
A surface finite element method for computational modelling of

cell blebbing

Björn Stinner Andreas Dedner Adam Nixon ∗

March 16, 2020

Abstract

Cell blebs are protrusions of the cell membrane and can be instrumental for cell mi-
gration. We derive a continuum model for the mechanical and geometrical aspects of
the onset of blebbing in terms of a force balance. It is abstract and flexible in that it
allows for amending force contributions related to membrane tension or the presence of
linker molecules between membrane and cell cortex. The deforming membrane and all
forces are expressed by means of a parametrisation over a stationary reference surface.
A variational formulation is presented and analysed for well-posedness. For this pur-
pose, we derive a semi-discrete scheme based on the surface finite element method. We
provide a convergence result and estimates of the error due to the spatial discretisation.
Furthermore, we present a computational framework where specific models can be imple-
mented and later on conveniently amended if desired, using a domain specific language
implemented in Python. While the high level program control can be done within the
Python scripting environment, the actual computationally expensive step of evolving the
solution over time is carried out by binding to an efficient software backend. Cell mem-
brane geometries given in terms of a parametrisation or obtained from image data can
be accounted for. A couple of numerical simulation results illustrate the approach.

Keywords: Cell motility, biomembranes, Galerkin method, interface tracking, unified form
language, distributed unified numerics environment

MSC(2010): 65M60, 92C10, 74K15, 92C17, 74S05

1 Introduction

Cell blebbing refers to the detachment of the plasma membrane from its actin cytoskeleton
and the fast formation of a spherical protrusion. This is then followed by a slower reformation
of the actin cortex close to the deformed part of the membrane and a retraction phase [19, 10].
The phenomenon is observed in various processes including apoptosis, spreading, migration,
division, embryonic development, and viral entry (see [27] for a recent overview), whence it
is the subject of significant ongoing research.

Mathematical models that serve to provide some insight into the control mechanisms
require an approach to describe the evolving geometry and have to account for various force
contributions acting on the plasma membrane. It seems consensus in the literature that
pressurised cytosol by actin-myosin activity in the cortex or otherwise (see [11] and refer-
ences) triggers blebbing, where the pressure distribution and the blebbing dynamics are of
particular interest [30, 20]. Models for the cell membrane, which resist bending, are often

∗Corresponding author: Björn Stinner, Mathematics Institute, Zeeman Building, University of Warwick,
Coventry CV4 7AL, United Kingdom bjorn.stinner@warwick.ac.uk

1

bjorn.stinner@warwick.ac.uk

based on models for biomembranes or elastic shells [23, 35], see [34] for a discussion of min-
imal approaches. Tension is usually accounted for, too, [28] but significant stretching of
biomembranes beyond a few percentages leads to rupture, whence the provision of cell mem-
brane area to allow for increases as observed during blebbing has been studied [22]. Linker
molecules serve to keep the cell membrane close to the cortex but break during blebbing [29],
where the cell’s control ability by its biochemistry is of interest [33]. Further questions are
related to the interaction of different modes during cell motility (pseudopods versus blebs,
[32]), whether cortex weakening is required [12], or about the origin of the fluid in the bleb
(from outside of the cell via pores in the membrane [31] or from inside through the cortex
[21]).

Most computational methods for cell blebbing are restricted to two spatial dimensions
(2D). The membrane can then be tracked by a closed polygonal chain. Forces due to its elastic
properties can be computed using finite difference techniques [32, 12]. If (viscous) fluid flow
inside and outside of the cell is accounted for then these membrane forces can be incorporated
into the flow equations by smoothing the surface distribution (immersed boundary method).
For instance, in [36] a vorticity-stream formulation for the flow is used, and in [29] a staggered
grid finite difference method. As an alternative there are boundary element formulations that
are set up directly on the polygonal chain [24]. Only very recently, results on simulations
in three spatial dimensions (3D) that account for the computationally expensive flow have
been published. For instance, in [8, 9] a surface finite element method for reaction-diffusion
equations on the cell membrane is coupled with a projection method on a regular mesh for
the flow. Alternatively to tracking the membrane with a mesh, interface capturing methods
may be used. We are not aware of such an approach to cell blebbing but in [26] numerical
simulations of a phase field model for moving cells are presented, which uses isogeometric
analysis for the spatial approximation and a second order stable time discretisation involving
a two-stage predictor-corrector scheme.

Our general objective has been to develop a robust and efficient computational framework
for assessing and validating blebbing models in three spatial dimensions. Towards this general
objective, we specifically address the following findings in this work:

• The nucleation and formation of blebs is studied using a parametric approach for the
moving membrane and surface finite elements that are set up on the initial membrane.

• The force balance model in [32, 12], which is based on ideas in [36, 29], is extended
from curves in 2D to surfaces in 3D. More precisely, a continuum model is presented
such that, when restricting the model to a curve in 2D and discretising the governing
equations using standard finite difference methods, the original computational model
is obtained. This specific model has been used for some numerical simulations.

• In addition to this specific model we also present and analyse a variational problem that
is abstract in the sense that force contributions can be altered within some structural
limits. We here particularly have the models for the membrane tension and the linker
molecules connecting the membrane with the cortex in mind.

• The abstract problem is analysed for well-posedness, which is based on a Galerkin
method using surface finite element techniques. Stability estimates for the semi-discrete
scheme are derived and exploited to show convergence. Under slightly more restrictive
assumptions on the quality of the solution, error estimates have been derived, too.

• Furthermore, a software framework for numerical simulations has been developed. It
features a high-level interface to implement a problem in the Unified Form Language
(UFL) [2], which enables to conveniently alter the variational problem. Whilst the
overall program control and the time stepping are done at the high level, bindings to

2

the Distributed Unified Numerics Environment (DUNE) [5, 4] are used for efficiently
discretising and solving the spatial problems, more precisely, the Python bindings to
the DUNE-FEM module [13, 14].

In the following Section 2 we model the onset of cell-blebbing and introduce the abstract
variational problem. The finite element approach is presented and analysed in Section 3,
where we discuss well-posedness of the variational problem and convergence. Regarding the
software framework, Section 4 contains the time discretisation, details on the implementation,
and some results of our numerical simulations.

2 Continuum modelling of the onset of blebbing

2.1 Setting and notation

The blebbing cell occupies an open, time dependent bounded domain denoted by Ω(t), where
t ∈ [0, T] with some T > 0 stands for time. Its evolving boundary Γ(t) = ∂Ω(t) describes the
position of the cell membrane and is parametrised over the initial (smooth) surface Γ0 = Γ(0),
i.e. Γ(t) = u(Γ0, t) for some function u : Γ0 × [0, T] → R3 such that u(·, 0) = idΓ0 is the
identic map of Γ0. The dependence on t will usually be dropped in the following. We
denote by d the signed distance to Γ0, which is well-defined in a thin layer around Γ0, with
the convention that d < 0 inside of Ω(0). Its derivative νΓ0 = ∇d is then the outwards
pointing unit normal and its second derivative H = ∇2d is the shape operator of Γ0. By
κ = trace(H)νΓ0 we denote the curvature vector. The surface gradient is defined by

∇Γ0η = ∇η − νΓ0(νΓ0 · ∇η) = P∇η (2.1)

for any differentiable function η : Γ0 → R extended to a thin layer around Γ0. Here, P =
I−νΓ0⊗νΓ0 = ∇Γ0idΓ0 , with the identity matrix I ∈ R3×3, is the projection to the tangent
space. The Laplace-Beltrami operator on Γ0 is denoted and given by ∆Γ0 = ∇Γ0 ·∇Γ0 . When
integrating over Γ0 we write dσ for the surface area element.

2.2 Force balance and strong formulation

Based on previous ideas [36, 29, 32, 12] we postulate that a force balance of the form

fpressure + f coupling + f tension + f reg + fdrag = 0 (2.2)

governs the cell membrane’s shape. The contributions are described below. We specifically
aim for generalizing the model in [32, 12] for curves in 2D to surfaces in 3D. With regards
to the coupling and tension contributions f coupling, f tension we also state abstract, general
forms where only some structural assumptions are made. This way, other models for these
force contributions can be investigated within our framework.

• Pressure: Building up internal pressure by actin-myosin contraction is essential to
blebbing. We write the corresponding force as

fpressure =
p0

V (u)
νΓ0 , (2.3)

where V (u) = max{
∫

Γ0
1
3u ·νΓ0dσ, 0} is an approximation of the volume of Ω and p0 is

a pressure coefficient so that p0/|V (u)| is the pressure difference between interior and
exterior of the cell.

3

• Coupling between membrane and cortex: Forces arise due to molecules connecting the
membrane with the actin cortex. When the membrane detaches during the blebbing
process then these linkers break and an actin scar is left behind. In the longer run,
it disintegrates and the cortex reassembles close to the new membrane position. As
we are interested in the faster bleb formation we assume the cortex to be stationary
and positioned a small distance l0 away from the initial membrane. Connection points
of linkers in the cortex are given by uc = idΓ0 − l0νΓ0 where idΓ0 is the identity
map on Γ0. The linker molecules can be modelled as the density of simple springs
with parameter kl and assumed to be initially at rest, resulting in the energy density
ecoupling = kl

2 (|u − uc| − l0)2 as long as they are intact. But as a critical length uB is
exceeded they break, and when they get closer than a distance uR to the cortex then
the repulsion force is increased to prevent any intersection. A model for the force then
reads

f coupling = −kcoupling(|u− uc|)
(

(u− uc)− l0
(u− uc)
|u− uc|

)
, (2.4)

with
kcoupling(y) = kl

(
1 + kLH(uR − y)

)
H(uB − y) (2.5)

with some constant kL > 0 and the Heaviside function H(r) = 1 if r ≥ 0 and H(r) = 0
otherwise.

