
On some projective triply-even binary codes invariant under the

Conway group Co1

B. G. Rodrigues∗

Department of Mathematics and Applied Mathematics
University of Pretoria

Hatfield 0028, South Africa

Abstract

A binary triply-even [98280, 25, 47104]2 code invariant under the sporadic simple group Co1
is constructed by adjoining the all-ones vector to the faithful and absolutely irreducible 24-
dimensional code of length 98280. Using the action of Co1 on the code we give a description of
the nature of the codewords of any non-zero weight relating these to vectors of types 2, 3 and 4,
respectively of the Leech lattice. We show that the stabilizer of any non-zero weight codeword
in the code is a maximal subgroup of Co1.
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1 Introduction

A triply-even binary code is a linear code in which the weight of every codeword is divisible by 8;
such codes have previously been classified up to length 48 by Betsumiya and Munemasa [4]. Recent
interest is growing in the study of ∆-divisible codes large length, of which triply-even codes are
a special case. A linear code C over Fq is said to be ∆-divisible if the Hamming weight w(c) of
every codeword c ∈ C is divisible by ∆ > 1, and C is said to be a projective code if d(C⊥) ≥ 3.
In particular, binary ∆-divisible codes have been studied in [9] and applications of these have been
given. Particular relevance is placed on the fact that these codes are optimal with respect to some
bound on linear codes.

In [11] we examined the properties of a projective two-weight code of dimension 24 invari-
ant under the simple group Co1 of Conway and explored its connection with the Leech lattice.
In that paper we also described the properties of a new strongly regular graph with parameters
(16777216, 98280, 4600, 552) constructed using the non-zero codewords of the said 24-dimensional
two-weight code, as well as the combinatorial properties of the self-dual, symmetric, flag-transitive,
point- and block-primitive 1-(98280, 47104, 47104) design invariant under Co1. The present note
is a sequel to [11] and in it we answer a question posed by Wolfgang Knapp on the combinatorial
properties of a 25-dimensional submodule of the permutation module of dimension 98280 invariant
under Co1 which contains the above-mentioned 24-dimensional code as a subcode of codimension 1.
In addition, we study these codes as examples of triply-even projective binary codes of large length
admitting the simple group Co1 of Conway as a permutation group of automorphisms. Further, we
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examine the properties of some point- and block-primitive 1-designs obtained as support 1-designs
of the non-zero codewords of the two triply-even binary codes of length 98280 discussed in this
paper. In the theorem given below, we summarize our results; the specific results relating to the
codes are given as propositions in the following sections.

Theorem 1.1 Let G be the simple Conway group Co1 and F2Ω the permutation module of degree
98280 invariant under G. Then the following hold:

(a) F2Ω contains a unique submodule of dimension 25. Let C25 denote the unique submodule
of dimension 25, then C25 = 〈C24,1〉, where C24 is the unique faithful and irreducible Co1-
invariant F2-module of dimension 24.

(b) C25 is a projective triply-even code.

(c) C25 is not spanned by its minimum-weight codewords.

(d) Aut(C25) ∼= Co1.

(e) the codewords of non-zero weight in C25 are stabilized by maximal subgroups of G.

The paper is organized as follows: in Section 2 we outline our background and notation and in
Section 3 we give a brief but complete overview on the Co1 group. In Section 4 we describe the
construction method used and give our results on the 25-dimensional binary code invariant under
Co1 in the ensuing sections.

2 Terminology

In this section, we state some useful facts in coding theory, design theory and finite group theory.
Our notation for designs and groups will be standard, and it is as in [3] and ATLAS [8].

Let F be a finite field of order q = pt, where p is a prime and t ∈ N; and G a finite group. Let
Ω be a finite G-set, i.e. Ω is a finite set and there is a G-action on Ω, namely, a map · :G×Ω −→ Ω
given by (g, ω) 7→ g · ω, satisfying (g · h) · ω = g · (h · ω) for all g, h ∈ G and all ω ∈ Ω, and that
1 · ω = ω for all ω ∈ Ω.

