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Abstract. In this paper, which is a continuation of earlier work by the first author and Gunnar Carlsson, one of
the first results we establish is the additivity of the motivic Becker-Gottlieb transfer, the corresponding trace as

well as their realizations. We then apply this to derive several important consequences: for example, we settle an

open conjecture regarding the assertion that the Euler-characteristic of G/N(T) for a split reductive group scheme
G and the normalizer of a split maximal torus N(T) is 1 in the Grothendieck-Witt ring.

In addition to obtaining the analogues of various double coset formulae known in the classical setting of algebraic

topology, we also obtain applications to Brauer groups of homogeneous spaces associated to reductive groups over
separably closed fields. We also consider the relationship between the transfer on schemes provided with a compatible

action by a 1-parameter subgroup and the transfer associated to the fixed point scheme of the 1-parameter subgroup.
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1. Introduction

We begin by recalling the basic framework adopted in [CJ19] in order to construct the motivic and étale variants
of the classical Becker-Gottlieb transfer. Let G denote a linear algebraic group over a perfect field k of arbitrary
characteristic. Let Sptmot (Sptet, Sptmot,E , Sptet,E) denote the category of motivic spectra over k (the cor-
responding category of spectra on the big étale site of k, the subcategory of Sptmot of E-module spectra for a
commutative ring spectrum E εSptmot and the corresponding subcategory of Sptet for a commutative ring spec-
trum E εSptet, respectively). (If S denotes Spec k, we may often let Spt/Smot (Spt/Set) denote Sptmot (Sptet,
respectively) to highlight the base field k.) The corresponding stable homotopy category will be denoted HSptmot

(HSptet, HSptmot,E and HSptet,E , respectively). The homotopy category HSptmot is often denoted SH(k) in
the literature. Our notation of HSptmot hopes to highlight the fact that this is the homotopy category of motivic
spectra. In positive characteristic p, we either consider Sptmot[p

−1], or Sptmot,E where E is any motivic ring

spectrum that is `-complete for some prime ` 6= p = char(k). (In fact Sptmot[p
−1] identifies with Sptmot,ΣT[p−1],

where ΣT denotes the motivic sphere spectrum.) Throughout, T will denote P1 pointed by ∞ and Tn will denote
T∧n for any integer n ≥ 0.

Moreover, it is important for us that the ring-spectrum E εSptmot (E εSptet) has a lift to an equivariant ring
spectrum EG in the sense of [CJ19, Terminology 3.12]. For example, the usual motivic sphere spectrum ΣT lifts to
the equivariant sphere spectrum SG defined as in [CJ19, Definition 3.4]. The only other ring spectra we consider
will be ΣT[p−1] for p = char(k), and for a fixed prime ` 6= p(= char(k)), ΣT,(`) which denotes the localization of

ΣT at the prime ideal (`) and ΣT ̂̀ which denotes the completion of ΣT at the prime `. ΣT[p−1] (ΣT,(`), ΣT ̂̀)

lifts to the equivariant spectrum SG[p−1] (SG
(`), ŜG

`, respectively).

Let X, Y denote either smooth schemes of finite type over k or unpointed simplicial presheaves on the big
Nisnevich site of k provided with actions by G. Let f : X → X denote a G-equivariant map. In this case, we first
recall from [CJ19, Definition 6.1] (see also Definition 2.5) that the G-equivariant pre-transfers are the following
maps

(1.0.1) tr(f)′G : SG → SG ∧X+, tr(fY)′G = idY+ ∧ tr(f)′G

where SG is the G-equivariant sphere spectrum. (When the group G is trivial, we may replace the G-equivariant
sphere spectrum by the usual motivic sphere spectrum.) Then the transfer tr(f) defined on generalized equivariant
motivic cohomology theories is obtained by starting with the above G-equivariant pre-transfer, feeding it to a
suitable form of the Borel construction, and then performing various modifications to it as discussed in detail in
[CJ19, section 6]. We will consider the following three basic contexts.

(a) p : E→ B is a G-torsor for the action of a linear algebraic group G with both E and B smooth quasi-projective
schemes over k, with B connected and

πY : E×G (Y ×X)→ E×G Y

the induced map, where G acts diagonally on Y×X. One may observe that, on taking Y = Spec k with the trivial
action of G, the map πY becomes πY : E×G X→ B, which is an important special case.

(b) BGgm,m will denote the m-th degree approximation to the geometric classifying space of the linear algebraic
group G (as in [Tot99], [MV99]), p : EGgm,m → BGgm,m is the corresponding universal G-torsor and

πY : EGgm,m ×G (Y ×X)→ EGgm,m ×G Y

is the induced map.

(c) If pm (πY,m) denotes the map denoted p (πY) in (b), here we let p = lim
m→∞

pm and let

πY = lim
m→∞

πY,m : EGgm ×G (Y ×X) = lim
m→∞

EGgm,m ×G (Y ×X)→ lim
m→∞

EGgm,m ×G Y.

Strictly speaking, the above definitions apply only to the case where G is special in the sense of Grothendieck (see
[Ch]) and when G is not special, the above objects will in fact need to be replaced by the derived push-forward
of the above objects viewed as sheaves on the big étale site of k to the corresponding big Nisnevich site of k, as
discussed in [CJ19, (6.2.7)]. However, we will denote these new objects also by the same notation throughout,
except when it is necessary to distinguish between them.

Basic assumptions on the base field.

(1) A standing assumption throughout the paper is that the base field k is a perfect field of arbitrary characteristic
≥ 0.

(2) In addition, quite often, though not always, we will assume that k contains a
√
−1. (We will make it clear

where this assumption is required on a case by case basis.)
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(3) When considering actions by linear algebraic groups G that are not special, we will also assume the base
field is infinite to prevent certain unpleasant situations.

(4) On considering étale realizations of the transfer, it is important to assume that the base field k has
finite `-cohomological dimension and satisfies the finiteness conditions in [CJ19, (3.0.3)], namely that
Hn

et(Spec k ,Z/`ν) is finitely generated in each degree n and vanish for all n >> 0. (Such an assumption is
not needed on dealing with the motivic transfer alone.)

Definition 1.1. (Weak module spectra over commutative ring spectra) Let A denote a commutative ring spectrum
in Sptmot (Sptet). Then a spectrum M ∈ Sptmot (Sptet) is a weak-module spectrum over A if M is equipped
with a pairing µ : M∧A→ M that is homotopy associative. Such weak-module spectra will be often referred to as
module spectra throughout our discussion.

Definition 1.2. (See [CJ19, Definition 1.2].) Let M εSptmot (Sptet). For each prime number `, let Z(`) denote the
localization of the integers at the prime ideal ` and let Z ̂̀ = lim

∞←n
Z/`n. Then we say M is Z(`)-local (`-complete,

`-primary torsion), if each [S1∧s ∧ Tt ∧ ΣTU+,M ] is a Z(`)-module (Z ̂̀ -module, Z ̂̀ -module which is torsion,

respectively) as U varies among the objects of the given site, where [S1∧s ∧ Tt ∧ ΣTU+,M] denotes Hom in the
stable homotopy category HSptmot (HSptet, respectively).

Theorem 1.3. (See [CJ19, Theorem 1.1].) Let f : X → X denote a G-equivariant map and for each m ≥ 0, let
πY : E×G (Y × X)→ E×G Y denote any one of the maps considered in (a) through (c) above. Let fY = idY × f :
Y ×X→ Y ×X denote the induced map.

Then in case (a), we obtain a map (called the transfer )

tr(fY) : ΣT(E×G Y)+ → ΣT(E×G (Y ×X))+ (tr(fY) : E ∧ (E×G Y)+ → E ∧ (E×G (Y ×X))+)

in HSptmot (HSptmot,E , respectively) if ΣTX+ is dualizable in Sptmot (if E ∧ X+ is dualizable in Sptmot,E ,
respectively, where E is a commutative motive ring spectrum as considered earlier) having the following properties.

(i) If tr(fY)m : ΣT(EGgm,m ×G Y)+ → ΣT(EGgm,m ×G (Y × X))+ (tr(fY)m : E ∧ (EGgm,m ×G Y)+ → E ∧
(EGgm,m ×G (Y × X))+) denotes the corresponding transfer maps in case (b), the maps {tr(fY)m|m} are
compatible as m varies. The corresponding induced map lim

m→∞
tr(fY)m will be denoted tr(fY).

For items (ii) through (iv) we will assume any one of the above contexts (a) through (c).
(ii) If h∗,•( , E) (h∗,•( ,M)) denotes the generalized motivic cohomology theory defined with respect to the com-

mutative motivic ring spectrum E (a motivic module spectrum M over E, respectively) then,

tr(fY)∗(π∗Y(α).β) = α.tr(fY)∗(β), α ∈ h∗,•(E×G Y,M), β ∈ h∗,•(E×G (Y ×X), E).

Here tr(fY)∗ (π∗Y) denotes the map induced on generalized cohomology by the map tr(fY) (πY, respectively).
Both tr(fY)∗ and π∗Y preserve the degree as well as the weight.

(iii) In particular, π∗Y : h∗,•(E ×G Y,M) → h∗,•(E ×G (Y × X),M) is split injective if tr(fY)∗(π∗Y(1)) is a unit,
where
1 ∈ h0,0(E×G Y, E) is the unit of the graded ring h∗,•(E×G Y, E).

(iv) The transfer tr(fY) is natural with respect to restriction to subgroups of a given group. It is also natural with
respect to change of base fields, assuming taking the dual is compatible with such base-change.

(v) If h∗,•( ,M) denotes a generalized motivic cohomology theory, then the map tr(fY)
∗

: h∗,•(EGgm ×G (Y ×
X),M) → h∗,•(EGgm ×G Y,M) is independent of the choice of a geometric classifying space that satisfies
certain basic assumptions (as in [CJ19, 7.1: Proof of Theorem 1.1]), and depends only on X and the G-
equivariant map f.

(vi) Let E denote a commutative ring spectrum in Sptet which is `-complete, in the sense of Definition 1.2 (below),
for some prime ` 6= char(k). If E ∧X+ is dualizable in Sptet,E , then there exists a transfer tr(fY) in Sptet,E
satisfying similar properties.

(vii) Let E denote a commutative ring spectrum in Sptmot which is `-complete. Let ε∗ : Sptmot → Sptet denote
the map of topoi induced by the obvious map from the étale site of k to the Nisnevich site of k. Then if E ∧X+

is dualizable in Sptmot,E and ε∗(E ∧ X+) is dualizable in Sptet,E , the transfer map tr(fY) is compatible with
étale realizations, and for groups G that are special, ε∗(tr(fY)) = tr(ε∗(fY)).

Throughout the rest of the paper we will assume that the transfer we consider fits into one of the three basic
contexts (a), (b) or (c) above.

While the property (ii) is indeed quite useful, it is also important to be able to understand the composition
π∗ ◦ tr(f)

∗
: indeed knowing this composition enables one to determine the image of the map π∗ in most cases.

When the scheme X is in fact G/H, for a subgroup-scheme H of G, determining this composition is equivalent to
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obtaining a double coset formula involving the double cosets H\G/H. A main result of this paper is in fact the
Additivity or Mayer-Vietoris property of the transfer discussed in Theorem 1.12, which implies various key results,
such as various double coset formulae. Several of these are discussed in this paper. However, the additivity of
the transfer seems to hold only in generalized cohomology theories defined with respect to spectra which have the
rigidity property (as discussed in Definition 1.10.)

While the additivity of the transfer clearly implies the additivity of the trace, we are able to provide an inde-
pendent proof of the additivity of the trace which holds in all generalized cohomology theories. The additivity of
the trace then enables us to prove the conjecture of Morel on the motivic Euler-characteristic of G/N(T). This in
turn leads to establishing various splittings in the stable motivic homotopy category, some of which we also discuss
in the paper.

Overview of the paper. We will presently provide the following overview of the organization of the paper.
Apart from this introduction, which summarizes all the main results, the paper has essentially three main parts:

• Section 2, where we recall the main framework of the paper as formulated in [CJ19]. Here we also expand
the framework a bit, especially with respect to the diagonal map and the G-equivariant pre-transfer, so
as to be able to establish key results, like the additivity of the trace and transfer. This is discussed in
Definitions 2.4, 2.5 and 2.7.

• The first main result of the paper is the additivity of the trace: this is discussed in Theorem 1.5. Section 3
is devoted to a detailed proof of this theorem. But prior to this, we also establish certain basic results that
enable us to prove such theorems as the additivity of the trace. We also explore a number of applications
of the additivity of the trace: these are discussed in Theorem 1.6 and Corollary 1.9, the proofs of which
are left to Section 5.

• The remainder of the paper is devoted to the additivity of the transfer for generalized Borel-style equivariant
motivic cohomology theories. This is discussed in Theorem 1.12, with a detailed proof of this theorem
occupying all of section 4. In addition to invoking key results in motivic homotopy theory, like the purity
theorem of Morel-Voevodsky (see [MV99, Theorem 2.23]), and rigidity for A1-representable cohomology
theories, we also introduce the notion of motivic tubular neighborhoods, which enable us to obtain the
additivity theorem for the transfer, as in Theorem 1.12.

We discuss several applications of this theorem as in Theorem 1.13 and Corollaries 1.14 through 1.19,
the proofs of which are also left to section 5. While Theorem 1.13 and Corollaries 1.14, 1.15 and 1.19
establish motivic analogues of various double coset formulae known in the context of algebraic topology,
Corollary 1.16 considers an application to the Brauer-groups of certain homogeneous spaces.

• We also discuss how the transfer behaves with respect to Bialynicki-Birula type cell decompositions with
respect to the action of a 1-parameter subgroup commuting with the action of a given linear algebraic
group: see Corollaries 1.18 and 5.4. We expect these to lead to a general result on the stability of transfer
with respect to infinite families such as {GLn|n ≥ 0} and their normalizers of maximal tori {N(Tn)|n ≥)}
as considered in the forthcoming work [JP20].

Terminology 1.4. First we will consider the case where a given simplicial presheaf X is such that ΣTX+ is
dualizable in Sptmot. As a matter of notation, when the map f is the identity map on X, we will denote the
G-equivariant pre-transfer (transfer) by tr ′G (tr , unless we need to emphasize the choice of G, in which case this
will be denoted trG.). It may be important to point out that the context for the G-equivariant pre-transfer itself
needs to be expanded a bit: this is discussed in Definition 2.5. Throughout the rest of the discussion, we will adopt
this expanded context for the pre-transfer.

Moreover, if we need to specify the simplicial presheaf X, we will denote the pre-transfer (transfer) by tr ′GX (trX

or trG
X). The composition of the pre-transfer tr ′G(f) with the projection SG ∧ X+ → SG will be denoted τG(f)

and called the trace associated to f. When f = idX, this will be denoted τG
X and called the G-equivariant trace

associated to X. When the group G is trivial, we will denote the corresponding pre-transfer (trace) by tr ′X (τX,
respectively).

Next we will consider the case where, E ∈ Sptmot is a commutative ring spectrum and a given simplicial presheaf
X is such that E ∧ X+ is dualizable in Sptmot,E . As pointed out earlier, other than the sphere spectrum ΣT, we

will restrict to the ring spectra E = ΣT[p−1] for p = char(k), or with ` a fixed prime different from p = char(k),
the spectrum ΣT,(`) which denotes the localization of ΣT at the prime ideal (`) and the spectrum ΣT ̂̀ which

denotes the completion of ΣT at the prime `. Then, E = ΣT (ΣT[p−1], ΣT,(`), ΣT ̂̀) lifts to the equivariant

spectrum EG = SG (SG[p−1], SG
(`), ŜG

`, respectively). The corresponding pre-transfers, transfers and traces will be

denoted with a subscript E . That is, tr(f )′GEG (tr ′GEG , tr ′X,E , τ
G
X,E , τX,E) will denote the corresponding G-equivariant
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pre-transfer (the corresponding G-equivariant pre-transfer when f = idX, the corresponding pre-transfer for the
simplicial presheaf X, the corresponding G-equivariant trace and the corresponding trace, respectively).

Throughout the paper we will consider the suspension spectra of quasi-projective schemes, or more generally
the suspension spectra of simplicial presheaves on the big Nisnevich or étale site of the given base field k. For the
most part, these objects will be unpointed, but occasionally, we will need to consider objects that are intrinsically
pointed, for example schemes like P1, which is pointed by ∞. We will refer to such objects, throughout the paper,
as simplicial presheaves. If these objects are pointed and provided with the action by an algebraic group, we will
also assume that the base point remains fixed by the group action.