• Abstract coupling including pressure: In the abstract model, instead of (2.4) and (2.3)
we consider a force given by some function k : Γ0 × R3 → R3. The dependence on the
first argument enables to account for given data such as the position of the cortex or
the unit normal. We assume that k is bounded and measurable with respect to the
first argument and uniformly Lipschitz continuous in the second argument, i.e., there
is some constant Ck > 0 such that for all y ∈ Γ0

|k(y,a)− k(y, b)| ≤ Ck|a− b| ∀a, b ∈ R3. (2.6)

This implies that |k(y,a)| ≤ Ck|a|+C for some constant C > 0. The force in a point
y ∈ Γ0 is then (

f coupling + fpressure
)
(y) = k(y,u(y)). (2.7)

Note that the specific model (2.4), (2.3) does not satisfy the Lipschitz continuity con-
dition on k. However, smoothing the Heaviside function and ensuring that the denom-
inators do not degenerate is sufficient. With a small parameter ε > 0 the choice

kcoupling,ε(z) = kl

(
1 +

kL
1 + exp(2(z − uR)/ε)

) 1

1 + exp(2(z − uB)/ε)

and then

k(y,u) = −kcoupling,ε(|u−uc(y)|)
(

1− l0
|u− uc(y)|+ ε

)
(u−uc(y)) +

p0

V (u) + ε
νΓ0(y)

(2.8)
is such that the assumptions are satisfied again.

• Tension: Membranes under tension may also be modelled with linear springs, leading
to an energy density of the form

etension =
kψ
2

(
|∇Γ0u| −

√
2x0

)2
, (2.9)

where kψ is a spring parameter and x0 is the resting length. Note that |∇Γ0u(·, 0)| =
|∇Γ0idΓ0 | = |P | =

√
2, whence in case x0 = 1 the membrane initially is at rest. The

energy leads to the membrane (tension) force

ftension = −∂etension = kψ∇Γ0 ·
(
∇Γ0u−

√
2x0
∇Γ0u

|∇Γ0u|

)
. (2.10)

4

• Abstract tension: In the abstract model, instead of (2.9) we consider a tension energy
with a density ψ : Γ0 ×R3×3 → [0,∞). We assume that ψ is bounded and measurable
with respect to the first argument and continuously differentiable with respect to the
second argument with uniformly Lipschitz continuous partial derivative, i.e., denoting
with ψ′ this (3× 3 tensor-valued) partial derivative we assume that there is a constant
Cψ > 0 such that for all y ∈ Γ0

|ψ′(y,A)− ψ′(y,B)| ≤ Cψ|A−B| ∀A,B ∈ R3×3. (2.11)

This implies that |ψ′(y,A)| ≤ Cψ|A|+C for some constant C > 0. The corresponding
force in a point y ∈ Γ0 reads

f tension(y) = ∇Γ0 · ψ′(y,∇Γ0u). (2.12)

Formally, this requires ψ′ to be differentiable. However, for the variational formulation
that is analysed in this paper the above assumptions are sufficient.
As for the coupling and the pressure term, the specific tension model (2.9) does not
satisfy the regularity requirements on ψ but replacing |∇Γ0u| by

√
|∇Γ0u|2 + ε with

some small ε > 0 does, and then

ψ′(y,A) = kψ

(
1−

√
2x0√
|A|2 + ε

)
A. (2.13)

• Regularisation: The membrane resists bending, though much less than stretching. The
corresponding elastic energy may be modelled as in [23]. However, its impact on the
blebbing site selection and its shape has been found to be significantly smaller than
that of the tension [32]. We therefore choose a simplified linear model that may be
considered as a regularization: ereg = kb

2 |∆Γ0u|2 where kb is a (small) bending resistance
coefficient, so that the regularization force is given by

f reg = −∂ereg = kb∆
2
Γ0u = −kb∆Γ0w, where w = −∆Γ0u

will be referred to as curvature in the following.

• Viscous drag: The (viscous) fluid motion in the interior and exterior of the cell is not
explicitly modeled but only accounted for by a viscous drag force that opposes any
membranes movement:

fdrag = −ω∂tu,

where ω is an effective material parameter related to the viscosity of the ambient fluid.

With the abstract choices for tension (2.12) and coupling (2.7) the force balance (2.2)
results in the PDE

ω∂tu+ kb∆
2
Γ0u−∇Γ0 · ψ′(∇Γ0u) + k(u) = 0. (2.14)

The model with the specific choices (2.10) and (2.4) has been used for numerical simula-
tions in Section 4.3. It has been non-dimensionalised by choosing a length scale U and kψ as
an energy density scale. Choosing the time scale T = U2ω/kψ then eliminates the viscosity
parameter. Writing again Γ0, u, uc, uB, uR, l0, and V (u) for the respective non-dimensional
objects we obtain the equation

∂tu =− λb∆2
Γ0u+∇Γ0 ·

(
∇Γ0u−

√
2x0
∇Γ0u

|∇Γ0u|

)
(2.15)

− λl
(
1 + kLH(uR − |u− uc|)

)
H(uB − |u− uc|)

(
(u− uc)− l0

u− uc
|u− uc|

)
+

λp
V (u)

νΓ0 .

5

with the non-dimensional parameters λb = kb/(U
2kψ), λl = klU

2/kψ, and λp = p0/(U
2kψ)

(noting that x0 and kL were non-dimensional already). The model in [32, 12] is obtained by
reducing the dimension of this equation (2.15) (i.e., Γ0 is a curve in 2D). The curve then is
parametrized by arc-length, and their computational model is obtained by using standard
finite difference techniques.

2.3 Variational formulation

We aim for approximating the PDE problem using finite elements and thus require a varia-
tional formulation. Writing ∇Γ0 = (D1, D2, D3) for the components of the surface gradient,
we say that a function f ∈ L1(Γ0) has a weak derivative ηi = Dif ∈ L1(Γ0) if∫

Γ0

fDiϕdσ = −
∫

Γ0

ηiϕdσ +

∫
Γ0

fϕκidσ, i = 1, 2, 3,

holds true for all smooth functions ϕ with compact support. We use ∇Γ0 again to denote
this weak derivative. Sobolev spaces on Γ0 are defined by H0(Γ0) = L2(Γ0) and

Hk = Hk(Γ0) =
{
η ∈ Hk−1(Γ0)

∣∣∇Γ0η ∈ L2(Γ0)
}
.

On these we will consider the Bochner spaces

L2
Hk =

{
ζ : (0, T)→ Hk

∣∣ ∫ T

0
‖ζ(t)‖2Hkdt <∞

}
, L∞Hk =

{
ζ : (0, T)→ Hk

∣∣ ess sup
t∈(0,T)

‖ζ(t)‖Hk <∞
}
.

For the L2 ’mass’ inner product of vector valued functions v, z ∈ (L2)3 we write

m(v, z) =

∫
Γ0

v · zdσ.

Note that, thanks to the Lipschitz assumption on k also m(k(v), z) is well-defined for
v, z ∈ (L2(Γ0))3. For the H1 ’stiffness’ semi-inner product of vector valued functions
v, z ∈ (H1(Γ0))3 we write

s(v, z) =

∫
Γ0

∇Γ0v : ∇Γ0zdσ

where A : B =
∑3

i,j=1Ai,jBi,j for tensors A,B ∈ R3×3. With a slight abuse of notation we
also define

s(ψ′;v, z) =

∫
Γ0

ψ′(∇Γ0v) : ∇Γ0zdσ.

For the (weak) variational formulation of (2.14) we assume without loss of generality that
ω = 1 and kb = 1.

Problem 2.1. Find u,w ∈ L2(0, T ;H1(Γ0)) with ∂tu ∈ L2(0, T ;L2(Γ0)) such that for all
φ,η ∈ H1(Γ0) and almost all t ∈ (0, T)

m(∂tu,φ) + s(w,φ) + s(ψ′;u,φ) +m(k(u),φ) = 0, (2.16)

s(u,η)−m(w,η) = 0, (2.17)

and such that u(·, 0) = idΓ0 is the identic map of Γ0.

6

3 Surface finite element approach

3.1 Surface triangulations and finite elements

The membrane Γ0 is approximated by a family of polyhedral surfaces {Γ0
h}h, each one being

of the form

Γ0
h =

⋃
E∈Th

E ⊂ R3

where the E are closed, flat non-degenerate triangles whose pairwise intersection is a complete
edge, a single point, or empty. For each E belonging to the set Th of triangles we denote by
h(E) = diam(E) its diameter and then identify h = maxE∈Th

h(E) with the maximal edge
length of the whole triangulation. We assume that the vertices of Γ0

h belong to Γ0 so that
Γ0
h is a piecewise linear interpolation of Γ0. We also assume that h is small enough so that

Γ0
h lies in the thin layer around Γ0 in which the signed distance function d is well-defined.

Furthermore, we assume that Γ0
h is the boundary of a domain that approximates Ω(0) and

denote the external unit normal, which is defined on the triangles and thus piecewise constant,
with νΓ0

h
. By P h = I − νΓ0

h
⊗ νΓ0

h
we denote the projection to the tangent space in points

on Γ0
h where it exists (i.e., in the interiors of the triangles E ∈ Th). Following (2.1) this gives

rise to the piecewise (i.e., triangle by triangle) definition of a surface gradient ∇Γ0
h

on Γ0
h.

