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Abstract. Symplectic partitioned Runge–Kutta methods can be obtained from a variational

formulation where all the terms in the discrete Lagrangian are treated with the same quadrature

formula. We construct a family of symplectic methods allowing the use of different quadrature
formulas (primary and secondary) for different terms of the Lagrangian. In particular, we study

a family of methods using Lobatto quadrature (with corresponding Lobatto IIIA-B symplectic

pair) as a primary method and Gauss–Legendre quadrature as a secondary method. The methods
have the same favourable implicitness as the underlying Lobatto IIIA-B pair, and, in addition,

they are P-stable, therefore suitable for application to highly oscillatory problems.

1. Introduction

In this paper we introduce a family of Runge–Kutta methods of additive type particularly
suited to highly oscillatory problems. Our method are derived from a variational formulation,
using different quadrature formulas for different parts of the Lagrangian. We will consider mainly
a formulation where we use a primary method (giving rise to a symplectic PRK) and a secondary
method, that is based on different quadrature weight and nodes. The final formulation of the
hybrid method can be classified as special subclass of symplectic Additive Runge–Kutta (ARK)
methods. ARK were introduced already in the 80’s [CS83] to deal with stiff ODEs. These methods
have been recently generalized by [SG15] (GARK methods) to add flexibility in treating different
force terms in the differential equation by different sets of coefficients. In the context of algebraic
differential equations, similar approaches have been followed by [Jay98] with special attention to
structure preservation in Hamiltonian systems. Recently, GARK methods for stiff ODEs and DAEs
were considered in [Tan18] with focus on the combination Gauss/Radau IIA and Gauss/Lobatto
IIIC.

Our motivation comes from the study of highly oscillatory problems, trigonometric integrators
(see [EH06] and references therein), in particular, the intriguing properties of the second-order
implicit-explicit (IMEX) method originally proposed by [ZS97] and further analyzed in a varia-
tional setting in [SG09] and as a modified trigonometric integrator in [MS14]. This method is
equivalent to applying the “midpoint rule”1 to the fast, linear part of the system, and the leapfrog
(Störmer/Verlet) method to the slow, nonlinear part. It has the following properties: (i) it is sym-
plectic; (ii) it is free of artificial resonances; (iii) it is the unique method that correctly captures
slow energy exchange to leading order; (iv) it conserves the total energy and a modified oscillatory
energy up to to second order; (v) it is uniformly second-order accurate in the slow components; and
(vi) it has the correct magnitude of deviations of the fast oscillatory energy, which is an adiabatic
invariant [MS14].

The Störmer/Verlet method belongs to the family of Lobatto IIIA-B partitioned Runge–Kutta
methods (PRK). In an unpublished report from 1995, Jay and Petzold studied the linear stability
of Lobatto PRK and proved that none of the methods in this family is P-stable, as they are
not unconditionally stable when applied to the harmonic oscillatory. They concluded that these
methods were not suitable for highly oscillatory systems [JP95]. Further stability properties of
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these Lobatto PRK were also studied in the context of multisymplectic integration and the wave
equation in [MST11].

Being the lack of P-stability well established for Lobatto PRK, it is therefore quite a surprise
that the combination implicit midpoint and Störmer/Verlet is unconditionally stable. Intrigued
by the properties of the IMEX, [Zan17] introduced a family of symplectic, unconditionally stable
modified trigonometric integrators of second order, which included the IMEX as a special case.

In this paper we construct higher order integrators pursuing the variational approach of the
Lagrangian formalism. The technique used is very close to the one described in [EH06] for the
derivation of symplectic PRK methods. The main idea is similar to that described above for the
second order IMEX: to use a Lobatto method for the kinetic energy and slow potential (the latter
being costly to compute) and Gauss-Legendre of the same order for the linear highly oscillatory part
(easy to compute). To avoid the introduction of further function evaluation of the potential, we
approximate the internal stages values by two techniques, interpolation and collocation. Although
we focus especially on the Lobatto and Gauss–Legendre combination as primary and secondary
method respectively, the derivation presented is general and applies to different combinations of
primary and secondary methods.

Other variational approaches exist, especially in the community of computational mechanics,
see for instance [MW01]. Recently, the latter approach has been used, together to a splitting of
the Lagrangian, in the context of higher order variational integrators for dynamical systems with
holonomic constraints [WOBL17] and in order to devise mixed order integrators for systems with
multiple scales [WOBL16]. The approach in [WOBL17] and the one presented in this paper have
several common features but also diversities, like the choice of the independent variables with
respect to which the variations are done. Having said this, it is not unlikely that some of the
methods derived by the two approaches will coincide for some similar choices of coefficients and
some problems, but a thorough comparison is outside the scope of the present paper.

The paper is organized as follows. In Section 2 we show the general theory for the derivation
of the methods and how to construct the coefficients by either interpolation or collocation. In
Section 3 we prove some results on the order of the proposed methods. In Section 4 we study the
P-stability of the methods and in Section 5 we show how the methods can be put in the framework
of modified trigonometric integrators. In Section 6 we show several numerical tests on the Fermi-
Pasta-Ulam-Tsingou problem and compare with higher order construction of the IMEX method
using the Yoshida time-stepping technique. Finally, we have some concluding remarks and in the
Appendix we present explicitly tables with the coefficients for the methods of the Lobatto–Gauss-
Legendre family based on interpolation for order two, four and six.

2. Variational derivation

It is well known that symplectic Partitioned Runge-Kutta methods (PRK) can be obtained
by a variational method, doing discrete variations on a discrete Lagrangian approximating the
continuous Lagrangian L(q, q̇) [EH06].

Consider a Lagrangian L(q, q̇) and assume that it can be written as sum of two (or more) terms,

L(q, q̇) = L1(q, q̇) + L2(q, q̇) + L3(q, q̇) + · · · .
Whereas the derivation of symplectic PRK uses the same quadrature for all the terms, we consider
the case when one would like to use a different quadrature for one or more terms in the sum.
A motivating example is the case of highly oscillatory problems in molecular dynamics, with a
Lagrangian of the form

L(q, q̇) = T (q̇)− V 1(q)− V 2(q),

where V 1 is a slow potential while V 2 is a fast oscillating potential, for instance of the form
V 2 = − 1

2q
TΩ2q, Ω being a diagonal matrix with elements ωi � 1. A natural splitting in this

context would be
L1 = T − V 1, L2 = −V 2.
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In this paper, we restrict the discussion to the case when the Lagrangian is split in two terms as
above, but the generalization to several terms is straightforward.

We focus on a discrete Lagrangian of the form

(1) Lh = h

s1∑
i=1

biL
1(Qi, Q̇i) + h

s2∑
k=1

b̃kL
2(Q̃k),

with

Qi = q0 + h

s1∑
j=1

ai,jQ̇j(2)

q1 = q0 + h

s1∑
i=1

biQ̇i(3)

where the coefficients (A, b, c) are the coefficients of a standard RK method with s1 stages (primary

method), while (b̃, c̃) are the weights and nodes of the secondary quadrature with s2 weights and
nodes respectively. To avoid the introduction of extra internal stages due to the secondary method,
we assume that the Q̃i can be written as

(4) Q̃i = q0 + h

s1∑
j=1

ãi,jQ̇j

for some coefficients ãi,j , with i = 1, . . . , s1 and j = 1, . . . , s2 to be determined. Because of the

linear dependence between the Qis, the Q̃i and Q̇is, we perform the variation of (1) using the
method of Lagrange multipliers in a manner very similar to the derivation of symplectic PRK
described in [EH06]. The augmented discrete Lagrangian using the constraint (3) is then

(5) h

s1∑
i=1

biL
1(Qi, Q̇i) + h

s2∑
k=1

b̃kL
2(Q̃k)− λ(q1 − q0 − h

s1∑
i=1

biQ̇i).