The additivity theorem for the trace is the following theorem:

Theorem 1.5. (Mayer-Vietoris and Additivity for the Trace) (i) Let X denote a smooth G-scheme and let ij :
Xj → X, j = 1, 2 denote the open immersion of two Zariski open subschemes of X which are both G-stable, with
X = X1 ∪ X2. Let U → X denote the open immersion of a Zariski open and G-stable subscheme of X, with
Ui = U ∩ Xi. Then adopting the terminology above, (i.e. where τG

P denotes the G-equivariant trace associated to
the G-simplicial presheaf P),

τG
X/U = τG

X1/U1
+ τG

X2/U2
− τG

(X1∩X2)/(U1∩U2)

in case char(k) = 0 . In case char(k) = p > 0 ,

τG
X/U,EG = τG

X1/U1,EG + τG
X2/U2,EG − τ

G
(X1∩X2)/(U1∩U2),EG ,

where EG is any one of SG[p−1], SG
(`), ŜG

`, and where ` is a prime different from p.

(ii) Let i : Z → X denote a closed immersion of smooth G-schemes with j : U → X denoting the corresponding
open complement. Let N denote the normal bundle associated to the closed immersion i and let Th(N ) denotes its
Thom-space. Then adopting the terminology above,

τG
X = τG

U + τG
X/U, and assuming

√
−1 ∈ k, τX/U = τTh(N ) = τZ

in case char(k) = 0 . In case char(k) = p > 0 ,

τG
X,EG = τG

U,EG + τG
X/U,EG , and assuming

√
−1 ∈ k, τX/U,E = τTh(N ),E = τZ,E

where EG is any one of SG[p−1], SG
(`), ŜG

`, and where E is any one of ΣT[p−1], ΣT,(`), or Σ̂T`, with ` a prime

different from p.

(iii) Let {Sα|α} denote a stratification of the smooth scheme X into finitely many locally closed and smooth sub-
schemes Sα. Then assuming

√
−1 ∈ k,

τX = ΣατSα

in case char(k) = 0 . In case char(k) = p > 0 , and again assuming
√
−1 ∈ k,

τX,E = ΣατSα,E

where E is any one of ΣT[p−1], ΣT,(`), or Σ̂T`, with ` a prime different from p.

(iv) Let E denote a commutative ring spectrum in Sptmot, whose presheaves of homotopy groups are all `-primary
torsion for a fixed prime ` 6= char(k), and let ε∗(E) denote the corresponding spectrum in Sptet. Then the results
corresponding to (i) and (ii) hold when the motivic trace τG

Z , associated to a smooth scheme Z is replaced by the
trace τG

Z,ε∗(E). Moreover, the results corresponding to (iii) hold when the motivic trace τZ associated to a smooth

scheme Z is replaced by the trace τZ,ε∗(E).

As an important application of the above theorem, we prove the following theorem, which is a conjecture due
to Morel: see [Lev18].

Theorem 1.6. Let G denote a split linear algebraic group over a perfect field k so that
√
−1 ∈ k, and let N(T)

denote the normalizer of a split maximal torus in G. Then the class, τ∗G/N(T)(1) = 1 (in particular, is a unit) in the

Grothendieck-Witt ring of the base field k, if k is of characteristic 0. If the base field k is of positive characteristic
p, then the same conclusion holds in the Grothendieck-Witt ring of k with the prime p inverted. Moreover, in both
cases τ∗G/T(1) = |W|, where W = N(T)/T denotes the Weyl group.

The above theorem, coupled with the results of [CJ19] enable us to obtain a number of applications, several
of which are the splittings discussed in Corollary 1.9. But first we define slice-completed generalized motivic
cohomology theories.
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Let M εSptmot. Then one has Voevodsky’s slice tower (see [Voev00]): {fnM|n}, where fn+1M is the n-th
connective cover of M. Let s≤nM be the homotopy cofiber of the map fn+1M→ M. Then, as shown in [Pel08], the
diagram

· · ·

��

//
fn+1M

��

//
fnM

��

// · · ·

��
· · ·

��

id //
M

��

id //
M

��

id // · · ·

��
· · · //

s≤nM
//
s≤n−1M

// · · ·

admits a lifting to Sptmot.

Definition 1.7. For a smooth scheme Y (smooth ind-scheme Y = {Ym|m}), we define the slice completed gener-

alized motivic cohomology spectrum with respect to a motivic spectrum M to be ĥ(Y,M) = holim
∞←n

HNis(Y, s≤nM) '

HNis(Y,holim
∞←n

s≤nM) (ĥ(Y,M) = holim
∞←m

holim
∞←n

HNis(Ym, s≤nM) ' holim
∞←m

HNis(Ym,holim
∞←n

s≤nM)) where HNis(Y,F) and

HNis(Ym,F) denote the generalized hypercohomology spectrum with respect to a motivic spectrum F computed on

the Nisnevich site. We let ĥ∗,•(Y,M) (ĥ∗,•(Y,M)) denote the homotopy groups of the spectrum ĥ(Y,M) (ĥ(Y,M),
respectively). One may define the completed generalized étale cohomology spectrum of a scheme or an ind-scheme
with respect to an S1-spectrum by using the Postnikov tower in the place of the slice tower.

Remark 1.8. By [Hirsch02, 18.1.8], the homotopy inverse limit holim
∞←n

s≤nM belongs to Sptmot. We may, therefore,

define the slice completion of the spectrum M to be holim s≤nM (denoted henceforth by M̂) and define M to be

slice-complete, if the natural map M→ M̂ is a weak-equivalence. Therefore, one may see that ĥ(Y,M) = h(Y, M̂)

and ĥ(Y,M) = h(Y, M̂). Several important spectra, like the spectrum representing algebraic K-theory and algebraic
cobordism, are known to be slice-complete.

Corollary 1.9. Assume the hypotheses of Theorem 1.6. In addition, assume that the following hypotheses hold
for (i) through (iii). Let M denote any motivic spectrum if the base field is of characteristic 0 and let M denote
a motivic spectrum in Sptmot[p

−1] if the base field is of characteristic p > 0. Let p : E → B denote the map
appearing in one of the three cases (a) through (c) considered in Theorem 1.3.

(i) Let π : E×
G

(G/N(T))→ B denote the map induced by the projection G/N(T)→ Spec k. Then the correspond-

ing induced map

π∗ : h•,∗(B,M)→ h•,∗(E×
G

(G/N(T)),M)

is a split monomorphism, where h∗,•( ,M) denotes the generalized motivic cohomology theory defined with
respect to the spectrum M.

(ii) Let Y denote a G-scheme or an unpointed simplicial presheaf provided with a G-action. Let q : E×
G

(G ×
N(T)

Y)→

E×
G

Y denote the map induced by the map G ×
N(T)

Y → Y sending (g, y) 7→ gy. Then, the induced map

q∗ : h•,∗(E×
G

Y,M)→ h•,∗(E×
G

(G ×
N(T)

Y),M)

is also a split injection.
(iii) Let h∗,• denote a generalized motivic cohomology theory defined with respect to a motivic spectrum M as in

(ii) above. Then the composition of the two maps:

q∗ : h∗,•(E×
G

Y)→ h∗,•(E×
G

(G ×
N(T)

Y)) and

h∗,•(E×
G

(G ×
N(T)

Y))→ h∗,•(E×
G

(G×
T

Y))

(where the last map is induced by the inclusion T→ N(T)) is injective if |W| (where W = N(T)/T) is a unit
in h∗,•(BN(T)). In particular, this last condition holds if |W| and ` are relatively prime, when the homotopy
groups of M are all `-primary torsion.

(iv) Let E denote a commutative ring spectrum in Sptmot, whose presheaves of homotopy groups are all `-primary
torsion for a fixed prime ` 6= char(k), and let ε∗(E) denote the corresponding spectrum in Sptet. We will
further assume that M is a module spectrum over E. Then the results corresponding to (i) through (iii) hold
for h∗( , ε∗(M)) which is the generalized étale cohomology with respect to the étale spectrum ε∗(M).
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We also establish the additivity and Mayer-Vietoris property for the transfer, but only for generalized cohomology
theories defined with respect to spectra that have the rigidity property as discussed in Definition 1.10. This will also
provide a second proof of the additivity and Mayer-Vietoris property for the trace, but for generalized cohomology
theories defined with respect to spectra that have the rigidity property.

Definition 1.10. (Rigidity) Assume the base field k is infinite. Let M denote a motivic spectrum, so that its
presheaves of homotopy groups are all `-primary torsion for a fixed prime ` different from the characteristic of
the base field k. We will say that M has the rigidity property if for any smooth scheme X of finite type over the
given base field k, and a point x of X, with residue field k(x) and Hensel local ring at x given by OhX,x , the map

Spec k(x)→ SpecOhX,x induces a weak-equivalence: Γ(SpecOhX,x ,M) ' Γ(Spec k(x ),M).

Let M denote a spectrum in Sptet so that its presheaves of homotopy groups are all `-primary torsion for a fixed
prime ` different from the characteristic of the base field k. We will say that M has the rigidity property if for any
smooth scheme X of finite type over the given base field k, and a point x of X, with residue field k(x) and strict

Hensel local ring at x given by OshX,x , with residue field k(x), the following conditions are satisfied: (i) the map

Spec k(x)→ SpecOshX,x induces a weak-equivalence: Γ(SpecOshX,x ,M) ' Γ(Spec k(x ),M), and (ii) for any inclusion

k → K of separably closed fields, the induced map Γ(Spec k,M)→ Γ(Spec K,M) is a weak-equivalence.

Conventions 1.11. p ≥ 0 will denote the characteristic of the base field k. Throughout the following theorem,
its proof and various applications, that is Theorem 1.12, Theorem 1.13 and Corollaries 1.14 through 1.18, we will
fix a commutative motivic ring spectrum E, with EG its lift to a G-equivariant spectrum, all chosen as discussed
in Terminology 1.4. M will always denote module spectra over the given ring spectrum E. Moreover, whenever we
invoke the context of Theorem 1.3, we will assume the self-map f : X→ X there is the identity map, and the scheme
Y there is the base scheme Spec k.

In order to ensure that the Borel construction for non-special groups (which has to be carried out by pull-back
to the étale site) is compatible with the notions of rigidity, one will need to adopt the model structures as discussed
in section 4.2. We will assume this implicitly throughout the following theorem and its various applications.

Theorem 1.12. (Mayer-Vietoris and Additivity for the transfer) (i) Let X denote a smooth G-scheme and let
ij : Uj → X, j = 1, 2 denote the open immersion of two Zariski open subschemes of X which are both G-stable,
with X = U1 ∪ U2. Then adopting the terminology above, (i.e. where tr ′GP denotes the G-equivariant pre-transfer
associated to the G-simplicial presheaf P and τG

P denotes the corresponding G-equivariant trace)

tr ′GX = i1 ◦ tr ′GU1
+ i2 ◦ tr ′GU2

− i3 ◦ tr ′GU1∩U2
and τG

X = τG
U1

+ τG
U2
− τG

U1∩U2

in case char(k) = 0. In case char(k) = p > 0, we obtain

tr ′GX,EG = i1 ◦ tr ′GU1,EG + i2 ◦ tr ′GU2,EG − i3 ◦ tr ′GU1∩U2,EG and τG
X,EG = τG

U1,EG + τG
U2,EG − τ

G
U1∩U2,EG .

We also obtain in all characteristics,

trX = i1 ◦ trU1
+ i2 ◦ trU2

− i3 ◦ trU1∩U2

which denote the induced transfers as in any one of the three contexts of Theorem 1.3, with respect to a motivic
spectrum M as in Conventions 1.11.

(ii) Let i : Z → X denote a closed immersion of smooth G-schemes with j : U → X denoting the corresponding
open complement. In this context we will let

(1.0.2) tr ′GX/U : SG → SG ∧X+

denote the pre-transfer defined as in Definition 2.5 with P (C) there denoting X/U (X, respectively). Then adopting
the terminology above,

tr ′GX = j ◦ tr ′GU + tr ′GX/U, and τG
X = τG

U + τG
X/U

in case char(k) = 0. In case char(k) = p > 0, we obtain

tr ′GX,EG = j ◦ tr ′GU,EG + tr ′GX/U,EG , and τG
X,EG = τG

U,EG + τG
X/U,EG ,

where the pre-transfer tr ′GX/U,EG : EG → EG ∧ X+ is defined as in Definition 2.7 with P (C) there denoting X/U

(X+, respectively).

We also obtain in all characteristics,
trX = j ◦ trU + trX/U

which denote the transfers induced by the corresponding pre-transfers as in any one of the three contexts of Theo-
rem 1.3, with respect to a motivic spectrum M, as in Conventions 1.11.

For the remainder of this theorem, we will assume that the base field k is infinite and that it contains a
√
−1.



8 Roy Joshua and Pablo Pelaez

(iii) Let M denote a motivic spectrum that has the rigidity property (as discussed in Definition 1.10). Let N denote
the normal bundle associated to the closed immersion i as in (ii), and let Th(N ) denotes its Thom-space. Then
we obtain in all characteristics

trX/U = trTh(N ) = i ◦ trZ,

where the following notational convention hold:

• trX/U, trTh(N ), trZ denote the transfers induced on generalized motivic cohomology with respect to the
motivic spectrum M as in Theorem 1.3 and Terminology 1.4, and

• where the corresponding G-equivariant pre-transfers are defined with respect to the ring spectrum SG in

characteristic 0 and with respect to one of the ring spectra SG[p−1], SG
(`), ŜG

`, in case char(k) = p > 0,

and where ` is a prime different from p.

(iv) Again let M denote a motivic spectrum that has the rigidity property (as discussed in Definition 1.10). Let
{Sα|α} denote a stratification of the smooth scheme X into finitely many locally closed and smooth G-stable sub-
schemes Sα. For each α, let iα : Sα → X denote the corresponding locally closed immersion. Then one obtains in
all characteristics

trX = Σαiα ◦ trSα ,

where the following notational conventions hold:

• trX, trSα denote the transfers induced on generalized motivic cohomology theories with respect to the motivic
spectrum M as in Theorem 1.3 and Terminology 1.4, and

• where the corresponding G-equivariant pre-transfers are defined with respect to the ring spectrum SG in

characteristic 0 and with respect to one of the ring spectra SG[p−1], SG
(`), ŜG

`, in case char(k) = p > 0,

and where ` is a prime different from p.

(v) Let EG denote a commutative ring spectrum in SptG
mot, whose presheaves of homotopy groups are all `-primary

torsion for a fixed prime ` 6= char(k), and let ε∗(EG) denote the corresponding spectrum in SptG
et. Then the results

corresponding to (i) through (ii) also hold if tr ′GZ (τG
Z ) is replaced by tr ′GZ+∧ε∗(EG) (τG

Z+∧ε∗(EG), respectively). Assume

next that M is a module spectrum over E = (i∗ ◦ P̃ ◦ Ũ)∗(EG) (which is the non-equivariant spectrum obtained from
EG as in Proposition 2.2) so that M has the rigidity property as in Definition 1.10. Then the results corresponding
to (i) through (iv) hold for the transfer trZ in generalized étale cohomology theories defined with respect to the
spectrum ε∗(M).

As is shown in [L] and [LMS], the additivity and Mayer-Vietoris property of the transfer can be easily deduced
by showing that the corresponding pre-transfer (i.e. the transfer for the trivial group) is additive, or equivalently,
has what is often called the Mayer-Vietoris property. We establish such a property, by systematically verifying
that the same general strategy carries over to the motivic and étale framework.

In addition, we also verify a multiplicative property of the pre-transfer. As further applications of the additivity
and multiplicativity of the pre-transfer, we establish various double coset formulae. The main context in which we
consider double coset formulae will be as follows. Let G denote a linear algebraic group, and let H, K denote two
closed linear algebraic subgroups. Then, adopting the terminology as in Theorem 1.3, that for a linear algebraic
group H, BH = lim

m→∞
BHgm,m and EH = lim

m→∞
EHgm,m, we obtain the cartesian square:

(1.0.2) EK×
K

G/H
p̃K //

π̃H

��

EG×
G

G/H

πH

��
BK

pK //
BG.

Now a basic assumption we make is that G/H admits a finite decomposition G/H = tiFi, where each Fi is a locally
closed and K-stable smooth subscheme of G/H, where we assume that K acts on the left on G/H and H acts on
the right on G. In particular, it follows that each Fi is a disjoint union of the double-cosets for the left-action of K
on G and the right action of H on G.

Theorem 1.13. Assume the situation as in (1.0.2).

(i) Let M denote a motivic spectrum and let h∗,•( ,M) denote the generalized cohomology defined with respect to
the spectrum M. Denoting the maps induced by the transfers

trG∗ : h∗,•(EG×
G

G/H,M)→ h∗,•(BG,M), trK∗ : h∗,•(EK×
K

G/H,M)→ h∗,•(BK,M), and
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p∗K : h∗,•(BG,M)→ h∗,•(BK,M), p̃∗K : h∗,•(EG×
G

G/H,M)→ h∗,•(EK×
K

G/H,M)

the corresponding pull-backs, we obtain:

(1.0.3) p∗K ◦ trG∗ = trK∗ ◦ p̃∗K.

