and ∂ϕ on D extends to a continuous
form on D.

Let us consider the case of q ≥ 1. Assume that ϕ and ∂ϕ are in C0(D). We first recall
the Bochner-Martinelli-Koppleman formula for C1 domains [3, Theorem 11.1.2]:

(3.21) ϕ(z) = ∂z

∫
D

Ω0
0,q−1(z, ζ) ∧ ϕ(ζ) +

∫
D

Ω0
0,q(z, ζ) ∧ ∂ϕ+

∫
∂D

Ω0
0,q(z, ζ) ∧ ϕ(ζ).

Fix z ∈ D′. Applying (3.20) to Dj with (z, ζ) as in (3.16), we obtain via an (implicit) analog
of (3.14) ∫

∂Dj

Ω1
k(z, ζ) ∧ ϕε(ζ) =

∫
∂Dj

{
∂ζΩ

01
(0,q),k

}
∧ ϕε +

∫
∂Dj

{
∂zΩ

01
(0,q−1),k

}
∧ ϕε

= −
∫
∂Dj

Ω01
(0,q),k ∧ ∂ζϕε − ∂z

∫
∂Dj

Ω01
(0,q−1),k ∧ ϕε.

Note that ∂(ϕε) = (∂ϕ)ε on Dj when 0 < ε < εj for a sufficiently small positive εj. Thus
we have

ϕε = ∂T j,kq ϕε + T j,kq (∂ϕ)ε, on D′ and for ε < εj

where T j,kq is the Leray-Koppelman operator (3.8) associated with Dj and r(k):

T j,kq ϕ(z) = −
∫

ζ∈∂Dj

Ω01
(0,q−1) ,k(z, ζ) ∧ ϕ(ζ) +

∫
ζ∈Dj

Ω0
(0,q−1), k(z, ζ) ∧ ϕ(ζ), q = 1, . . . , n

We first let ε tend to 0 and then we let j tend to ∞. Then on D′ we have

ϕ = ∂T kq ϕ+ T kq ∂ϕ

where

T kq ϕ(z) := −
∫

ζ∈∂D

Ω01
(0,q−1), k(z, ζ) ∧ ϕ(ζ) +

∫
ζ∈D

Ω0
(0,q−1) ,k(z, ζ) ∧ ϕ(ζ), q = 1, . . . , n.

Now the argument that was used to define the quantity (3.9) shows that Tqϕ is well-defined
by taking k → ∞ in the expression above. We have obtained (3.17). The proof for (3.18)
follows a similar strategy. �

3.2. A new homotopy formula for bounded strongly C-linearly convex C1,1 do-
mains. We now prove the main result of this section by deriving a homotopy formula for a
domain D admitting a C1,1 defining function r satisfying (1.7), which we recall says

rζ · (ζ − z) 6= 0, ∀ζ ∈ U \D, z ∈ D.
Note that by Proposition 2.4, this condition is weaker than (1.4) and follows from the

strong C-linear convexity of D ∈ C1,1.

Proposition 3.3. Let D ⊂ Cn be a domain with a defining function r which is of class C1,1

in a neighborhood U of D. Let g0(z, ζ) = ζ − z. Let g1(z, ζ) = rζ satisfy condition (1.7). Let

ϕ be a (0, q)-form in D. Suppose that ϕ and ∂ϕ are in C1(D). Then in D

ϕ = ∂Hqϕ+Hq+1∂ϕ, 1 ≤ q ≤ n,(3.22)

ϕ = H0ϕ+H1∂ϕ, q = 0,(3.23)
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with

Hqϕ :=

∫
U

Ω0
0,q−1 ∧ Eϕ+

∫
U\D

Ω01
0,q−1 ∧ [∂,E]ϕ, q > 0,(3.24)

H0ϕ :=

∫
∂D

Ω1
0,0ϕ−

∫
U\D

Ω1
0,0 ∧ E∂ϕ =

∫
U\D

Ω1
0,0 ∧ [∂,E]ϕ.(3.25)

Here, E is an operator that extends ϕ and ∂ϕ to C1(U).