The variation variables are now the Q̇i and λ. Derivation with respect to λ imposes the constraint
(3), while derivation with respect to the Q̇j gives the relation between the multiplier λ and the
other variables,

(6)

s1∑
i=1

bi

(
∂L1(Qi, Q̇i)

∂q

∂Qi

∂Q̇j

)
+ bj

∂L1

∂Q̇j
+

s2∑
k=1

b̃k
∂L2

∂q
(Q̃k)

∂Q̃k

∂Q̇j
= λbj

We set

Pj =
∂L1

∂q̇
(Qj , Q̇j), Ṗj =

∂L1

∂q
(Qj , Q̇j),(7)

P̃j =
∂L2

∂q̇
(Q̃j) = 0, ˙̃Pj =

∂L2

∂q
(Q̃j).(8)

With this notation, and using the relations ∂Qi

∂Q̇j
= haijI, ∂Q̃i

∂Q̇j
= hãijI, the constraint conditions

in equation (6) read

(9) bjPj = bjλ− h
s1∑
i=1

biai,jṖi − h
s2∑
k=1

b̃kãk,j
˙̃Pk.

The symplectic method is obtained via the discrete Euler–Lagrange equations, which can be for-
mulated introducing the conjugate variables p0 and p1 as

(10) p0 = −∂Lh
∂q0

, p1 =
∂Lh
∂q1

and thereafter eliminating λ using (9).
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By direct computation, we have

p0 = −∂Lh
∂q0

= −h
s1∑
i=1

biṖi(I + h

s1∑
l=1

ai,l
∂Q̇l
∂q0

)

− h
s1∑
i=1

biPi
∂Q̇i
∂q0
− h

s2∑
k=1

b̃k
˙̃Pk(I + h

s1∑
m=1

∂Q̇m
∂q0

)(11)

= −h
s1∑
i=1

biṖi − h
s2∑
k=1

b̃k
˙̃Pk −

s1∑
i=1

biPi
∂Q̇i
∂q0

+

s1∑
l=1

(blPl − λbl)
∂Q̇l
∂q0

(12)

= −h
s1∑
i=1

biṖi − h
s2∑
k=1

b̃k
˙̃Pk + λ,(13)

where in (12) we have used (9) and in (13) we have used
∑s1
i=1 bl

∂Q̇l

∂q0
= −I which comes from the

derivation of (3).
By a similar token, we find

(14) p1 =
∂Lh
∂q1

= λ,

so that, eliminating λ, we get the relation

(15) p1 = p0 + h

s1∑
i=1

biṖi + h

s2∑
k=1

b̃k
˙̃Pk.

To obtain the definition of the Pj , we use (13) and substitute in (9) to obtain

(16) Pj = p0 + h

s1∑
i=1

âi,jṖj + h

s2∑
k=1

(b̃k −
b̃kãk,j
bj

) ˙̃Pk.

We recognize that the first set of coefficients is âi,j = bj−bjaj,i/bi, so that the L1 part is treated with
a classical symplectic pair of PRK [EH06]. The second set of coefficients imposes the symplecticity
condition for the use of the secondary method in the treatment of the L2.

2.1. General format of the methods. The generalization to L = L1 +L2 + · · ·+Ln is straight-
forward and leads to a symplectic subclass of ARK methods. In this paper we describe in detail
the case n = 2, that is L1 = 1

2 q̇
T q̇ − V 1(q), L2 = −V 2(q). Let −∇V 1 = F 1 and −∇V 2 = F 2

the forces corresponding to the potentials V 1, V 2. Denote by (A, b, c) the primary method so that,

with (Â, b, c), it forms symplectic PRK pair. Let (b̃, c̃) be the secondary method (only quadrature
weights and nodes are necessary). We have

∂L1

∂q
= −∇V (q) = F 1(q),

∂L2

∂q
= −∇V (q) = F 2(q)

∂L1

∂q̇
= q̇.

The constraint relation (6)

h

s1∑
i=1

biai,jF
1(Qi) + bjQ̇j + h

s2∑
k=1

b̃kãk,jF
2(Q̃k) = λjbj
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allows us to find the derivatives Q̇i(= Pi) at the intermediate stages. The full method reads

(17)

p1 = p0 + h

s1∑
i=1

biF
1(Qi) + h

s2∑
k=1

b̃kF
2(Q̃k)

Pi = p0 + h

s1∑
j=1

âi,jF
1(Qj) + h

s2∑
k=1

̂̃ai,kF 2(Q̃k)

Qi = q0 + h

s1∑
j=1

ai,jPj

Q̃i = q0 + h

s2∑
j=1

ãi,jPj ,

where ̂̃ai,k = b̃k − b̃kãk,i

bi
. In matrix notation,

̂̃A = (1s1×s2 −B−1ÃT )B̃, B = diag(b), B̃ = diag(b̃),(18)

Â = (1s1×s2 −B−1AT )B(19)

The method requires the evaluation of extra internal stages for the secondary method (the Q̃i) but
only as many function evaluations of F 1 as for the underlying (symplectic) PRK method, allowing
for different number of function evaluations for F 2. This can be particularly interesting when F 1

is expensive, while F 2 is cheap to compute.
The methods (17) can be applied to an Hamiltonian system

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

with Hamiltonian energy H(q, p) = pT q̇ − L(q, q̇) where L(q, q̇) = 1
2 q̇
T q̇ − V 1(q)− V 2(q).

Theorem 2.1. The methods (17) with ̂̃A and Â as in (18) and (19) are symplectic.

Proof. Follows immediately from the fact that the variational derivation of the methods uses
essentially generating forms of the first kind. �

While the symplectic requirements for the matrix Â are well known in the the context of PRK,

those for ̂̃A are the same as those derived by algebraic arguments in [SG15, Jay98]. In their ap-
proaches, one uses the relations (18) and (19) as (nonlinear) constraints to solve for the coefficients
of the methods, obeying, in addition, some given order conditions. The solution of the nonlinear
system needs not be unique.

In this paper, we follow a different approach which leads to at least two solutions for the matrix

Ã and consequently ̂̃A.

2.2. Construction of the matrix Ã. There are two natural choices to construct the approxi-
mations Q̃j in (4). We assume that the primary method is desribed by the RK tableau

c1 a1,1 · · · a1,s1
...
cs1 as1,1 · · · as1,s1

b1 · · · bs1

.
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For the secondary method, we construct a tableau of the type

c̃1 ã1,1 · · · ã1,s1
...
c̃s2 ãs2,1 · · · ãs2,s1

b̃1 · · · b̃s2

where the c̃k and b̃k are respectively the nodes and weights of the secondary. Note that the matrix
Ã has dimension s2 × s1.

Interpolation: Given the primary nodes c1, . . . cs1 , we let Li(t) =
∏
k 6=i

t−ck
ci−ck be the ith

cardinal Lagrange polynomial and construct the interpolating polynomial

(20) Q̃(t) =

s1∑
l=1

Ll(τ)Ql,

where the Ql = q0 + h
∑s1
j=1 al,jQ̇j are obtained by the primary method. Substituting

Ql in (20), recalling that
∑
j Lj(τ) = 1 and computing in the nodes c̃i of the secondary

method, we recover (4), with coefficients

ãi,j =

s1∑
l=1

Ll(c̃i)al,j , i = 1, . . . , s2, j = 1, . . . , s1.