(ii) Assume the base field k is infinite and contains a
√
−1. Let M denote a motivic spectrum that has the rigidity

property as in Definition 1.10 and let h∗,•( ,M) denote the generalized cohomology defined with respect to the
spectrum M. Then, the map induced by the transfer h∗,•(trK,M) admits a decomposition as Σjh

∗,•(ij ◦ trK
Fj
,M),

where trK∗
Fj

: h∗,•(EK×
K

Fj,M)→ h∗,•(BK,M) is the corresponding transfer and ij : EK×
K

Fj → EK×
K

G/H is the map

induced by the inclusion Fj → G/H.

The above double coset formula itself specializes to provide several interesting applications, examples of which are
discussed in the following corollaries.

Corollary 1.14. (Double coset formulae) Let h∗,• denote a generalized cohomology theory defined with respect to
a motivic spectrum M. Assume that the base field k is infinite, contains a

√
−1, and that the spectrum M has the

rigidity property as in Definition 1.10.

(i) Assume that G is a connected split reductive group, and that K = H = T is a split maximal torus in G. Let
N(T) denote the normalizer of T and let W = N(T)/T. Then, trK∗ ◦ p̃∗K (that is, the term appearing on the right-

hand-side in (1.0.3)), identifies with Σḡ εWCg, where Cg : h∗,•(BH,M)
∼=→h∗,•(BHg,M) is the isomorphism induced

by conjugation by g, and where Hg = gHg−1.

(ii)Suppose G is a connected split reductive group, and that H is a closed linear algebraic subgroup of G of maximal
rank and K = T is a split maximal torus in G and H. Let WG (WH) denote the Weyl group of G (H, respectively).
In this case the right-hand-side of (i) may be written as Σg εWG/WH

p∗(K,Hg) ◦ Cg, where Cg : h∗,•(BH,M) →
h∗,•(BHg,M) is as in (ii) and p∗(K,Hg) : h∗,•(BHg,M)→ h∗,•(BK,M) is the pull-back induced by the map BK =
B(K ∩Hg)→ BHg.

(iii) Let E denote a commutative ring spectrum in Sptmot, whose presheaves of homotopy groups are all `-primary
torsion for a fixed prime ` 6= char(k), and let ε∗(E) denote the corresponding spectrum in Sptet. Assume that M
is a module spectrum over E that has the rigidity property as in Definition 1.10. Then the results corresponding to
(i) through (iii) also hold for generalized étale cohomology with respect to the spectrum ε∗(M).

Corollary 1.15. Let h∗,• denote a generalized cohomology theory defined with respect to a motivic spectrum M.
We will further assume that the base field k is infinite, contains a

√
−1, and that the spectrum M has the rigidity

property in Definition 1.10.

Assume X is a G-scheme or an unpointed simplicial presheaf with G-action, for a connected split reductive group
G, with split maximal torus T. Then

h∗,•(EG×
G

X,M) ∼= h∗,•(ET×
T

X,M)W

if |W| is a unit in the cohomology theory h∗,•. Corresponding results also hold for generalized étale cohomology
theories defined with respect to the spectrum ε∗(M) εSptet (that is, on the étale site).

Corollary 1.16. Assume the base field is separably closed.1 Let G denote a connected reductive group and T denote
a split maximal torus of G. Let H∗,•mot( ,Z/`n) (H∗et( , µ`n(•))) denote motivic cohomology with Z/`n-coefficients
(étale cohomology with respect to the sheaf µ`n(•)), where ` is a prime different from char(k) and n is a fixed
positive integer. Then the following hold:

(i) Assume further that |W| is prime to `. If X is any smooth G-scheme or an unpointed simplicial presheaf with
G-action, then H∗,•mot(EG×

G
X,Z/`n) ∼= H∗,•mot(ET×

T
X,Z/`n)W, where T denotes a maximal torus in G.

(ii) Assume in addition to the hypotheses in (i) that for a fixed integer j ≥ 0, the cycle map induces an

isomorphism Hi,jmot(X,Z/`n) → Hi
et(X, µ`n(j)) for all i ≥ 0. Then the induced map Hi,jG,mot(X,Z/`

n) =

Hi,j
mot(EG×

G
X,Z/`n) → Hi

G,et(X, µ`n(j)) = Hi
et(EG×

G
X, µ`n(j)) is also an isomorphism for all i ≥ 0 provided

|W| is relatively prime to `.
(iii) Let H denote a closed linear algebraic subgroup of maximal rank in G so that T is a maximal torus in H as

well. Let WH denote the Weyl group NH(T)/T, where NH(T) denotes the normalizer of T in H. Assume that
|WH| is prime to `. Then H∗,•mot(G/H,Z/`

n) ∼= H∗,•mot(G/T,Z/`
n)WH .

1In view of our standing assumption that the base field k is perfect, this assumption is equivalent to assuming k is in fact algebraically

closed.
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(iv) The statements corresponding to those in (i) and (iii) also hold for étale cohomology with Z/`n-coefficients.
(v) Therefore, under the assumptions of (iii), the higher cycle map

cycl : H∗,•mot(G/H,Z/`
n)→ H∗,•et (G/H,Z/`n)

is an isomorphism.
(vi) As a consequence, under the assumptions in (iii), the `n-torsion subgroup of the Brauer group of G/H is

trivial.

Remark 1.17. Using similar arguments, it is shown in [IJ20-2], that the cycle map with Z/`n-coefficients from
the equivariant motivic cohomology of the semi-stable locus for the action of a split reductive group on certain
quasi-projective smooth varieties, to the corresponding equivariant étale cohomology is surjective. This will show
the triviality of the `-primary torsion part of the equivariant Brauer group of the semi-stable locus, and hence the
triviality of the `-primary torsion part of the Brauer group of the corresponding GIT-quotient for similar values of
`.

Corollary 1.18. Let X denote a smooth projective variety over k provided with the action of a connected linear
algebraic group G. Assume that X is also provided with an action by Gm commuting with the action by G. We will
further assume that the base field k is infinite and that it contains a

√
−1. Let M denote a fibrant motivic spectrum

that has the rigidity property. Then, adopting the terminology as in Theorem 1.3, that for a linear algebraic group
G, BG = lim

m→∞
BGgm,m and EG = lim

m→∞
EGgm,m, one obtains the homotopy commutative diagram

h(EG×
G

X,M)
i∗ //

tr∗X

��

h(EG×
G

XGm ,M)

tr∗
XGmvv

h(BG,M)

where h( ,M) = Map( ,M) denotes the hypercohomology spectrum with respect to the motivic spectrum M and
i : EG×

G
XGm → EG×

G
X is the map induced by the closed immersion XGm → X.

As the next and final example, we consider the stable splittings of BGLn as
∨
i≤n BGLi/BGLi−1 in the motivic

(and also étale) stable homotopy framework. Such splittings were originally obtained in [Sn79] and then rederived
in [MP]. As a result, we will refer to these splittings as the Snaith-Mitchell-Priddy splittings.

Corollary 1.19. For each integer n ≥ 1, there exists a splitting

ΣTBGLn,+ '
∨
i≤n

ΣTBGLi,+/BGLi−1,+

in Sptmot, in case char(k) = 0. In case char(k) = p > 0, a corresponding splitting holds on replacing the suspension
spectra above with the corresponding suspension spectra with p-inverted. Let E denote a ring spectrum in Sptet

with all its homotopy groups `-primary torsion, for some prime ` 6= char(k). Then, a corresponding splitting also
holds in Sptet,E after all the above objects have been smashed with the ring spectrum E.

Acknowledgments. The first author would like to thank Gunnar Carlsson for getting him interested in the
problem of constructing a Becker-Gottlieb transfer in the motivic framework and for numerous helpful discussions.
Both authors also would like to thank Michel Brion for helpful discussions on fixed point schemes as well as
on aspects of Theorem 5.2. We are also happy to acknowledge [BP, Lemma 3.5 and its proof] as one of the
inspirations for this paper. We also thank Alexey Ananyevskiy for helpful comments on Theorems 1.5 and 1.6
which have enabled us to sharpen our results, and also for bringing his work on rigidity to our attention.

2. G-equivariant spectra, Non-equivariant spectra, Transfer and Trace

2.1. The G-equivariant spectra. The G-spectra will be indexed not by the non-negative integers, but by the
Thom-spaces of finite dimensional representations of the given linear algebraic group G. We will adopt the termi-
nology and conventions from [CJ19, section 3.2]. Accordingly we let C = PSh/S denote the category of pointed
simplicial presheaves on the big Nisnevich or étale site of the given base scheme S with the smash product ∧S as
in [CJ19, (3.0.5)]. CG will denote its subcategory consisting of pointed simplicial presheaves with G-actions. SphG

will denote the full subcategory of CG = PSh/SG whose objects are {TV|V}, and where V varies over all finite
dimensional representations of the group G and TV denotes its Thom-space.

We also let USphG denote the category whose objects are {U(TV)|TV εSphG}, where U is the forgetful functor
forgetting the G-action, that is, the morphisms between two objects U(TV) → U(TW) will be maps TV → TW
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which are not required to be G-equivariant. We will make SphG (USphG) an enriched monoidal category, enriched
over the category CG (C, respectively) as follows. First let T0 = S0, which is the unit for the smash product of
pointed simplicial sets. Then for V,W that are G-representations, we let

HomCG(TV,TV⊕W) = t
α:V→V⊕W

TW,W 6= {0}(2.1.1)

= t
α:V→V

S0,W = {0}

where the sum varies over all homothety classes of G-equivariant and k-linear injective maps V→ V⊕W. Moreover,
S0 = (Spec k)+. This is the enriched internal hom in the CG-enriched category SphG. One defines the C-enriched

internal hom in USphG by a similar formula as in (2.1.1) where the sum now varies over homothety classes of

k-linear injective maps V → V ⊕W, so that the forgetful functor U : SphG → USphG is a simplicially enriched
functor. Then the following is proven in [CJ19, Proposition 3.2].

Proposition 2.1. With the above definitions, the category SphG is a symmetric monoidal CG-enriched category,
where the monoidal structure is given by TV∧TW = TV⊕W. (A corresponding result holds for the category USphG.)

Recall from [CJ19, Definition 3.3] that a G-equivariant spectrum will mean a CG-enriched functor SphG → CG.

The category of such G-equivariant spectra, SptG, is a CG-enriched category. Paraphrasing this, a G-equivariant
spectrum simply means a collection X (TV) ε CG, together with a compatible collection of maps TW ∧ X (TV) →
X (TW⊕V) as W and V vary among all finite dimensional representations of the group G.

A morphism (or map) X ′ → X between G-equivariant spectra is a CG-natural transformation: unraveling
this definition, one sees that, such a map of spectra is given by a compatible collection of G-equivariant maps
{X ′(TV) → X (TV)|TV ε SphG} which are compatible with the pairings TW ∧ X ′(TV) → X ′(TW⊕V) and TW ∧
X (TV) → X (TW⊕V). The G-equivariant sphere spectrum SG will be the spectrum defined by SG(TV) = TV, for

each finite dimensional representation V of G. At this point one may define a smash product, ∧, on SptG/S as in

[CJ19, Definition 3.5] which will make SptG/S into a symmetric monoidal category.

2.2. Non-equivariant spectra. For us, it is important to consider Spanier-Whitehead duality in the category
of non-equivariant spectra. The category of non-equivariant spectra (indexed by the natural numbers N) will be

denoted Spt. Then the following intermediate categories, denoted ŨSpt
G

and USptG, intermediate between
SptG and Spt are introduced in [CJ19, section 3.2]. The first category (the second category) will denote the

category of C-enriched functors SphG → C (USphG → C, respectively). Again, paraphrasing this, an object

of the category ŨSpt
G

is given by {X ′(TV)|TV ε SphG}, provided with a compatible family of structure maps
TW ∧ X ′(TV) → X ′(TW⊕V) in PSh, i.e. these maps are no longer required to be G-equivariant. Morphisms

between two such objects {Y ′(TV)|TV ε SphG} and {X ′(TV)|TV ε SphG} are given by compatible collections of

maps {Y ′(TV) → X ′(TV)|TV ε SphG} which are no longer required to be G-equivariant, but compatible with the
pairings: TW ∧ Y ′(TV)→ Y ′(TW⊕V) and TW ∧ X ′(TV)→ X ′(TW⊕V). Objects and morphisms of the C-enriched

category USptG have a similar description with SphG replaced by USphG.

Observe that, now there is a forgetful functor Ũ : SptG → ŨSpt
G

, sending a G-equivariant spectrum X to
For ◦ X where For : CG → C is the forgetful functor, forgetting the G-action. One defines a smash product ∧ and
an internal hom in these categories just as for SptG. One defines a stable injective model structure on USptG with
respect to which it is shown in [CJ19, Proposition 3.8] that USptG is a symmetric monoidal model category with
respect to the smash product.

Let Spt denote the (usual) category of motivic (or étale) spectra defined as follows. Let N denote the set of
natural numbers. (One may want to observe that for each n εN, there exists a finite dimensional representation V
of G with dim(V) = n.) Then we let Spt denote the following category: its objects are

X ′ = {Xn εPSh/S, along with a compatible family of structure maps Tm ∧Xn → Xn+m|n,m εN}.
(In the motivic setting, T will denote either (P1,∞) or a variant of it such as Gm ∧ S1. In the étale setting, we
may take T to be the same as in the motivic setting, or one may also let it be just S1.)

Morphisms between two such objects X ′ and Y ′ are defined as compatible collection of maps X ′n → Y ′n, n εN
compatible with suspensions by Tm, m εN. One defines various model structures on this category: see [CJ14,
section 3].

In addition to the level-wise projective and injective model structures on the above categories of spectra, one
also has the corresponding stable model structures defined in such a way that the fibrant objects are the Ω-spectra
where each component space is also a fibrant object in the level-wise model structures: see [CJ19, 3.3] for further
details.
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For each natural number n, we choose a trivial representation of G of dimension n. We will denote this
representation by n and its Thom space by Tn. We will identify N with the C-enriched subcategory of USphG

consisting of these objects and where

HomN(Tn,Tn+m) = Tm, if m 6= 0(2.2.1)

= S0, if m = 0.

Thus, we obtain a C-enriched faithful functor i : N → USphG and the functor i∗ defines a simplicially enriched
functor USptG → Spt. The functor i∗ admits a left adjoint, which we denote by P : Spt→ USptG.

To relate the C-enriched categories, USptG and ŨSpt
G

, one first observes that there is a forgetful functor
j : SphG → USphG that sends the Thom-space, TV, of a G-representation V to TV but viewing V as just a

k-vector space. Therefore, pull-back by j defines the C-enriched functor j∗ : USptG → ŨSpt
G

. One defines a
functor P̃ as the left-adjoint to j∗. Then the following is proven in [CJ19, Proposition 3.10].

Proposition 2.2. (i) The functors P and i∗ define a Quillen adjunction between the projective stable model

structures on USptG and Spt. This is, in fact, a Quillen equivalence.

(ii) The functors P̃ and j∗ define a Quillen-equivalence between the stable projective model structures on USptG

and ŨSpt
G

.

(iii) The functors P and P̃ are strict-monoidal functors.

In addition, the following are also proven in [CJ19, section 3.3.5].

2.3. Equivariant spectra vs. non-equivariant spectra. We will let Ũ denote the forgetful functor SptG →
ŨSpt

G

that forgets the action by G, i.e. sending X to For ◦ X where For : CG → C is the forgetful functor,
forgetting the G-action.

Proposition 2.3. ( See [CJ19, Proposition 3.13].) Let M,N εSptG. Then

(i) Ũ(M) ∧ Ũ(N) = Ũ(M ∧N) and (ii) Ũ(Hom(M,N)) = Hom(Ũ(M), Ũ(N)).

Let M,N εSptG. The fact that one may find functorial cofibrant and fibrant replacements of objects in ŨSpt
G

shows that one may find a functorial cofibrant replacement M̃→ Ũ(M) in ŨSpt
G

and a functorial fibrant replace-

ment Ũ(N) → N̂ in ŨSpt
G

. The functoriality of the cofibrant and fibrant replacements, together with the fact

that the group action by G is as a presheaf of sections over each object in the site, shows that in fact M̃, Ñ and
the maps M̃→ M, N→ N̂ all belong to SptG. Therefore, it is possible to define

(2.3.1) M
L
∧N = Ũ(M̃) ∧ Ũ(N), RHom(M,N) = Hom(Ũ(M̃), Ũ(N̂)), D(M) = RHom(Ũ(M), Ũ(SG))

with M
L
∧N,RHom(M,N),D(M) εSptG. (In fact, since we choose to work with the injective model structures, every

object is cofibrant and therefore there is no need for any cofibrant replacements.) Therefore, for any simplicial

presheaf P, the dual D(SG ∧P+) = RHom(SG ∧P,SG) will also identify with the dual D(Ũ(SG ∧P+)). In view of
the equivalence of the homotopy categories provided by the last theorem, this dual identifies with the dual taken
after forgetting the G-actions and in the non-equivariant category of spectra Spt.