Then FΩ = {
∑

ω∈Ω gωω | gω ∈ F} is a vector space over F with basis Ω. Extending the G-action
on Ω linearly, FΩ becomes an FG-module, called an FG-permutation module with permutation
basis Ω, (we remark that the permutation module FΩ need not be semisimple in general). The
F-vector space FΩ is equipped with a non-degenerate symmetric bilinear form

〈
∑
ω∈Ω

gωω,
∑
ω∈Ω

hωω〉 =
∑
ω∈Ω

gωhω, ∀g =
∑
ω∈Ω

gωω and h =
∑
ω∈Ω

hωω ∈ FΩ

called the standard inner product on FΩ. For any a ∈ G and any g =
∑

ω∈Ω gωω and h =∑
ω∈Ω hωω ∈ FΩ, we have

〈a(g), a(h)〉 = 〈a(
∑
ω∈Ω

gωω), a(
∑
ω∈Ω

hωω)〉

= 〈
∑
ω∈Ω

gωaω,
∑
ω∈Ω

hωaω〉 =
∑
ω∈Ω

gωhω

= 〈g,h〉.
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So, the standard inner product on the vector space FΩ is G-invariant in the following sense:

〈a(g), a(h)〉 = 〈g,h〉, ∀a ∈ G,∀g,h ∈ FΩ.

Moreover, for any U ⊆ FΩ denote U⊥ = {v ∈ FΩ | 〈u,v〉 = 0, ∀u ∈ U}. If C is an FG-
submodule of FΩ, then for any a ∈ G and c′ ∈ C⊥, and for any c ∈ C, by the G-invariance of the
inner-product we have that

〈ac′, c〉 = 〈ac′, aa−1c〉 = 〈c′, a−1c〉 = 0,

so ac′ ∈ C⊥, i.e., C⊥ is G-invariant. Hence, C⊥ is an FG-submodule.
We say that C is an FG-permutation code of FΩ, denoted by C ⊆ FΩ, if C is an FG-submodule

of the FG-permutation module FΩ; and a permutation code C is said to be irreducible if C is
an irreducible FG-submodule of FΩ. Two linear codes are isomorphic if they can be obtained
from one another by permuting the coordinate positions. For a linear code C of length n over F, a
permutation of the components of a codeword of length n is said to be a permutation automorphism
of C if the permutation maps codewords to codewords. By Aut(C) we denote the automorphism
group of C consisting of all the permutation automorphisms of C. With this we have that G acts on
C and thus G ≤ Aut(C) so that the code C becomes a FG-submodule of the permutation module
FΩ. In this note we consider only binary linear codes, so we restrict our attention to permutation
automorphisms. It is easy to see that C is an FG-permutation code of a G-permutation set Ω of
cardinality n if and only if there is a group homomorphism of G to Aut(C).

A code C is self-orthogonal if C ⊆ C⊥. The hull of C is Hull(C) = C ∩ C⊥. The all-one
vector will be denoted by 1, and is the constant vector of weight the length of the code, and whose
coordinate entries consist entirely of 1’s. A binary code C is doubly-even if all codewords of C have
weight divisible by four. Let C be a code of length n. The weight distribution of a code C is the
sequence {Ai|i = 0, 1, . . . , n}, where Ai is the number of codewords of weight i. The polynomial
WC(x, y) =

∑n
i=0Aix

n−iyiis called the weight enumerator of C. The weight enumerator of a code
C and its dual C⊥ are related via MacWilliams identity.

An incidence structure D = (P,B, I), with point set P, block set B and incidence I is a t-
(v, k, λ) design, if |P| = v, every block B ∈ B is incident with precisely k points, and every t
distinct points are together incident with precisely λ blocks. The complement of D is the structure
D̃ = (P,B, Ĩ), where Ĩ = P × B − I. The dual structure of D is Dt = (B,P, It), where (B, p) ∈ It
if and only if (P,B) ∈ I. Thus, the transpose of an incidence matrix for D is an incidence matrix
for Dt. We will say that the design is symmetric if it has the same number of points and blocks,
and self dual if it is isomorphic to its dual.

The support of a nonzero vector x := (x1, . . . , xn), xi ∈ Fq is the set of indices of its nonzero
coordinates: supp(x) = {i|xi 6= 0}. The support design of a code of length n for a given nonzero
weight w is the design with n points of coordinate indices and blocks the supports of all codewords
of weight w.

