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Abstract

We examine the subgroup D(G) of a transitive permutation group
G which is generated by the derangements in G. Our main results
bound the index of this subgroup: we conjecture that, if G has degree
n and is not a Frobenius group, then |G : D(G)| 6

√
n− 1; we prove

this except when G is a primitive affine group. For affine groups, we
translate our conjecture into an equivalent form regarding |H : R(H)|,
where H is a linear group on a finite vector space and R(H) is the
subgroup of H generated by elements having eigenvalue 1.

If G is a Frobenius group, then D(G) is the Frobenius kernel, and
so G/D(G) is isomorphic to a Frobenius complement. We give some
examples where D(G) 6= G, and examine the group-theoretic structure
of G/D(G); in particular, we construct groups G in which G/D(G) is
not a Frobenius complement.

1 Introduction

Jordan proved in 1872 that a finite transitive permutation group G of degree
n > 1 must contain a derangement (an element with no fixed points). The
existence of such elements is important in various contexts in number theory
and elsewhere [8, 17, 18]. It is known that there must be many derangements
(at least |G|/n, see [5]), and that at least one has prime power order [8]. We
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are interested here in the subgroup D(G) of G generated by the derangements
in G.

In most cases, D(G) = G. For example, of the 3302368 transitive groups
of degree from 2 to 47 inclusive as classified in [12] and available in Magma
[2], only 892 have D(G) 6= G (of which 103 are Frobenius groups); and, of
the 24558 primitive groups of degree from 2 to 4095 inclusive as classified in
[7] and available in Magma, only 9155 have D(G) 6= G (of which 7872 are
Frobenius groups).

The question was first considered by H. Zantema [18], who proved the first
two parts of the following theorem. We include the proof since we extend
the ideas to prove the rest of the theorem.

Theorem 1.1. Let G be a transitive permutation group on Ω, and N = D(G)
the (normal) subgroup generated by the derangements in G. Then

(a) N is transitive.

(b) N contains every element of G whose number of fixed points is different
from 1.

(c) If rG and rN denote the permutation ranks of G and N , then

rN − 1 = (rG − 1)|G : N |.

(d) The N-orbits on ordered pairs of distinct elements are permuted semireg-
ularly by G/N ; equivalently, for α ∈ Ω, the Nα-orbits different from {α}
are permuted semiregularly by Gα/Nα.

Any Frobenius group G gives an example with D(G) 6= G; for in this case
D(G) is the Frobenius kernel, and its index is the order of a point stabiliser.
(This corresponds to the case in Theorem 1.1 where Nα = {1}.) So, in a
sharply 2-transitive group of degree n, we have |G : D(G)| = n − 1. On
the other hand, by part (d) of the theorem, the index cannot be larger than
n − 1 (and indeed divides n − 1), where n = |Ω|. Equality implies that
rG = 2 (so that G is 2-transitive), and rN = n (so that N is regular, and G
is a Frobenius group). So:

Corollary 1.2. If G is a transitive permutation group of degree n > 1, then
|G : D(G)| divides n−1; equality is possible if and only if n is a prime power.

We also obtain the following corollary.
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Corollary 1.3. Let G be a transitive permutation group, and suppose that
D(G) 6= G. Let Gα be the stabiliser of α, acting on the remaining points.
Then at least half the elements of Gα are derangements, and Gα = D(Gα).

It follows, for example, that if G is a Zassenhaus group (a 2-transitive
group in which the point stabiliser is a Frobenius group) then D(G) = G.

Our main interest is in proving better bounds in the case when G is not
a Frobenius group. We prove the following two theorems:

Theorem 1.4. If G is a transitive imprimitive permutation group of degree
n, then |G : D(G)| 6

√
n− 1. Equality is possible if n is an even power of a

prime.

Theorem 1.5. If G is a primitive permutation group of degree n which is
not of affine type, then |G : D(G)| 6

√
n− 1.

We conjecture that the same bound is true for all primitive groups which
are not Frobenius groups:

Conjecture 1.1. If G is a primitive permutation group of degree n which is
not a Frobenius group, then |G : D(G)| 6

√
n − 1; moreover, this bound is

attained only if G is an affine group.

For the first part of this conjecture, it suffices to consider affine groups,
and we explain in Section 3 the partial results we have obtained on this.
The second part follows from the first together with our results on non-affine
primitive groups, where we obtain substantially better bounds in all cases.
For example, groups of twisted wreath product type satisfy D(G) = G, and
almost simple groups with D(G) 6= G can be completely classified. See
Section 5 below.

Another question we pose is the following:

Question 1.2. Which groups can arise as G/D(G) for some transitive per-
mutation group G?

We have no example of a group H which cannot be isomorphic to G/D(G)
for any transitive finite permutation group G, but the evidence is far too thin
to support the conjecture that all groups arise.