Similar conclusions will hold when EG εSptG is a commutative ring spectrum with the corresponding smash

product ∧EG and HomEG considered below. Given a G-equivariant ring spectrum EG, E = i∗(P̃Ũ(EG)) will denote
the associated non-equivariant ring spectrum. (In this case the dual with respect to the ring spectrum E will be
denoted DE .)

In case EG is a commutative ring spectrum in SptG, we will let ŨSpt
G

E denote the subcategory of ŨSpt
G

,
consisting of module spectra over EG and their maps. In this case, the smash product ∧ will be replaced by ∧EG
which is defined as

(2.3.2) M ∧EG N = Coeq(M ∧ EG ∧N
→→ M ∧N),

where the two maps above make use of the module structures on M and N, respectively. The corresponding internal
Hom will be denoted HomEG .
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The main G-equivariant ring spectra, other than the sphere spectrum SG, that enter into the construction of
the transfer will be the following:

(2.3.3)
(i) SG[p−1] if the base scheme S is a field of characteristic p, (ii) SG

(`) and

(iii) ŜG
` , where ` is a prime different from the residue characteristics.

Definition 2.4. (Co-module structures) Assume further that C+ is a pointed simplicial presheaf. Then the diagonal
map ∆ : C+ → C+ ∧ C+ together with the augmentation ε : C+ → S0 defines the structure of an associative co-
algebra of simplicial presheaves on C+. A pointed simplicial presheaf P will be called a right C+-co-module, if it
comes equipped with maps ∆ : P→ P ∧ C+ so that the diagrams:

(2.3.4) P
∆ //

∆

��

P ∧ C+

id∧∆

��
P ∧ C+

∆∧id//
P ∧ C+ ∧ C+

and P

∆

��

id

%%

P ∧ C+

id∧ε //
P ∧ S0

commute. The most common choice of P is with P = C+ and with the obvious diagonal map ∆ : C+ → C+ ∧ C+

as providing the co-module structure. However, the reason we are constructing the pre-transfer in this generality
(see the definition below) is so that we are able to obtain strong additivity results as in Theorem 3.1.

Definition 2.5. (The G-equivariant pre-transfer) Assume that the pointed simplicial presheaf P is such that

SG ∧ P is dualizable in ŨSpt
G

and is provided with a G-equivariant map f : P → P. Assume further that C
is an unpointed simplicial presheaf so that P is a right C+-co-module. Then the G-equivariant pre-transfer with
respect to C is defined to be a map tr(f)′G : SG → SG ∧ C+, which is the composition of the following maps. Let
e : D(SG ∧ P) ∧ SG ∧ P → SG denote the evaluation map. Observe that, this map being natural, is automatically
G-equivariant. We take the dual of this map to obtain:

(2.3.4) c = D(e) : SG ' D(SG)→ D(D(SG ∧ P) ∧ (SG ∧ P))
'←D(SG ∧ P) ∧ (SG ∧ P)

τ→(SG ∧ P) ∧D(SG ∧ P).

Here τ denotes the obvious flip map interchanging the two factors and c denotes the co-evaluation. The reason
that taking the double dual yields the same object up to weak-equivalence is because we are in fact taking the
dual in the setting discussed above. Observe that all the maps that go in the left-direction are weak-equivalences.
All the maps involved in the definition of the co-evaluation map are natural maps and therefore automatically
G-equivariant.

To complete the definition of the pre-transfer, one simply composes the co-evaluation map with the following
composite map:

(2.3.5)
(SG ∧ P) ∧D(SG ∧ P)

τ→D(SG ∧ P) ∧ (SG ∧ P)
id∧f→ D(SG ∧ P) ∧ (SG ∧ P)

id∧∆→ D(SG ∧ P) ∧ (SG ∧ P) ∧ (SG ∧ C+)
e∧id→ SG ∧ (SG ∧ C+) ' SG ∧ C+.

The corresponding G-equivariant trace, τ(f)′G is defined as the composition of the above pre-transfer tr(f)′G

with the projection sending C+ to S0
+.

The first step in the corresponding transfer is to apply the construction E×
G

to the pre-transfer, where E→ B

is a G-torsor, for the linear algebraic group G.

When C = P and f = idP, the pre-transfer (trace) will be denoted tr′GP (τG
P , respectively). In the non-equivariant

case, the corresponding maps will be denoted tr′P (τ ′P, respectively).

Remark 2.6. Observe that now the trace maps identify with the following composite maps:

τG
P : SG c→SG ∧ P ∧D(SG ∧ P)

τ→D(SG ∧ P) ∧ SG ∧ P
e→SG and

τP : S c→S ∧ P ∧D(S ∧ P)
τ→D(S ∧ P) ∧ S ∧ P

e→S.

Definition 2.7. If E denotes any commutative ring spectrum in SptG, one may replace the sphere spectrum SG

everywhere by EG and define the pre-transfer and trace similarly, provided the unpointed simplicial presheaf P is

such that EG ∧ P+ is dualizable in ŨSpt
G

EG and is provided with a G-equivariant map f : P → P. These will be
denoted tr(f )′GE , tr ′GE , tr ′P,E , τ

G
P,E , τP,E , etc.

Definition 2.8. SptG
mot, ŨSpt

G

mot and USptG
mot (SptG

et, ŨSpt
G

et and USptG
et) will denote the corresponding

category of spectra defined on the Nisnevich site (on the étale site, respectively).
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3. The additivity of the trace: Proof of Theorem 1.5.

Let

(3.0.6) U
j→X

k→X/U = Cone(j)→ S1 ∧U+

denote a cofiber sequence where both U and X are unpointed simplicial presheaves, with j a cofibration. Now a
key point to observe is that all of U, X and X/U have the structure of right X-co-modules. The right X-co-module
structure on X is given by the diagonal map ∆ : X+ → X+ ∧ X+, while the right X-co-module structure on U is

given by the map ∆ : U+
∆→U+ ∧ U+

id∧j+→ U+ ∧ X+, where j : U → X is the given map. The right X-co-module
structure on X/U is obtained in view of the commutative square

(3.0.7) U
(id×j)◦∆//

j

��

U×X

j×id
��

X
∆ //

X×X

which provides the map

(3.0.8) X/U→ (X×X)/(U×X) ∼= (X/U) ∧X+.

If one assumes that all the simplicial presheaves in (3.0.6) are provided with the action by a linear algebraic group G
so that all the maps in (3.0.6) are also G-equivariant, one may see also that the all the above co-module structures
are compatible with the actions by G.

We begin with the following results, which are variants of [LMS, Theorem 7.10, Chapter III and Theorem 2.9,
Chapter IV] adapted to our contexts.

Theorem 3.1. Let U
j→X

k→X/U = Cone(j) → S1 ∧ U+ denote a cofiber sequence as in (3.0.6) where all the
above simplicial presheaves are provided with actions by a linear algebraic group G so that all the above maps are
G-equivariant. Let f : U→ U, g : X→ X denote two G-equivariant maps so that the diagram

U+

j //

f

��

X+

g

��
U+

j //
X+

commutes. Let h : X/U→ X/U denote the corresponding induced map. Then, with the right X-co-module structures
discussed above, one obtains the following commutative diagram:

(3.0.9) U+

j+ //

∆

��

X+

k+ //

∆

��

X/U
l //

∆

��

S1 ∧U+

S1∆
��

U+ ∧X+

j+∧id //
X+ ∧X+

k+∧id//
(X/U) ∧X+

l∧id //
S1 ∧U+ ∧X+

Assume further that the SG-suspension spectra of all the above simplicial presheaves are dualizable in ŨSpt
G

mot.
Then

tr ′G(g) = tr ′G(f ) + tr ′G(h) (see Definition 2.5), and τG(g) = τG(f ) + τG(h).

Moreover if tr(f ), tr(g) and tr(h) denote the induced transfer maps in any one of the three basic contexts (a), (b)
or (c) of Theorem 1.3, then

tr(g) = tr(f ) + tr(h).

Let E denote a commutative ring spectrum in ŨSpt
G

mot or ŨSpt
G

et. In the latter case, we will further assume
that E is `-complete for some prime ` 6= char(k). Then the corresponding results also hold if the smash products of

the above simplicial presheaves with the ring spectrum E are dualizable in ŨSpt
G

mot,E and ŨSpt
G

et,E .

Theorem 3.2. Let F = F1tF3 F2 denote a pushout of unpointed (or pointed) simplicial presheaves on the big étale
or the big Nisnevich site of the base scheme, with the corresponding maps F3 → F2, F3 → F1 and Fj → F, for
j = 1, 2, 3, assumed to be cofibrations (i.e. injective maps of presheaves). Assume further the following:
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(i) all the above simplicial presheaves are provided with compatible actions by the linear algebraic group G making
all the maps above G-equivariant and

(ii) the T-suspension of spectra of all the above simplicial presheaves are dualizable in ŨSpt
G

mot.

Let ij : Fj → F denote the inclusion Fj → F, j = 1, 2, 3 as well as the induced map on the Borel constructions.
Then

(1) tr′GF = i1 ◦ tr′GF1
+ i2 ◦ tr′GF2

− i3 ◦ tr′GF3
and τG

F = τG
F1

+ τG
F2
− τG

F3
,

where tr′GF and tr′GFj
, j = 1, 2, 3 (τG

F , τFj
, j = 1, 2, 3) denote the G-equivariant pre-transfer maps (G-

equivariant trace maps, respectively) with equality holding in HŨSpt
G

mot, which denotes the corresponding
homotopy category. Moreover, trF = i1 ◦ trF1

+ i2 ◦ trF2
− i3 ◦ trF3

which denote the corresponding transfer

maps in any one of the three basic contexts as in Theorem 1.3 with equality holding in HŨSpt
G

mot.
(2) In particular, taking F2 = ∗, and F = Cone(F3 → F1), we obtain:

tr′GF = i1 ◦ tr′GF1
− i3 ◦ tr′GF3

and τG
F = τG

F1
− τG

F3
as well as trF = i1 ◦ trF1 − i3 ◦ trF3 which denote the

corresponding transfer maps in any one of the three basic contexts as in Theorem 1.3 with equality holding

in HŨSpt
G

mot.

Let E denote a commutative ring spectrum in ŨSpt
G

mot or ŨSpt
G

et. In the latter case, we will further assume that
E is `-complete for some prime ` 6= char(k). Then the corresponding results also hold if the smash products of the

above simplicial presheaves with the ring spectrum E are dualizable in HŨSpt
G

mot,E and HŨSpt
G

et,E , which denotes
the corresponding homotopy category.

Our next goal is to provide proofs of these two theorems. We will explicitly discuss only the case where the
ring spectrum EG (E) is the equivariant sphere spectrum SG (the sphere spectrum ΣT, respectively), as proofs
in the other cases follow along the same lines. The additivity of the trace follows readily from the additivity of
the pre-transfer, as it is obtained by composing with the projection SG ∧ X+ → SG. Proposition 3.5 below shows
that the additivity of the transfer also follows from the additivity of the pre-transfer. Therefore, in what follows,
we will only discuss the additivity of the pre-transfer. One may observe also that the discussion in section 2.3,
especially Proposition 2.3, (2.3.1), (2.3.2) reduce the treatment of the equivariant case to the non-equivariant case.
Therefore, it suffices to consider the non-equivariant case, but making sure the key arguments, and constructions
are canonical (or natural), so that they are automatically G-equivariant for the action of a linear algebraic group.

Since this is discussed in the topological framework in [LMS, Theorem 7.10, Chapter III and Theorem 2.9,
Chapter IV], our proof amounts to verifying carefully and in a detailed manner that the same arguments there
carry over to our framework. This is possible, largely because the arguments in the proof of [LMS, Theorem 7.10,
Chapter III and Theorem 2.9, Chapter IV] depend only on a theory of Spanier-Whitehead duality in a symmetric
monoidal triangulated category framework and [DP84] shows that the entire theory of Spanier-Whitehead duality
works in such general frameworks. Nevertheless, it seems prudent to show explicitly that at least the key arguments
in [LMS, Theorem 7.10, Chapter III and Theorem 2.9, Chapter IV] carry over to our framework.

The very first observation is that the hypotheses of Theorem 3.1 readily implies the commutativity of the
diagram:

U+

j+ //

f

��

X+

k+ //

g

��

X/U
l //

h

��

S1 ∧U+

S1f

��
U+

j+ //
X+

k+ //
X/U

l //
S1 ∧U+

Next we proceed to verify the commutativity of the diagram (3.0.9). Since the first square clearly commutes, it
suffices to verify the commutativity of the second square. This follows readily in view of the following commutative
square of pairs:

(X, φ)
//

∆

��

(X,U)

∆

��
(X×X, φ)

//
(X×X,U×X)

Observe, as a consequence that we have verified the hypotheses of [LMS, Theorem 7.10, Chapter III] are satisfied
by the SG-suspensions spectra of all the simplicial presheaves appearing in (3.0.9).
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The next step is to observe that the Fi, i = 1, 2, 3 (F) in our Theorem 3.2, correspond to the Fi (F, respectively)
in [LMS, Theorem 2.9, Chapter IV]. Now observe that

(3.0.10) F3 → F1 t F2 → F→ S1 ∧ F3,+

is a distinguished triangle. Moreover as F1 t F2 has a natural map (which we will call k) into F, there is a

commutative diagram: (F1 t F2)
k //

∆

��

F

∆

��
(F1 t F2)+ ∧ F+

k∧id //
F+ ∧ F+.

Then the distinguished triangle (3.0.10) provides the commutative diagram:

(F1 t F2)
k //

∆

��

F

∆

��

//
S1 ∧ F3,+

∆

��

//
S1 ∧ (F1 t F2)+

∆

��
(F1 t F2)+ ∧ F+

k∧id //
F+ ∧ F+

//
(S1 ∧ F3,+) ∧ F+

//
(S1 ∧ (F1 t F2)+) ∧ F+.

so that the hypotheses of [LMS, Theorem 7.10, Chapter III] are satisfied with X, Y and Z there equal to the
SG-suspension spectra of (F1 t F2), F and S1 ∧ F3,+. These arguments, therefore reduce the proof of Theorem 3.2
to that of Theorem 3.1.

Therefore, what we proceed to verify is that, then the proof of [LMS, Theorem 7.10, Chapter III] carries over
to our framework. This will then complete the proof of Theorem 3.1. A key step of this amounts to verifying that
the big commutative diagram given on [LMS, p. 166] carries over to our framework. One may observe that this
big diagram is broken up into various sub-diagrams, labeled (I) through (VII) and that it suffices to verify that
each of these sub-diagrams commutes up to homotopy. Moreover, one may observe that the maps that make up
each of these sub-diagrams are natural maps and therefore are G-equivariant, so that one may feed each of these
sub-diagrams into the Borel construction. This will prove that additivity holds for the induced trace and transfer
on Borel-style generalized cohomology theories.

For this, it seems best to follow the terminology adopted in [LMS, Theorem 7.10, Chapter III]: therefore we will
let U+ (X+ and X/U) in Theorem 3.1 be denoted X (Y and Z, respectively) for the remaining part of the proof
of Theorem 3.1. Let k : X → Y (i : Y → Z and π : Z → S1 ∧ X) denote the corresponding maps j+ : U+ → X+

(k+ : X+ → X/U, and the map l : X/U→ S1 ∧U+) as in Theorem 3.1. Then the very first step in this direction is
to verify that the three squares

(3.0.11) DY ∧X
id∧k //

Dk∧id

��

DY ∧Y

e
��

DX ∧X
e //

SG

, DZ ∧Y
id∧i //

Di∧id

��

DZ ∧ Z

e
��

DY ∧Y
e //

SG

, and D(S1 ∧X) ∧ Z
id∧π//

Dπ∧id

��

D(S1 ∧X) ∧ (S1 ∧X)

e

��
DZ ∧ Z

e //
SG

commute up to homotopy. (The homotopy commutativity of these squares is a formal consequence of Spanier-
Whitehead duality: see [Sw75, pp. 324-325] for proofs in the classical setting.) As argued on [LMS, page 167,
Chapter III], the composite e ◦ (Dπ ∧ i) : D(S1 ∧X)∧Y → SG is equal to e ◦ ((id∧ π) ◦ (id∧ i) and is therefore the
trivial map. Therefore, if j denotes the inclusion of DZ ∧ Z in the cofiber of Dπ ∧ i, one obtains the induced map
ē : (DZ ∧ Z)/(D(S1 ∧X) ∧Y)→ SG so that the triangle

(3.0.12) DZ ∧ Z
e //

j

��

SG

(DZ ∧ Z)/(D(S1 ∧X) ∧Y)

ē

66

homotopy commutes. This provides the commutative triangle denoted (I) in [LMS, p. 166] there and the commu-
tative triangle denoted (II) there commutes by the second and third commutative squares in (3.0.11). The duals
of (I) and (II) are the triangles denoted (I*) and (II*) (on [LMS, p. 166]) and therefore, they also commute.