3 The Conway group Co1

The Leech lattice is a certain 24-dimensional Z-submodule of the 24-dimensional Euclidean space
R24 discovered by John Leech. John Conway showed that the automorphism group of the Leech
lattice is a quasisimple group. Its central factor group is the Conway group Co1. The Conway
groups Co2 and Co3 are stabilizers of sublattices of the Leech lattice. We give a brief description
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of the construction of these groups, omitting detail. The content of this section is mostly drawn
from [2]. A more recent and comprehensive account is given in [14], see also [6, 12, 13].

Let H = M24 and (Ω, C) be the Steiner system S(24, 8, 5) for H. Let V be the permutation
module over F2 of H with basis Ω and VC the Golay code submodule. Let R24 be the permutation
module over the reals for H with basis Ω and let 〈 , 〉 be the symmetric bilinear form on R24 for
which Ω is an orthogonal basis. Then R24 together with 〈 , 〉 is simply the 24-dimensional Euclidean
space admitting the action of H, and for

∑
ω αωω and

∑
ω βωω in R24,〈∑

ω

αωω,
∑
ω

βωω

〉
=
∑
ω

αωβω.

For v ∈ R24 define q(v) = 〈v, v〉/16. Thus q is a positive definite quadratic form on R24. Given
Y ⊆ Ω, define eY =

∑
y∈Y y ∈ R24. For ω ∈ Ω let λω = eΩ − 4ω.

The Leech lattice is the set Λ of vectors v =
∑

ω αωω ∈ R24 such that:

(Λ1) αω ∈ Z for all ω ∈ Ω.

(Λ2) m(v) = (
∑

ω αω)/4 ∈ Z.

(Λ3) αω ≡ m(v) (mod 2) for all ω ∈ Ω.

(Λ4) C(v) = {ω ∈ Ω | αω 6≡ m(v) (mod 4)} ∈ VC .

The Leech lattice Λ is a Z-submodule of R24. Let Λ0 denote the set of vectors v ∈ Λ such that
m(v) ≡ 0 (mod 4). Then Λ0 is a Z-submodule spanned by the set {2eB | B ⊂ C}. Further, Λ as a
Z-submodule is generated by Λ0 and λω0 , for ω0 ∈ Ω. Write O(R24) for the subgroup of GL(R24)
preserving the bilinear form 〈 , 〉, or equivalently preserving the quadratic form q. Let G be the
subgroup of O(R24) acting on Λ. The group G is the automorphism group of the Leech lattice. For
Y ⊂ Ω, write εY for the element of GL(R24) such that

εY (ω) =

{
−ω , if ω ∈ Y,
ω , if ω 6∈ Y.

Let Q = {εY | Y ∈ VC}. Then K = H·Q ≤ G. Given any positive integer l, write Λl for the set
of all vectors v in Λ with q(v) = l. Then Λ = ∪lΛl. For v =

∑
ω αωω ∈ Λ and i a non-negative

integer, let
Si(v) = {ω ∈ Ω : |αω| = i} ,

and define the shape of v to be (0l0 , 1l1 , . . .), where li = |Si(v)|. Let Λ2
2 be the set of all vectors

in Λ of shape (28, 016), Λ3
2 the vectors in Λ of shape (3, 123), and Λ4

2 the vectors in Λ of shape
(42, 022). Then Λi2, 2 ≤ i ≤ 4, are the orbits of K on Λ2, with |Λ2

2| = 27·759, |Λ3
2| = 212·24

and |Λ4
2| = 22·

(
24
2

)
. Moreover, |Λ2| = 24·33·5·7·13 and K = NG(Λ4

2). Using this information

it can be shown that G acts transitively on Λ2, Λ3, and Λ4. Also K is a maximal subgroup of
G and |G| = 222·39·54·72·11·13·23. Notice that εΩ is the scalar map on R24 determined by −1,
and hence is in the center of G. Denote by Co1 the factor group G/〈εΩ〉. Denote by Co2 the
stabilizer of a vector in Λ2 and denote by Co3 the stabilizer of a vector in Λ3. The groups Co1, Co2

and Co3 are the Conway groups, with |Co1| = 221·39·54·72·11·13·23, |Co2| = 218·36·53·7·11·23 and
|Co3| = 210·37·53·7·11·23. Recall that Co1, Co2 and Co3 are finite simple groups.