If G is a Frobenius group, then D(G) is the Frobenius kernel, and so
G/D(G) is isomorphic to the Frobenius complement. The structure of Frobe-
nius complements was determined by Zassenhaus; either such a group is
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metacyclic, or it has a normal subgroup of index at most two which is iso-
morphic to the direct product of SL(2, 3) or SL(2, 5) and a metacyclic group.
See Passman [16] for an account of this.

There are transitive groups with G/D(G) not isomorphic to a Frobenius
complement, though they are rather rare. The smallest degree of a primitive
group with this property is 625; there are primitive groups of this degree
for which G/D(G) is isomorphic to the Klein group V4 or the symmetric
group S3. In the final section of the paper, we construct a number of further
examples of this phenomenon.

2 Proofs of the basic results

We begin with the proof of Theorem 1.1. As noted, parts (a) and (b) are due
to H. Zantema [18], and are repeated here since we will push the arguments
a little further to prove the rest of the theorem.

Proof. Let π be the permutation character. Since G is transitive, the Orbit-
Counting Lemma gives ∑

g∈G

(π(g)− 1) = 0.

Now similarly ∑
g∈N

(π(g)− 1) = (k − 1)|N |,

where k is the number of N -orbits. So∑
g∈G\N

(π(g)− 1) = −(k − 1)|N |.

But every term in the sum on the left is non-negative, since all the elements
with π(g) − 1 < 0 lie in N . We conclude that both sides are zero. The
right-hand side shows that k = 1, and the left-hand side contains no terms
with π(g) > 1, so all such elements lie in N . This proves (a) and (b).

For (c), note that

|G|(rG − 1) =
∑
g∈G

(π(g)2 − 1),

|N |(rN − 1) =
∑
g∈N

(π(g)2 − 1).
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Since every element of G\N has π(g) = 1, the two displayed expressions are
equal, which proves (c).

Finally, (d) follows from (c) since the rN − 1 orbits of N on ordered pairs
of distinct elements fall into rG − 1 orbits under the action of G/N .

We mention another derivation of (b) from (a), since we will need this
later. This depends on the following (well-known) generalisation of the Orbit-
Counting Lemma. For completeness, we give the proof.

Lemma 2.1. Let G be finite transitive permutation group on Ω, and t an
arbitrary permutation on Ω. Then the average number of fixed points of
elements in the coset tG is 1.

Proof. We follow the usual proof of the Orbit-Counting Lemma. If G is
transitive on Ω, with |Ω| = n, count pairs (α, g) for which α ∈ Ω, g ∈ G,
and αtg = α. For each of the n choices of α, there are |G|/n elements g ∈ G
mapping αt to α; so there are |G| such pairs. Counting the other way, we
sum the numbers of fixed points of elements in the coset tG.

Now suppose that g ∈ G \ D(G). By (a) and Lemma 2.1, the average
number of fixed points of elements of gD(G) is 1, but none of these elements
is a derangement; so all have exactly one fixed point.

Proof of Corollary 1.3 Since D(G) is transitive, |Gα : Gα ∩ D(G)| =
|G : D(G)| > 1. But all the elements of Gα not in D(G) are derangements
(they fix only α); so there are at least |Gα|/2 derangements in Gα, and they
generate Gα (since any group is generated by the complement of any proper
subgroup).

Proof of Theorem 1.4 Let N = D(G), and H = G/N . By Corollary
1.2 we have that |H| divides n − 1. Moreover, as N is transitive we have
|H| = |G : N | = |Gα : Nα|. Furthermore, by Theorem 1.1(d), Gα/Nα

permutes the Nα-orbits different from {α} semiregularly.
Suppose that G is imprimitive, with ` blocks of size k, where k` = n.

Then Gα permutes among themselves the Nα-orbits in the block containing
α; so |H| divides k − 1. Then also |H| divides n − k = k(` − 1), and since
|H| is coprime to k, we see that |H| divides `− 1. But min{k, `} 6

√
n, and

so the result follows.
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Equality can be attained if n is a prime power (and a square). Let V be
a 2-dimensional vector space over the finite field F . Then the semi-direct
product of the additive group of V and the multiplicative group of F is a
Frobenius group of order |F |2(|F | − 1).

3 Affine groups

In this section we consider affine groups.

3.1 Preliminaries and a conjecture

Let V be a d-dimensional vector space over the field of order q. Let T be the
translation group of V , and H a linear group on V (a subgroup of GL(d, q)).
Then the semidirect product G = T o H is a transitive permutation group
on V ; it is primitive if and only if the linear group H is irreducible.

Given a linear group H, we let R(H) be the subgroup of H generated by
elements which have an eigenvalue 1 in their action on V .

Proposition 3.1. With the above notation, D(G) is the semidirect product
T oR(H), and so |G : D(G)| = |H : R(H)| and G/D(G) ∼= H/R(H).

Proof. Clearly T 6 D(G). By Lemma 2.1, the average number of fixed points
of elements in a coset hT (for h ∈ H) is 1; so there are two possibilities:

• some element of hT is a derangement, in which case hT ⊆ D(G) and
h ∈ D(G);

• every element of hT has exactly one fixed point; then h fixes the zero
vector and no other, so no eigenvalue of h is equal to 1.