Proof. The extension operator E was constructed in [24], where it was defined for functions.
Here we define Eϕ by applying the original operator E component-wise to the coefficients of
ϕ, which results in a form of the same type. We may assume without loss of generality that
Eϕ has a compact support in U , by using cut-off functions. Thus Eϕ,E∂ϕ are in C1(U)
and [∂,E]ϕ, [∂,E]∂ϕ = ∂E∂ϕ are in C0(U).

Let us consider the case of q ≥ 1. We recall again the Bochner-Martinelli-Koppleman
formula (3.21):

(3.26) ϕ(z) = ∂z

∫
D

Ω0
0,q−1(z, ζ) ∧ ϕ(ζ) +

∫
D

Ω0
0,q(z, ζ) ∧ ∂ϕ+

∫
∂D

Ω0
0,q(z, ζ) ∧ ϕ(ζ).

Assume that ϕ and ∂ϕ are in C1(D). We want to rewrite the boundary integral in (3.26). Fix
a relatively compact subdomain D′ of D and let z vary in D′. Then we have by (3.13)-(3.14)

applied to g1(ζ, z) = r
(k)
ζ ,∫

∂D

Ω0
0,q(z, ζ) ∧ ϕ(ζ) =

∫
∂D

∂zΩ
01
(0,q−1),k(z, ζ) ∧ ϕ(ζ) +

∫
∂D

∂ζΩ
01
(0,q),k(z, ζ) ∧ ϕ(ζ)

= ∂z

∫
∂D

Ω01
(0,q−1),k(z, ζ) ∧ ϕ(ζ) +

∫
∂D

Ω01
(0,q),k(z, ζ) ∧ ∂ζϕ(ζ).

By [6], we have for z ∈ D and ϕ ∈ C1(D),

− ∂
∫
ζ∈∂D

Ω01
(0,q−1),k(z, ζ) ∧ ϕ(ζ) + ∂

∫
ζ∈D

Ω0
0,q−1(z, ζ) ∧ ϕ(ζ)(3.27)

= ∂

∫
U\D

Ω01
(0,q−1),k(z, ζ) ∧ ∂Eϕ(ζ) + ∂

∫
U

Ω0
0,q−1(z, ζ) ∧ Eϕ(ζ).

When ∂ϕ ∈ C1(D), we obtain

−
∫
∂D

Ω01
(0,q),k ∧ ∂ϕ+

∫
D

Ω0
0,q ∧ ∂ϕ =

∫
U\D

Ω01
(0,q),k ∧ ∂E∂ϕ(3.28)

− ∂
∫
U\D

Ω01
(0,q−1),k ∧ E∂ϕ−

∫
U\D

Ω1
(0,q),k ∧ E∂ϕ

+

∫
U\D

Ω0
0,q ∧ E∂ϕ+

∫
D

Ω0
0,q ∧ ∂ϕ.

On the right-hand side, the first term can be written via the commutator as ∂E∂ϕ =
(∂E−E∂)∂ϕ. Since q ≥ 1, the third is zero. The second, when combined with the first term
on the right-hand side of (3.27), gives us the desired commutator for ϕ. Adding (3.27)-(3.28)

yields (3.22) in which g1 is r
(k)
ζ . Letting k →∞, we obtain (3.22) on D.

This completes the proof of (3.22). The proof of (3.23) follows a similar strategy. �
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We mention that the commutator [∂,E] was first employed by Peters [19], where E is
the Seeley extension when ∂D is sufficiently smooth. The commutator has been useful in
the construction of homotopy formulas in other settings; for instance, see Michel [17] and
Michel-Shaw [18].

When ∂D ∈ C2 is strongly pseudoconvex, the statement analogous to Proposition 3.3 has
been proved recently by Shi [22] when ϕ, ∂ϕ are in the Sobolev space W 1,1(D).

4. Below the C1,1 category: one example

Let us give an example of C1,α domain which satisfies (1.4).

Example 4.1. Consider for x ∈ Rn

f(x) = |x|m, 1 < m <∞.
We claim that for a given C0 > 0

(4.29) f(y)− f(x)−∇f(x) · (y − x) ≥ c|y − x|max(m,2) whenever |x|+ |y| < C0.