In Table 1 we give the primitive representations of Co1 of degree ≤ 8386560. The first column
gives the ordering of the primitive representations as given by the ATLAS [8] and as used in our
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computations; the second gives the degrees (the number of cosets of the point stabilizer), the third
the number of orbits, and the remaining columns give the size of the non-trivial orbits of the
respective point stabilizers.

No. Max. sub. Deg. # length

1 Co2 98280 4 4600 46575 47104

2 3·Suz:2 1545600 5 5346 22880 405405 11119682

3 211:M24 8292375 6 3542 48576 1457280 2637824 4145152

4 Co3 8386560 7 11178 37950 257600 1536975 2608200 3934656

Table 1: Maximal subgroups of Co1 of degree ≤ 8386560

4 The construction of codes

Our approach is representation theoretic and based on Theorem 4.1.

Theorem 4.1 Let G be a finite group and let V be an FG-module over a finite field F and let Ω be
a G-invariant subset of V. Let FΩ be the (formal) permutation module with basis Ω = {α |α ∈ Ω}
where α = (δβα)β∈Ω where δβα denotes the Kronecker δ function.
Then

ρ :
∑
α∈Ω

rαα 7→
∑
α∈Ω

rαα

is an FG-homomorphism of FΩ into V with kernel of ρ = M = {
∑

α∈Ω rαα |
∑

α∈Ω rαα = 0 in V }
and image U where U is the submodule of V generated by Ω. Hence, we have

FΩ/M ∼= U (by the homomorphism theorem) and

M⊥ ∼= U∗ (by orthogonality)

where M⊥ denotes the submodule of FΩ orthogonal to M with respect to the canonical bilinear form
on FΩ and U∗ = Hom(U,F) denotes the FG-module dual to U in the sense of representation theory.

Proof: The action of G on Ω is given by restricting the action of G(⊆ FG) on V. So the theorem is
basically just a restatement of the universal property of the permutation module as a free structure
over Ω using in addition some elementary facts of representation theory and linear algebra. We
leave to the reader to complete the details of the proof. �

Remark 4.2 Usually α is identified with α and Ω is identified with Ω, but for the purposes of
Theorem 4.1 we keep them distinct.

Corollary 4.3 With the same assumptions of Theorem 4.1 the following hold:
(i) Let V be irreducible. Then FΩ has an irreducible submodule W isomorphic to V ∗, if Ω 6= ∅.
(ii) Let V ∼= V ∗ be irreducible and self-dual (in the sense of representation theory). Then FΩ has
an irreducible submodule W isomorphic to V.

Remark 4.4 Theorem 4.1 is useful in other situations, for instance if V has a unique maximal
submodule V0 and ∅ 6= Ω ⊆ V \ V0. Then necessarily U = V.

Theorem 4.1, Corollary 4.3 and Remark 4.4 above have been suggested [10] as means of con-
struction of codes.
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5 Binary codes of small dimension invariant under Co1 of degree
98280

With the notation established in Section 3, for v ∈ Λ let Λl(v, i) denote the set of u ∈ Λl for
which 〈v, u〉 = 8i. Let 2Λ = {2v : v ∈ Λ}. Then 2Λ is a 2·Co1-invariant Z-module, and 2·Co1

acts on the quotient module Λ̃ = Λ/2Λ. The module Λ̃ is the reduction modulo 2 of the Leech
lattice. For v ∈ Λ, let ṽ = v + 2Λ and for S ⊆ Λ let S̃ = {s̃ : s ∈ S}. Then 2ṽ = 0 for all v ∈ Λ,
and Λ̃ is an elementary abelian 2-group which may be viewed as a F22·Co1-module. Recall from
Section 3 that Co1

∼= 2·Co1/〈εΩ〉. Since 〈εΩ〉 acts trivially on Λ̃ it follows that Λ̃ is a F2Co1-module.
In [2, Lemma 23.2 (4), Lemma 23.3] Aschbacher showed that Λ̃ is a 24-dimensional, faithful and
irreducible F2Co1-submodule, see [1] for relevant information on this submodule. Using these and
other properties of Λ̃ ∼= F24