So hT ⊆ D(G) if and only if h ∈ R(H), and the result follows.

Thus using Theorems 1.1 and 1.4 we can formulate a result and a conjec-
ture which if true would settle our main conjecture for primitive groups.

Proposition 3.2. If H is any subgroup of GL(d, q), then |H : R(H)| 6 qd−1,
and H/R(H) permutes the R(H)-orbits semiregularly. If H is reducible, then
|H : R(H)| 6 qd/2 − 1.

Conjecture 3.1. If H is an irreducible subgroup of GL(d, q), then either H
acts semiregularly on the non-zero vectors of V , or |H : R(H)| 6 qd/2 − 1.
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3.2 An example

In this subsection, we give an example to show that the bound |G : D(G)| 6√
n− 1, if true, is best possible for primitive groups which are not Frobenius

groups, by giving an example meeting the bound.
Let q be a prime power, and G the group

{x 7→ axi + c | a, c ∈ F, a 6= 0, i ∈ {1, q}}

of permutations of the field F of order q2.
Let A = {a ∈ F | aq+1 = 1}, and let H be the subgroup of G consisting

of the transformations of the above form with a ∈ A. Notice that A is the
set of (q − 1)st powers of non-zero elements of F .

Clearly, the group T = {x 7→ x + c : c ∈ F} of translations is contained
in D(G). Now consider the map x 7→ axq. The point x is fixed if and only if
x = 0 or x−(q−1) = a. If aq+1 = 1, then the equation x−(q−1) = 1 has q − 1
solutions, and so by Theorem 1.1(b) the map x 7→ axq belongs to D(G).
Composing this with the element x 7→ xq (which is in D(G)) we see that the
map x 7→ ax also lies in D(G). Thus H 6 D(G).

We now consider the transformations not in H. Now separately consider
transformations of the form x 7→ ax + b and x 7→ axq + b, where in both
cases a /∈ A. In the former case, it is easy to see that x 7→ ax + b has a
unique fixed point, namely x = b/(1 − a), for all a 6= 1, and in particular
for all a /∈ A. In the latter case, as there are no non-zero solutions to the
equation x = axq, the transformation x 7→ x − axq has trivial kernel and
therefore is surjective. In particular, there is a unique value of x such that
x−axq = b and thus a unique fixed point for the transformation x 7→ axq+b.
Hence every transformation outside H has a unique fixed point, and so H
contains all derangements. Thus H contains all the derangements and hence
D(G) 6 H. As we have already seen that H 6 D(G), equality holds. It is
then clear that G/D(G) has order q − 1.

4 Examples

In this section, we describe a few examples of non-affine groups G with
D(G) 6= G. Further affine examples appear in the final section.

There is no useful product construction. For suppose that G1 and G2 are
transitive on Ω1 and Ω2, and consider G1 ×G2 acting on Ω1 × Ω2. Then an
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element (g1, g2) ∈ G1 × G2 is a derangement if and only if either g1 or g2 is
a derangement. So D(G1×G2) contains both D(G1)×G2 and G1×D(G2),
and hence it is equal to G1 ×G2.

4.1 General remarks

Before giving some more examples we note a couple of useful lemmas.

Lemma 4.1. Let G be a primitive permutation group with socle N . Then
N 6 D(G).

Proof. If N is the unique minimal normal subgroup of G then clearly N 6
D(G), as D(G) 6= 1 by Jordan’s result. If N is not the unique minimal
normal of G then by a well-known “folklore” result (see [4, Theorem 4.4]),
N = M1×M2, where M1 and M2 are regular. Hence we also have N 6 D(G)
in this case as well.

Lemma 4.2. Let G = N o 〈σ〉 be a permutation group such that σ has
order a power of the prime p, with p coprime to |N |. If CG(σ) 6 Gα then
D(G) 6 N .

Proof. Let g ∈ G\N . If g has order a power of p then Sylow’s Theorem
implies that g is conjugate to an element of 〈σ〉 and hence fixes a point
of Ω. Suppose that g does not have order a power of p. Then |g| = mpi

for some i > 0 and with gcd(m, p) = 1. Thus there exist a, b ∈ Z such
that am + bpi = 1 and so g = (gp

i
)b(gm)a. Now we have written g as the

product of two commuting elements, one of which (namely (gm)a) has order
a nontrivial power of p. Thus g is conjugate to an element of the form xσi

for some x ∈ CG(σ). Hence g is conjugate to an element of CG(σ) and so
fixes a point. Thus all derangements in G lie in N .

4.2 The examples

Almost simple groups

(a) Let G = PΓL(2, 2p) = N o 〈σ〉, where N = PGL(2, 2p) for p an odd
prime, and σ a field automorphism of order p, acting on the set ∆
of right cosets of a subgroup H = C2p+1 o C2p > CG(σ) of index
2p−1(2p − 1). When p = 3, a Magma calculation shows that D(G) =
PGL(2, 2p). For p > 5 we have that p is coprime to |PGL(2, 2p)| and
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so Lemma 4.2 implies that D(G) = PGL(2, 2p). Thus for all primes p
we have |G : D(G)| = p.