Let L(c̃) the s2×s1 matrix with elements L(c̃)i,j = Lj(c̃i) of the primary Lagrange cardinal
polynomials evaluated in the secondary nodes. Then

(21) Ã = L(c̃)A.

where A is the coefficient matrix of the primary method.
Collocation: Another natural choice is to use the interpolation of the Q̇js: we use the

cardinal interpolating polynomials Lj(t) constructed with the nodes of the primary method

to construct Q̇ ≈
∑s1
j=1 Lj(t)Q̇j . The polynomial is integrated to obtain Q̃(t) ≈ q0 +

h
∫ t
0

∑s1
j=1 Lj(τ)Q̇j dτ . Thereafter, evaluating in the secondary nodes c̃i, we recover (4)

with coefficients

(22) ãi,j =

∫ c̃i

0

Lj(τ) dτ, i = 1, . . . , s2, j = 1, . . . , s1.

3. Order of the methods

A general treatment of the order conditions for these ARK methods can be developed using the
algebraic tree theory in a manner very similar to the order analysis of the ARK, GARK methods
[SG15, Tan18] using the formalism of colored trees [EH06]. The order conditions are used to derive
the coefficients of the methods.

In our setting, the primary method, leading to a PRK pair (A, Â, b, c), and the secondary

method, (Ã, ̂̃A, b̃, c̃), are given by the choices (21)-(22), but the order of the resulting method (17)
is not obvious.

Lemma 3.1. Assume that for the primary method, Ack−1 = 1
k c
k, where the power is intended

componentwise on the vector elements. With the same notation as above, if s1 ≥ s2 ≥ 1, we have

Ãck−1 =
c̃k

k
, for k = 1, . . . s1 − 1.(23)

In particular,
∑s1
j=1 ãi,j = c̃i, i = 1, . . . , s2. Moreover, if:
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(1) the quadrature formula based on the nodes b̃i is exact for polynomials of degree at least
s1− 1 for the interpolation (21) and the primary method satisfies

∑
i biai,j = bj(1− cj) for

all j; and
(2) the quadrature formula based on b̃i and bi are of order at least s1 + 1 for the collocation

(22),

then we have ̂̃A1s2 = c,(24)

that is
∑s2
j=1

̂̃ai,j = ci, i = 1 . . . , s1.

Proof. We first prove (23) in the case k = 1 (c0 = 1s1).
For the interpolative scheme (20), we have

s1∑
j=1

ãi,j =

s1∑
j=1

s1∑
l=1

Ll(c̃i)al,j =

s1∑
l=1

Ll(c̃i)
s1∑
j

al,j =

s1∑
l=1

Ll(c̃i)cl = c̃i

where the second last passage holds provided that
∑
j al,j = cl, which is true as long as the

primary method has order at least one. The function
∑s1
l=1 Ll(t)cl is the interpolant at c1, . . . , cs1

of the function with values c1, . . . , cs1 and therefore it is the identity function:
∑s1
l=1 Ll(t)ci = t.

Evaluating this function in c̃i completes the proof of the statement.
The proof for k > 1 for the interpolative methods follows by a similar argument as for k = 1,

using the property of the primary RK method that Ack−1 = ck

k and the fact that the Li are
interpolating polynomials on s1 nodes interpolating exactly up to degree s1 − 1.

For the collocative stages (22), we have

(Ãck−1)i =
∑
j

∫ c̃i

0

Lj(τ)ck−1j =

∫ c̃i

0

∑
j

Lj(τ)ck−1j =

∫ c̃i

0

τk−1 dτ =
1

k
c̃ki .

since the Lj interpolate exactly polynomials up do degree s1 − 1 as above.
For the proof of (24), we observe that̂̃A1s2 = (1s1×s2 −B−1ÃT )B̃1s2 = (1s1×s2 −B−1ÃT )b̃

= 1s1 −B−1ÃT b̃,(25)

where in the last passage we have used the fact that
∑
b̃i = 1. In the interpolative setting (21),

we look at the term B−1ÃT b̃ = B−1ATL(c̃)T b̃. By construction,

(L(c̃)T b̃)i = b̃1Li(c̃1) + · · ·+ b̃s2Li(c̃s2) =

∫ 1

0

Li(τ) dτ = bi

provided that the quadrature formula based on the nodes b̃i is exact for polynomials of degree at
least s1−1. It follows that L(c̃)T b̃ = b. Further, we have ÃT b = B(1s1−c) because of the property

of the primary RK method. Thus, B−1ÃT b̃ = B−1ATL(c̃)T b̃ = 1s1 − c, which, substituted in (25)
completes the proof.

In the collocative setting (22),

(ÃT b̃)i =

s2∑
j=1

ãj,ib̃j =

s2∑
j=1

b̃j

∫ c̃j

0

Li(τ) dτ

=

s2∑
j=1

b̃jfi(c̃j), fi(t) =

∫ t

0

Li(τ) dτ

=

∫ 1

0

fi(t) dt
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since the fis are polynomials of degree s1 and the quadrature formula based on the nodes b̃i
has order at least s1. Then (B−1ÃT b̃)i = 1

bi

∫ 1

0

∫ t
0
Li(τ) dτ dt. Applying integration by parts,∫ 1

0

∫ t
0
Li(τ) dτ dt = [t

∫ t
0
Li(τ) dτ ]10 −

∫ 1

0
tLi(t) dt = bi −

∑
j bjcjLi(cj) = bi − bici. The second last

passage follows provided that the integration formula with weights and nodes (b, c) is exact for

polynomials of degree s1 + 1 and from Li(cj) = δi,j . Thus B−1ÃT b̃ = 1s1 − c, which, substituted
in (24), completes the proof. �

Theorem 3.2. Consider the methods (17) under the conditions of Lemma 3.1. Assume that (b, c)

and (b̃, c̃) are s1 and s2 ≤ s1 quadrature nodes and weights of a quadrature formula of order at
least r ≥ s1, so that

(26) bT cn = b̃T c̃n =
1

n+ 1
, n = 0, . . . , r

(the power is intended componentwise). Then the interpolative (21) and collocative (22) methods
(17) have also order r.

Proof. To prove the theorem it is sufficient to show that that quadrature formula interpolating the
nodes c̃ using the nodes c,

(27)

∫ 1

0

f(x) dx ≈
s2∑
i=1

b̃if̃i f̃i =

s1∑
j=1

Lj(c̃i)f(cj)

as well as the quadrature formula collocating the nodes c̃,

(28)

∫ 1

0

f(x) dx ≈
s2∑
i=1

b̃if̃i f̃i =

∫ c̃i

0

s1∑
j=1

Lj(x)f ′(ci) dx

have also order r when f(x) = xn, n = 0, . . . , r, for which
∫ 1

0
xn dx = 1

n+1 .

We start with proving (27) for the interpolative formulas. For n = 0, . . . , s1−1 the statement is
immediate as the function

∑
j Lj(x)f(cj) exactly interpolates polynomials of degree up to degree

n = s1 − 1, hence
∑
j Lj(c̃i)cnj = c̃ni . Hence by virtue of (26) the statement follows.