The same notation is used again for the weak derivative. We write dσh for the surface area
element when integrating functions on Γ0

h.
For the error analysis we have to measure the distance of functions such as u on Γ0 to

functions such as the finite element solution on Γ0
h. For this purpose, consider the bijection

given defined by
Γ0
h 3 yh = y + d(yh)νΓ0(y), y ∈ Γ0. (3.1)

This bijection gives rise to the lift of any function η : Γ0
h → R to Γ0 defined by

η` : Γ0 → R, η`(y) = η(yh).

Writing µh for the local change of the surface area element, i.e., dσh = µhdσ, integrals
transform as ∫

Γ0
h

ηdσh =

∫
Γ0

η`µhdσ. (3.2)

A straightforward calculation show that in points where both η and η` are differentiable

∇Γ0
h
η(yh) = Qh(y)∇Γ0η`(y) where Qh(y) = P h(yh)(I − d(yh)H(y))P (y). (3.3)

The following two lemmas on the errors due to the approximation of the surface and on the
stability of the lift are due to [16, 17].

Lemma 3.1. The following estimates hold true for some constant C > 0 independent of h:

‖1− µh‖L∞(Γ0) ≤ Ch
2,

‖Qh − P ‖L∞(Γ0) ≤ Ch.

Lemma 3.2. Let η : Γ0
h → R with its lifted counterpart η` : Γ0 → R. Let also E ∈ Th

and E` = {y ∈ Γ0 |yh ∈ E}. The following estimates hold true with a constant C > 0
independent of h and the element E:

1

C

∥∥∥η`∥∥∥
L2(E`)

≤ ‖η‖L2(E) ≤ C
∥∥∥η`∥∥∥

L2(E`)
,

1

C

∥∥∥∇Γ0η`
∥∥∥
L2(E`)

≤
∥∥∥∇Γ0

h
η
∥∥∥
L2(E)

≤ C
∥∥∥∇Γ0η`

∥∥∥
L2(E`)

.

These inequalities generalize to the whole surfaces by summing over the elements.

7

The standard finite element space used throughout is

Sh = {φh ∈ C0(Γ0
h) |φh|E is linear for each E ∈ Th}.

Note that the identity map of Γ0
h belongs to S3

h. Bilinear forms corresponding to m and s
are defined for finite element functions Rh,Zh ∈ S3

h on the triangulation by

mh(Rh,Zh) =

∫
Γ0
h

Rh ·Zhdσh, sh(Rh,Zh) =

∫
Γ0
h

∇Γ0
h
Rh : ∇Γ0

h
Zhdσh,

and we will also use again the notation sh(ψ′;Rh,Zh) =
∫

Γ0
h
ψ′(∇Γ0

h
Rh) : ∇Γ0

h
Zhdσh. For

the discrepancy to the forms on Γ0 we note the following result:

Lemma 3.3 ([16]). There is a constant C > 0 independent of h such that for all Rh,Zh ∈ S3
h

|mh(Rh,Zh)−m(rh, zh)| ≤ Ch2‖Rh‖L2(Γ0
h)‖Zh‖L2(Γ0

h),

|sh(Rh,Zh)− s(rh, zh)| ≤ Ch2‖∇Γ0
h
Rh‖L2(Γ0

h)‖∇Γ0
h
Zh‖L2(Γ0

h),

where rh = R`
h and zh = Z`

h.

We define the Ritz projection Πh : H1(Γ0)→ Sh by

sh(Πh(ξ), φh) = s(ξ, φ`h) ∀φh ∈ Sh,
∫

Γ0
h

Πh(ξ)dσh =

∫
Γ0

ξdσ.

It’s lift is denoted by πh(ξ) = Πh(ξ)` and has the following approximation properties:

Lemma 3.4 ([16]). If ξ ∈ H1(Γ0) then

‖ξ − πh(ξ)‖H1(Γ0) → 0, ‖ξ − πh(ξ)‖L2(Γ0) ≤ Ch‖ξ‖H1(Γ0),

and if ξ ∈ H2(Γ0) then

‖ξ − πh(ξ)‖L2(Γ0) + h‖∇Γ0(ξ − πh(ξ))‖L2(Γ0) ≤ Ch2‖ξ‖H2(Γ0)

where C > 0 is a constant independent of h and ξ.
The projection and the convergence results extend to functions in L2

H1 with a pointwise (in
time) definition of the projection and with the norms ‖ · ‖L2

Hk
.

3.2 Semi-discrete problem

In applications, we may only have access to a triangulated surface Γ0
h but not Γ0, for instance,

when Γ0
h is computed from image data. Fields such as νΓ0 or uc then are only approximately

known in terms of νΓ0
h

or uc,h = idΓ0
h
− l0νΓ0

h
, too. We therefore assume that the force

due to coupling and pressure is given by some function (properly, a h family of functions)
kh : Γ0

h×R3 → R3 that has the same regularity properties as k. In particular, kh is Lipschitz
continuous in the second argument with the same Lipschitz constant Ck > 0 independently
of h. Using (3.1) we define its lift k`h : Γ0 × R3 → R3 by k`h(y,a) = kh(yh,a), a ∈ R3. We
assume that kh is an approximation of k in the following sense: There is a constant C > 0
independent of h such that for all a ∈ R3

‖k(·,a)− k`h(·,a)‖L∞(Γ0) ≤ C(1 + |a|)h. (3.4)

8

With regards to the specific model (2.8), the approximation

kh(yh,Uh) = −kcoupling,ε(|Uh − uc,h(yh)|)
(

(Uh − uc,h(yh))− l0
(Uh − uc,h(yh))

|Uh − uc,h(yh)|+ ε

)
+

p0

Vh(Uh) + ε
νΓ0

h
(yh)

with

Vh(Uh) = max
{∫

Γ0
h

1

3
Uh · νΓ0

h
dσh, 0

}
satisfies the assumptions.

Problem 3.5. Find Uh,W h ∈ C1(0, T ;S3
h) × C0(0, T ;S3

h) such that for all Φh,Hh ∈ S3
h

and all t ∈ (0, T)

mh(∂tUh,Φh) + sh(W h,Φh) + sh(ψ′;Uh,Φh) +mh(kh(Uh),Φh) = 0, (3.5)

sh(Uh,Hh)−mh(W h,Hh) = 0, (3.6)

and such that Uh(·, 0) = idΓ0
h
.

In the next subsection we will show the following main result:

Theorem 3.6. The semi-discrete problems 3.5 are well-posed for all h > 0 small enough.
As h → 0 the lifted solutions (uh,wh) = (U `

h,W
`
h) converge to some functions (u,w) that

uniquely solve the abstract variational problem 2.1 and satisfy

‖u‖2L∞
H1

+ ‖w‖2L2
H1
≤ C (3.7)

with some C > 0 that depends on data only.

3.3 Proof of Theorem 3.6

We generally follow the procedure in [18]. Essential differences consist in the approximation
of the data k by kh and the non-linear function ψ′ of the gradient. To deal with the former,
the consistency assumption (3.4) will turn out sufficient, whilst for the latter we will exploit
the relations (2.17) and (3.6) to show strong convergence of the gradient of the deformation.

Short time existence for (3.5), (3.6) is straightforward to show. Estimates are now derived
that are, at first, only valid at times of existence but then in the usual way can be used to
show existence over the whole time interval by a continuation argument. We therefore state
these estimates directly on the whole time interval. We also use the standard notion of C > 0
for a generic constant that depends on the problem data but not on any solution, and which
may change from line to line.

Testing with Φh = Uh in (3.5) and Hh = W h in (3.6) and subtracting these identities
yields that

1

2

d

dt
‖Uh‖2L2 + ‖W h‖2L2 = −sh(ψ′;Uh,Φh)−mh(kh(Uh),Φh)

≤ C
(
‖∇Γ0

h
Uh‖2L2 + ‖Uh‖2L2 + 1

)
. (3.8)

Here and in the following we use the Lipschitz continuity of ψ′ and kh, which implies linear
growth (see (2.11), (2.6) and the comments after). Choosing Hh = Uh in (3.6) we see that

‖∇Γ0
h
Uh‖2L2 = sh(Uh,Uh) = mh(W h,Uh) ≤ ε

2
‖W h‖2L2 +

1

2ε
‖Uh‖2L2 ,

9

for ε > 0, and choosing ε small enough we thus obtain from (3.8) that

1

2

d

dt
‖Uh‖2L2 +

1

2
‖W h‖2L2 ≤ C

(
‖Uh‖2L2 + 1

)
.

A Gronwall argument therefore yields the estimate

‖Uh‖2L∞
L2

+ ‖W h‖2L2
L2
≤ C. (3.9)

Testing with Φh = W h in (3.5) and Hh = ∂tUh in (3.6) and then adding these equations
yields that

sh(∂tUh,Uh) + sh(W h,W h) = −sh(ψ′;Uh,W h)−mh(kh(Uh),W h).

With Hh = W h in (3.6) we get for any small ε > 0 that

‖W h‖2L2 = mh(W h,W h) = sh(Uh,W h) ≤ ε‖∇Γ0
h
W h‖2L2 +

1

4ε
‖Uh‖2L2 .

Using the Lipschitz continuity of ψ′ and kh again we thus can conclude that

1

2

d

dt
‖∇Γ0

h
Uh‖2L2 + ‖∇Γ0

h
W h‖2L2

≤ 1

2
‖ψ′(∇Γ0

h
Uh)‖2L2 +

1

2
‖∇Γ0

h
W h‖2L2 +

1

2
‖kh(Uh)‖2L2 +

1

2
‖W h‖2L2

≤ 1 + ε

2
‖∇Γ0

h
W h‖2L2 + C

(
‖Uh‖2L2 + ‖∇Γ0

h
Uh‖2L2 + 1

)
.