(b) Let G = PSL(d, pf ) o 〈ϕ〉 where f is a power of a prime r which does
not divide |PSL(d, pf )|, and ϕ is a field automorphism of PSL(d, pf )
of order f . Let H = PSL(d, p) × 〈ϕ〉 and let G act on the set of right
cosets of H. Then by Lemma 4.2 we have that D(G) = PSL(d, pf ).
(The fact that all derangements in G lie in PSL(d, pf ) was previously
observed in [11].)

Product action Let N be PGL(2, 2p) in the action on ∆ defined in part
(a) above, with p > 5. Let G = Np o 〈g〉 act on Ω = ∆p, where g =
(σ, 1, . . . , 1)(1, 2, . . . , p). Then g has order p2 and we can choose α ∈ Ω such
that Gα = Hpo〈g〉. Moreover, CG(g) = {(h, . . . , h) | h ∈ CN(σ)}o〈g〉 6 Gα.
Thus Lemma 4.2 implies that D(G) = Np and so |G : D(G)| = p2.

Diagonal action Let T be a non-abelian simple group, and p be a prime
coprime to |T |. Let G = T p o 〈σ〉 where σ has order p and permutes the
p simple direct factors of T p, acting on the cosets of Gα = {(t, . . . , t) | t ∈
T} × 〈σ〉 = CG(σ). Then G is a primitive group of diagonal type on a set
of size |T |p−1. Any element of T p that is trivial in all but exactly one of the
coordinates is a derangement and so T p 6 D(G) and then Lemma 4.2 implies
that D(G) = T p.

5 Primitive groups

We now consider the various types of primitive groups, and prove Theo-
rem 1.5 in all cases. By the O’Nan-Scott Theorem, a primitive group that
does not preserve a product structure on Ω is either almost simple, affine or
or diagonal type. See for example [4].

5.1 Diagonal type

We note the following famous result, see [9, Theorem 1.48].

Lemma 5.1. Let T be a non-abelian finite simple group and let τ ∈ Aut(T ).
Then there exists t ∈ T\{1} such that tτ = t.
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We also need the following lemma.

Lemma 5.2. Let G be a transitive permutation group on Ω with a regular
non-abelian minimal normal subgroup. Then G = D(G).

Proof. Let N be a non-abelian regular minimal normal subgroup of G. Then
N ∼= T k for some non-abelian simple group T , and N 6 D(G). Note that,
for α ∈ Ω, we have G = N o Gα. Moreover, we can identify Ω with N
such that, for α = 1N , each nontrivial element of Gα acts as a nontrivial
automorphism of N . Let g ∈ Gα and write g = (τ1, . . . , τk)σ where each
τi ∈ Aut(T ) and σ ∈ Sk. Suppose that (i1, i2, . . . , ir) is a cycle of σ. By
Lemma 5.1, there exists t ∈ T\{1} such that τi1τi2 . . . τik fixes t. Let ti1 = t
and for each j ∈ {2, . . . , r} let tij = tτi1 ...τij−1 . Doing this for each cycle of
σ we construct a nontrivial element β = (t1, . . . , tk) ∈ N such that βg = β.
Hence g has at least two fixed points and so by Theorem 1.1(b) we have that
g ∈ D(G). Since G = N oGα it follows that G = D(G).

We are now able to obtain a bound for |G : D(G)| when G is primitive of
diagonal type.

Lemma 5.3. Let G be primitive of diagonal type and G 6= D(G). Then the
socle of G is N = T p for some non-abelian finite simple group T and some
odd prime p not dividing |T |, and G induces a cyclic group of prime order
on the set of p simple direct factors of N . Moreover, |G : D(G)| = p.

Proof. Let N = T k be the socle of G and let α ∈ Ω. We may assume that
Nα = {(t, t, . . . , t) | t ∈ T} and by Lemma 4.1 we have N 6 D(G). Since
N is transitive we have G = NGα. Thus it remains to determine which
elements of Gα lie in D(G).

Let π : G → Sk be the permutation representation of G on the set of k
simple direct factors of N . By Lemma 5.2 we only need to consider the case
where π(G) is transitive and primitive. Since G = NGα we have that π(G) =
π(Gα). Now Gα 6 Aut(T ) × Sk. Identifying Ω with the set of cosets of Nα

in N we see that for τ ∈ Aut(T ) we have (Nα(t1, . . . , tk))
τ = Nα(tτ1, . . . , t

τ
k),

while for σ ∈ Sk we have (Nα(t1, . . . , tk))
σ = Nα(t1σ−1 , . . . , tkσ−1 ).