Next we briefly consider the homotopy commutativity of the remaining diagram beginning with the squares
labeled (III), (IV) and (V) in [LMS, p. 166]. Since the maps denoted δ are weak-equivalences, it suffices to show
that these squares homotopy commute when the maps denoted δ−1 are replaced by the corresponding maps δ
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going in the opposite direction. Such maps δ appearing there are all special instances of the following natural
map: δ : DB ∧ A → D(DA ∧ B), for two spectra A and B in Spt. The homotopy commutativity of the squares
(III), (IV) and (V) are reduced therefore to the naturality of the above map in the arguments A and B. The
commutativity of the triangle labeled (VI) follows essentially from the definition of the maps there. Finally the
homotopy commutativity of the square (VII) is reduced to the following lemma, which is simply a restatement
of [LMS, Lemma 7.11, Chapter III]. These will complete the proof for the additivity property for the trace. To
complete the proof for the additivity of the transfer tr, one only needs to expand the bottom most square (II) in
the diagram in [LMS, p. 166] as indicated there. These complete the proofs of Theorems 3.1 and 3.2.

Lemma 3.3. Let f : A → X and g : B → Y be maps in Spt and let i : X → Cone(f) and j : Y → Cone(g) be
the inclusions into their cofibers. Then the boundary map δ : S−1Cone(i ∧ j)→ Cone(f ∧ g) in the cofiber sequence
Cone(f ∧ g)→ Cone((i ◦ f) ∧ (j ◦ g))→ Cone(i ∧ j) is the sum of the two composites:

S−1Cone(i ∧ j)
S−1Cone(i∧id)→ Cone(idCone(f) ∧ j) = Cone(f) ∧ B ∼= Cone(f ∧ idB)

Cone(id∧g)→ Cone(f ∧ g)

S−1Cone(i ∧ j)
S−1Cone(id∧j)→ S−1Cone(i ∧ idCone(g)) = A ∧ Cone(g) ∼= Cone(idA ∧ g)

Cone(f∧id)→ Cone(f ∧ g)

Proposition 3.4. (Multiplicative property of the pre-transfer and trace) Assume Fi, i = 1, 2 are simplicial
presheaves provided with actions by the group G. Let fi : Fi → Fi, i = 1, 2 denote a G-equivariant map. Let
F = F1+ ∧ F2+ and let f = f1+ ∧ f2+. Then

tr′F(f) = tr′F1+
(f1+) ∧ tr′F2+

(f2+) and

τF(f) = τF1+
(f1+) ∧ τF2+

(f2+).

Proof. A key point to observe is that the evaluation eF : D(F) ∧ F → SG is given by starting with eF1+
∧ eF2+

:

D(F1+)∧F1+ ∧D(F2+)∧F2+ → SG ∧ SG ' SG and by precomposing it with the map D(F)∧F = D(F1+ ∧F2+)∧
F1+ ∧ F2+

τ→D(F1+) ∧ F1+ ∧ D(F2+) ∧ F2+, where τ is the obvious map that interchanges the factors. Similarly

the co-evaluation map c : SG ' SG ∧ SG
cF1+

∧cF2+→ F1+ ∧D(F1+)∧F2+ ∧D(F2+) provides the co-evaluation map for
F. The multiplicative property of the pre-transfer follows readily from the above two observations as well as from
the definition of the pre-transfer as in Definition 2.5. In view of the definition of the trace as in Definition 2.5, the
multiplicative property of the trace follows from the multiplicative property of the pretransfer. �

Let B denote a smooth quasi-projective scheme over the given base scheme Spec k. Let E→ B denote a G-torsor
(in the given topology, which could be either the Zariski, Nisnevich, or étale) for the action of a linear algebraic
group G.

Proposition 3.5. (i) Given G-equivariant pointed simplicial presheaves P1,P2 on Spec k, one obtains a natural
map

[P1,P2]→ [E×
G
P1,E×

G
P2]

where the [ , ] on the left denotes the Hom in the homotopy category of G-equivariant pointed simplicial
presheaves and the [ , ] on the right denotes the Hom in the homotopy category of simplicial presheaves over B
as in [CJ19, section 3]. Moreover the quotient construction E×

G
Pi is carried out as in [CJ19, section 6.2], that is,

when G is special as a linear algebraic group, the quotient is taken on the Zariski (or Nisnevich) site of E, while
when G is not special, it is taken on the étale site and then followed by a derived push-forward to the Nisnevich
site. (For more details on this, see the discussion in subsection 4.2.)

(ii) Given pointed simplicial presheaves Qi, i = 1, 2, 3, 4, over B, we obtain a pairing:

[Q1,Q2]× [Q3,Q4]→ [Q1∧
B
Q2,Q3∧

B
Q4]

where the [ , ] denotes the Hom in the homotopy category of simplicial presheaves over B.

Proof. (i) We may assume P1 is cofibrant and P2 fibrant in the given model structure, so that [P1,P2] =
π0(Map(P1,P2)) where Map denotes the simplicial mapping space. Then the assertion in (i) is clear.

For (ii), we may assume Q1,Q3 are cofibrant and Q2,Q4 are fibrant in the given model structure, so that
[Q1,Q2] = π0(Map(Q1,Q2)) and [Q3,Q4] = π0(Map(Q3,Q4)), where Map denotes the corresponding simplicial
mapping space. Then the assertion in (ii) is also clear. �
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Proof of Theorem 1.5. We will explicitly discuss only the case where the ring spectrum EG (E) is the equivariant
sphere spectrum SG (the sphere spectrum ΣT, respectively), as proofs in the other cases follow along the same
lines.

First we will consider (i), namely the Mayer-Vietoris sequence. For this, one begins with the stable cofiber
sequences

SG ∧ (U1 ∩U2)+ → SG ∧ (U1 tU2)+ → SG ∧ (U)+, SG ∧ (X1 ∩X2)+ → SG ∧ (X1 tX2)+ → SG ∧ (X)+

which results in the stable cofiber sequence:

SG ∧ ((X1 ∩X2)/(U1 ∩U2))→ SG ∧ ((X1/U1) t (X2/U2))→ SG ∧ (X/U).

Then one applies Theorem 3.2(1) to it. This proves (i).

Next one recalls the stable homotopy cofiber sequence (see [MV99, Theorem 2.23])

(3.0.12) SG ∧U+ → SG ∧X+ → SG ∧ (X/U) ' SG ∧ Th(N )

in the stable motivic homotopy category over the base scheme. The first statement in (ii) follows by applying
Theorem 3.1 to the stable homotopy cofiber sequence in (3.0.12).

We proceed to establish the remaining statement in (ii). Observe that this is in the non-equivariant framework, so
that we will work in Spt. First we will consider the case where the normal bundle N is trivial, mainly because this is
an important special case to consider. When the normal bundle is trivial, we observe that X/U ' Th(N ) ' Tc∧Z+.
Next, the multiplicative property of the trace as in Lemma 3.4 shows that

(3.0.13) τTc∧Z+ = (τΣTT)∧
c

∧ τΣTZ+ = τΣTZ+

as classes in π0,0(ΣT), where the last identification makes use of the assumption that
√
−1 ∈ k.

In general, it is known that the class of τΣTT =< −1 > in the Grothendieck-Witt group GW(k), which identifies
with π0,0(ΣT), in view of [Mo4, Theorem 6.2.2]. (Here it may be important to recall that T is the pointed simplicial

presheaf P1 pointed by ∞.) The assumption that
√
−1 ∈ k implies, the quadratic form < 1,−1 > identifies with

the quadratic form < 1, 1 >, and the quadratic form < −1 > identifies with the quadratic form < 1 > as classes in
GW(k). (See, for example, [Sz, p. 44].) This implies that τΣTT = τΣT

= 1 in π0,0(ΣT). This proves (3.0.13).

To consider the general case, when the normal bundle N is not necessarily trivial, one takes a finite Zariski open
cover {Ui|i = 1, · · · ,n} so that N|Ui is trivial for each i. Then the Mayer-Vietoris property considered in (i) and
ascending induction on n, together with the case where the normal bundle is trivial considered above, completes
the proof in this case. (Observe that any scheme Z over k of finite type is always quasi-compact, so that such a
finite open cover always exists.) These complete the proof of the first two statements in (ii). The proof of the
remaining two statements in (ii) follow similarly by replacing the sphere spectrum SG by the spectrum EG.

Next we consider the statement in (iii). This will follow from the second statement in (ii) using ascending
induction on the number of strata. However, as this induction needs to be handled carefully, we proceed to provide
an outline of the relevant argument. We will assume that the stratification of X defines the following increasing
filtrations:

(a) φ = X−1 ⊆ X0 ⊆ · · · ⊆ Xn = X where each Xi is closed and the strata Xi − Xi−1, i = 0, · · · , n are smooth
(regular).

(b) U0 ⊆ U1 ⊆ · · · ⊆ Un−1 ⊆ Un = X, where each Ui is open in X (and therefore smooth (regular)) with
Ui − Ui−1 = Xn−i − Xn−i−1, for all i = 0, · · ·n. Now observe that each Uk → X is an open immersion while each
Xk −Xk−1 → X−Xk−1 is a closed immersion.

We now apply Theorem 1.5(ii) with U = Un−1, and Z = Un−Un−1 = X0−X−1 = X0, the closed stratum. Since
X is now smooth(regular) and so is Z, the hypotheses of Theorem 1.5(ii) are satisfied. This provides us

(3.0.14) τX = τUn−1
+ τX/Un−1

and τX/Un−1
= τX0

Next we replace X by Un−1, U by Un−2 and Z by X1 −X0. Since X1 −X0 is smooth (regular), Theorem 1.5(ii)
now provides us

(3.0.15) τUn−1
= τUn−2

+ τX1−X0
.

Substituting these in (3.0.14), we obtain

τX = τUn−2
+ τX1−X0

+ τX0
.

Clearly this may be continued inductively to deduce statement (iii) in Theorem 1.5 from Theorem 1.5(ii). (iv)
follows readily from [CJ19, Proposition 8.1] where it is shown that the trace τX pulls-back to the corresponding
trace defined on the étale site. �
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4. Proof of Theorem 1.12

Once again, we will explicitly discuss only the case where the ring spectrum EG (E) is the equivariant sphere
spectrum SG (the sphere spectrum ΣT, respectively), as proofs in the other cases follow along the same lines. First
we will consider (i), namely the Mayer-Vietoris sequence. For this, one begins with the stable cofiber sequence

SG ∧ (U1 ∩U2)+ → SG ∧ (U1 tU2)+ → SG ∧ (X)+.

Then one applies Theorem 3.2(1) to it. This proves (i).

Next we will consider (ii). One recalls the stable homotopy cofiber sequence (see [MV99, Theorem 2.23])

(4.0.16) SG ∧U+ → SG ∧X+ → SG ∧ (X/U) ' SG ∧ Th(N )

in the stable motivic homotopy category over the base scheme. The statement in (ii) follows by applying Theo-
rem 3.1 to the stable homotopy cofiber sequence in (4.0.16).

Next we consider (iii). For this, one first needs the technique of deformation to the normal-bundle: see [Verd,
section 2], or [MV99, Lemma 2.26]. Here one considers first the blow-up of X× A1 along Z× {0}. As G has only
the trivial action on A1, and Z is G-stable, it follows that the above blow-up, BlZ×{0}(X × A1), the deformation

space BlZ×{0}(X × A1) − BlZ(X) as well as the normal bundle N and its Thom space Th(N ) all have induced

actions by G. Moreover the deformation consists in sending the general fiber, which sits over A1−{0} to the special
fiber which sits over 0 in A1. However, as shown below in Proposition 4.14, one needs to supplement this with the
technique of motivic tubular neighborhoods.

A key step here is to show the following. Let M denote a motivic spectrum that has the rigidity property as in
Definition 1.10, let Map denote the simplicial mapping space functor, and E → B is a G-torsor for a fixed linear
algebraic group G that acts on X, U and Z. Let ∆X/U denote the diagonal map (see 3.0.8):

(4.0.17) ∆X/U : SG ∧ (X/U)→ SG ∧ (X/U) ∧ (SG ∧X+).

Then the map

Map(∆X/U,M) (Map(E×
G

∆X/U,M)) factors through the map(4.0.18)

Map(id ∧ (SG ∧ i),M) (the map Map(E×
G

(id ∧ (SG ∧ i),M)), respectively),

where id∧ (SG∧ i) is the map : SG∧ (X/U)∧ (SG∧Z+)→ SG∧ (X/U)∧ (SG∧X+). Here the quotient construction
E×

G
is carried out as in [CJ19, section 6.2], that is, when G is special as a linear algebraic group, the quotient

is taken on the Zariski (or Nisnevich) site of E, while when G is not special, it is taken on the étale site and
then followed by a derived push-forward to the Nisnevich site. (For more details on this, see the discussion in
subsection 4.2.) This factorization is worked out in detail in Proposition 4.14(i) through (iii) and results in the
following commutative diagram:
(4.0.19)

Map(E×
G

(SG ∧X+),M)
i∗ //

(e∧id)∗

��

Map(E×
G

(SG ∧ Z+),M)

(e∧id)∗

��
Map(E×

G
(D(SG ∧X/U) ∧ (SG ∧X/U) ∧ SG ∧X+),M)

id∧i∗ //

id∧∆∗

��

Map(E×
G

(D(SG ∧X/U) ∧ (SG ∧X/U) ∧ SG ∧ Z+),M)

id∧∆′∗

rr
Map(E×

G
(D(SG ∧X/U) ∧ (SG ∧X/U)),M)

τ∗

��
Map(E×

G
((SG ∧X/U) ∧D(SG ∧X/U)),M)

c∗

��
Map(E×

G
SG,M)
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Here the map id ∧∆′∗ is the composite map:

Map(E×
G

(D(SG ∧X/U) ∧ (SG ∧X/U) ∧ SG ∧ Z+),M) ' Map(E×
G

(D(SG ∧X/U) ∧ (SG ∧X/U) ∧ SG ∧Xh
Z,+),M)

' Map(E×
G

(D(SG ∧Xh
Z/(X

h
Z − Z)) ∧ (SG ∧Xh

Z/(X
h
Z − Z)) ∧ SG ∧Xh

Z,+),M)

id∧∆∗→ Map(E×
G

(D(SG ∧X/U) ∧ (SG ∧X/U)),M).

which makes use of the weak-equivalence: X/U ' Xh
Z/(X

h
Z − Z) as proven in (4.2.5) (below). Therefore, it suffices

to show that the composite map

(4.0.20) (e ∧ id) ◦ (id ∧∆′) ◦ τ ◦ c

identifies with the transfer trZ. We proceed to prove this identification.

Next, observe (see Definition 2.5) that the pre-transfer tr ′
Xh

Z
is given by the composite map:

(4.0.21)
tr ′Xh

Z
: SG c→SG ∧ (Xh

Z/(X
h
Z − Z)) ∧D(SG ∧Xh

Z/(X
h
Z − Z))

τ→D(SG ∧Xh
Z/(X

h
Z − Z)) ∧ (SG ∧ (Xh

Z/X
h
Z − Z))

id∧∆→ D(SG ∧Xh
Z/(X

h
Z − Z)) ∧ (SG ∧ (Xh

Z/(X
h
Z − Z))) ∧ (SG ∧Xh

Z)
e∧id→ SG ∧Xh

Z,

while the pre-transfer tr ′Z is given by the composite map:

(4.0.22) tr ′Z : SG c→(SG∧Z+)∧D(SG∧Z+)
τ→D(SG∧Z+)∧(SG∧Z+)

id∧∆→ D(SG∧Z+)∧(SG∧Z+)∧(SG∧Z+)
e∧id→ SG∧Z+.

Next, let U = {Ui|i} denote an open cover of B in the given topology, (that is either the Zariski or the étale
topology), so that p : E → B restricted to each Ui is trivial. Let U• = coskB

0 (U) denote the corresponding
Čech-hypercover of B. Then

(4.0.23) (E×
G

P)|U• = U•×
B

(E×
G

P) = (U•×
B

E)×
G

P) = (U• ×G)×
G

P ∼= U• × P,

for any G-equivariant simplicial presheaf P. Observing that the map U• = coskB
0 (U)→ B of simplicial presheaves

is a weak-equivalence (stalk-wise) and that the map E×
G

P → B, being locally trivial is a local fibration, one sees

that the induced map (E×
G

P)|U• → E×
G

P of simplicial presheaves is also a weak-equivalence stalk-wise.