Choosing ε small enough and then applying (3.9) and a Gronwall argument we obtain the
estimate

‖∇Γ0
h
Uh‖2L∞

L2
+ ‖∇Γ0

h
W h‖2L2

L2
≤ C. (3.10)

Taking the time derivative in (3.6) (which also implies that ∂tW h exists) yields that
sh(∂tUh,Hh) = mh(∂tW h,Hh). We test this with Hh = W h and subtract it from (3.5)
with Φh = ∂tUh to obtain that

mh(∂tUh, ∂tUh) +mh(∂tW h,W h) + sh(ψ′;Uh, ∂tUh) +mh(kh(Uh), ∂tUh) = 0.

Noting that

sh(ψ′;Uh, ∂tUh) =

∫
Γ0
h

ψ′(∇Γ0
h
Uh) : ∂t∇Γ0

h
Uhdσh =

∫
Γ0
h

d

dt
ψ(∇Γ0

h
Uh)dσh

and using the Lipschitz continuity of kh again we see that

‖∂tUh‖2L2 +
1

2

d

dt
‖W h‖2L2 +

d

dt

(∫
Γ0
h

ψ(∇Γ0
h
Uh)dσh

)
≤ C(‖Uh‖2L2 + 1) +

1

2
‖∂tUh‖2L2 .

Therefore, with (3.9) we obtain the estimate

‖∂tUh‖2L2
L2

+ ‖W h‖2L∞
L2

+ sup
t∈[0,T]

∫
Γ0
h

ψ(∇Γ0
h
Uh)dσh ≤ C. (3.11)

These estimates (3.9)–(3.11) are now lifted from Γ0
h to Γ0. We can then apply compactness

arguments to deduce the existence of limits (u,w), which we will show to satisfy Problem

10

2.1. As a first step, the stability estimate (3.7) will be derived. Using Lemma 3.2 the lifted
solutions satisfy the estimates

‖uh‖2L∞
H1

+ ‖wh‖2L2
H1
≤ C, (3.12)

‖∂tuh‖2L2
L2

+ ‖wh‖2L∞
L2
≤ C. (3.13)

Hence, there are functions u ∈ L2
H1 with ∂t ∈ L2

L2 and w ∈ L2
H1 such that for a subsequence

as h→ 0

uh ⇀ u in L2
H1 , ∂tuh ⇀ ∂tu in L2

L2 , (3.14)

uh → u in L2
L2 and a.e., wh ⇀ w in L2

H1 , (3.15)

and these limits also satisfy (3.12) and (3.13) and, thus, the stability estimate (3.7).
Let us now show that (u,w) satisfies (2.17). For any η ∈ L2

H1 let Hh = Πh(η) denote
its Ritz projection with the lift ηh = πh(η). Then sh(Uh,Hh) = mh(W h,Hh), whence∫ T

0
s(u,ηh)−m(w,ηh)dt =

∫ T

0

(
s(u,ηh)−s(uh,ηh)

)
dt+

∫ T

0

(
s(uh,ηh)−sh(Uh,Hh)

)
dt

+

∫ T

0

(
mh(W h,Hh)−m(wh,ηh)

)
dt+

∫ T

0

(
m(wh,ηh)−m(w,ηh)

)
dt =: J1 +J2 +J3 +J4.

By the properties of the Ritz projection (Lemma 3.4) we have that ηh = πh(η)→ η in L2
H1 .

Thanks to (3.14) we thus have that J1 → 0 as h→ 0, and similarly J4 → 0 thanks to (3.15).
Lemma 3.3 together with the estimates (3.10) and (3.11) ensures that J2 → 0 and J3 → 0 as
h→ 0. Therefore, (u,w) satisfies the following identity, which implies (2.17):∫ T

0

(
s(u,η)−m(w,η)

)
dt = 0 ∀η ∈ L2

H1 . (3.16)

Next, we show strong convergence of ∇Γ0uh. We note that

‖∇Γ0(u−uh)‖2L2
L2

=

∫ T

0
s(u−uh,u− πh(u))dt+

∫ T

0
s(u−uh, πh(u)−uh)dt =: K1 +K2.

Using again Lemma 3.4 we see that πh(u) → u in L2
H1 , and with (3.14) this implies that

K1 → 0. Regarding the second term we note that thanks to (3.16) and (3.6)

K2 =

∫ T

0

(
m(w, πh(u)− uh)−m(wh, πh(u)− uh)

)
dt

+

∫ T

0

(
m(wh, πh(u)− uh)−mh(W h,Πh(u)−Uh)

)
dt

+

∫ T

0

(
sh(Uh,Πh(u)−Uh)− s(uh, πh(u)− uh)

)
dt = K21 +K22 +K23.

As both πh(u)→ u and uh → u by (3.15) we see that πh(u)−uh → 0 in L2
L2 as h→ 0. With

wh ⇀ w in the same space we obtain that K21 → 0. From the definition and properties of
the Ritz projection it easily follows that ‖Πh(ξ)‖H1 ≤ C‖ξ‖H1 with some C > 0 independent
of h and ξ ∈ H1(Γ0). The stability estimate (3.7), which is already proved, and the estimates
(3.9) and (3.10) therefore yield that ‖Πh(u)−Uh‖H1 is uniformly bounded in h. Using (3.9)
and (3.10) again for W h and Lemma 3.3 we obtain that K22 → 0 and K23 → 0 as h → 0.
This finally shows that

uh → u in L2
H1 and a.e. (3.17)

11

To conclude the proof of Theorem 3.6 we need to show that (u,w) satisfies (2.16). For
any φ ∈ L2

H1 let Φh = Πh(φ) be its Ritz projection with lift φh = πh(φ). Then∫ T

0

(
m(∂tu,φ)−mh(∂tUh,Φh)

)
dt

=

∫ T

0

(
m(∂tu,φ)−m(∂tuh,φ)

)
dt+

∫ T

0

(
m(∂tuh,φ)−m(∂tuh,φh)

)
dt

+

∫ T

0

(
m(∂tuh,φh)−mh(∂tUh,Φh)

)
dt =: L1 + L2 + L3. (3.18)

Thanks to (3.15) we have that L1 → 0 as h→ 0. Lemma 3.4 on the Ritz projection ensures
that L2 → 0. It also ensures that Φh is uniformly bounded in h, and with Lemma 3.3 and
(3.11) we obtain that L3 → 0. Altogether∫ T

0
mh(∂tUh,Φh)dt→

∫ T

0
m(∂tu,φ)dt. (3.19)

Analogously one can show that∫ T

0
sh(W h,Φh)dt→

∫ T

0
s(w,φ)dt. (3.20)

Next, we can write∫ T

0

(
s(ψ′;u,φ)− sh(ψ′;Uh,Φh)

)
dt

=

∫ T

0

∫
Γ0

(
ψ′(∇Γ0u) : ∇Γ0φ− ψ′(∇Γ0uh) : ∇Γ0φ

)
dσdt

+

∫ T

0

∫
Γ0

(
ψ′(∇Γ0uh) : ∇Γ0φ− ψ′(∇Γ0uh) : ∇Γ0φh

)
dσdt

+

∫ T

0

(∫
Γ0

ψ′(∇Γ0uh) : ∇Γ0φhdσ −
∫

Γ0
h

ψ′(∇Γ0
h
Uh) : ∇Γ0

h
Φhdσh

)
dt

=: M1 +M2 +M3. (3.21)

Thanks to (3.17) and the Lipschitz continuity of ψ′ we have that ψ′(∇Γ0uh)→ ψ′(∇Γ0u) in
L2
L2 and almost everywhere, whence M1 → 0 as h→ 0. For the second term we observe that

M2 ≤
∫ T

0
‖ψ′(∇Γ0uh)‖L2(Γ0)‖∇Γ0φ−∇Γ0φh‖L2(Γ0)dt

≤
∫ T

0
C
(
‖∇Γ0uh‖L2(Γ0) + 1

)
‖φ− φh‖H1(Γ0)dt → 0

thanks to the estimate (3.10) and Lemma 3.4. In the last term we lift the second integral to
Γ0 (recall (3.2) and (3.3) for the transformation of the derivative):

M3 =

∫ T

0

(∫
Γ0

ψ′(∇Γ0uh) : ∇Γ0φhdσ −
∫

Γ0

ψ′(Qh∇Γ0uh) : Qh∇Γ0φhµhdσ
)
dt

=

∫ T

0

∫
Γ0

(
ψ′(∇Γ0uh)− ψ′(Qh∇Γ0uh)

)
: ∇Γ0φhdσdt

+

∫ T

0

∫
Γ0

ψ′(Qh∇Γ0uh) :
(
P − µhQh

)
∇Γ0φhdσdt. (3.22)

12

We can now apply the Lipschitz continuity of ψ′ and the geometric error estimates in Lemma
3.1 (which imply that ‖Qh‖L∞(Γ0) is uniformly bounded in h) to obtain that

|M3| ≤
∫ T

0
Cψ
∣∣∇Γ0uh −Qh∇Γ0uh

∣∣ |∇Γ0φh|dt

+

∫ T

0
C
(
|Qh∇Γ0uh|+ 1

)(
|P −Qh|+ |Qh|

∣∣1− µh∣∣)|∇Γ0φh|dt

≤ Cψ‖P −Qh‖L∞(Γ0)‖∇Γ0uh‖L2
L2
‖∇Γ0φh‖L2

L2

+ C
(
‖Qh‖L∞(Γ0) + 1

)(
‖P −Qh‖L∞(Γ0) + ‖1− µh‖L∞(Γ0)

)
‖∇Γ0uh‖L2

L2
‖∇Γ0φh‖L2

L2

≤ Ch‖∇Γ0uh‖L2
L2
‖∇Γ0φh‖L2

L2
. (3.23)

Using estimate (3.12) and that also ‖φh‖L2
H1
≤ C‖φ‖L2

H1
is uniformly bounded (follows from

Lemma 3.4) we see that M3 → 0, and we can conclude that∫ T

0
sh(ψ′;Uh,Φh)dt→

∫ T

0
s(ψ′;u,φ)dt. (3.24)

For the last term in (2.16) we note that∫ T

0

(
m(k(u),φ)−mh(kh(Uh),Φh)

)
dt =

∫ T

0

(
m(k(u),φ)−m(k(uh),φ)

)
dt

+

∫ T

0
m(k(uh),φ− φh)dt+

∫ T

0

(
m(k(uh),φh)−mh(kh(Uh),Φh)

)
dt =: N1 +N2 +N3.