Let X be the preimage in Gα of the stabiliser in Sk of the first entry
and let g = τσ ∈ X with τ ∈ Aut(T ) and σ ∈ Sk. By Lemma 5.1, there
exists t ∈ T\{1} such that tτ = t. Then g fixes both the coset Nα and
the coset Nα(t, 1, . . . , 1). It follows from Theorem 1.1(b) that X 6 D(G).
Since π(G) is a primitive subgroup of Sk, X is a maximal subgroup of Gα.
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Suppose first that π(X) 6= 1. Then there exists h ∈ Gα\X such that h fixes
the second simple direct factor of N . Then h fixes the two distinct cosets
Nα and Nα(1, t, 1, . . . , 1), where t ∈ T is fixed by τ . This again implies
that h ∈ D(G) and since Gα = 〈X, h〉 it follows that Gα 6 D(G). Thus
G = D(G). Hence if G 6= D(G) then we must have that π(X) = 1, that is,
π(G) is a regular primitive subgroup of Sk. Thus k is a prime, π(G) = Ck,
D(G) = NX and |G : D(G)| = |G : NX| = k.

It remains to show that k is coprime to |T |. Suppose to the contrary
that k divides |T |. Choose g ∈ G \ NX. Without loss of generality, g =
τ(1, 2, . . . , k). Since τ and (1, . . . , k) commute, we can choose g so that τ
has order a power of k (raising g to a power coprime to k if necessary). Now
we can find s ∈ T with order k and fixed by τ , as follows: let P be a Sylow
k-subgroup of T 〈τ〉 containing τ , and choose s to be an element of order k
in Z(P ) ∩ T .

Consider the coset Nα(s, s2, . . . , sk−1, 1). We have

(Nα(s, s2, . . . , sk−1, 1))g = Nα(1, sτ , (sτ )2, . . . , (sτ )k−1)

= Nα(1, s, s2, . . . , sk−1)

= Nα(s, s2, . . . , sk−1, 1).

Thus g fixes two elements of Ω and so by Theorem 1.1(b) it follows that
g ∈ D(G). Since G = 〈NX, g〉, it follows that G = D(G), a contradiction.
Hence k is coprime to |T |.

By the Odd Order Theorem, k is odd.

5.2 Product action

Now we discuss the product action case. By [14, (2.2)], we may assume that
G is contained in H oK, where H is the group induced on one coordinate by
its stabiliser in G, and K the permutation group induced on the coordinates;
thus n = mk, where m and k are the degrees of H and K respectively.

Proposition 5.4. With the above hypotheses,

|G : D(G)| 6 k|H : D(H)|.
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Proof. Let G1 be the subgroup of G fixing a coordinate. Then |G : G1| = k,
and there is an epimorphism φ : G1 → H. Let G2 = D(H)φ−1, so that
|G1 : G2| = |H : D(H)|. So we are done if we can show that G2 6 D(G).

But a generator of G2 has no fixed points on the first coordinate of the
product space, so has no fixed points on the whole space. (If a tuple is fixed
then all its coordinates must be fixed.) The result follows.

We note that the product action examples given in Section 4.2 show that
this bound is sharp.

Corollary 5.5. If the primitive group G is contained in a wreath product
action as above, and G is not a Frobenius group, then |G : D(G)| 6

√
n− 1.

Proof. We have |H : D(H)| | m − 1. Note that primitivity requires m > 2.
If k,m > 3, then k(m−1) 6 mk/2−1 except for the cases k = 3, 3 6 m ≤ 7.
These cases can be tested by computer, and give no counterexamples.

Suppose that k = 2, so that G 6 H o C2. If |H : D(H)| < m − 1, then
|H : D(H)| 6 (m− 1)/2, and so |G : D(G)| 6 m− 1 by Proposition 5.4, as
required. So we may assume that |H : D(H)| = m− 1, so that H is sharply
2-transitive. Thus, H = P oQ, where P is the Frobenius kernel and Q the
complement.

The intersection K of G with the base group of the wreath product is
a subdirect product of two copies of H, containing P × P and invariant
under an interchange of the factors. This is an extension of R2 by C, where
R > P has order rm, say, and C is a quotient of Q of order (m − 1)/r. So
|K| = m2(m− 1)r. Now R2 6 D(G), since each element of one factor can be
combined with a derangement in the other to give a derangement in G. So
|G| = 2m2(m − 1)r and |D(G)| ≥ (rm)2, giving |G : D(G)| 6 2(m − 1)/r.
So we are done unless r = 1, in which case R = P .

In this case, if D(G) = P 2, then it is regular, and so G is a Frobenius
group; if not, then |D(G)| > 2m2, and so |G : D(G)| 6 m−1, as required.

5.3 Almost simple type

We now prove Theorem 1.5 for almost simple primitive groups.