Next we apply the functor (E×
G

)|U• to both tr ′
Xh

Z
and tr ′Z. Making use of the isomorphism in (4.0.23), we see

that each spectrum that shows up in the definition of (E×
G

tr ′
Xh

Z
)|U• and (E×

G
tr ′Z)|U• is of the form U• ×P, for some

suitable spectrum P.

Next let M denote a fibrant spectrum that has the rigidity property, as in Definition 1.10. Then, the re-
maining part of the proof of (iii) is to show that there are maps from each of the spectra appearing in the
definition of Map((E×

G
tr ′Z)|U• ,M) as in (4.0.22) to the corresponding spectrum appearing in the definition of

Map((E×
G

tr ′
Xh

Z
)|U• ,M) as in (4.0.21), which is a weak-equivalence and identifies Map((E×

G
tr ′Z)|U• ,M) with

Map((E×
G

tr ′
Xh

Z
)|U• ,M). This is discussed in Proposition 4.1 below. Therefore, this completes the proof of (iii).

One can also show, at least non-equivariantly, that Map(∆X/U,M) also identifies with Map(∆′X/U,M), where

∆′X/U denotes the composite map

(4.0.24)

∆′X/U : SG∧(Th(N ))+ → SG∧(Th(N ))+∧(SG∧E(N )+)
id∧r→ SG∧(Th(N ))+∧(SG∧Y+)

id∧i→ SG∧(Th(N ))+∧(SG∧X+).)

This is discussed in Proposition 4.14(iv).

The statements in Theorem 1.12(iv) now follow from the statements (ii) and (iii) using ascending induction on
the number of strata. However, as this induction needs to be handled carefully, we proceed to provide an outline
of the relevant argument. We will assume that the stratification of X defines the following increasing filtrations:

(a) φ = X−1 ⊆ X0 ⊆ · · · ⊆ Xn = X where each Xi is closed and the strata Xi − Xi−1, i = 0, · · · , n are smooth
(regular).

(b) U0 ⊆ U1 ⊆ · · · ⊆ Un−1 ⊆ Un = X, where each Ui is open in X (and therefore smooth (regular)) with
Ui −Ui−1 = Xn−i −Xn−i−1, for all i = 0, · · ·n. We let jk : Uk → X and j′k : Uk → Uk+1 denote the corresponding
open immersions while i′k : Xk−Xk−1 → X−Xk−1 denotes the corresponding closed immersion and ik : Xk−Xk−1 →
X denotes the corresponding locally closed immersion.
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We now apply Theorem 1.12(ii) with U = Un−1, and Z = Un − Un−1 = X0 − X−1 = X0, the closed stratum.
Since X is now smooth(regular) and so is Z, the hypotheses of Theorem 1.12(ii) are satisfied. This provides us

tr′GX = jn−1 ◦ tr′GUn−1
+ tr′GX/Un−1

,(4.0.25)

trX = jn−1 ◦ trUn−1
+ trX/Un−1

, τG
X = τG

Un−1
+ τG

X/Un−1
and τG

X/Un−1
= τG

X0
.

Similarly applying Theorem 1.12(iii) with U = Un−1, and Z = Un −Un−1 = X0 −X−1 = X0, we obtain:

(4.0.26) trX/Un−1
= i0 ◦ trX0

.

Next we replace X by Un−1, U by Un−2 and Z by X1−X0. Since X1−X0 is smooth (regular), Theorem 1.12(ii)
and (iii) now provide us

trUn−1
= j′n−2 ◦ trUn−2

+ i′1 ◦ trX1−X0
.(4.0.27)

Substituting these in (4.0.25), we obtain

trX = jn−2 ◦ trUn−2
+ i1 ◦ trX1−X0

+ i0 ◦ trX0
.

Clearly this may be continued inductively to deduce statement (iv) in Theorem 1.12 from Theorem 1.12(ii) and
(iii).

Finally, the proof of Theorem 1.12(v) follows from the compatibility of the pre-transfer with étale realization as
shown in [CJ19, Proposition 8.1 and Corollary 8.2]. Therefore, it is immediate that one obtains the corresponding
statements for the G-equivariant pre-transfer and the G-equivariant trace. The corresponding statements for the
transfer in (i) and (ii) then follow readily from these statements for the G-equivariant pre-transfer. In order to
obtain the corresponding statements for the transfer in (iii) and (iv), one needs to invoke Proposition 4.14(iii)’.
For groups that are special, one may also see these more directly, as ε∗(tr(f)) = tr(ε∗(f)): see [CJ19, Corollary
8.2]. Therefore, for groups that are special, we may also obtain the corresponding results for the étale version of
the transfer by simply applying the pull-back functor ε∗ to the étale site.

This completes the proof of Theorem 1.12, modulo the results of Proposition 4.14 which provides the factorization
of the diagonal as discussed in (4.0.18), and modulo Proposition 4.1 and Lemma 4.2. However, in order to establish
this factorization, we need to undertake the discussion below on motivic tubular neighborhoods, followed by a
discussion on the rigidity property as in Proposition 4.7 and Corollary 4.13. �

Proposition 4.1. Assume the base field k contains a
√
−1. Let M denote a fibrant spectrum that has the rigidity

property as in Definition 1.10. Let U = {Ui|i} → B denote a covering over which the torsor p : E → B is
trivial. Let U• denote the corresponding Čech-hypercover of B. Then there are maps from each of the spectra
appearing in the definition of Map((E×

G
tr ′Z)|U• ,M) as in (4.0.22) to the corresponding spectrum appearing in the

definition of Map((E×
G

tr ′
Xh

Z
)|U• ,M) as in (4.0.21), which are weak-equivalences, and identifies Map((E×

G
tr ′Z)|U• ,M)

with Map((E×
G

tr ′Z)|U• ,M).

Proof. We will first discuss the proof when U = {Ui|i} → B is a Zariski open cover, and then outline the changes
needed if this is an étale cover. For this, we begin with the following observations:

(i) The Spanier-Whitehead dual D above is taken in the model category ŨSpt
G

which is Quillen equivalent

to the model category Spt of non-equivariant spectra. In fact, the spectrum SG in the category ŨSpt
G

identifies with the non-equivariant sphere spectrum ΣT, but re-indexed by the Thom-spaces {TV|V} of finite
dimensional G representations of G. (See [CJ19, Proposition 3.11].)

(ii) It suffices to obtain the above identification as maps of sheaves on the appropriate site of the base scheme B
on which the torsor p : E→ B is locally trivial.

Therefore, and in view of (4.0.23), we may replace all the equivariant sphere spectra appearing in (E×
G

tr ′Z)|U• and

(E×
G

tr ′
Xh

Z
)|U• by the non-equivariant sphere spectrum ΣT. Next, one may take a Zariski open cover V = {Vj|j} of

Z so that the normal bundle N|Vj
is trivial for each j. Then one observes the isomorphism

(4.0.28) (Xh
Z/(X

h
Z − Z))|V•

∼= V•,+ ∧Tc,

where c denotes the codimension of Z in X and V• = coskZ
0 (V) is the corresponding Čech hypercover. Then the

compatibility of the co-evaluation map with products (see Proposition 3.4) shows the following diagram commutes,



22 Roy Joshua and Pablo Pelaez

where the vertical maps are induced by the closed immersion ih : Z→ Xh
Z:

(4.0.29)

ΣT

c //
ΣT(Xh

Z/(X
h
Z − Z))|V• ∧D(ΣTXh

Z/(X
h
Z − Z)|V•)

τ //
D(ΣTXh

Z/(X
h
Z − Z)|V•) ∧ (ΣT(Xh

Z/X
h
Z − Z)|V•)

ΣT

id

OO

c //
ΣTV•,+ ∧D(ΣTV•,+)

OO

τ //
D(ΣTV•,+) ∧ (ΣTV•,+)

OO

Varying Vn in the above hypercover, the above diagram is one of cosimplicial-simplicial objects of spectra. One
takes the homotopy colimit followed by the homotopy inverse limit of the above diagram to obtain (as in the proof
of Lemma 4.2 below):

(4.0.30) ΣT

c //
ΣT(Xh

Z/(X
h
Z − Z)) ∧D(ΣTXh

Z/(X
h
Z − Z))

τ //
D(ΣTXh

Z/(X
h
Z − Z)) ∧ (ΣT(Xh

Z/X
h
Z − Z))

ΣT

id

OO

c //
ΣTZ+ ∧D(ΣTZ+)

OO

τ //
D(ΣTZ+) ∧ (ΣTZ+)

OO

Next one observes the identifications:

(ΣT(Xh
Z/X

h
Z − Z)) ∧D(ΣTXh

Z/(X
h
Z − Z))∧ ' RHom(ΣTXh

Z/(X
h
Z − Z),ΣTXh

Z/(X
h
Z − Z)) and(4.0.31)

ΣTZ+ ∧D(ΣTZ+) ' RHom(ΣTZ+,ΣTZ+)

where RHom denotes the derived internal hom in the above category of spectra. Then Lemma 4.2 below, enables
us to define a map

RHom(ΣTZ+,ΣTZ+)→ RHom(ΣTXh
Z/(X

h
Z − Z),ΣTXh

Z/(X
h
Z − Z))

which is shown there to be a weak-equivalence. This map is also defined by restricting to the hypercover V• and we
skip the verification that it is compatible with the right vertical map in (4.0.30) under the identifications in (4.0.31).
This also proves therefore that the middle vertical map in (4.0.30) is a weak-equivalence. One may prove the right
vertical map in (4.0.30) is also a weak-equivalence since it is obtained by applying the permutation of the two
factors in the middle column.

In view of the commutative square (where the vertical maps are again induced by the map ih),

Xh
Z/(X

h
Z − Z)

∆ //
Xh

Z/(X
h
Z − Z) ∧Xh

Z,+

Z+

OO

∆ //
Z+ ∧ Z+

OO

we next obtain the commutative diagram:

(4.0.32) D(ΣTXh
Z/(X

h
Z − Z) ∧ ΣTXh

Z/(X
h
Z − Z)

id∧∆//
D(ΣTXh

Z/(X
h
Z − Z) ∧ ΣTXh

Z/(X
h
Z − Z) ∧ ΣTXh

Z,+

D(ΣTZ+) ∧ ΣTZ+

OO

id∧∆ //
D(ΣTZ+) ∧ ΣTZ ∧ ΣTZ+

OO

We next consider the square:

(4.0.33) D(ΣTXh
Z/(X

h
Z − Z)) ∧ ΣTXh

Z/(X
h
Z − Z) ∧ ΣTXh

Z,+

e∧id //
ΣT ∧ ΣTXh

Z,+

D(ΣTZ+) ∧ ΣTZ+ ∧ ΣTZ+

e∧id //

OO

ΣT ∧ ΣTZ+.

id∧ΣTi
h

OO

Clearly the commutativity of the above square will be implied by the commutativity of the square

(4.0.34) D(ΣTXh
Z/(X

h
Z − Z)) ∧ ΣTXh

Z/(X
h
Z − Z)

e //
ΣT

D(ΣTZ+) ∧ ΣTZ+

e //

OO

ΣT,

id

OO
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which is implied by the commutativity of the square:

(4.0.35) D(ΣTXh
Z/(X

h
Z − Z))|V• ∧ ΣT(Xh

Z/(X
h
Z − Z))|V•

e //
ΣT

D(ΣTV•,+) ∧ ΣTV•,+
e //

OO

ΣT.

id

OO

In view of the identification ΣT(Xh
Z/(X

h
Z − Z))|V• = ΣTV•,+ ∧Tc, the last diagram now identifies with

(4.0.36) (D(ΣTV•,+) ∧ ΣTV•,+) ∧ (D(ΣTTc) ∧ ΣTTc)

eV•,+∧eTc//
ΣT

(D(ΣTV•,+) ∧ ΣTV•,+) ∧ ΣT

eV•,+ //

id∧(τ◦cTc )

OO

ΣT,

id

OO

where cTc (eTc) is the co-evaluation (evaluation, respectively) map for Tc. The above square commutes precisely
when τT = 1 in π0,0(ΣT) ∼= GW(k), with the last isomorphism holding because we have assumed k is perfect: see
[Mo4, Theorem 6.2.2]. Therefore, the last square commutes under the assumption that the base field k contains
a
√
−1 as shown in the proof of Theorem 1.5. Therefore, under the same hypothesis, the square in (4.0.33) also

commutes. Moreover, on taking the simplicial mapping space Map( ,M) for a fibrant spectrum in Sptet,r that has
the rigidity property, the vertical maps in the square (4.0.33) are also weak-equivalences. In view of the identification
in (4.0.23), the product with U• of the composition of the maps forming the top rows in diagrams (4.0.30), (4.0.32)
and (4.0.33) defines the map (E×

G
tr ′

Xh
Z
)|U• while the product with U• of the composition of the maps forming the

bottom-rows in diagrams (4.0.30), (4.0.32) and (4.0.33) defines the map (E×
G

tr ′Z)|U• . Therefore, this completes the

proof of the Proposition, when the given cover U = {Ui|i} over which p : E→ B is trivial is a Zariski open cover.

Next we consider the case where the above cover U = {Ui|i} is an étale cover of B. In this case, we let M
denote a motivic spectrum that has the rigidity property and let ε∗(M) denote its restriction to the big étale site.
Now ε∗ applied to the composition of maps forming the top rows in in diagrams (4.0.30), (4.0.32) and (4.0.33)
defines the pre-transfer ε∗(tr ′

Xh
Z
) while ε∗ applied to the composition of the maps forming the bottom rows in

diagrams (4.0.30), (4.0.32) and (4.0.33) defines the pre-transfer ε∗(tr ′Z). Therefore, the same arguments as in the
case where U is a Zariski open cover of B completes the proof. �

Lemma 4.2. Let i : Z→ X denote a closed regular immersion of smooth schemes over k with pure codimension c
and with the normal bundle associated i being N . Then there exists a natural map

(4.0.37) RHom(ΣTZ+,ΣTZ+)→ RHom(ΣTTh(N ),ΣTTh(N ))

which is a weak-equivalence. Here RHom denotes the derived internal hom in Sptmot or Sptet.

Proof. In view of the adjunction between the internal hom, Hom and the smash product, ∧, we will first show that
there is a natural map

(4.0.38) Hom(K ∧ ΣTZ+,ΣTZ+)→ Hom(K ∧ ΣTTh(N ),ΣTTh(N )),

where Hom denotes the external hom in the category Spt and for every K ε Spt. The adjunction between ∧ and
the internal hom, will then show this induces a natural map

Hom(K,Hom(ΣTZ+,ΣTZ+))→ Hom(K,Hom(ΣTTh(N ),ΣTTh(N ))

for all K εSpt and therefore a natural map

Hom(ΣTZ+,ΣTZ+)→ Hom(ΣTTh(N ),ΣTTh(N )).

By making use of the the injective model structures on Spt (as in [CJ19, 3.3.5]), we may assume that every object
is cofibrant, and therefore, the above map will then induce a natural map (by taking fibrant replacements):

(4.0.39) RHom(ΣTZ+,ΣTZ+)→ RHom(ΣTTh(N ),ΣTTh(N )).

Moreover, the fact the above map is a weak-equivalence will follow by showing that, on working locally on the
Zariski topology of Z, we reduce to the case where the normal bundle N is in fact trivial, where the calculation
reduces to the following:

RHom(ΣTTc ∧Y+,ΣTTc ∧Y+) ' RHom(ΣTY+,ΣTY+).
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Therefore, it suffices to show that there is natural map as in (4.0.38). Recall that the Thom-space Th(N ) is
defined as the pushout:

(4.0.40) Proj(N )
//

��

Proj(N ⊕ 1)

��
Spec k

//
Th(N ).

One may observe that this pushout may be also obtained in two stages, by taking the pushout of the first
diagram and then the second in:

(4.0.41) Proj(N )
//

��

Proj(N ⊕ 1)

��
Z

//
S(N ⊕ 1),

Z
//

��

S(N ⊕ 1)

��
Spec k

//
Th(N ).

Next let {Ui|i = 1, · · · ,n} denote a Zariski open cover of Z so that N is trivial on this cover, that is, N|Ui =

Ui×Ac, for each i. Here we assume that c is the codimension of Z in X. Let U = tiUi and U• = coskZ
0 (U), so that

in degree n, Un = (U×
Z
· · · ×

Z
U), which is the n-fold fibered product of U with itself over Z. Observe that now one

has an isomorphism of simplicial schemes

(4.0.42) φ : U• ×
Spec k

Tc ∼=→S(N ⊕ 1)|U• ,

where S(N ⊕ 1)|U• denotes the pull-back of S(N ⊕ 1) to U•. This isomorphism defines an isomorphism of simplicial
objects of spectra:

(4.0.43) ΣTφ+ : ΣTU•,+∧Tc
+ = ΣT(U• ×

Spec k
Tc)+

∼=→ΣT(S(N ⊕ 1)|U•,+.