(3.25)

Thanks to (3.15) and the Lipschitz continuity of k we have that k(uh) → k(u) in L2
L2 and

almost everywhere, so that N1 → 0 as h→ 0. The second term converges to zero thanks to
φh → φ in L2

L2 . Regarding N3, we lift the second integral to Γ0:

N3 =

∫ T

0

(∫
Γ0

k(uh) · φhdσ −
∫

Γ0

k`h(uh) · φhµhdσ
)
dt

=

∫ T

0

∫
Γ0

(
k(uh)− k`h(uh)

)
· φhdσdt

+

∫ T

0

∫
Γ0

(1− µh)k`h(uh) · φhdσdt. (3.26)

Using now the consistency (3.4) of the approximation of k by kh, the Lipschitz continuity of
kh, and the geometric error estimates in Lemma (3.1) we obtain that

|N3| ≤
∫ T

0

(∫
Γ0

Ch(1 + |uh|)|φh|dσ
)
dt+

∫ T

0

(
‖1− µh‖L∞(Γ0)

∫
Γ0

C(|uh|+ 1)|φh|dσ
)
dt

≤ Ch
(
1 + ‖uh‖L2

L2

)
‖φh‖L2

L2
→ 0 (3.27)

using estimate (3.12) and that also ‖φh‖L2
L2
≤ C‖φ‖L2

L2
is uniformly bounded. Altogether∫ T

0
mh(kh(Uh),Φh)dt→

∫ T

0
m(k(u),φ)dt. (3.28)

The convergence results (3.19), (3.20), (3.24), and (3.28) show that (u,w) satisfies (2.16),
which is the limit of (3.5) as h→ 0.

In the next section we show error estimates. The same techniques can be used to show
uniqueness of the solution (u,w) to Problem 2.1, whence we omit the details. This concludes
the proof of Theorem 3.6.

13

3.4 Error estimates

Deriving error estimates is possible when assuming higher regularity of the solution, hence-
forth:

Assume that u, ∂tu,w ∈ L2
H2 . (3.29)

We will derive error estimates on the triangulated surfaces and for this purpose us the
bijection (3.1) to anti-lift the solution (u,w) to Γ0

h:

u−`,w−` : Γ0
h → R3, u−`(yh) = u(y), w−`(yh) = w(y).

We use the Ritz projection to split the errors into a projection error and a discrete error:

u−` −Uh =
(
u−` −Πh(u)

)
+
(
Πh(u)−Uh

)
= ρ(u) + θ(u),

w−` −W h =
(
w−` −Πh(w)

)
+
(
Πh(w)−W h

)
= ρ(w) + θ(w).

Thanks to the regularity assumption (3.29), the properties of the Ritz projection (Lemma
3.4), and the properties of the lift (Lemma 3.2) error bounds for the projection errors are
straightforward:

‖ρ(u)‖L2
L2(Γ0

h
)

+ h‖∇Γ0
h
ρ(u)‖L2

L2(Γ0
h

)
≤ Ch2‖u‖L2

H2
, (3.30)

‖ρ(w)‖L2
L2(Γ0

h
)

+ h‖∇Γ0
h
ρ(w)‖L2

L2(Γ0
h

)
≤ Ch2‖w‖L2

H2
. (3.31)

To estimate the discrete errors we start by testing (2.16) with φh, which is the lift of
some Φh ∈ S3

h, and then subtract (3.6) tested with Φh. Using that sh(Πh(u),Φh) = s(u,φh)
by the definition of the Ritz projection this yields that

mh(∂tθ
(u),Φh) + sh(θ(w),Φh)

+ sh(ψ′; Πh(u),Φh)− sh(ψ′;Uh,Φh) +mh(kh(Πh(u)),Φh)−mh(kh(Uh),Φh)

=
(
mh(∂tΠh(u),Φh)−m(∂tu,φh)

)
+
(
sh(ψ′; Πh(u),Φh)− s(ψ′;u,φh)

)
+
(
mh(kh(Πh(u)),Φh)−m(k(u),φh)

)
=:Et(Φh) + Eψ(Φh) + Ek(Φh). (3.32)

Proceeding similarly with (2.17) and (3.6) we obtain that

sh(θ(u),Hh)−mh(θ(w),Hh) = mh(Πh(w),Hh)−m(w,ηh) =: Ew(Hh). (3.33)

The error terms satisfy the following estimates:

Lemma 3.7. There is some C > 0 independent of h (sufficiently small) such that for all
Φh,Hh ∈ S3

h

|Et(Φh)| ≤Ch2‖∂tu‖H2(Γ0)‖Φh‖L2(Γ0
h), (3.34)

|Eψ(Φh)| ≤Ch‖u‖H2(Γ0)‖∇Γ0
h
Φh‖L2(Γ0

h), (3.35)

|Ek(Φh)| ≤Ch
(
1 + ‖u‖H2(Γ0)

)
‖Φh‖L2(Γ0

h), (3.36)

|Ew(Hh)| ≤Ch2‖w‖H2(Γ0)‖Hh‖L2(Γ0
h). (3.37)

Proof. To show the estimates, we will frequently apply Lemma 3.3 on the approximation
of the bilinear forms, Lemma 3.2 on the stability of the lift, and Lemma 3.4 on the Ritz
projection without explicitly pointing it out for conciseness.

14

The Ritz projection commutes with the time derivative thanks to the regularity of u,
whence

Et(Φh) =
(
mh(∂tΠh(u),Φh)−m(∂tπh(u),φh)

)
+
(
m(πh(∂tu),φh)−m(∂tu,φh)

)
=: L̃3 + L̃1.

The term L̃3 is similar to L3 in (3.18) but without the time integral and with πh(∂tu) instead
of uh and thus can also be estimated similarly:

|L̃3| ≤ Ch2‖Πh(∂tu)‖L2(Γ0
h)‖Φh‖L2(Γ0

h) ≤ Ch2‖∂tu‖H2(Γ0)‖Φh‖L2(Γ0
h).

Furthermore,

|L̃1| ≤ ‖πh(∂tu)− ∂tu‖L2(Γ0)‖φh‖L2(Γ0) ≤ Ch2‖∂tu‖H2(Γ0)‖Φh‖L2(Γ0
h),

which altogether yields (3.34).
We can also split up Eψ:

Eψ(Φh) =
(
sh(ψ′; Πh(u),Φh)−s(ψ′;πh(u),φh)

)
+
(
s(ψ′;πh(u),φh)−s(ψ′;u,φh)

)
=: M̃3+M̃1.

The first term M̃3 is similar to the term M3 in (3.21), without the time integral and with
πh(u) instead of uh. Following the lines of (3.22) and (3.23) we obtain that

|M̃3| ≤ Ch‖∇Γ0πh(u)‖L2(Γ0)‖∇Γ0φh‖L2(Γ0) ≤ Ch‖u‖H2(Γ0)‖∇Γ0
h
Φh‖L2(Γ0

h).

Using that ψ′ is Lipschitz, the other term is estimated as

|M̃1| ≤ Cψ‖∇Γ0πh(u)−∇Γ0u‖L2(Γ0)‖∇Γ0φh‖L2(Γ0) ≤ Ch‖u‖H2(Γ0)‖∇Γ0
h
Φh‖L2(Γ0

h),

which together shows (3.35).
For the third estimate we use the splitting

Ek(Φh) =
(
mh(kh(Πh(u)),Φh)−m(k(πh(u)),φh)

)
+
(
m(k(πh(u)),φh)−m(k(u),φh)

)
=: Ñ3+Ñ1.

Noting and exploiting the similarity of Ñ3 with N3 in (3.21) we proceed as in (3.26) and
(3.27) to obtain that

|Ñ3| ≤ Ch
(
1 + ‖πh(u)‖L2(Γ0)

)
‖φh‖L2(Γ0) ≤ Ch

(
1 + ‖u‖H2(Γ0))

)
‖Φh‖L2(Γ0

h).

Furthermore,

|Ñ1| ≤ Ck‖πh(u)− u‖L2(Γ0)‖φh‖L2(Γ0) ≤ Ch2‖u‖H2(Γ0)‖Φh‖L2(Γ0
h)

which finally yields the estimate (3.36).
The last estimate (3.37) can be proved analogously to (3.34), which concludes the proof

of Lemma 3.7.

With these estimates we can derive the following estimates for the error:

Corollary 3.8. Assume that (u,w) solves Problem 2.1 and satisfies u, ∂tu,w ∈ L2
H2(Γ0).

For all sufficiently small h the solution (Uh,W h) of Problem 3.5 satisfies

‖u−l −Uh‖2L∞
L2(Γ0

h
)

+ ‖w−l −W h‖2L2
L2(Γ0

h
)

+ ‖∇Γ0
h
(u−l −Uh)‖2L2

L2(Γ0
h

)

≤ Ch2

with a constant C > 0 independent of h.