2 in [11] we denoted this module C24 and examined its combinatorial
properties. We state the pertinent result below

Result 5.1 Let G be the simple Conway group Co1 in its rank 5 primitive permutation action of
degree 98280 and let C24 denote a submodule of dimension 24 of the permutation module of degree
98280 over F2. Then
(i) C24 is a self-orthogonal doubly-even projective two-weight [98280, 24, 47104]2 code with 98280
words of weight 47104.
(ii) The dual code C24

⊥ of C24 is a [98280, 98256, 3]2 uniformly packed code with 75348000 codewords
of weight 3.
(iii) 1 ∈ C24

⊥ and C24 is the unique submodule of its dimension on which Co1 acts absolutely
irreducibly.
(iv) Aut(C24) ∼= Co1.

Remark 5.2 (i) The weight distribution of C24 is given by

A0 = 1, A47104 = 98280, A49152 = 16678935. (1)

(ii) The code C24 can be constructed as an application of Theorem 4.1.
(iii) Observe that C24 is a triply-even code, since wt(c) | 8 for every c 6= 0 in C24, where 0 represents
the zero vector in C24.

As stated in Remark 5.2 (ii) one can apply Theorem 4.1 to the situation given in Result 5.1 by
identifying V = Λ̃ and Ω = Λ2 = Λ2 + Λ/2Λ with F = F2, i.e., the reduction image of Λ2 modulo
2Λ, and G = Co1. Notice that V ∼= V ∗ follows since G acts as an orthogonal group on V and C24

can be identified with the submodule U of F2Ω given by Theorem 4.1. Notice also that C24
⊥ is the

module denoted M in Theorem 4.1.
The following results concerning with C24 appeared as a proposition and a lemma in [11].

Result 5.3 The generating words of C24 form the blocks of the unique, self-dual, symmetric, flag
transitive and point primitive 1-(98280, 47104, 47104) design D24 invariant under Co1. Moreover,
Aut(D24) ∼= Co1.

Since C24 is a two-weight code, it follows by a well-known construction that if we let w1 and w2

(where w1 < w2) be the non-zero weights of C24 one can associate a graph on the 224 = 16777216
vertices. The vertices of the graph are identified with the non-zero weight codewords and two
vertices corresponding to the codewords x and y are adjacent if and only if d(x, y) = w1. Using
the above, a strongly regular graph with new parameters denoted Γ(C24) associated to C24 was
constructed. We record the properties of the graph in
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Result 5.4 Γ(C24) is a strongly regular (16777216, 98280, 4600, 552) graph with spectrum
[98280]1, [4072]98280, [−24]16678935. The complementary graph Γ(C24) of Γ(C24) is a strongly regular
(16777216, 16678935, 16581206, 16585256) graph. This graph has spectrum [16678935]1, [23]16678935,
[−4073]98280.

5.1 The [98280, 25, 47104]2 code

Observe that C24 does not contain the all-ones vector 1. Below, we construct a binary linear code of
dimension 25, denoted C25 which results by adjoining the all ones vector to C24. In fact, C25 \C24

consists of the codewords complementary with those of C24.
In Figure 1 below we give a partial description of the submodule structure (the composition

factors can be derived from this) of the permutation module F2Ω of degree 98280. The vector space
dimension is given in parentheses.

Figure 1: Partial submodule lattice for F2Ω

F2Ω

C⊥24 〈1〉⊥

C⊥25

C25

...

C24 〈1〉

{0}

(98280)

(98256) (98279)

(98255)

(25)

(24) (1)

(0)

Naturally, one can ask what are the combinatorial properties of the code C25?
In Proposition 5.5 we examine the combinatorial properties of C25 and give its main parameters.

In addition, in Proposition 6.1 we determine the orbits of the action of Co1 on C25 and describe the
corresponding geometric subgroups, i.e., stabilizers of points or blocks, and finally in Remark 6.3
we give a geometric significance of the nature of the complementary pairs of non-zero codewords,
in particular those of minimum weight. Notice that the notation 〈 , 〉 used in Proposition 5.5 parts
(i) and (v) and their proofs differs from that used for the bilinear form. Here we mean subspace
generation.