When n = s1, . . . , r, note that
∑s2
i=1 b̃ix̃

n
i = b̃T x̃n = b̃TL(c̃)cn, where x̃n = L(c̃)cn. As shown

in Lemma 3.1, b̃TL(c̃) = bT , hence
∑s2
i=1 b̃ix̃

n
i = bT cn = 1

n+1 and the statement follows from the

assumption (26).
For the collocative formulas and (28), when f(x) = xn, we have f ′(x) = nxn−1 so that the

interpolation
∑
j Lj(x)cn−1j = xn−1 is exact for polynomials of degree n = 0, . . . , s1. Consequently,

f̃i = c̃ni and the statement follows. When n = s1 + 1, . . . , r, we refer again to the computations in

Lemma 3.1: (b̃T Ã)i =
∫ 1

0

∫ t
0
Li(τ) dτ dt = bT (I − diag(c)) (the last passage follows integrating by

part). Therefore

b̃T f̃ = bT (I − diag(c))ncn−1

= nbT cn−1 − nbT cn = n
1

n
− n 1

n+ 1
=

1

n+ 1
,

which completes the proof. �

We are especially interested on the family of methods generated by the Lobatto IIIA-B (primary
method) and Gauss-Legendre (secondary method) of the same order (r = 2s2 = 2(s1 − 1)). These
quadrature formulas are superconvergent and the proof of superconvergence is heavily based on
the roots and weights of the corresponding orthogonal polynomials, so that, in principle, the
interpolation might destroy the super convergence. Fortunately, this does not happen because the
methods satisfy the hypotheses of Theorem 3.2, and the order is preserved. This statement is
summarized in the Corollary below.
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Corollary 3.2.1. The methods (17) with primary method Lobatto IIIA-B with s1 stages and sec-
ondary method Gauss–Legendre with s2 = s1 − 1 stages has order r = 2(s1 − 1) = 2s2 both for
coefficients based on interpolation and collocation.

4. P-stability

P-stability is a desirable property when applying a numerical method to highly oscillatory
systems. The test model is the harmonic oscillator

(29)

[
q′

p′

]
=

[
0 1
−ω2 0

] [
q
p

]
, ω ∈ R+,

whose exact solution can be written as

(30)

[
q(t0 + h)
p(t0 + h)

]
= DωΘ(µ)D−1ω

[
q(t0)
p(t0)

]
, Θ(µ) =

[
cosµ sinµ
− sinµ cosµ,

]
, µ = ωh

where Dω = diag(1, ω). It is well known that the application of a s-stages PRK pair with coefficient

(A, b) and (Â, b) yields a numerical approximation

(31)

[
q1
p1

]
= DωM(µ)D−1ω

[
q0
p0

]
with 2× 2 stability matrix M(µ)

(32) M(µ) = I2 + µ

[
O bT

−bT 0

] [
Is −µA
µÂ Is

]−1 [
1s O
O 1s

]
.

We are interested in methods that preserve the unit modulus of the eigenvalues of the rotation
matrix Θ(µ).

Definition 4.1. A numerical method is P-stable if for all µ ∈ R the eigenvalues λi(µ), i = 1, 2 of
M(µ) satisfy

• |λi(µ)| = 1, i = 1, 2 and λ1(µ) 6= λ2(µ); or
• λ1(µ) = λ2(µ) = ±1 and the eigenvalues possesses two distinct eigenvectors.

It is well known that symmetric RK methods are P-stable, and, as a consequence, the methods
Lobatto IIIA and Lobatto IIIB, taken individually, are P-stable. However, the PRK combina-
tion Lobatto IIIA-B, which include the Verlet scheme for order 2, is not P-stable [JP95, MST11].
Motivated by the positive results of the IMEX method, that was proven to be P-stable (uncondi-
tionally stable, [MS14]), we study the methods (17) and, the same spirit of the IMEX methods,
the oscillatory part is treated by the secondary method (i.e. we set F 1 = 0).

Theorem 4.1. The matrix M(µ) for the method (17) is given as

(33) M(µ) = I2 + µ

[
0 bT

−b̃T 0

] [
Is2 −µÃ
µ ̂̃A Is1

]−1 [
1s2 0
0 1s1

]
, µ = ωh.

Moreover, as the methods are symplectic,

(34) detM(µ) = 1.
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Proof. For the test equation (29) (F 1 = 0), the method (17) can be written as

Pi = p0 − hω2
s2∑
j=1

̂̃ai,jQ̃j
Q̃i = q0 + h

s2∑
j=1

ãi,jPj

p1 = p0 − hω2
s2∑
j=1

b̃jQ̃j

q1 = q0 + h

s1∑
j=1

bjPj .

To ease notation, we denote by capital letters Q̃ the vector of the internal stages Q̃i, by P the
vector of the internal momenta Pi, and abuse notation, to avoid the use of tensor products. So,
for instance, ÃP has, as an i-component, the vector ãi,1P1 + · · ·+ ãi,s1Ps1 .

In block form, we have [
I −hÃ

ω2h ̂̃A I

] [
Q̃
P

]
=

[
q0
p0

]
which we use to solve for the Q̃ and P . From q1 = q0 + hbTP and p1 = p0 − hω2b̃T Q̃, we get[

q1
p1

]
=

[
q0
p0

]
+ h

[
0 bT

−ω2b̃T 0

] [
I −hÃ

hω2 ̂̃A I

]−1 [
q0
p0

]
= DωM(µ)D−1ω

[
q0
p0

]
(35)

where the last passage follows in a manner very similar as corresponding proof for PRK methods
with M(µ) as in (33).

As for (34), if the method is symplectic, then it must be volume preserving for Hamiltonian
systems, which, in this case implies that detM(µ) = 1. �

Since the eigenvalues of the matrix M(µ) are

λi(µ) =
1

2
trM ±

√
(
1

2
trM)2 − detM, i = 1, 2,

because of the determinant condition (34) one has λ1λ2 = 1. Hence the eigenvalues lie on the unit
circle if and only if

(36) |trM(µ)| ≤ 2.

In addition, when trM = 2, the eigenvalues are both equal to 1, while for trM = −2, the eigenvalues
are both equal to −1. When studying P-stability, we will refer to the function

1

2
|trM(µ)|

as stability function of the method.
Provided that the method is P-stable, it can be interpreted as an oscillator with a modified

frequency. Comparing with the matrix Θ(µ) in (30), we have

(37)
1

2
trM(µ) = cos(ω̃h) = cos(µ̃), µ̃ = ω̃h

corresponding to a modified frequency ω̃ satisfying

(38) µ̃ = ω̃h = arccos(
1

2
trM(µ)), µ = ωh.
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Corollary 4.1.1. The IMEX method is P-stable.

Proof. By direct computation, the IMEX method has stability matrix

M(µ) =
1

1 + ν2

[
1− ν2 µ
−µ 1− ν2

]
, ν =

µ

2
,

with trace trM = 2 1−ν2

1+ν2 which always satisfies (36). �

The modified frequency of the IMEX is thus ω̃ = 1
h arccos( 1−λ2h2/4

1+λ2h2/4 ), as already found in [MS14].

Because of the symplecticity of the methods (17), it is obvious that in order to study the P-
stability it is sufficient to look at the diagonal elements M1,1 and M2,2 of the matrix M(µ) in (33).
By direct computation, one has that

M1,1 = 1− µ2bT ̂̃A(Is2 + µ2Ã ̂̃A)−11s2(39)

M2,2 = 1− µ2b̃T Ã(Is1 + µ2 ̂̃AÃ)−11s1 .(40)

Lemma 4.2. Under the requirements of the Lemma 3.1, (39)-(40) can be written as

M1,1 = 1− µ2bT (Is1 + µ2 ̂̃AÃ)−1c(41)

M2,2 = 1− µ2b̃T (Is2 + µ2Ã ̂̃A)−1c̃.(42)

Moreover, if

(43) bT ( ̂̃AÃ)kc = b̃T (Ã ̂̃A)k c̃, k = 0, . . . ,min{s1, s2} − 1,

then M1,1 = M2,2.