Lemma 5.6. Let G be an almost simple primitive permutation group of
degree n. Then |G : D(G)| 6

√
n− 1.
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Proof. If G is almost simple with socle T then, by Lemma 4.1, T 6 D(G) 6
G 6 Aut(T ), so |G : D(G)| is bounded by the order of the outer automor-
phism group of T . On the other hand, n is at least the degree n0 of the
smallest faithful permutation representation of T . The outer automorphism
group of a sporadic simple group has order at most 2, while from [6] we see
that n0 > 11. Similarly, the outer automorphism group of An has order 2
unless n = 6, while n0 = n. The values for n0 when T is a group of Lie
type are given in [10, Table 4] and the values for Out(T ) are given in [13,
Tables 5.1A and 5.1B]. We find that the only simple groups with T for which
|Out(T )| > √n0 − 1 are:

• T = An (n = 5, 7, 8), |Out(T )| = 2, n0 = n;

• T = A6, |Out(T )| = 4, n0 = 6;

• T = PSL(3, 2), |Out(T )| = 2, n0 = 7;

• T = PSL(3, 4), |Out(T )| = 12, n0 = 21;

• T = PSL(2, 2f ) (f = 3, 4, 5), |Out(T )| = f , n0 = 2f + 1.

Thus if G is a counterexample, either n < 36 or T = PSL(3, 4) and n <
169. A Magma calculation shows that no such counterexamples exist.

In this case we can say much more. The memoir by Guralnick, Müller
and Saxl [11] defines a pair of permutation groups (X, Y ) to be exceptional if
Y CX and X fixes no non-trivial Y -orbit on ordered pairs. They determine
all exceptional pairs where X is almost simple and X/Y is cyclic. This
applies to our situation, since if D(G) 6= G then Theorem 1.1(d) implies that
(G,D(G)) is exceptional. Hence if D(G) < H 6 G with H/D(G) cyclic and
G almost simple then D(G) must occur in their list.

Theorem 5.7. [11, Theorem 1.5] Let G be a primitive almost simple group
of degree n and with socle T such that D(G) 6= G. Then one of the following
holds:

(a) T is a group of Lie type and Tα is the centraliser in T of a field auto-
morphism of odd prime order r. Moreover, r is not the characteristic
of T , unless T = PSL(2, q);

(b) T = PSL(2, 2f ) and Tα = D2(2f+1) with f > 3 odd;

(c) T = PSL(2, pf ) and Tα ∼= Dpf−1 with p odd and f even;
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(d) T = PSL(2, 3f ) and Tα = D3f+1, with f > 3 odd;

(e) T = Sz(2f ) and Tα is the normaliser of a Sylow 5-subgroup of T ;

(f) T = PSU(3, 2a) with a > 1 odd and Tα is the stabiliser in T of a
decomposition of the 3-dimensional space into the direct sum of three
orthogonal nonsingular 1-spaces.

We currently do not know any examples here where G/D(G) is not cyclic.

6 Affine primitive groups

As we noted earlier, we have not been able to prove the bound |G : D(G)| 6√
n− 1 for affine primitive groups which are not Frobenius. We outline here

what we have been able to prove.
Recall that it suffices to show that, if H 6 GL(d, p) for prime p and H

is irreducible but not semiregular, then |H : R(H)| ≤ pd/2 − 1. We work in
greater generality, with a view towards Conjecture 3.1.

So let H ≤ GL(d, q) be an irreducible linear group. We distinguish three
cases:

Case 1: R(H) = 1.

Case 2: R(H) > 1 and R(H) is reducible.

Case 3: R(H) is irreducible.

Lemma 6.1. Case 1 occurs if and only if H is semiregular on non-zero
elements.

Proof. If R(H) = 1, then every element of H \ {1} has no eigenvalues 1, and
so fixes no non-zero vector. The converse is clear.

Lemma 6.2. If Case 2 occurs, then H preserves a direct sum or tensor
product decomposition of V .

Proof. Let W be a minimal non-zero R(H)-invariant subspace. Let S =
{Wg : g ∈ H}. Then every subspace in S is R(H)-invariant. By minimality,
any two members of S intersect in {0}. Also, the subspace 〈S〉 is H-invariant.
Since H is irreducible, 〈S〉 = V . Note that Proposition 3.2 implies that
H/R(H) permutes S regularly. Let dim(W ) = e.
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Case 2A: V =
⊕
{W : W ∈ S}. Then |S| = d/e and H preserves this

direct sum decomposition.

Case 2B: |S| > d/e.
We claim there is a subset of S whose direct sum is V . For choose

a subset of S, say S0, maximal subject to generating its direct sum, and
suppose U ∈ S \S0. Let X be the direct sum of the spaces in S0. Then X is
also R(H)-invariant, and so is its intersection with U . If X ∩ U = {0}, then
S0 ∪ {U} also generates its direct sum, contrary to assumption. So U ⊆ X.
But if this holds for all U ∈ S \ S0, then the span of the spaces in S is W ,
contradicting the fact that H is irreducible.

Suppose that V = W1 ⊕ · · · ⊕ Wk, where Wi ∈ S. If W ′ is another
subspace in S, then each vector in W ′ has unique projections onto at least two
Wi. Since R(H) fixes all these spaces, we have R(H)-invariant isomorphisms
between them.