Proposition 5.5 Let G be the simple Conway group Co1 and F2Ω denote the permutation module
of degree 98280 over F2. Then
(i) There exists a unique submodule of F2Ω of dimension 25 invariant under Co1. Let C25 be
this submodule. Then C25 = 〈C24,1〉, where C24 is the smallest non-trivial faithful Co1-invariant
irreducible F2-module of dimension 24 of Result 5.1;
(ii) C25 is a triply-even projective [98280, 25, 47104]2 code with 98280 codewords of weight 47104,
1 ∈ C25

⊥ and in C25.
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(iii) C25 is not spanned by its minimum-weight codewords.
(iv) The dual code C25

⊥ of C25 is a [98280, 98255, 4]2 code with 297601053750 codewords of weight
4.
(v) Aut(C25) ∼= Co1.

Proof: (i) By construction C25 = 〈C24,1〉. Since C24 and 〈1〉 are Co1-invariant subspaces, we
deduce that C25 is a decomposable 25-dimensional F2-module of Co1 containing the 24-dimensional
F2-module C24. Thus C25 = C24 + 〈1〉. The uniqueness of C25 follows from Result 5.1(iii). See also,
[2, Lemma 23.2 (4), Lemma 23.3].
(ii) Since C25 ⊆ C25

⊥, if w ∈ C25 it follows that w ∈ C25
⊥ and so (w,w) = 0. Write w =

w1w2 . . . w98280. Then
∑98280

i=1 w2
i = 0. Furthermore, since w2

i = wi for all wi ∈ F2 then
∑98280

i=1 wi =
wi1. Hence 1 ∈ C25

⊥. That 1 ∈ C25 follows by construction. Now, we have A98280−i = |{wi + 1 :
wi ∈ C25}| = |{wi : wi ∈ C25}| = Ai. Form the latter and expression (1) we deduce

A0 = A98280 = 1, A47104 = A51176 = 98280, A49128 = A49152 = 16678935. (2)

Observe from (2) that all codewords of C25 have weight divisible by four. This shows that C25

is doubly-even and hence self-orthogonal. Moreover, C25 is triply-even as the weights of all its
codewords are divisible by eight.
(iii) By Result 5.1(i) we deduce that the codewords of weight 47104 generate the code C24. We
verified through computations with Magma that the codewords of weight 49128 span C25. Hence
the result.
(iv) Using MacWilliams identities and Pless’ power moment identities the weight distribution of
the dual can be obtained. In fact, we used computations with Magma [5] to confirm the full weight
distribution. From this we deduce that C25, since d(C25

⊥) ≥ 4. 1

(v) We show here that Aut(C25) ∼= Co1. Obviously, Co1 ⊆ Aut(C24). Now, suppose that α ∈
Aut(C24). Since α(1) = 1 and C25 = 〈C24,1〉, we have α ∈ Aut(C25). So that Aut(C24) ⊆ Aut(C25).
Since by Result 5.1(iv) we have Aut(C24) ∼= Co1, order considerations show Aut(C25) ∼= Co1. �

6 Geometric subgroups of Co1 as stabilizers of vectors of the codes

By [13, Theorem A1], we know that there are just three orbits of Co1 on 1-dimensional spaces in
Λ/2Λ and these orbits have lengths 98280, 8292375 and 8386560, respectively. In Proposition 6.1,
we use these facts and the fact that 1 ∈ C25 by part (iv) of Proposition 5.5 to show how the orbits
split under the action of Co1 on the non-zero codewords of C25 (see Expression (2)). The reader
will notice that since 1 ∈ C25 the weight distribution of C25 is symmetric and the codewords of
C25 occur in complementary pairs. Thus we determine the structure of (Co1)wi where i is in W
with W = {47104, 49152} and the structure of (Co1)wi where i is in W, the complement of W
and W = {51176, 49128}. For i ∈ W (respectively for i ∈ W ) we define Wi (respectively W i)
to be Wi = {wi ∈ C25 | wt(wi) = i} (respectively W i = {wi ∈ C25 | wt(wi) = i}). We show
in Proposition 6.1 that (Co1)wi (respectively (Co1)wi) is a maximal subgroup of Co1, for all i.
Taking the support of wi (respectively wi) and orbiting that under Co1 we form the blocks of
the 1-(98280, i, ki) support designs D = Dwi (respectively D = Dwi) where ki = |(wi)Co1 | × i

98280
(respectively ki = |(wi)Co1 | × i

98280). We show that Co1 acts point primitively on D. For economy
we prove the result for the codewords in W . The proof for the codewords in W follows by replacing
the relevant complementary pairs.