Proof. We use the formal series (I + G)−1 =
∑
k(−1)kGk. The first part of the statement says

that we can push ̂̃A and Ã on the other right hand side using (23) and (24) from Lemma 3.1, that

is Ã1s1 = c̃ and ̂̃A1s2 = c.
For the second part of the statement, if all the infinite terms of the series in M1,1 and M2,2

are equal for k = 1, 2, . . ., then the series are also equal, even if the series do not converge. To

prove this, note that the matrices (Ã ̂̃A) and ( ̂̃AÃ) have the same n nonzero eigenvalues λ1, . . . , λn,
n ≤ min{s1, s2}. By the Cayley–Hamilton theorem, Gm can obtained as a linear combination of
I, . . . , Gn−1 for m ≥ n. Therefore only the terms in (43) need be checked. �

Remark. Note that for k = 0, we have bT c = 1
2 = b̃T c̃ is always verified for methods of order

at least one.
The combination Lobatto IIIA-B and Gauss-Legendre of the same order satisfies the require-

ments of Lemma 4.2, hence it is sufficient to check (43) only up to k = 1 (method of order 4) and
k = 2 for the method of order six.

We show the verifications for the methods based on interpolation. For order 4, the proof is
immediate for all k because c̃ = 1

212), hence

bT ( ̂̃AÃ)kc = bT ̂̃A(Ã ̂̃A)k−1Ãc

= b̃T (I − diag(c̃))(Ã ̂̃A)k−1Ã ̂̃A12(44)

=
1

2
b̃T (Ã ̂̃A)k12

= b̃T (Ã ̂̃A)k c̃

where we have used bT ̂̃A = b̃T (I − diag(c̃)) and (24). When going to higher order, a general proof
of M1,1 = M2,2 using an argument as above doesn’t seem straightforward because of in general
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̂̃Ac̃k−1 6= ck

k for k > 1 (see (24)). Yet, (43) can be verified by direct computation. For instance, for
the order six combination

b̃T Ã ̂̃Ac̃ = bT ̂̃AÃc =
1

24
,

b̃T (Ã ̂̃A)2c̃ = bT ( ̂̃AÃ)2c =
1

720
.

Our preliminary numerical tests seem to confirm that Lemma 4.2 yields for a larger class of
methods, therefore we conjecture that M1,1 = M2,2 whenever the secondary quadrature has order
at least equal to the order of the primary method.

Theorem 4.3. The methods (17) based on Lobatto IIIA and Gauss–Legendre of order four and six

with Ã by interpolation (20) are P-stable and correspond to oscillators with modified frequencies.
These are

(45) ω̃h = µ̃ = arccos

(
1− 5

12µ
2 + 1

144µ
4

1 + 1
12µ

2 + 1
144µ

4

)
µ = ωh

for the method of order four. The µ̃ touches the line −1 at µ = 2
√

3.
Moreover,

(46) ω̃h = µ̃ = arccos

(
1− 9

20µ
2 + 11

600µ
4 − 1

14400µ
6

1 + 1
20µ

2 + 1
600µ

4 + 1
14400µ

6

)
µ = ωh

for the methods of order six. The µ̃ touches the line −1 at µ =
√

10 and 1 at µ = 2
√

15.
The methods (17) based on Lobatto IIIA-B and Gauss-Legendre of order four and six with Ã by

collocation (21) are not P-stable.
The interval of stability in the positive half plane are: [0, 4] for the method of order two,

[0, 6
11

√
33] ∪ [2

√
3, 3
√

6] for for the method of order four, and [0,
√

70− 2
√

905] ∪ [
√

10, 85
√

15] ∪
[2
√

15,
√

70 + 2
√

905] for the methods of order six.

Proof. The methods satisfy Lemma 4.2 therefore one has that M1,1 = M2,2. Taking either of them,
the stability functions have been computed using a symbolic manipulator, as well as their points
of intersections with the lines ±1. �

A plot of the stability functions for the the LobattoIIIA and Gauss–Legendre combinations
by interpolation (20) (left) and with Ã by collocation (21) (right) for the methods of order two
(IMEX), order four and order 6 is shown in Fig 1.

5. The methods as modified trigonometric integrators

We consider the application to the test equation

(47) q̈ = −ω2q + f(q), F 1(q) = f(q), F 2(q) = −ω2q.

Theorem 5.1 (Modified trigonometric integrator). Consider the symplectic methods (20) applied
to the test oscillatory problem (47). Assume that the primary method has symmetric stages and
that | 12 trM(µ)| ≤ 1, with matrix M(µ) as in (33) having two independent eigenvectors in case of
equality. Then the method can be considered as a symplectic modified trigonometric integrator with
modified frequency satisfying the implicit relation

(48) cos(µ̃) =
1

2
trM(µ), µ̃ = ω̃h, µ = ωh

and can be written in the form

(49) q1 − 2 cos(µ̃)q0 + q−1 = h2ψ1(µ̃)(f(Q1) + f(Q−1)) + · · ·+ h2ψs1(µ̃)(f(Qs1) + f(Q−s1)),
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Figure 1. Left: Plot of the stability functions for the the Lobatto IIIA-B and
Gauss–Legendre combinations of order two (IMEX), order four and order six with
coefficients constructed by interpolation (20). These methods are P-stable. Right:
Stability function plot for the methods with coefficients constructed by collocation
(21). For P-stability, the function must have values between −1 and 1 for all µ.
These methods are not P-stable. See text for their interval of stability.

Figure 2. Modified frequency for the methods in the Lobatto IIIA and Gauss–
Legendre family of order two (IMEX), four and six. The straight line is the identity

function, for which λ̃ = λ. The IMEX retains the correct frequency of oscillations
up to hλ ≈ 1. The order two method retains the correct frequency up to hλ ≈ 2,
while the order six method up to hλ ≈ 3.

for s1 implicitly defined filter functions

(50) ψi(µ̃) = bT (Is1 + µ2 ̂̃AÃ)−1Âi, µ = ωh,

where Âi is the ith column of Â. The p-variables are reconstructed from the formula

(51) 2
µ̃

µ
sinc(µ̃)p0 = q1 − q−1 − h2ψ1(µ̃)(f(Q1)− f(Q−1)) + · · ·+ h2ψs1(µ̃)(f(Qs1)− f(Q−s1)),

where the ψi are the same as in (50).

Proof. As in the proof of P-stability, we ease notation and denote by capital letters Q̃ the vector
of the internal stages Q̃i, by P the vector of the internal momenta Pi, by F (Q) the vector of the
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f(Qi) and abuse notation, to avoid the use of tensor products. Thus, the expression bTF (Q) means

bTF (Q) = b1f(Q1) + b2f(Q2) + · · ·+ bs1f(Qs1).

Similarly, for matrix products, the expression ÂF (Q) has, as the i-component, the vector âi,1f(Q1)+
· · ·+ âi,s1f(Qs1), etc.

Proceding as for P-stability, we see that[
I −hÃ

ω2h ̂̃A I

] [
Q̃
P

]
=

[
q0

p0 + hÂF (Q)

]
which we use to solve for the Q̃ and P . From q1 = q0 + hbTP and p1 = p0 + hbTF (Q)− hω2b̃T Q̃,
we get[

q1
p1

]
=

[
q0

p0 + hbTF (Q)

]
+ h

[
0 bT

−ω2b̃T 0

][
I −hÃ

hω2 ̂̃A I

]−1 [
q0

p0 + hÂF (Q)

]
(52)

= DωM(µ)D−1ω

[
q0
p0

]
+ h

[
0

bTF (Q)

]
+ h2

[
0 bT

−ω2b̃T 0

][
I −hÃ

hω2 ̂̃A I

]−1[
0

ÂF (Q)

]
.