Now consider the cosimplicial simplicial sets Hom(K ∧ΣTU•,+,ΣTU•,+) and Hom(K ∧ΣTS(N ⊕ 1)|U• ,ΣTS(N ⊕
1)|U•). Sending an f : K∧ΣTUn,+ → ΣTUm,+ to ΣTφ+(f ∧ idTc,+) (which denotes the induced map K∧ΣTS(N ⊕
1)|U•,+ → ΣTS(N ⊕ 1)|U•,+ defined by making use of the isomorphism ΣTφ+) defines a map

Hom(K ∧ ΣTU•,+,ΣTU•,+)→ Hom(K ∧ ΣTS(N ⊕ 1)|U•,+ ,ΣTS(N ⊕ 1)|U•,+)

which one may verify is compatible with the cosimplicial simplicial structure on either side. Moreover, one also
obtains a commutative diagram

(4.0.44) K ∧ ΣTUn,+
f //

s

��

ΣTUm,+

s

��
K ∧ ΣTS(N ⊕ 1)|Un,+

φ(f×idTc )//
ΣTS(N ⊕ 1)|Um,+ ,

where s denotes the canonical section. Therefore, collapsing the section s defines a map

Hom(K ∧ ΣTU•,+,ΣTU•,+)→ Hom(K ∧ ΣTTh(N|U•),ΣTTh(N|U•))

of cosimplicial simplicial sets. Since this is functorial in K, it follows that this defines a map of cosimplicial
simplicial spectra of internal homs:

RHom(ΣTU•,+,ΣTU•,+)→ RHom(ΣTTh(N|U•),ΣTTh(N|U•)).

The proof of the proposition may now be completed by observing the weak-equivalences:

RHom(ΣTZ+,ΣTZ+) ' holim
∆

hocolim
∆

RHom(ΣTU•,+,ΣTU•,+) and

RHom(ΣTTh(N ),ΣTTh(N )) ' holim
∆

hocolim
∆

RHom(ΣTTh(N|U•),ΣTTh(N|U•)).

Here we are making use of the weak-equivalences hocolim
∆

ΣTU•,+ ' ΣTZ+ ( see for example, [DHI04]) and

hocolim
∆

ΣTTh(N|U•) ' hocolim
∆

(ΣTS(N ⊕ 1)|U•/s(ΣT(U•,+)))(4.0.45)

' hocolim
∆

(ΣTS(N ⊕ 1)|U•)/s(hocolim
∆

ΣT(U•,+))

' ΣTS(N ⊕ 1)/ΣTZ+ ' ΣTTh(N )
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where s is the section considered in (4.0.44). Finally we observe that the homotopy colimit in the left argument
pulls out of the RHom( , ) as a homotopy inverse limit, while the homotopy colimit in the right argument pulls
out as a homotopy colimit, since the left argument of the RHom( , ) is a compact object.

�

4.1. Motivic Neighborhoods and Henselization along a closed smooth subscheme. We devote this small
section to a discussion of gadgets we call motivic tubular neighborhoods: we model this on the étale tubular
neighborhoods that have been around since [Cox]. Given a smooth scheme X, a rigid Nisnevich cover of X is a map
of schemes U → X, which is a Nisnevich cover, and in addition, U is a disjoint union of pointed étale separated
maps Ux,ux → X, x, where each Ux is connected, and as x varies over points of X, so that the above map induces
an isomorphism of residue fields k(ux) ∼= k(x). Given two rigid Nisnevich covers U → X and V → Z, the rigid

product U
R
×V is given as the disjoint union of (Ux × Vy)0 which is the connected component of Ux × Vy indexed

by the point x× y of X× Z.

Given a scheme X, a hypercover U• of X is a simplicial scheme U• together with an étale map U• → X, so that
(i) U0 → X is a Nisnevich cover and (ii) the induced map Ut → (coskX

t−1U•)t is a Nisnevich cover, for each t ≥ 1.
Such a hypercover is a rigid hypercover if the given maps in (i) and (ii) are rigid Nisnevich covers. One may readily
show that the category of rigid Nisnevich hypercovers of a given scheme X is a left directed category: see [Cox,
section 1]. This category will be denoted HRR(X).

Definition 4.3. (Motivic tubular neighborhoods) Let Z denote a closed smooth subscheme of a smooth scheme
X. We define the (rigid) motivic tubular neighborhood of Z in X to be the inverse system of simplicial schemes
NZ
• (U•) for which there exists a rigid Nisnevich hypercover U• of X so that NZ

n(U•) = tiUn,i, where the sum runs
over Un,i, which are connected components of Un with the property that Un,i×

X
Z 6= φ. One may readily see that

the motivic tubular neighborhood of Z in X is a left-directed category. This will be denoted tX/Z. See [Cox, section
1] for similar definitions of étale tubular neighborhoods.

Remark 4.4. The inverse system of all rigid Nisnevich neighborhoods of Z in X corresponds to the Henselizaton of
X along Z.

Next we will provide the following Lemma, whose proof is skipped as it follows exactly as in [Cox, Lemma 1.2].

Lemma 4.5. Given a V• in tX/Z, and a separated étale map φ : W → Vn, and so that the induced map W×
X

Z→
Vn×

X
Z is a Nisnevich cover, there is a map φ• : W• → V• in tX/Z, so that φn factors through the map φ.

Next we recall that the main model structure we use on the category ŨSpt
G

is defined as follows. First we
start with the injective model structure on the category PSh/S of pointed simplicial presheaves, where cofibrations
(weak-equivalences) are section-wise cofibrations (weak-equivalences, respectively) of pointed simplicial sets, and
fibrations are defined by the right lifting property with respect to maps that are trivial cofibrations. Then we
localize this model structure by inverting maps that are both stalk-wise weak-equivalences and also maps of the
form A1×U→ U, for any U in the site. We will call the resulting category, the category of motivic spaces. Recall that

the objects of the category ŨSpt
G

are PSh/S-enriched functors SphG → PSh/S, where PSh/S is provided with the
above model structure. We start with the level-wise injective model structure on this category, where the cofibrations
(weak-equivalences) are maps φ : X ′ → X for which the induced map φ(TV) : X ′(TV) → X (TV) is a cofibration
(weak-equivalence, respectively) for every TV. Finally we obtain the corresponding stable model structure, where
the fibrant objects are the Ω-spectra. A map between two fibrant spectra M′ = {M′(TV)|V} → M = {M(TV)|V}
is a weak-equivalence if and only if the map M′(TV)→ M(TV) is a weak-equivalence for each V, in the level-wise
injective model structure, which implies (in view of the above discussion) that it is a stalk-wise weak-equivalence
of A1-localized simplicial presheaves.

It is shown in [CJ19, Proposition 3.10] that one has a Quillen equivalence between the model category Spt
of motivic spectra (i.e. sequence of motivic spaces {Mn|n ≥ 0} together with compatible suspensions T ∧Mn →
Mn+1) and the model category ŨSpt

G

. At this point it is convenient to introduce the category of motivic S1-
spectra: this will be sequences {Mn|n ≥ 0} of motivic spaces, together with a compatible family of structure
maps S1 ∧ Mn → Mn+1, n ≥ 0. We will put the level-wise injective model structure on this category, where
cofibrations and weak-equivalences are defined level-wise and fibrations defined by the right-lifting property with
respect to trivial cofibrations. This category will be denoted SptS1 . A motivic Ω-bi-spectrum S is given by a
sequence {Sn|n ≥ 0} of motivic S1-spectra, together with compatible weak-equivalences {Sn → ΩT(Sn+1)|n ≥ 0}.
One may define motivic bi-spectra similarly, by just relaxing the condition that the maps Sn → ΩT(Sn+1) are
weak-equivalences. With suitable model structures, the above categories of spectra are all Quillen-equivalent. (See
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[Lev08, section 8], where such spectra are called by a slightly different name. The relationship between various
categories of spectra is discussed there.)

A useful observation for us is the following: given a motivic S1-spectrum M = {Mn|n ≥ 0}, so that (i) each
Mn is A1-local and stalk-wise fibrant, one may obtain a fibrant replacement (i.e. fibrant in the injective model
structure on SptS1) by applying the canonical Godement resolution G• (which produces a cosimplicial object) and
then taking its homotopy inverse limit): the resulting motivic spectrum will be denoted G(M).

Proposition 4.6. (i) Given any motivic S1-spectrum M = {Mn|n ≥ 0}, there exists a spectral sequence

Es,t2 = colim
α

Hs(Γ(Uα
• , πt(M)))⇒ π−s+t(holim

∆
colim
α

Γ(Uα
• ,M))

where the colimit is taken over all rigid Nisnevich hypercovers of the given smooth scheme X. This spectral sequence
converges strongly as Es,t2 = Hs

Nis(X, aπt(M)) = 0 for all s > dim(X), where aπt(M) denotes the associated abelian
sheaf.

(ii) If M is a motivic S1-spectrum as in (i) and is replaced by its fibrant replacement in the injective model
structure on SptS1 (for example, its Godement resolution G(M)), then the map from the spectral sequence

Es,t2 = Hs(Γ(Uα0
• , πt(G(M))))⇒ π−s+t(holim

∆
Γ(Uα0

• ,GM))

for a fixed rigid Nisnevich hypercover Uα0
• , to the spectral sequence in (i), is an isomorphism.

Proof. (i) The existence of the spectral sequence and the identification of the E2-terms follow readily in view of
the discussion in [Th85, Proposition 1.16]. At this point, one knows that cohomology on any site with respect to

an abelian presheaf may be computed using hypercoverings in that site: see [SGA4]. Therefore, the Es,t2 -term in
(i) identifies with Hs

Nis(X, aπt(M)), where aπt(M) denotes the sheaf associated to the presheaf πt(M). Finally one
uses the fact that the Nisnevich site of the smooth scheme X has cohomological dimension given by dim(X) to
complete the proof of (i).

(ii) We will assume that M is replaced by G(M) = holim
∆

G•(M). Then the Es,t2 -term of the spectral sequence

in (ii) identifies with Hs(Γ(Uα0
• , πt(G(M)))) ∼= Hs(Γ(Uα0

• ,G
•πt(M))) ∼= Hs

Nis(X, aπt(M)). Thus these Es,t2 -terms do

not depend on the choice of the rigid Nisnevich hypercover, and also identifies with the Es,t2 -term of the spectral
sequence in (i). Since both spectral sequences converge strongly, we obtain an isomorphism on the abutments,
thereby proving (ii). �

The following proposition lists a small sample of convenient criteria that ensure that a motivic spectrum M has
the rigidity property as in Definition 1.10.

Proposition 4.7. In (i) through (iv), let M denote a motivic spectrum so that there exists a prime ` 6= char(k),
so that the homotopy groups of the spectrum M are all `-primary torsion.

(i) The base field is infinite and M defines an orientable motivic cohomology theory, that is, one that has a theory
of Chern classes.

(ii) The base field k is algebraically or quadratically closed and of characteristic 0 with ` 6= 2: there are no further
restrictions on the motivic spectrum M.

(iii) The base field k is infinite, non-real and of characteristic 0 with ` 6= 2: there are no further restrictions on
the motivic spectrum M.

(iv) The base field k is infinite, non-real, of characteristic different from 2 and the prime ` 6= 2: there are no
further restrictions on the motivic spectrum M.

If either of the above hypotheses are satisfied, then M has the rigidity property (as in Definition 1.10).

(v) Alternatively, if the base field k is of characteristic 0, φ is a class in the Grothendieck-Witt group of the
field k, so that rank(φ) is invertible in k and the spectrum M is φ-torsion, that is, φM = 0, then again M has the
rigidity property (as in Definition 1.10).

In particular, the spectrum representing algebraic K-theory with finite coefficients prime to the characteristic has
the rigidity property.

Proof. The fact that one has the above rigidity property for the spectrum representing algebraic K-theory follows
from Gabber’s theorem which holds for all Hensel pairs: see [Gab, Theorem 1]. The remaining statements need to
be deduced from what is in the literature on rigidity: statements (i) ((ii) and (iii)) when x is a k-rational point of
a smooth variety is stated in [PY02, Theorem 1.13], [HY07, Theorem 0.3, Corollary 0.4], as well as [Y04, Theorem
1.5] and [Y11, Corollary 2.6]. Observe that, in Definition 1.10, one does not require the point x to be a k-rational
point. Therefore, we proceed to show that the above rigidity property can be deduced from the corresponding
statement for the case x is a k-rational point.



Additivity and Double Coset Formulae for the Motivic and Étale Becker-Gottlieb transfer 27

Next let Z denote the closure of the given point x and let z = x , but viewed as a point of Z. By replacing X
and Z by open subschemes, we may assume without loss of generality that Z is smooth and z denotes the generic
point of Z. The local structure discussed below in Lemma 4.15 shows that there is a Zariski open neighborhood
Uz of z in X and an étale map qz : Uz → An, (where n = dimk(X)), so that Uz ∩ Z = q−1

z (An−c × {0}), (where
c = codimX(Z)). Moreover, there is then a smaller open Vz in Uz which is a Nisnevich neighborhood of Uz ∩ Z in
Uz and also of (Uz ∩ Z) × {0} in (Uz ∩ Z) × Ac, in the sense that the conditions in Lemma 4.15(ii) are satisfied.
Then, since Nisnevich neighborhoods of the form Wz ×k W′0, where Wz is a Nisnevich neighborhood of z in Z and
W′0 is a Nisnevich neighborhood of 0 in Ac, are cofinal in the system of all Nisnevich neighborhoods of the point
z × 0 in Z× Ac, we obtain

(4.1.1) OhX,x ∼= OhZ,z ⊗k OhAc,0.

Since z is the generic point of Z, clearly OhZ,z ∼= k(z ). Thus OhX,x ∼= k(z )⊗k Oh
Ac ,0. At this point, we may consider

the scheme Spec k(z ) ×
Spec k

Ac : clearly z ×
Spec k

0 is a k(z ) rational point of the scheme Spec k(z ) ×
Spec k

Ac .

It is observed on [HY07, p. 441] that any generalized orientable motivic cohomology theory is normalized with
respect to any field. Therefore, [HY07, Theorem 0.3 and Corollary 0.4] apply to prove the statement in (i). The
field k(z ) and the fraction field of k(z )⊗

k
Oh

Ac ,0 satisfy the hypotheses of [Y11, Corollary 2.6], which proves the

statements in (ii) and (iii). The statement in (iv) also follows from [Y11, Corollary 2.6], once the restriction that
the field of fractions of the Hensel ring be perfect is removed. An analysis of the proof of [Y11, Corollary 2.6]
shows that this condition is put in because of the restriction that the field be perfect in Morel’s theorem as in
[Mo4, Theorem 6.2.2]. By [BH, Theorem 10.12], the above assumption is no longer needed in the above Theorem
of Morel. The fifth statement appears in [AD, Corollary 1.3] where the hypothesis is that the base field is perfect.
However, in order to apply this result to residue fields of non-closed points, one needs to assume that such residue
fields are also perfect, which is guaranteed by the assumption that the characteristic is 0.

�

Remark 4.8. In view of [AD] and [BH], it seems possible to obtain more general criteria than those listed in
Proposition 4.7 which would ensure rigidity in the sense of Definition 1.10. The purpose of Proposition 4.7 is not
to provide the most general criteria to ensure such rigidity, but to give a small sample of convenient criteria to
ensure rigidity.

Proposition 4.9. Let M denote a motivic spectrum. If the homotopy groups of M are all `-primary torsion, for
some prime ` 6= char(k), then the slices of M have the rigidity property. In particular, if the spectrum M has the
rigidity property as in Definition 1.10, then all its slices have the rigidity property.

Proof. We observe from [Pel11, Theorem 2.4] that the slices of any motivic spectrum are orientable. Therefore,
in view of Proposition 4.7(i), it suffices to show that if the spectrum M is such that its homotopy groups are all
`-primary torsion for some prime ` 6= char(k), then the same property holds for its slices. For this one needs to
recall the construction of the P1-slices of a motivic spectrum as in [Lev08, sections 8, 9]. First one shows that the

ΩT-spectrum, M̂, associated to M also has its homotopy groups all `-primary torsion: this follows readily from the

fact that M̂n = lim
m→∞

ΩmTMn+m. It follows that M̂n has its homotopy groups all `-primary torsion, for each fixed n.