1The entire weight distribution can be obtained from the author.
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Proposition 6.1 Let i ∈ W and wi ∈ Wi. Then (Co1)wi is a maximal subgroup of Co1. Further-
more Co1 is primitive on Dwi .

Proof: The proof follows from the two cases discussed below.
Case 1. Consider W47104 = {wi ∈W | wt(wi) = 47104}. Since W47104 is invariant under the action
of Aut(C25) for all wi ∈ W47104, it follows from Expression (2) that wi

Co1 = W47104. Therefore
W47104 forms an orbit under the action of Co1 and thus Co1 is transitive on W47104. Now let x =
w(47104). Then (Co1)x is a subgroup of order 218·36·53·7·11·23 we deduce that thus maximal in Co1.
Using Expression (2) once again and the orbit stabilizer theorem we deduce that [Co1:(Co1)x] =
98280 and by order considerations and Table 1 we have (Co1)x ∼= Co2.
Case 2. Let W49152 = {wi ∈W | wt(wi) = 49152}. It can be deduced from [13, Theorem A1] that
under the action of Co1 the set W49152 splits into two orbits of lengths 8292375 and 8386560, say
W(49152)1 and W(49152)2 . Let y = w(49152)1 ∈ W(49152)1 and z = w(49152)2 ∈ W(49152)2. Then (Co1)y
is a subgroup of order 501397585920 and thus maximal in Co1. Moreover, (Co1)y ∼= 211:M24.
(Note that there is a misprint in [8, p. 183] for the index [Co1:(211:M24)].) Similarly, |(Co1)z| =
210·37·53·7·11·23, so that (Co1)z ∼= Co3.
By the transitivity of Co1 on the code coordinate positions, the codewords of Wi form a 1-design
Dwi with Ai blocks. This implies that Co1 is transitive on the blocks of Dwi for each wi and since
(Co1)wi is a maximal subgroup of Co1, we deduce that Co1 acts primitively on Dwi for each i. This
still holds if we replace wi with wi in each case discussed.

In Table 2 we depict the structure of the vector stabilizer for all the codewords of C25.

i (Co1)w Maximality i (Co1)w Maximality

0 Co1 No 98280 Co1 No

47104 Co2 Yes 51176 Co2 Yes

(49152)1 Co3 Yes (49128)1 Co3 Yes

(49152)2 211:M24 Yes (49128)2 211:M24 Yes

Table 2: Stabilizer in Co1 of a codeword w (=wi or wi)

In Table 3 the first column represents the codewords of weight i and the second column gives
the parameters of the designs Dw, where w = wi( or wi) accordingly. In the third column we list
the number of blocks of Dw. We test the primitivity for the action of Co1 on Dw in the final column.
�

In what follows our main interest is in determining the orbits of Co1 on the set of codewords
of minimum weight in the dual code C25

⊥. While this is of independent interest our investigation
was motivated by a question of Wolfgang Knapp [10] for it would be of help in the classification of
these types of codewords. We aim to trace these to vectors of the Leech lattice, thereby providing
a geometric description and the nature of this class of codewords.

Proposition 6.2 Co1 has 3 orbits on the set of minimum weight codewords of C25
⊥, the orbit

lengths being 88114776750, 159134976000 and 50351301000, respectively.

Proof: Let W4(C25
⊥) = {w ∈ C25

⊥ | wt(w) = 4} denote the set of weight 4 vectors in C25
⊥.