15

Proof. We proceed as for deriving (3.9) but start with (3.32), where we test with Φh = θ(u),
and with (3.33), where we choose Hh = θ(w). Taking the difference we obtain that

mh(∂tθ
(u),θ(u)) +mh(θ(w),θ(w))

= − sh(ψ′; Πh(u),θ(u)) + sh(ψ′;Uh,θ
(u))−mh(kh(Πh(u)),θ(u)) +mh(kh(Uh),θ(u))

+ Et(θ
(u)) + Eψ(θ(u)) + Ek(θ

(u))− Ew(θ(w)).

In Lemma 3.7 we absorb the norm of u into C to obtain that

|Et(θ(u))| ≤ Ch4 +
1

2
‖θ(u)‖2L2(Γ0

h), |Eψ(θ(u))| ≤ Ch2 +
1

2
‖∇Γ0

h
θ(u)‖2L2(Γ0

h),

and similarly for the other two errors. Using that ψ′ and kh are Lipschitz we then get that

1

2

d

dt
‖θ(u)‖2L2(Γ0

h) + ‖θ(w)‖2L2(Γ0
h)

≤
∫

Γ0
h

Cψ|∇Γ0
h
Uh −∇Γ0

h
Πh(u)| |∇Γ0

h
θ(u)|dσh +

∫
Γ0
h

Ck|Uh −Πh(u)| |θ(u)|dσh

+ |Et(θ(u))|+ |Eψ(θ(u))|+ |Ek(θ(u))|+ |Ew(θ(w))|
≤Cψ‖∇Γ0

h
θ(u)‖2L2(Γ0

h) + Ck‖θ(u)‖2L2(Γ0)

+ C(h2 + h4) + ‖θ(u)‖2L2(Γ0
h) +

1

2
‖∇Γ0

h
θ(u)‖2L2(Γ0

h) +
1

2
‖θ(w)‖2L2(Γ0

h). (3.38)

Substituting Hh = θ(u) in (3.33) gives for any ε > 0 that

‖∇Γ0
h
θ(u)‖2L2(Γ0

h) ≤
ε

2
‖θ(w)‖2L2(Γ0

h) +
1

2ε
‖θ(u)‖2L2(Γ0

h) + Ch4 + ‖θ(u)‖2L2(Γ0
h). (3.39)

We can thus estimate the terms involving ‖∇Γ0
h
θ(u)‖2

L2(Γ0
h)

on the right-hand-side of (3.38)

by terms involving ε‖θ(w)‖2
L2(Γ0

h)
. Choosing now ε > 0 small enough, these terms involving

‖θ(w)‖2
L2(Γ0

h)
can then be absorbed in the left-hand-side to that altogether

d

dt
‖θ(u)‖2L2(Γ0

h) + ‖θ(w)‖2L2(Γ0
h) ≤ C‖θ

(u)‖2L2(Γ0
h) + Ch2.

By standard interpolation theory (recall that the identic map of the triangulated surface Γ0
h

linearly interpolates the identic map of Γ0) the initial error satisfies

‖θ(u)(0)‖2L2(Γ0
h) ≤ ‖ρ

(u)(0)‖2L2(Γ0
h)+‖u

−`(0)−Uh(0)‖2L2(Γ0
h) ≤ Ch

2+‖id−`
Γ0−idΓ0

h
‖2L2(Γ0

h) ≤ Ch
2.

Applying Gronwall therefore yields that

‖θ(u)‖2L∞
L2(Γ0

h
)

+ ‖θ(w)‖2L2
L2(Γ0

h
)

≤ Ch2.

From (3.39) we now see that also

‖∇Γ0
h
θ(u)‖2L2

L2(Γ0
h

)

≤ Ch2.

Together with (3.30) and (3.31) these two estimates conclude the proof of Corollary 3.8.

16

4 Software and simulations

4.1 Time discretisation

In order to illustrate the capability of the computational framework that is presented and
analysed in the previous section we performed some numerical simulations for the specific
model (2.15). Its variational form with operator splitting in Problem 2.1 is discretised in
time with a simple semi-implicit first order scheme as follows: We split the time interval
[0, T] into M ∈ N equal parts of size τ = T/M , denote the time steps with t(m) = mτ , and
write f (m) = f(t(m)) for any time dependent fields or functions.

Problem 4.1. Given Γ0
h, S3

h 3 uc,h ≈ uc, and parameters λb, λl, λp, l0, uB, kL, uR, for

m = 0, . . . ,M − 1 find (U
(m+1)
h ,W

(m+1)
h) ∈ S3

h × S3
h such that for all (Φh,Hh) ∈ S3

h × S3
h∫

Γ0
h

1

τ
u(m+1) ·Φh + λb∇Γ0

h
W

(m+1)
h : ∇Γ0

h
Φh +∇Γ0

h
U

(m+1)
h : ∇Γ0

h
Φh + λ

(m)
couplingU

(m+1)
h ·Φhdσh

=

∫
Γ0
h

1

τ
u(m) ·Φh +

√
2x0

∇Γ0
h
U

(m)
h : ∇Γ0Φh

|∇Γ0
h
U

(m)
h |

+ λ
(m)
coupling

(
uc,h + l0

U
(m)
h − uc,h

|U (m)
h − uc,h|

)
·Φh +

λp

|Vh(U
(m)
h)|

νΓ0
h
·Φhdσh,

(4.1)∫
Γ0
h

∇Γ0
h
U

(m+1)
h : ∇Γ0

h
Hh −W

(m+1)
h ·Hhdσh = 0, (4.2)

with
λ

(m)
coupling = λl

(
1 + kLH(uR − |U (m)

h − uc,h|)
)
H(uB − |U (m)

h − uc,h|)

4.2 Implementation

We have solved the above problem using the Python bindings from the DUNE-FEM mod-
ule [13], which is based on the Distributed and Unified Numerics Environment (DUNE) [4].
DUNE is an open source C++ environment that uses a static polymorphic interfaces to de-
scribe grid based numerical schemes. The package provides a large number of realisations of
these interfaces including a large number of finite element spaces on structured and unstruc-
tured grids. This approach allows for the efficient and flexible simulation of a large variety
of mathematical models based on partial differential equations.

The Python bindings described in [14] simplify the rapid prototyping of new schemes
and models, while maintaining the efficiency and flexibility of the DUNE framework. This
is achieved by using the domain specific language UFL [2] to describe the mathematical
model and implementing the high level program control within Python, while carrying out
all computationally critical parts of the simulation in C++ using just in time compilation
of the required DUNE components. Consequently, the assembly of the bilinear forms and
solving of the linear and non linear problems is implemented in C++ while the time loop
and the input and output of data is carried out using the Python scripting language.

Meshes can be provided using a GMsh file or, as done for this work, by using the internal
Dune Grid Format (DGF). All simulations reported on in this paper were performed using
a first order Lagrange space over an simplicial, locally adaptive, distributed grid, which can
be used for both bulk and surface domains [1]. Bindings for a number of different solver
packages are available through DUNE-FEM including the iterative solvers from DUNE-ISTL
[6] (used for this work), direct solvers from the SuiteSparse package, and a number of solvers

17

and preconditioners from the PetSc package. The simulation results were exported using
VTK and visualised using ParaView [3].

In the following we show how to setup the grid and how some parts of the mathematical
model are defined within UFL. The full code needed to perform the simulations shown in
this paper is available (see Data Availability Statement at the end of this paper).

The first listing shows how to read in a grid for a cell obtained from experimental data
(see Section 4.4 for more detail on the corresponding simulations):

from dune . a l u g r i d import aluConformGrid
from dune . fem . space import l ag range
sur faceGr id = aluConformGrid (” c e l l . dgf ” , dimgrid =2, dimworld=3)
so lu t i onSpace = lagrange (sur faceGr id , dimRange=3, order =1, s t o rage=” i s t l ”)

a vector-valued finite element function for the position,
initialised with the vertex positions of the initial grid
p o s i t i o n = so lu t i onSpace . i n t e r p o l a t e (lambda x : x , name=” p o s i t i o n ”)

another finite element function, later on used to store the previous time step
p o s i t i o n n = p o s i t i o n . copy ()

The following snippet demonstrates how the bending terms and tension terms are defined
using UFL. The remaining terms, e.g., for the pressure and the linker-molecules, are defined
in a very similar way:

test and trial function used to define the bilinear forms
u = Tria lFunct ion (so lu t i onSpace)
phi = TestFunction (so lu t i onSpace)
w = Tria lFunct ion (so lu t i onSpace)
eta = TestFunction (so lu t i onSpace)

def invNormNxN(eta) :
S1 , S2 , S3 = grad (eta [0]) , grad (eta [1]) , grad (eta [2])
return sum([S1 [i]∗ S1 [i]+S2 [i]∗ S2 [i]+S3 [i]∗ S3 [i] for i in range (3)])

the bending terms using operator splitting
bending im = lam b ∗ i nne r (grad (w) , grad (phi))
o p s p l i t p o s i m = inner (grad (u) , grad (eta))
o p s p l i t c u r v i m = −i nne r (w, eta)

the tension terms
tens ion im = inner (grad (u) , grad (phi))
t e n s i o n e x = s q r t (2 . 0) ∗ x 0 ∗ 1/NormNxN(p o s i t i o n n) ∗\

i nne r (grad (p o s i t i o n n) , grad (phi))

In each time step a saddle point problem is solved using a Uzawa-type algorithm where
a CG method is used to invert the Schur complement as described, for example, in [7]. The
main algorithm is implemented in Python calling C++ routines to compute the matrix-vector
operations and to solve the inner problem. The time loop with the solver is slightly to large
to list here but, as stated above already, the whole code is publicly available, see the Data
Availability Statement at the end of the paper for further information.