Indeed, note that the estimate (4.29) is trivial when x or y is the origin, so in the sequel
we assume that neither of x, y is the origin. We have

f(y)− f(x)−∇f(x) · (y − x) = |y|m − |x|m −m|x|m−2x · (y − x)

= |y|m + (m− 1)|x|m −m|x|m−2x · y.

Thus the estimate with f(y) − f(x) − ∇f(x) · (y − x) ≥ c|y − x|m holds trivially when
|x| < cm|y|, or |y| < cm|x|, or x · y ≤ 0. Hence by dilation, we may assume that |x| = 1,
c < |y| < C and x · y ≥ 0. By rotation, we know that the real Hessian of |x|m is positive
definite at any point x 6= 0. Consequently the restriction of |x|m to any real line segment
θ ∈ [0, 1] 7→ (1 − θ)x + θy with positive distance to the origin is a strictly convex smooth
function of θ.

Moreover, for cm < |y| < Cm; |x| = 1, and x · y ≥ 0, we have

|(1− θ)x+ θy|2 = (1− θ)2|x|2 + θ2|y|2 + 2θ(1− θ)x · y ≥ (1− θ)2|x|2 + θ2|y|2 ≥ |x|2|y|2

|x|2 + |y|2
.

This shows that g(t) := |(1− t)x+ ty|m has g′′(t) ≥ cm, and thus g(1)− g(0)− g′(0) ≥ cm/2.
This gives us that

f(y)− f(x)−∇f(x) · (y − x) ≥ c̃m|y − x|2/2
and concludes the construction of Example 4.1.

As a consequence of the above, given any collection {m1, . . . ,mk} with mj > 1, j = 1, . . . , k,
and setting

f(x) :=
k∑
j=1

aj|xj|mj , xj ∈ Rnj , aj > 0, |xj| < C0,

where x = (x1, . . . , xk) ∈ Rn1+···+nk , we have

f(y)− f(x)−∇f(x) · (y − x) ≥ cm|y − x|max(m1,...,mk,2).

Here cm depends only on a1, . . . , am and C0. In particular, if

(4.30) r(z) := |x1|m1 + |y1|m2 + · · ·+ |xn|m2n−1 + |yn|m2n ,



STRONGLY C-LINEAR CONVEXITY 17

then

r(z)− r(ζ)− 2 Re(rζ · (z − ζ)) ≥ c|ζ − z|max(m1,...,m2n,2), |ζ|+ |z| < C,

where c depends on m1, . . . ,m2n, C. Assume further that r(z) ≤ r(ζ). We obtain

2 Re(rζ · (ζ − z)) ≥ c′|ζ − z|max(m1,...m2n,2).

If 1 < mj ≤ 2 for all j, then the domains {r < C} are strongly C-linearly convex and of
class C1,α with α := min{m1, . . . ,m2n} − 1, when C > 0. In fact condition (1.4) holds for
such domains.

The above shows that the function r in (4.30) is a convex function. Thus a theorem of
Dufresnoy [4] gives the following.

Proposition 4.2. Let q > 0 and let r be given by (4.30). Suppose that f ∈ C∞(D) is a
∂-closed (0, q) form on D := {r < c}. Then there is a solution u ∈ C∞(D) to ∂u = f on D.

On the other hand, for the above examples and, more generally for any C1,α strongly C-
linearly convex domain with 0 < α < 1, our integral formulas-based method for the solution
of the ∂-problem in the Hölder or Zygmund space category (in fact, any function space!)
is conceptually problematic. This is because the Leray-Koppleman homotopy operators Tq
cannot be made meaningful, as the components of ∇2r are not Lipschitz and there is neither
a global, nor a tangential analog of the Rademacher Theorem that can be applied in this
context.

Remark 4.3. One can check that condition (4.29) is also valid for

f(x) := |x|mg(x), g ∈ C1,1(R), c < g(x) < C.

The function above may be used to construct concrete examples of strongly C-linearly convex
domains of class C1,1 and no better.
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