Let

[
X1 X2

X3 X4

]
=

[
I −hÃ

hω2 ̂̃A I

]−1
. One has

X1 = (Is2 + µ2Ã ̂̃A)−1

X2 = hÃ(Is1 + µ2 ̂̃AÃ)−1

X3 = −hµ ̂̃A(Is2 + µ2Ã ̂̃A)−1

X4 = (Is1 + µ2 ̂̃AÃ)−1.

Thus q1 is given by

q1 = cos(µ̃)q0 + h
µ̃

µ
sinc(µ̃)p0 + h2bT (Is1 + µ2 ̂̃AÃ)−1ÂF (Q+),

where, as above, µ = ωh and µ̃ = ω̃h is the modified frequency and F (Q+) indicates that the
internal stages are in [0, h]. The cos(µ̃) and sinc(µ̃) terms come form DωM(µ)Dω−1 in the usual
way, provided that | 12M(µ)| ≤ 1. By replacing h with −h, we have

q−1 = cos(µ̃)q0 − h
µ̃

µ
sinc(µ̃)p0 + h2bT (Is1 + µ2 ̂̃AÃ)−1ÂF (Q−),

where, as above, F (Q−) indicates that indicates that the internal stages are in [0,−h] Taking the
sum of q1 and q−1, we obtain

q1 − 2 cos(µ̃)q0 + q−1 = h2bT (Is1 + µ2 ̂̃AÃ)−1Â(F (Q+) + F (Q−)),

while subtracting the two expressions, we obtain

2h
µ̃

µ
sinc(µ̃)p0 = q1 − q−1 − h2bT (Is1 + µ2 ̂̃AÃ)−1Â(F (Q+)− F (Q−)).

With some simple algebraic manipulations, it is easy to recover the filter functions. The theorem
statement follows by assuming that the primary method has symmetric stages. �

Remark. The above theorem is also valid for all the methods described in the paper in the
region where the step size h is such that | 12 trM | ≤ 1.

When the first node c1 = 0 then Q1 = Q−1 = q0 so the first term on the right hand side of
(49) becomes 2ψ1(µ̃)f(q0) while it cancels in (51). Moreover, in the case of the Lobatto primary
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method, cs1 = 1 hence Qs1 = q1 and Q−s1 = q−1. However, the last column of the matrix Â is
zero, and so is the last filter function ψs1 .

For the IMEX method, we have c1 = 0, c2 = 1 (s1 = 2), hence (51) gives

2h
µ̃

µ
sinc(µ̃)p0 = q1 − q−1.

We have ψ2 = 0 and

q1 − 2 cos(µ̃)q0 + q1 = h22ψ1(µ̃)f(q0) = h2
(

1 +
µ2

4

)−1
f(q0)

and we recover its expression as a modified trigonometric integrator

q1 − 2 cos(µ̃)q0 + q1 = h2ψ(µ̃)f(φ(µ̃)q0)

with filter functions φ = 1, ψ(ξ) = cos ξ satisfying the implicit relation cos(µ̃) = (1 + µ2

4 )−1, as
derived in [MS14].

Similarly, for the order four Lobatto–Gauss-Legendre method, we have

2h
µ̃

µ
sinc(µ̃)p0 = q1 − q−1 − h2ψ2(µ̃)(f(q 1

2
)− (f(q− 1

2
))

and

(53) q1 − 2 cos(µ̃)q0 + q−1 = h22ψ1(µ̃)f(q0) + h2ψ2(µ̃)(f(q 1
2
) + f(q− 1

2
)),

with filter functions ψi, i = 1, 2, 3, satisfying the implicit relations

(54) ψ1(µ̃) =
2(−µ2 + 12)

µ4 + 12µ2 + 144
, ψ2(µ̃) =

2(µ2 + 24)

µ4 + 12µ2 + 144
, ψ3 = 0

(φi = 1, i = 1, 2, 3). The modified frequency is given by (45).
Finally, for the of order 6 Lobatto–Gauss-Legendre method, we have similar expressions, with

filters implicitly defined by

(55)

ψ1(µ̃) = 2µ4−140µ2+1200
µ6+24µ4+720µ2+14400 ,

ψ2(µ̃) = −(µ4+50µ2−600)
√
5−50µ2+3000

µ6+24µ4+720µ2+14400 ,

ψ3(µ̃) = (µ4+50µ2−600)
√
5−50µ2+3000

µ6+24µ4+720µ2+14400 ,

ψ4(µ̃) = 0,

and modified frequency given by (46).

6. Numerical experiments

As a bed test, we consider the Fermi-Pasta-Ulam-Tsingou (FPUT, formerly FPU) problem of
alternating soft and stiff springs, that has been extensively used in literature to study methods
for oscillatory problems. Because of the oscillatory nature of the problem, among all the methods
proposed, we test only those that are P-stable, as methods that are not P-stable are likely to
produce diverging solution as soon as the step size leaves the region of P-stability. Therefore,
in what follows, all the numerical experiments are performed with the Lobatto–Gauss-Legendre
family (17) with coefficients by interpolation (21). We will compare these methods also with higher
order integrators obtained using the IMEX (wich is the Lobatto–Gauss-Legendre method of order
2) and the Yoshida time stepping technique.
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Figure 3. Left: Individual oscillatory energies Ii and total oscillatory energy
I =

∑
i Ii. Right: Energy error |H − H0|. The simulations are performed in

[0, 200] with ω = 50 and h = 2/ω = 0.04. See text for initial conditions.

6.1. The Fermi-Pasta-Ulam-Tsingou problem. For comparison with [EH06, MS14], we con-
sider the same setup with 2` points of unit mass representing alternating soft nonlinear springs and
stiff linear springs. Setting q to be the concatenation of slow (index s) and fast (index f) position
variables,

q = [qs,1, . . . , qs,`, qf,1, . . . , qf,`]
T ,

and p the corresponding momenta, the Hamiltonian reads

H(q, p) =
1

2

∑̀
i=1

(p2s,i + p2f,i) +
ω2

2

∑̀
i=1

q2f,i

+
1

4

[
(qs,1 − qf,1)4 +

`−1∑
i=1

(qs,i+1 − qf,i+1 − qs,i − qf,i)4 + (qs,` + qf,`)
4

]
.

In our setup, the nonlinear potential and kinetic energy are treated with the Lobatto IIIA-B pair,

while the linear stiff energy ω2

2

∑`
i=1 q

2
f,i is treated with the Gauss–Legendre methods based on

interpolation.
The total oscillatory energy I,

I(qf , pf ) =
1

2

∑̀
i=1

p2f,i +
ω2

2

∑̀
i=1

q2f,i = I1 + . . .+ I`

is defined as the sum of the oscillatory energies of each fast spring. For ease of comparison with
the numerical examples in literature, the initial conditions used in the simulations are the same as
those in [EH06, MS14]

qs,1(0) = 1, ps,1(0) = 1, qf,1(0) = ω−1, pf,1(0) = 1,

and all the other initial values equal to zero. In the numerical experiments, we use ` = 3.
The left plot in figure (3) shows the oscillatory energies for each spring and the total oscillatory

energy, comparing the IMEX method (which is the lowest method in the class) and the higher
order proposed method based interpolation (Lobatto–Gauss-Legendre of order 4 and 6). The right
plot shows the corresponding error in the Hamiltonian energy.