A number of tests have been performed for problems with known solutions (u,w) to
validate the convergence (rates) of Theorem 3.6 and Corollary 3.8. Recall that the choices
of the tension term ψ and the coupling term k in the specific model (2.15) do not satisfy the
requirements of the analysis. However, in our simulations, the denominators in these terms
did not become very small. Comparative simulations with the regularised choices (2.13) and
(2.8) with ε = 10−5 did not reveal any essential difference. For conciseness, we don’t report
on these code validations in detail but focus on an investigation of the parameter space
instead.

18

4.3 Influence of the initial geometry

The software framework allows for assessing the impact of geometries on blebbing propensity.
One point of interest has been whether surface tension and pressure are sufficient to initiate
blebbing without any weakening of the cortex, as found in [12] in 2D. We also further study
the parameter space but remark that the simulation results are at a qualitative level. An
in-depth discussion involving quantitative information is beyond the scope of this article and
left for future investigations.

We consider an initial shape Γ0 obtained by deforming a sphere of radius one by (all
lengths in µm)

y = (y1, y2, y3)→ (4y1, 4y2, ỹ3), ỹ3 = sign(y3)

{
(3− cos(πr/2))/2, if r ≤ 2,√

4− (r − 2)2, if r > 2,
(4.3)

with r =
√

(4y1)2 + (4y2)2. This yields a shape similar to a discocyte (or red blood cell,
see Figure 1) with a volume of about V (idΓ0) ≈ 150µm3 and a largest distance of 4µm
from the centre. Parameters for the various forces vary in the literature, not least due
to differing cell types and differences in the models. For the tension coefficient we chose
kp = 15pN/µm (ranges from 2pN/µm [24] to 100pN/µm [25]), for the bending coefficient
kb = 0.075pNµm (between 0.01pNµm [35] and 0.2pNµm [24]), and for the linker spring
coefficient kl = 270pN/µm3 (close to 267pN/µm3 in [29]). The parameters x0 = 0.95,
l0 = 40nm, and uB = 56nm were chosen as in [12]. The parameters uR = 7.5nm and
kL = 500.0 were chosen ad hoc but repeating some simulations with kL = 0 (particularly
those with higher tension so that the membrane got closer to the cortex) didn’t reveal any
visual difference. The pressure difference p0/|V (u(0))| ≈ 2.25Pa turned out sufficient to
initiate blebbing without cortex weakening. This is smaller than values found in the literature
(between 10Pa [35] and 81Pa [32]) but we note that the dimension is higher and the model
does not account for the stiff cortex. With a length scale of U = 1µm the set of non-
dimensional parameters is stated in Table 1 and was used for simulations unless stated
otherwise.

A triangulation Γ0
h is obtained by starting with a cube with vertices on the unit-sphere,

then diagonally cutting the square faces into triangles, and then bisecting all triangles 14
times such that the longest edge is halved including projecting the new vertices to the unit-
sphere after each refinement step. After, the above map (4.3) is applied to the 196608
vertices. Figure 1 gives an impression of a mesh thus obtained but with a ten refinements
only. The time step size was set to τ = 0.0025 and time stepping ended at T = 2. At that
end time the final shapes usually weren’t at rest yet but the deformations were sufficient to
draw qualitative conclusions.

Figure 2 gives an overview of some shapes at the final time for the data set in Table 1
and some variants (see Figure caption for details). Axisymmetry of the initial shape seems
preserved, which suggests comparing cuts through the centres for more insight. Figure 3
displays the slices through the initial and the final shape that is visible in Figure 2A. The
color code from Figure 2 is used again so that parts of the membrane with broken linkers are
coloured red. Differences are predominant in the concave part of the initial shape, where the
membrane has moved outwards and detached. The tension force in such concave parts points
outwards and, together with the pressure, initiates a bleb without requiring any weakening
of the cortex. This simulation thus supports the finding in [12].

In Figure 4 we compare the final shapes for different parameters of the linker strength λl,
more precisely, slices of the shapes in Figures 2A and 2B. Note that the color code is different
(see caption of Figure 4). The deformation isn’t much stronger as, once the membrane is
detached, the linker terms doesn’t influence the evolution any further. But a weaker linker
strength λl and, thus, less resistance to breaking leads to a wider bleb site.

19

A smaller resting length parameter x0 increases the surface tension, which leads to a faster
evolution and a stronger final deformation. This is visible in Figure 5 where we compare the
slices of the shapes in Figures 2A and 2C, and the (red) curve for the smaller x0 indicates
that the membrane has moved further away from the initial shape.

The impact of a higher pressure is illustrated in Figure 6 where slices through the shapes
in Figures 2A (blue) and 2D (red) are overlayed. The effect resembles a bit that of a smaller
linker strength in that the deformation isn’t much different and in that the bleb site is
much bigger. The pressure term doesn’t break down after detachment and continues to push
outwards, though, so that the membrane has moved a bit further throughout the bleb site.

4.4 Application to experimental data

Apart from given, ’in-vitro’ geometries and their influence on blebbing, users may also be
interested in studying the effect of ’in-vivo’ geometries that are obtained from experimental
data. The image postprocessing outlined in [15] enables to extract triangulated surfaces
representing the cell membrane from 3D images of cells, which then can be steered into the
software framework. This was done with data of a Dictyostelium cell (also used in [15])
moving by actin-driven pseudo-pods without any blebbing. However, the purpose is again to
showcase the capability of the software framework rather than to extract any quantitative
information, which is left for future investigations.

We used the non-dimensional parameters in Table 2 and with T = 20 and τ = 0.02.
Figure 7, left, shows the triangulated surface Γ0

h that has been obtained from the image
data. On the right of Figure 7 the final shape is displayed where the same colour code as
in Figure 2 for the deformation strength is used. As in the simulations before we observe
that blebs form in concave regions. We also see some deformations at the sides where small
protrusions become quite spiky. Both tension and resistance to bending are expected to
prevent any singularities to occur, however the geometry seems under-resolved by the mesh
in these areas.

5 Conclusion

A general modelling framework for the onset of blebbing has been presented and analysed.
It is formulated in terms of partial differential equations on the initial membrane, which
is considered as a hypersurface. Various forces acting on the plasma membrane due to its
elastic properties, linker molecules coupling it to the cell cortex, and cell internal pressure
are accounted for. Fluid flow within and outside of the cell is essentially neglected modulo a
drag force but may be considered in future studies.

The general framework is particularly flexible with regards to membrane tension and
the coupling forces. A convergence analysis of a surface finite element discretisation shows
its robustness to model alterations within not too restrictive limits. There are some open
questions with regards to the discretisation in time, and as blebs are local events, spatial
mesh adaptivity may be beneficial.

Software for a specific instance of the general model is provided and has been used to
perform some numerical simulations. A convenient high-level interface in Python allows
for directly implementing the model in its variational form and solving it by an efficient
software backend. Standard software usually does not provide functionality for numerically
solving problems on moving domains or hypersurfaces in 3D out of the box but requires a
substantial amount of coding. We hope that our approach will address this issue and simplify
the implementation of such moving boundary problems.

20

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Author Contributions

Bjön Stinner provided context and background, significantly contributed to the model and
the numerical analysis, and set most of the paper.
Andreas Dedner was core developer of the Python bindings and of the DUNE software
framework and set parts of the paper.
Adam Nixon contributed to the model and the numerical analysis, performed the simulations,
and set parts of the paper.

Funding

This project was supported by the Engineering and Physical Sciences Research Council (EP-
SRC, United Kingdom), grant numbers EP/K032208/1 and EP/H023364/1.

Acknowledgments

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences,
Cambridge, for support and hospitality during the programme Geometry, compatibility and
structure preservation in computational differential equations, where work on this paper was
undertaken.

Data Availability Statement

The Python scripts used to obtain the results reported on here are available in a git repository
hosted on the DUNE gitlab server:
https://gitlab.dune-project.org/bjorn.stinner/sfem_blebs.

The two main scripts are blebbing artgeom.py and blebbing imgdata.py used for the
results from Sections 4.3 and 4.4, respectively. The setup of the model, the time loop, and
the solver used in both main scripts are contained in blebbing compute.py. Some auxiliary
functions can be found in blebbing tools.py.

Both scripts can be executed using the DUNE-FEM docker container. A script ‘start-
dune.sh‘ is available in the git repository to download and start the container. This requires
the ’docker’ software to be available on the system. It can be downloaded for different
platforms including Linux, MacOS, and the latest Windows version. More information is
available under
https://dune-project.org/sphinx/content/sphinx/dune-fem/installation.html.

References

[1] M Alkämper, A Dedner, R Klöfkorn, and M Nolte. The DUNE-ALUGrid Module.
Archive of Numerical Software, 4(1):1–28, 2016.

[2] Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N.
Wells. Unified form language: A domain-specific language for weak formulations of

21

https://gitlab.dune-project.org/bjorn.stinner/sfem_blebs
https://dune-project.org/sphinx/content/sphinx/dune-fem/installation.html

partial differential equations. ACM Transactions on Mathematical Software, 40(2):1–37,
March 2014.

[3] Utkarsh Ayachit. The ParaView Guide: Updated for ParaView Version 4.3. Kitware,
Los Alamos, full color version edition, 2015. OCLC: 944221263.