Then by Proposition 5.5 (iv), we have |W4(C25
⊥)| = 297601053750 and thus Co1 acts intransitively

on W4(C25
⊥). Under the action of Co1 we have that W4(C25

⊥) splits into the orbits W4(C25
⊥)i
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i Dw No. of blocks Primitivity

47104 1-(98280, 47104, 47104) 98280 Yes

51176 1-(98280, 51176, 51176) 98280 Yes

(49152)1 1-(98280, 49152, 4194304) 8386560 Yes

(49152)2 1-(98280, 49152, 4147200) 8292375 Yes

(49128)1 1-(98280, 49128, 4192256) 8386560 Yes

(49128)2 1-(98280, 49128, 4145175) 8292375 Yes

Table 3: Non-trivial point- and block-primitive 1-designs Dw on 98280 points invariant under Co1

with 1 ≤ i ≤ 3. In particular, |W4(C25
⊥)1| = 88114776750, |W4(C25

⊥)2| = 159134976000 and
|W4(C25

⊥)3| = 50351301000, respectively. Let a ∈ W4(C25
⊥)1, b ∈ W4(C25

⊥)2 and c ∈ W4(C25
⊥)3.

Then (Co1)a is a subgroup of order 47185920 and follows from the list of maximal subgroups of
Co1, see ATLAS [8, p. 183], that (Co1)a is not maximal in Co1. Notice that |(Co1)b| = 26127360
and |(Co1)c| = 82575360, and as in the preceding case, these groups are not maximal in Co1.

By order considerations we deduce that (Co1)a is possibly a maximal subgroup of 21+12:(A8×S3)
or 24+12:(S3 × 3S6) with index 42 and 18, respectively. By computations with Magma [5] we
obtained the maximal subgroups of 21+12:(A8×S3) and 24+12:(S3×3S6), and since neither of these
subgroups possesses a maximal subgroup of the given index we conclude that (Co1)a is not a second
maximal subgroup. Furthermore, using the structure of the composition factors we deduce that
(Co1)a ∼= (3× 217):S5.

Next we consider the group (Co1)b. Inspecting the list of maximal subgroups of Co2 we deduce
that (Co1)b is a maximal subgroup of Co2 isomorphic to U4(3) · D8. Furthermore, (Co1)b is the
setwise stabilizer in Λ of an S-lattice of type 21+4:32, and point stabilizer isomorphic to U4(3), see
ATLAS [8, pp. 52].

Arguing as above we note that (Co1)c is possibly a maximal subgroup of 21+12:(A8×S3) of index
24. However, it can be proven by inspecting the list of maximal subgroups of this group computed
using Magma that this possibility does not occur. Now, direct calculating using composition factors
shows that (Co1)c ∼= 211:L3(4) · 2. �

Remark 6.3 The geometric significance and the nature of the codewords of C25 can be described
using the Leech lattice as it was the case for the codewords of C24, see [11]. The description that
is presented below follows directly by using [13, Theorem A1] and [13, Theorem A2].
(1). The minimum words of C25 are the 98280 pairs consisting of a type 2 vector and its negative
in the Leech lattice [12, p. 156]. The stabilizer of such a pair has just three non-trivial orbits on
the other pairs, where the orbit in which a particular vector lies depends only on the angles its
vectors from with the fixed vector. The permutation character of this action is χ1 +χ3 +χ6 +χ10,
of degrees 1, 299, 17250, 80730 respectively, see [8, p. 183].
(2). Observe (from Table 2) that the codewords of weight 49152 in C25 split into two classes,
namely a class of codewords whose stabilizer is isomorphic to 211:M24, and another with stabilizer
of a codeword isomorphic to Co3. The class of codewords with stabilizer isomorphic to 211:M24

consists of the type 4 base (or A24
1 -hole) vectors, while those vectors with stabilizer Co3 are known

to be type 3 vectors in the Leech lattice, see [8, p. 183] or [12, p. 156].
(3). A result along the lines of Result 5.3 can be obtained for the 1-(98280, 51176, 51176) design D
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invariant under Co1.
(4). Observe that in Proposition 6.2 we show that the set W4(C25

⊥) of minimum weight
codewords of C25

⊥ is not an orbit of Co1. In particular, we give a geometric description of the nature
of W4(C25

⊥)2, tracing it to the Leech lattice, and also showed that the stabilizer of those codewords
is a second maximal subgroup of Co1. It would be of interest to give a geometric description of the
nature of the codewords of W4(C25

⊥)1 and W4(C25
⊥)3, respectively.
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