When the modified frequency ω̃ is such that cos(hω̃) = ±1, see Figure 1, left plot, we expect

to observe resonances. This happens for hω/π = 2
√

3/π ≈ 1.1 for order four method and for

hω/π =
√

10/π ≈ 1 and hω/π = 2
√

15/π ≈ 2.47 for the order six method. Resonances can be
observed in the preservation of the Hamiltonian (total) energy of the system and in the scaled
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Figure 4. Left: Maximum deviation in the Hamiltonian (total) energy error.
Right: Maximum deviation in scaled oscillatory energy ωI error. The computation
is performed in [0,100] for hω/π = 0, ..., 4.5, h = 0.02. The peaks correspond to
the resonances of the methods. These occur when cos(hω̃) = ±1, namely when
hω/π ≈ 1.1 for the order four methods and when hω/π ≈ 1, 2.47 for the order six
method. See text for details.

Figure 5. Left: Individual oscillatory energies Ii and total oscillatory energy
I =

∑
i Ii, as in Figure 3, with step size h = 0.1, ω = 50. Right: Same oscillatory

energies as in the left plot. Here the step size is kept fixed to h = 0.1 but the
frequency ω as well as the length of the interval is scaled by a factor of 20.

total oscillatory energy ωI in the range (0, 4.5π], the latter being more uniform in dealing with
the frequencies. It is clear that the width of the resonance region is inversely propotional to the
curvature at the resonance point. The flatter the stability function is at the resonance points in
Figure reffig:Mlambda, the wider the region of resonance.

The left plot in Figure 5 displays the solution obtained by the methods by taking a relatively
large step size, with hω/π ≈ 1.59. The approximations to the solutions are still fairly acceptable
and the methods do not display excessive oscillations as other trigonometric integrators do.

The right plot in Figure 5 depicts the behavior of the methods as they approach their high-
frequency limit, in a similar experiment as in [MS14]. We keep h = 0.1 but take ω = 1000
with a ratio hω/π ≈ 31.8. In this experiment ω is scaled by a factor of 20 (compared to 200 in
[MS14]) and the time interval must also be scaled correspondingly to [0, 4000]. A rough analysis
of the slow energy exchange can be performed by using the modified trigonometric integrator form
of the method and the expansion of the exact and numerical solution using modulate Fourier
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Figure 6. Hamiltonian max error ratio for h = 0.04 and h = 0.02, ω = 50,
T = 200. We observe peaks in correspondence of the resonances.

expansions, see [EH06, MS14]. One difficulty with respect to the standard analysis using modified
trigonometric integrators is the presence of more filter functions ψ in (49) and of the internal stages
of the methods. However, performing a Taylor expansion of the internal stages, one can put the
methods in the form

q1 − 2 cos(µ̃)q0 + q−1 = h2ψ(µ̃)f(φ(µ̃)q0) +O(h4)

and apply the standard analysis as for trigonometric integrators.
For instance, for the Lobatto–Gauss-Legendre method of order 4, one has that φ = 1, ψ(µ̃) =

2(ψ1(µ̃) + ψ2(µ̃)) = 1/(1 + 1
12µ

2 + 1
144µ

4), with µ = hω (the ψ-functions are defined implicitly).

Using the same setup as in [EH06, MS14], one finds that α = 1 + 1
6µ

2 + O(µ4), β = 1, and

γ = 1 − 1
1728µ

6 + O(µ8). In order to preserve the slow energy exchange at a correct rate, it
is required that α = β = γ = 1, a property that is satisfied only by the IMEX, as proven in
[MS14]. It is in particular the value of α that has the strongest effect on the slow energy exchange.
Nevertheless, the methods perform way better than classical trigonometric integrators.

Figure 6 shows the Hamiltonian maximum error ratio computed for h = 0.04 and h = 0.02 for
various values of ω up to 4.5π. In the convergence region we would expect that the ratio would
be 16 for the method of order 4 and 64 for the method of order 6, however the plot does not
cover well the convergence region. Overall, we see that the methods have a conservation of O(h2),
except from the regions corresponding to resonances. This behaviour seems to indicate that the
methods suffer of order reduction, a phenomenon that is not uncommon for higher order methods
in prescribed regions of the step-size. This effect will be discussed more thoroughly below.

6.2. Order reduction. Ultimately, it is the error in the slow variables one of the most relevant
quantities in the numerical simulations of these kind of problems, because the fast variables will be
in any case poorly resolved. In figures (7–8) we show the errors in the slow variables for the FPUT
problem for different values of the step-size and different ω. The errors are evaluated at T = 3 and
the exact solution is computed using Matlab’s ode45 to about machine precision (setting AbsTol,

RelTol = 1e-14). It is observed that the methods suffer of order reduction both in the positions
and the momenta, manifested as a platou in the error plots.

In figures (9)-(10) we repeat the same experiments by methods of order 4 and 6 obtained from
the IMEX and using the Yoshida technique [Yos90]. Also in this case one can observe an order
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Figure 7. Errors at T = 3 in the slow positions (left) and slow momenta (right)
for the Lobatto-Gauss method of order 4 against the step size h for ω = 10, . . . , 104.
The lines for h2 and h4 are plotted for convenience.

Figure 8. Error in the slow positions (left) and slow momenta (right) for the
Lobatto-Gauss method of order 6.

reduction, from order 4 to order 3 for the positions and from order 4 to 2 for the momenta for the
method of order 4. Similarly, one observes a reduction from order 6 to order 3 for the positions
and from order 6 to order 2 for the momenta for the method of order 6. In summary, the order
reduction is similar to that of the Lobatto–Gauss-Legendre on the momenta, but is one order less
on the positions.

It is not clear why the Yoshida technique gives a lesser order reduction for the positions and
marginally also for the momenta. We conjecture that it might be due to the fact that the method
uses step sizes αh and βh, rather than just h, and the use of these two step sizes might reduce the
resonance effects of the single step size.

Figures (11)-(12) show a comparison of the errors for methods of the same order. It is observed
that for larger step-sizes, the Lobatto–Gauss-Legendre have smaller error (about two orders of
magnitude) than IMEX with Yoshida timestepping. For smaller step-sizes, there is no obvious
answer and the choice of the method will most likely depend on the application under consideration.
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Figure 9. Error in the slow positions (left) and slow momenta (right) for the
IMEX method with a Yoshida time stepping for a method of order 4. There is a
order two reduction in the momenta, but only an order one reduction for the error
in the slow positions.

Figure 10. Error in the slow positions (left) and slow momenta (right) for the
IMEX method with a Yoshida time stepping yielding a method of order 6. Also
in this case there is an observable reduction in the order. We have four orders loss
for the momenta and three order loss in the positions.

The Lobatto–Gauss-Legendre of order 4 and 6 have implicit stages, which require one and two
functions evaluations respectively. In our numerical experiments, we have solved the implicit stages
by fixed point iteration. The number of function evaluations will then depend on the number of
fixed point iterations. For small step sizes, we observed 1-2 fixed point iterations. For larger step
sizes (but still in the convergence region) we never observed more than 10 iterations, a typical
number was ≈5-6. In comparison, the order 4 IMEX with the Yoshida technique would require 3
function evaluations and 9 function evaluation for order 6. However, the Yoshida techniques have
larger error in the regions of convergence, especially in the larger step size regions. This error is
about two-three orders of magnitude larger than the Lobatto–Gauss-Legendre methods, indicating
that these can be used with a larger step size, resulting in an overall cheaper method.
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Figure 11. Comparison of the error in the slow positions (left) and slow momenta
for the interpolation Lobatto–Gauss (solid line) and the IMEX-Yoshida method
(dashed line) of order four.