Now define a relation on S by the rule that U1 ∼ U2 if the actions of
R(H) on U1 and U2 are isomorphic. The result of the preceding paragraph
shows that this relation is not the relation of equality, and it is clearly an
equivalence relation. The span of an equivalence class is a R(H)-invariant
subspace, which contains no members of any other equivalence class. So,
arguing as before, V is a direct sum of these subspaces.

If there is more than one equivalence class, then H preserves this direct
sum decomposition.

If there is just one equivalence class, then V ∼= W ⊗U for some space U ;
and R(H) acts on the first factor of the tensor product.

Finally, suppose that Case 3 occurs, so R(H) is an irreducible linear
group. In this case, the obvious approach is to apply Aschbacher’s Theo-
rem [1] to H. We have dealt with some of the cases, but have not completed
the analysis. We make one simple observation.

Lemma 6.3. The conjecture holds if H is a subfield subgroup or an imprim-
itive linear group.

Proof. In the subfield case, suppose that H 6 GL(d, q0) 6 GL(d, q), where
q = qe0 with e > 1. Observing that the eigenvalues of an element of H are
the same whether we regard H as acting on GF(q)d or GF(q0)

d, we see that
|H : R(H)| 6 qd0 − 1 6 qd/e − 1, and the result follows since e > 2.
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In the imprimitive case, the semidirect product T oH is contained in a
wreath product with product action, and the result follows from Corollary 5.5
(whose proof did not assume that G is not affine).

7 On the quotient G/D(G)

In this section we consider the group-theoretic structure of the quotient
G/D(G).

We have seen that any Frobenius complement can occur as this quotient.
It turns out that in general the class of groups that can appear is wider, as
the following examples testify.

Example 7.1. (a) Let X, Y 6 GL(2, 5) such that X ∼= D12 and Y ∼= Q8.
Then R(X) = D12, as it is generated by its non-central involutions.
Moreover, any element of X that is not an involution does not have
any eigenvalues in GF(5). Furthermore, R(Y ) = 〈−I2〉 and all eigenval-
ues of elements of Y lie in GF(5). Let H = X ◦Y 6 GL(2, 5)◦GL(2, 5)
acting on the tensor product of two GF(5)-spaces of dimension 2. (Here
◦ denotes central product.) Then all elements of H with 1 as an eigen-
value lie in X and so H/R(H) = Y/R(Y ) ∼= C2

2 . The primitive group
G with G/D(G) ∼= C2

2 arising from Proposition 3.1 is the number 41 of
degree 625 in the Magma database.

(b) Let X, Y 6 GL(4, 23) with X ∼= D44 and Y ∼= SL(2, 3). Both X
and Y are irreducible. Then R(X) = X as it is generated by invo-
lutions. Moreover, all eigenvalues of X lie in GF(23). The group Y
acts semiregularly on the set of 1-dimensional subspaces of GF(23)2

and so −I2 is the only element of Y with eigenvalues in GF(23). Let
H = X ◦Y 6 GL(2, 23)◦GL(2, 23) acting on the tensor product of two
GF(23)-spaces of dimension 2. Then H/R(H) = Y/R(Y ) ∼= A4 and so
by Proposition 3.1 we get a primitive permutation group G of degree
234 with G/D(G) ∼= A4.

(c) Here take X, Y 6 GL(2, 59) with X ∼= D116 and Y ∼= SL(2, 5). The
group Y acts semiregularly on the set of 1-dimensional subspaces of
GF(59)2 and so taking H = X ◦ Y 6 GL(2, 59) ◦ GL(2, 59) acting
on the tensor product of two GF(59)-spaces of dimension 2 the same
argument as above yields a primitive group with G with G/D(G) ∼= A5.
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We now give an infinite family of non-Frobenius examples.

Lemma 7.1. Let p be a prime and f > 1 such that q = pf ≡ −1 (mod 4).
Then there is a primitive group G such that G/D(G) ∼= Dq+1.

Proof. Let X be the subgroup of GL(2, q) generated by

(
u 0
0 u−1

)
(for u 6= 0)

and

(
0 1
1 0

)
. Then X ∼= D2(q−1). Since q ≡ −1 (mod 4), the group X does

not have an element of order 4. Moreover, X is generated by its non-central
involutions and these all have 1 as an eigenvalue. Furthermore, all eigenvalues
of the elements of X lie in GF(q).

Let x, y ∈ GF(q2) with x having order q + 1 and y having order 2(q + 1).
Consider x and y as elements of GL(2, q). Let σ be the field automorphism of
GF(q2) that raises each element to its qth power and consider σ as an element
of GL(2, q). Then (yσ)2 = yq+1 = −I2 = x(q+1)/2. Thus yσ is an element of
order 4. Let Y = 〈x, yσ〉 6 GL(2, q). All elements in 〈x〉 other than those
in 〈−I2〉 have no elements in GF(q) as an eigenvalue. All elements of Y
outside 〈x〉 have order 4 and the condition on q implies that they also have
no eigenvalues in GF(q). Moreover, xyσ = xq = x−1 and so Y/〈−I2〉 ∼= Dq+1.