[4] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger,
and O. Sander. A generic grid interface for parallel and adaptive scientific computing.
Part II: Implementation and tests in DUNE. Computing, 82(2-3):121–138, July 2008.

[5] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander.
A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract
framework. Computing, 82(2-3):103–119, July 2008.

[6] M Blatt and P Bastian. The Iterative Solver Template Library. In Applied Paral-
lel Computing – State of the Art in Scientific Computing, pages 666–675. Springer,
Berlin/Heidelberg, 2007.

[7] Dietrich Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Me-
chanics. Cambridge University Press, Cambridge, 3 edition, 2007.

[8] Eric J. Campbell and Prosenjit Bagchi. A computational model of amoeboid cell swim-
ming. Physics of Fluids, 29(10):101902, October 2017.

[9] Eric J. Campbell and Prosenjit Bagchi. A computational model of amoeboid cell motility
in the presence of obstacles. Soft Matter, 14(28):5741–5763, 2018.

[10] Guillaume Charras and Ewa Paluch. Blebs lead the way: How to migrate without
lamellipodia. Nature Reviews Molecular Cell Biology, 9(9):730–736, September 2008.

[11] Guillaume T. Charras, Justin C. Yarrow, Mike A. Horton, L. Mahadevan, and
T. J. Mitchison. Non-equilibration of hydrostatic pressure in blebbing cells. Nature,
435(7040):365–369, May 2005.

[12] Sharon Collier, Peggy Paschke, Robert R Kay, and Till Bretschneider. Image based
modeling of bleb site selection. Scientific reports, 7(1):6692, July 2017.

[13] Andreas Dedner, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger. A generic in-
terface for parallel and adaptive discretization schemes: Abstraction principles and the
Dune-Fem module. Computing, 90(3-4):165–196, November 2010.

[14] Andreas Dedner and Martin Nolte. The Dune Python Module. arXiv:1807.05252 [cs],
July 2018.

[15] Cheng-Jin Du, Phillip T Hawkins, Len R Stephens, and Till Bretschneider. 3D time
series analysis of cell shape using Laplacian approaches. BMC Bioinformatics, 14(1):296,
December 2013.

[16] Gerhard Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In
Partial Differential Equations and Calculus of Variations, pages 142–155. Springer, 1988.

[17] Gerhard Dziuk and Charles M Elliott. Surface finite elements for parabolic equations.
Journal of Computational Mathematics, 25:385–407, 2007.

[18] Charles M. Elliott and Thomas Ranner. Evolving surface finite element method for the
Cahn–Hilliard equation. Numerische Mathematik, 129(3):483–534, March 2015.

22

[19] Oliver T. Fackler and Robert Grosse. Cell motility through plasma membrane blebbing.
The Journal of Cell Biology, 181(6):879–884, June 2008.

[20] Chao Fang, T. H. Hui, X. Wei, X. Shao, and Yuan Lin. A combined experimental and
theoretical investigation on cellular blebbing. Scientific Reports, 7(1):16666, December
2017.

[21] Mohammad Goudarzi, Aleix Boquet-Pujadas, Jean-Christophe Olivo-Marin, and Erez
Raz. Fluid dynamics during bleb formation in migrating cells in vivo. PLOS ONE,
14(2):e0212699, February 2019.

[22] Mohammad Goudarzi, Katsiaryna Tarbashevich, Karina Mildner, Isabell Begemann,
Jamie Garcia, Azadeh Paksa, Michal Reichman-Fried, Harsha Mahabaleshwar, Heiko
Blaser, Johannes Hartwig, Dagmar Zeuschner, Milos Galic, Michel Bagnat, Timo Betz,
and Erez Raz. Bleb Expansion in Migrating Cells Depends on Supply of Membrane from
Cell Surface Invaginations. Developmental Cell, 43(5):577–587.e5, December 2017.

[23] W Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments.
Zeitschrift für Naturforschung C, 28(11-12):693–703, December 1973.

[24] Fong Yin Lim, Yen Ling Koon, and Keng-Hwee Chiam. A computational model of amoe-
boid cell migration. Computer Methods in Biomechanics and Biomedical Engineering,
16(10):1085–1095, October 2013.

[25] Kathryn Manakova, Huaming Yan, John Lowengrub, and Jun Allard. Cell Surface
Mechanochemistry and the Determinants of Bleb Formation, Healing, and Travel Ve-
locity. Biophysical Journal, 110(7):1636–1647, April 2016.

[26] Adrian Moure and Hector Gomez. Phase-field model of cellular migration: Three-
dimensional simulations in fibrous networks. Computer Methods in Applied Mechanics
and Engineering, 320:162–197, June 2017.

[27] Godwin Ponuwei. Unmasking Plasma Membrane Blebbing. Journal of Biomedical Sci-
ence and Applications, 1(2):10, 2017.

[28] Yonatan Schweitzer, Arnon D. Lieber, Kinneret Keren, and Michael M. Kozlov. Theoret-
ical Analysis of Membrane Tension in Moving Cells. Biophysical Journal, 106(1):84–92,
January 2014.

[29] W. Strychalski and R. D. Guy. A computational model of bleb formation. Mathematical
Medicine and Biology, 30(2):115–130, June 2013.

[30] Wanda Strychalski and Robert D. Guy. Intracellular Pressure Dynamics in Blebbing
Cells. Biophysical Journal, 110(5):1168–1179, March 2016.

[31] Alessandro Taloni, Elena Kardash, Oguz Umut Salman, Lev Truskinovsky, Stefano Zap-
peri, and Caterina A. M. La Porta. Volume Changes During Active Shape Fluctuations
in Cells. Physical Review Letters, 114(20):208101, May 2015.

[32] R. A. Tyson, E. Zatulovskiy, R. R. Kay, and T. Bretschneider. How blebs and pseu-
dopods cooperate during chemotaxis. Proceedings of the National Academy of Sciences,
111(32):11703–11708, August 2014.

[33] Philipp Werner, Martin Burger, and Jan-Frederik Pietschmann. A PDE model for bleb
formation and interaction with linker proteins. arXiv:1904.03474 [math, q-bio], May
2019.

23

[34] T. E. Woolley, E. A. Gaffney, S. L. Waters, J. M. Oliver, R. E. Baker, and A. Goriely.
Three mechanical models for blebbing and multi-blebbing. IMA Journal of Applied
Mathematics, 79(4):636–660, August 2014.

[35] Thomas E. Woolley, Eamonn A. Gaffney, James M. Oliver, Ruth E. Baker, Sarah L.
Waters, and Alain Goriely. Cellular blebs: Pressure-driven, axisymmetric, membrane
protrusions. Biomechanics and Modeling in Mechanobiology, 13(2):463–476, April 2014.

[36] Jennifer Young and Sorin Mitran. A numerical model of cellular blebbing: A volume-
conserving, fluid–structure interaction model of the entire cell. Journal of Biomechanics,
43(2):210–220, January 2010.

Figures and tables

x0 λb λl l0 uB kL uR λp

0.95 0.005 18 0.04 0.056 500.0 0.0075 22.5

Table 1: Standard non-dimensional parameters for numerical simulations with a given ge-
ometry, see Section 4.3 for further details.

x0 λb λl l0 uB kL uR λp

0.95 0.125 0.72 0.2 0.28 500.0 0.15 150.0

Table 2: Non-dimensional parameters for numerical simulations with an initial surface ob-
tained from image data, see Section sec:imgsim for further details.

Figure 1: Illustration of the shape used in Section 4.3 and a mesh Γ0
h. For better visibility

of the triangles, only ten bisections were performed resulting in a mesh with 20480 vertices.
A finer mesh with 196608 vertices was used for the computations.

24

Figure 2: Final shapes for computations with the initial shape in Figure 1. The colour
scheme indicates the distance of the membrane to the cortex |Uh − uh,c|. Values below
the resting length l0 = 0.04 are highlighted in blue and values above the critical length of
breaking uB = 0.056 in red, whilst values in between are shaded as indicated on the bar.
The parameters in Table 1 lead to the upper left shape (A). For B, the linker strength was
reduced by setting λl = 12. For C, the tension was increased by setting x0 = 0.85. For D,
the pressure was increased by setting p0 = 30.

Figure 3: Slice of the initial and final shape (latter on top). Simulation data in Table 1, see
Section 4.3 for further simulation details. A magnified image of the black box is presented
on the right. The color code is as in Figure 2.

25

Figure 4: Slices of final shapes for parameters as in Table 1 but different linker strengths,
namely λl = 18 (blue) and λl = 12 (red), with the latter on top. A magnified image of the
black box is presented on the right. See Section 4.3 for further details.

Figure 5: Slices of final shapes for parameters as in Table 1 but different membrane tensions,
we chose x0 = 0.95 (blue) and x0 = 0.85 (red), with the latter on top. A magnified image of
the black box is presented on the right. See Section 4.3 for further details.

Figure 6: Slices of final shapes for parameters as in Table 1 but different pressure parameters,
we set p0 = 22.5 (blue) and p0 = 30 (red), with the latter on top. A magnified image of the
black box is presented on the right. See Section 4.3 for further details.

26

Figure 7: Application of the scheme in Problem 4.1 to a cell surface obtained from image
data. The color scheme is as in Figure 2. See Section 4.4 for further details .

27

	Introduction
	Continuum modelling of the onset of blebbing
	Setting and notation
	Force balance and strong formulation
	Variational formulation

	Surface finite element approach
	Surface triangulations and finite elements
	Semi-discrete problem
	Proof of Theorem 3.6
	Error estimates

	Software and simulations
	Time discretisation
	Implementation
	Influence of the initial geometry
	Application to experimental data

	Conclusion