Figure 12. Comparison of the error in the slow positions (left) and slow momenta
for the interpolation Lobatto–Gauss (solid line) and the IMEX-Yoshida method
(dashed line) of order six.

7. Conclusions and further remarks

We have introduced a family of symplectic methods based on a variational derivation. The
main idea is to use different integration quadrature formulas for different terms of the Lagrangian.
The introduction of extra internal stages is solved either by interpolation or by collocation. In
particular, we have derived a higher order generalization of the IMEX method (using the Verlet
method and an interpolated form of the Implicit Midpoint Rule), namely the LobattoIIIA-B–
Gauss-Legendre family of arbitrary order, and present the coefficients explicitly for the methods
of order 4 and 6. We have proved that these method possess the expected order and shown that
the methods with internal stages solved by interpolation are P-stable, making these particularly
interesting in the context of oscillatory problem. We have also observed that these higher order
methods might suffer from resonance and from order reduction. The methods are thoroughly tested
on the FPUT problem and their behaviour is compared to higher order IMEX implementations
using the Yoshida time-stepping technique.
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The proposed methods might be considered as special subclass of additive Runge–Kutta meth-
ods (ARK). The advantage of the variational derivation is that the methods are automatically
symplectic, therefore particularly suited to geometric integration. It will be interesting to explore
further this mixed technique for other choices of primary/secondary methods and the use other
techniques, like treating some of the terms by averaged Lagrangian methods in the spirit of [CH17].
Possibly, this mixed approach might lead to further interesting numerical method that might not
be easily discovered using the classical algebraic theory of RK and ARK methods.
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Appendix A. The family of Lobatto IIIA-IIIB (primary) and Gauss-Legendre
(secondary) methods

A.1. Methods based on interpolation.

A.1.1. The IMEX. We consider the case the primary method for L1 is the trapezoidal rule, giving

rise to the Verlet scheme, a Lobatto IIIA-IIIB pair PRK with coefficients (A, b, c) and (Â, b, c)

0 0 0
1 1

2
1
2

1
2

1
2

,

0 1
2 0

1 1
2 0
1
2

1
2

.

The secondary scheme is the IMR (s2 = 1, c̃1 = 1
2 , b̃1 = 1). One has

Ã =
[
ã1,1 ã1,2

]
=
[
1
4

1
4

]
, ̂̃A =

[
1
2

1
2

]
A.1.2. Method of order four. To construct higher order methods we look at the Lobatto IIIA-IIIB
pair (s = 3) and GL (s = 2).

A =

 0 0 0
5
24

1
3 − 1

24

1
6

2
3

1
6

 Â =


1
6 − 1

6 0
1
6

1
3 0

1
6

5
6 0

 ,
with

c =
[
0 1

2 1
]T
, b =

[
1
6

2
3

1
6

]T
.

For the Gauss-Legendre quadrature, we have

c̃ =
[
1
2 −

√
3
6

1
2 +

√
3
6

]T
, b̃ =

[
1
2

1
2

]T
.

We consider the interpolation case (21). The matrix Ã and ̂̃A are

Ã =

[
1
6 −

√
3

36
1
3 −

√
3
9 −

√
3

36

1
6 +

√
3

36
1
3 +

√
3
9

√
3

36

]
, ̂̃A =


√
3

12 −
√
3

12

1
4 +

√
3

12
1
4 −

√
3

12

1
2 +

√
3

12
1
2 −

√
3

12


As for the primary method, we have Q1 = q0 and Q3 = q1.
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A.1.3. Method of order six. Consider the Lobatto IIIA-IIIB pair (s = 4) and GL (s = 3),

A =


0 0 0 0

11+
√
5

120
25−
√
5

120
25−13

√
5

120
−1+

√
5

120

11−
√
5

120
25+13

√
5

120
25+
√
5

120
−1−

√
5

120

1
12

5
12

5
12

1
12

 , Â =


1
12

−1−
√
5

24
−1+

√
5

24 0

1
12

25+
√
5

120
25−13

√
5

120 0

1
12

25+13
√
5

120
25−
√
5

120 0

1
12

11−
√
5

24
11+
√
5

24 0


with

c =
[
0 1

2 −
√
5

10
1
2 +

√
5

10 1
]T
, b =

[
1
12

5
12

5
12

1
12

]T
.

For the Gauss-Legendre quadrature, we have

c̃ =
[
1
2 −

√
15
10

1
2

1
2 +

√
15
10

]T
, b̃ =

[
5
18

4
9

5
18

]T
.

We consider the interpolation case (21). The matrix Ã and ̂̃A are

Ã =


1
15

25−6
√
15+3

√
5

120
25−6

√
15−3

√
5

120
1
60

5
48

5
24 +

√
5

16
5
24 −

√
5

16 − 1
48

1
15

25+6
√
15+3

√
5

120
25+6

√
15−3

√
5

120
1
60

 ̂̃A =


1
18 − 1

9
1
18

25+6
√
15−3

√
5

180
2
9 −

√
5

15
25−6

√
15−3

√
5

180

25+6
√
15+3

√
5

180
2
9 +

√
5

15
25−6

√
15+3

√
5

180

2
9

5
9

2
9


A.2. Methods based on collocation. The weights b, b̃ and nodes c, c̃ of the primary and sec-
ondary method of each order, as well as the correspoding PRK for the primary methods are the

same as for interpolation. The difference is in the coefficient matrices Ã and ̂̃A, which we report
below for convenience.

A.2.1. Second order method.

Ã =
[
3
8

1
8

]
, ̂̃A =

[
1
4

3
4

]
.

A.2.2. Fourth order method.

Ã =

[
1
6 −

√
3

108
1
3 −

4
√
3

27 −
√
3

108

1
6 +

√
3

108
1
3 + 4

√
3

27

√
3

108

]
, ̂̃A =


√
3

36 −
√
3

36

1
4 +

√
3
9

1
4 −

√
3
9

1
2 +

√
3

36
1
2 −

√
3

36

 .
A.2.3. Six order method.

Ã =


19
240

√
5(
√
15−5)

2
(3
√
15+4

√
5+2
√
3+12)

2400 −
√
5(
√
15−5)

2
(3
√
15−2

√
3−4
√
5+12)

2400
1

240

17
192

5
24 + 5

√
5

64
5
24 −

5
√
5

64 − 1
192

19
240 −

√
5(
√
15+5)

2
(3
√
15−4

√
5+2
√
3−12)

2400

√
5(
√
15+5)

2
(3
√
15+4

√
5−2
√
3−12)

2400
1

240

 ,

̂̃A =


1
72 − 1

36
1
72

5
36 +

(12
√
3−3)

√
5

360
2
9 −

√
5

12
5
36 +

(−12
√
3−3)

√
5

360

5
36 +

(12
√
3+3)

√
5

360
2
9 +

√
5

12
5
36 +

(−12
√
3+3)

√
5

360

19
72

17
36

19
72

 .
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A.3. Primary Gauss-Legendre and secondary Lobatto. In some situtations, it is convenient
to use the Gauss-Legendre as primary methods and the Lobatto quadrature as secondary method.

It is easily verified that in these case Â = A, as the Gauss-Legendre method is already symplectic.

For the interpolation setting, it is sufficient to replace Ã and ̂̃A and ̂̃A with Ã, see tables above.

In the collocation setting, it is still true that Â = A, but the Ã and the ̂̃A matrices do not
swap. By direct computations, it can be verified that these coincide with the coefficient matrices
in [Jay07].
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