Now take H = X◦Y 6 GL(2, q)◦GL(2, q) acting on the tensor product of
two GF(q)-spaces of dimension 2. For each g ∈ X and h ∈ Y , the eigenvalues
of the element arising from (g, h) are of the form λµ where λ is an eigenvalue
of g and µ is an eigenvalue of h. Since the elements of Y \〈−I2〉 do not have
elements of GF(q) as eigenvalues, the elements of H with 1 as an eigenvalue
lie in X and so H/R(H) = Y/Z(Y ) ∼= Dq+1. Moreover, as X and Y are both
irreducible subgroups of GL(2, q) we have that H is an irreducible subgroup
of GL(4, q). Thus by Proposition 3.1, there exists a primitive group G such
that G/D(G) ∼= Dq+1.

Under extra hypotheses, we can restrict the structure of the quotient. For
example:

Proposition 7.2. Suppose that the transitive group G has a regular normal
subgroup N , and that G splits over D(G), say G = D(G) o H. Then N is
nilpotent and H is isomorphic to a Frobenius complement.

Proof. Non-identity elements of H have unique fixed points. It follows that
H fixes a point α and is semiregular on Ω\{α}. (If not, then H acts faithfully
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as a regular or Frobenius group on each orbit, and with at least one Frobenius
orbit. But then elements of the Frobenius kernel K can be recognised – K
is the Fitting subgroup of H – and so they have no fixed points at all, a
contradiction.)

Thus H normalises N and acts semiregularly on N \ {1}, so that NH is
a Frobenius group with kernel N and complement H. Then N is nilpotent
by Thompson’s theorem.

We note that for the examples in Example 7.1 and Lemma 7.1, G does
not split over D(G).

On the other hand, every Frobenius complement can occur in a non-
Frobenius group:

Proposition 7.3. Let H be a Frobenius complement. Then there is a tran-
sitive, non-Frobenius group G such that G/D(G) ∼= H.

Proof. Suppose that NH is a Frobenius group on a set ∆ with kernel N and
complement H. Without loss of generality we may suppose that N is abelian.
(For by Thompson’s theorem, N is nilpotent; thus Z(N) 6= {1}, and H acts
faithfully and fixed-point-freely on Z(N), so Z(N)H is a Frobenius group.)
For convenience we write N additively below.

Choose a prime q which does not divide |H|. Let G = N q o (H × Cq)
act on ∆q in product action, where H acts in the same way on each factor
and Cq permutes the factors. We have N q 6 D(G). Moreover, elements of
Cq fix the diagonal elements of N q, so by Theorem 1.1(b) Cq 6 D(G). We
show that elements outside N qoCq have just one fixed point; it follows that
D(G) = N q o Cq, and so G/D(G) ∼= H as required. Since N q is a regular
normal subgroup, we can identify Ω with N q.

Take an element g = h(a1, . . . , aq)σ
i, where Cq = 〈σ〉, a1, . . . , aq ∈ N ,

and h 6= 1, and suppose that g fixes (x1, . . . , xq), with x1, . . . , xq ∈ ∆.

Case 1: i = 0. Then

(x1, . . . , xq)g = (xh1 + a1, x
h
2 + a2, . . . , x

h
q + aq).

So, if g fixes (x1, . . . , xq), we have xhi +ai = xi for all i = 1, . . . , q. Since
N qoH is a Frobenius group and h 6= 1, there is a unique such element.

Case 2: i 6= 0. Without loss of generality, i = 1. Then

(x1, . . . , xq)g = (xhq + aq, x
h
1 + a1, . . . , x

h
q−1 + aq−1).
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So, if g fixes (x1, . . . , xq), then

xh1 + a1 = x2, x
h
2 + a2 = a3, . . . , x

h
q + aq = x1.

Telescoping these formulae gives xh
q

1 + b1 = x1, where

b = ah
q−1

1 + · · ·+ aq.

Now q is coprime to |H|, so hq 6= 1; the same argument as in Case 1
shows that the value of x1 is uniquely determined. A similar argument
shows that x2, . . . , xq are unique.

The proof is complete.

Remark 7.2. In all examples constructed in this section, the group G/D(G),
if not itself a Frobenius complement, is a quotient of one. So we tentatively
propose the following problem:

Question 7.3. Is it true that, for any finite transitive permutation group G,
the group G/D(G) is a quotient of a Frobenius complement?

8 One more problem

The derangements in a finite transitive permutation group G form a non-
empty union of conjugacy classes; so, if G is simple, they generate G. In a
recent preprint, Larsen, Shalev and Tiep [15] proved the following theorem:

Theorem 8.1. Let G be a finite simple transitive permutation group. If |G|
is sufficiently large, then any element of G can be written as the product of
two derangements.

More generally, we could pose the following problem:

Question 8.1. Is it possible to classify the finite transitive permutation
groups G for which some element of D(G) cannot be written as the product
of two derangements?

We note that, in a Frobenius group G, every non-identity element of D(G)
is a derangement.
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