Next one constructs a bi-spectrum by taking the S1-suspension spectrum, ΣS1M̂n, of each M̂n: {ΣS1M̂n|n ≥ 0}.
One may see readily that each of the S1-suspension spectra, ΣS1M̂n also has its homotopy groups all `-primary
torsion. Finally one applies the construction of the slices as in [Lev08, 8.3] in terms of the slices of the S1-spectra,

ΣS1M̂n. Thus, we reduce to showing that if the homotopy groups of the S1-spectrum X are all `-primary torsion,
then its S1-slices also have their homotopy groups all `-primary torsion: this is clear from the explicit construction
of such slices as in [Lev08, 2.1]. �

Lemma 4.10. Let M denote a motivic ring spectrum whose homotopy groups are all `-primary torsion, for a fixed
prime ` 6= char(k). Then if M has the rigidity property as in Definition 1.10, its pull-back ε∗(M) to the étale site
also has the rigidity property

Proof. Clearly for every Hensel ring R with residue field K, the map Γ(Spec R,M) → Γ(Spec K,M) is a weak-
equivalence, since M has the rigidity property (on the Nisnevich site). The fact that, if K1 ⊆ K2 is an extension of
algebraically closed fields, then the induced map Γ(Spec K1,M)→ Γ(Spec K2,M) is a weak-equivalence is shown in
[Y04, Theorem 1.10]. To see that the same holds when K1 and K2 are only separably closed, one observes that for
any purely inseparable field extension K ⊆ K′ of fields containing the base field k, Γ(Spec K,M) ' Γ(Spec K′,M)
as the homotopy groups of M are all ` primary torsion and the degree of the field extension is prime to `. �
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Next we recall the definition of Hensel pairs for affine schemes from [St, Definition 15.11.1]. Accordingly an
(affine) Hensel pair is given by a pair (A, I) where A is a commutative ring with 1 and I is an ideal in A contained in
the Jacobson radical of A, so that for any monic polynomial f ∈ A[T] and factorization f̄ = ḡ.h̄ with ḡ, h̄ ∈ (A/I)[T],
which is monic and generating the unit ideal in A/I[T], there exists a factorization f = g.h in A[T] with g,h monic
and ḡ ( and h̄) the image of g (f) in A/I[T].

It is important to view the above affine Hensel pair as the affine scheme given by (Spec (A/I),A), that is, the
underlying topological space is Spec(A/I) and the structure sheaf is the one defined by the ring A.

Definition 4.11. (Hensel pairs and Henselization) Let X be a given scheme and Z a closed subscheme of X. Then
(X, Z) is a Hensel pair if for every affine open cover {Ui|i} of X, (Ui,Ui ∩ Z) is Hensel pair as in [St, Definition
15.11.1]. Given a scheme X and a closed subscheme Z of X, the Henselization of X along Z is the scheme obtained
by gluing the Henselization of the affine schemes {Ui|i} along the closed subschemes Ui ∩ Z. This will be denoted
Xh

Z.

It is important to view the scheme Xh
Z as given by the underlying space Z and provided with the structure sheaf

OhX,Z which is obtained by the gluing (Z∩Ui,Oh
Ui,Ui∩Z) for any affine open cover {Ui|i} of the scheme X. (See [Cox,

p. 213]

Lemma 4.12. If

Z′
//

��

X′

��
Z

//
X

is a cartesian square where the horizontal maps are closed immersions, one obtains an induced map X′hZ′ → Xh
Z.

Proof. This is skipped as it is an easy exercise to complete from the definition of Henselization: one may in fact
reduce to the case where all the schemes are affine. �

The following rather subtle point is the main thrust of the following result. Given a presheaf M on the big
Nisnevich site over k , there is no apriori reason for the cohomology with respect to M for the Henselization of a
given scheme X along a closed sub-scheme Z to be isomorphic to the cohomology of Z with respect to M. This issue
does not arise if M is a sheaf on the small Nisnevich site of X. The assumption that M has the rigidity property,
then does ensure that the above cohomologies are isomorphic.

Corollary 4.13. Let i : Z → X denote a closed immersion of smooth schemes. (i) Then for any motivic S1-
spectrum M = {Mn|n} in SptS1 , one obtains a weak-equivalence

holim
∆

colim
α

Γ(NZ(Uα
• ),M) ' HNis(X

h
Z,M)

where Uα
• varies among all hypercoverings of X, Xh

Z denotes the Henselization of the scheme X along Z, and
HNis(X

h
Z,M) denotes the spectrum Γ(Xh

Z,GM), with GM denotes a fibrant replacement of M.

(ii) If in addition, the spectrum M has the rigidity property in Definition 1.10, then one obtains the weak-
equivalence:

HNis(X
h
Z,M) ' HNis(Z,M).

(iii) If X and Z are provided with the action of a linear algebraic group G with the map i G-equivariant, the

same conclusions also hold for any spectrum M ε ŨSpt
G

.

(iv) Corresponding results also hold for hypercohomology computed on the étale site, provided the base field k
has finite `-cohomological dimension for some prime ` 6= char(k) and the homotopy groups of the spectrum M are
`-primary torsion.

Proof. Throughout this proof, we will adopt the following notational conventions. For a smooth scheme Z, we let
M|Z denote the restriction of M to the small Nisnevich site of the scheme Z. Given a presheaf P on the small

Nisnevich site of the scheme X, we will let i−1(P) denote the restriction of P to the small Nisnevich site of the
closed subscheme Z.

As in Proposition 4.6, one obtains spectral sequences:

Es,t2 (1) = colim
α

Hs(Γ(NZ(Uα
• ), πt(M|X))⇒ π−s+t(holim

∆
colim
α

Γ(NZ(Uα
• ),M|X)) and(4.1.2)

Es,t2 (2) = Hs(Z, πt(i
−1M|X))⇒ π−s+tH(Z, i−1M|X).
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Since every scheme that appears in the simplicial scheme NZ(Uα
• ) in each degree belongs to the small Nisnevich

site of X, one may identify the first spectral sequence with

Es,t2 (1) = colim
α

Hs(Γ(NZ(Uα
• ), πt(M))⇒ π−s+t(holim

∆
colim
α

Γ(NZ(Uα
• ),M)).

In addition, there is also a third spectral sequence:

Es,t2 (3) = Hs(Z, πt(M)) ∼= Hs(Z, πt(M|Z))⇒ π−s+tH(Z,M) ∼= π−s+tH(Z,M|Z).(4.1.3)

We reduce to showing there are natural maps of these spectral sequences that inducing an isomorphism at the
E2-terms, and that all three of these spectral sequences converge strongly. First making use of Lemma 4.5, we
obtain the identification:

colim
α

Hs(Γ(NZ(Uα
• ), πt(M|X)) ∼= colim

α
Hs

Nis(N
Z(Uα

• ), πt(M|X)),

where the term on the left (right) denotes the cohomology of the co-chain complex Γ(NZ(Uα
• ), πt(M|X) (the Nisnevich

hypercohomology of NZ(Uα
• ) with respect to the abelian sheaf πt(M|X), respectively). Observe that NZ(Uα

• )×
X

Z is

a Nisnevich hypercover of Z, so that one obtains a natural map

colim
α

Hs
Nis(N

Z(Uα
• ), πt(M|X))→ colim

α
Hs

Nis(N
Z(Uα

• )×
X

Z, πt(M|X)) ∼= Hs
Nis(Z, πt(M|X)).

This provides a map between the first two spectral sequences. To prove that this map will be an isomorphism at the
E2-terms, exactly the same arguments as in the proof of [Cox, Theorem 1.3] carry over from the étale framework

to the Nisnevich framework, we are considering. Now it is clear that Es,t2 = 0, for all s > dimk(Z), so that both
these spectral sequences converge strongly providing the required isomorphism at the abutments. Observe that the
stalk of πt(M|X) at a point z εZ identifies with πt(Γ(SpecOhX,z ,M)), so that we obtain the identification

(4.1.4) Hs
Nis(Z, πt(i

−1M|X)) ∼= Hs
Nis(X

h
Z, πt(M|X)).

This proves the first statement. Next we consider the second statement. Observe that there is a map from
the second spectral sequence in (4.1.2) to the spectral sequence in (4.1.3). As both spectral sequences converge
strongly, it suffices to show that the obvious map of sheaves πt(M|X) → πt(M|Z) is an isomorphism stalk-wise at

every point of Z. As observed above, the stalk of πt(M|X) at a point z εZ identifies with πt(Γ(SpecOhX,z ,M)).

The stalk of πt(M|Z) at the same point z identifies with πt(Γ(SpecOhZ,z ,M)). By the assumed rigidity property of

M, both of the above groups identify with πt(Γ(Spec k(z ),M)). Therefore, the required isomorphism follows from
the assumed rigidity property of the spectrum M and the isomorphism in (4.1.4). This completes the proof of the
second statement. The third statement now follows in view of the Quillen-equivalence of model categories between

ŨSpt
G

and the model category of motivic spectra established in [CJ19, Proposition 3.10].

Next we consider the statement in (iv). One can see that essentially the same spectral sequences exist on the
étale site: their strong convergence is guaranteed by the assumption that the base field k has finite `-cohomological
dimension. Now, the main point is to show that one obtains a weak-equivalence

(4.1.5) Het(Xh
Z, ε
∗(M)) ' Het(Z, ε

∗(M)).

For a smooth scheme Z, we let ε∗(M)|Z denote the restriction of ε∗(M) to the small étale site of the scheme Z.

Given a presheaf P on the small étale site of the scheme X, we will let i−1(P) denote the restriction of P to the
small étale site of the closed subscheme Z. As the space underlying the scheme Xh

Z is just the space underlying the
scheme Z, the left-hand-side of (4.1.5) identifies with Het(Z, i−1(ε∗(M)|X)). The right-hand-side of (4.1.5) identifies

with Het(Z, ε∗(M)|Z). Now the stalk of i−1(ε∗(M)|X) at a geometric point z̄ , corresponding to a point z ∈ Z, is

given by Γ(Spec (OshX,z ),M) while the stalk of ε∗(M)|Z at the same geometric point z̄ is given by Γ(Spec (OshZ,z ),M).

By the assumed rigidity property of M, both of these identify with Γ(Spec (k(z )),M), where k(z ) denotes the
separable closure of k(z ). This then provides the required weak-equivalence of the étale hypercohomology spectra
in (4.1.5), as the corresponding spectral sequences that compute the homotopy groups of the hypercohomology
spectra converge strongly. �

4.2. More on rigidity. One may let {Z→ Xh
Z} denote the family of Henselizations of smooth schemes X along a

closed smooth subscheme Z. Now one may enlarge the generating trivial cofibrations on the stable motivic homotopy
category Sptmot by including the T-suspension spectra of the above family of maps among the generating trivial
cofibrations. In the resulting model category, one can see that the fibrant objects are exactly the fibrant spectra
in Sptmot that have the rigidity property. We will denote the corresponding model category of motivic spectra
by Sptmot,r. Let ε∗ : Sptmot,r → Sptet denote the pull-back to the étale site. In order that ε∗ be a left-Quillen
functor, it is clear that we need to enlarge the generating trivial cofibrations on Sptet by adding maps of the
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form: {ε∗(ΣTZ) → ε∗(ΣTXh
Z)}. We will denote the resulting model category of étale spectra by Sptet,r. In a

similar manner, on incorporating the action of a linear algebraic group G, we obtain the left-Quillen functor on
the corresponding model categories:

(4.2.1) ε∗ : ŨSpt
G

mot,r → ŨSpt
G

et,r

with its right adjoint given by Rε∗.

Proposition 4.14. Assume the situation as in Theorem 1.12.

(i) Then one obtains the commutative square:

Xh
Z/(X

h
Z − Z)

∆h

��

//
X/U

∆

��
(Xh

Z/(X
h
Z − Z)) ∧Xh

Z,+

//
X/U ∧X+

where the top horizontal map induces a motivic stable equivalence on the associated suspension spectra and ∆h, ∆
denote the corresponding diagonal maps. Taking the smash product with the sphere spectrum SG, one obtains a
similar commutative square, where each term above is replaced by the smash product with SG.

(ii) Let p : E → B denote a G-torsor for a linear algebraic group G. Then the commutative diagram in (i)
induces the commutative diagram:

E×
G

(SG ∧ (Xh
Z/(X

h
Z − Z)))

E×
G

(SG∧∆h)

��

//
E×

G
(SG ∧ (X/U))

E×
G

(SG∧∆)

��
E×

G
(SG ∧ (Xh

Z/(X
h
Z − Z) ∧Xh

Z,+))
//
E×

G
(SG ∧ (X/U ∧X+))

so that the map in the top row is again a weak-equivalence. Here the quotient construction E×
G

is carried out as

follows: when G is special as a linear algebraic group, the quotient is taken on the big Zariski (or the big Nisnevich)

site, while when G is not special, it is taken after applying ε∗ in the model category ŨSpt
G

et,r ( on the big étale site)

and then followed by the derived push-forward Rε∗, to the model category ŨSpt
G

mot,r (on the big Nisnevich site).

(iii) Let M denote a fibrant motivic spectrum that has the rigidity property as in Definition 1.10. Then, denoting
by Map( ,M) the simplicial mapping space of maps to M on the Nisnevich site, one obtains the weak-equivalence

(4.2.2) Map(E×
G

(SG ∧ (Xh
Z/(X

h
Z − Z) ∧Xh

Z,+)),M) ' Map(E×
G

(SG ∧ (Xh
Z/(X

h
Z − Z) ∧ Z+)),M)

so that the map Map(E×
G

(SG ∧ ∆),M) factors through the map Map(id ∧ i,M) where the map id ∧ i denotes the

map E×
G

(SG ∧ (X/U ∧ Z+))→ E×
G

(SG ∧ (X/U ∧X+)). Taking E = B×G→ B, one obtains:

Map((SG ∧ (Xh
Z/(X

h
Z − Z) ∧Xh

Z,+)),M) ' Map((SG ∧ (Xh
Z/(X

h
Z − Z) ∧ Z+)),M).

(iii)’ Let M denote a fibrant motivic spectrum that has the rigidity property as in Definition 1.10. Then cor-
responding results as in (iii) hold for the spectrum ε∗(M) when the quotients appearing above are replaced by the
quotients in the étale topology of the corresponding sheaves pulled back to the étale site.

(iv) Moreover Map((SG ∧∆),M) also identifies with Map((SG ∧∆′),M), where ∆′ denotes the composite map

(4.2.3) ∆′ : (Th(N ))+ → (Th(N ))+ ∧ E(N )+
id∧r→ (Th(N ))+ ∧ Z+

id∧i→ (Th(N ))+ ∧X+.

Here E(N ) denotes the total space of the normal bundle N , and r (i) is the map induced by the obvious retraction
E(N ) → Z (i is the given closed immersion, respectively). The same identification holds when both are viewed as

maps in ŨSpt
G

.

Proof. The commutative square in (i) follows readily from the cartesian square:

(4.2.4) Z
id //

��

Z

��
Xh

Z

//
X
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Next one may recall from [MV99, Lemma 2.27] the weak-equivalences:

(4.2.5) X/U ' Th(N ) ' Xh
Z/(X

h
Z − Z).

(In fact, the normal bundle N pulls back to the normal bundle associated to the closed immersion Z in Xh
Z.) This

proves that the map in the top row of the square in (i), namely that the map Xh
Z/(X

h
Z − Z) → X/(X − Z) is a

weak-equivalence. Therefore, these complete the proofs of the statements in (i).

Next we consider the statements in (ii). The functoriality of the Henselization as in Lemma 4.12 shows that the
action of the group G on X and Z induces an action by G on Xh

Z. This observation, along with the observations
in (i) provide the commutative square in (ii). The fact that the top row in the corresponding square is also a
weak-equivalence follows from the fact that the top row of the square in (i) is also a weak-equivalence, making use
of the appropriate quotient construction utilized there, as discussed in (ii).

When the group G is special, the torsor E → B trivializes on a Zariski open cover. Therefore, the weak-
equivalence in (4.2.2) follows from the above observations, in view of the weak-equivalence provided by Proposi-
tion 4.13 as the spectrum M is assumed to have the rigidity property. In general, the torsor E→ B only trivializes
on an étale cover. Then one makes use of the quotient construction in Sptet,r after applying ε∗. The discussion in
the subsection 4.2 shows that this preserves weak-equivalences and so does the right derived functor Rε∗ in (4.2.1).
The second statement in (iii) is clear.

Next we consider the statement in (iii)’. This follows readily, since ε∗(M) also has the rigidity property, the
torsor E → B is locally trivial in the étale topology and in view of Corollary 4.13(iv). Next we consider the
statements in (iv). In order to identify the two diagonal maps ∆X/U and ∆′X/U, we need to first observe that the

required conclusion is true when X = Z×Ac for any positive integer c and Z is imbedded in X as the 0-section. In
this case, the total space of the normal bundle N is Z× Ac, so that both the diagonal maps are given by

ΣT((Z× Ac)/(Z× Ac − Z× {0})→ ΣT((Z× Ac)/(Z× Ac − Z× {0}) ∧ ΣT((Z× Ac)+

which clearly factors through the map

id ∧ ΣTi : ΣT((Z× Ac)/(Z× Ac − Z× {0})) ∧ ΣTZ+ → ΣT((Z× Ac)/(Z× Ac − Z× {0})) ∧ ΣT(Z× Ac)+.

What remains then in the general case is to reduce it to the above case by making use of Lemma 4.15 and an
argument as in the proof of [MV99, Theorem 2.23 and Proposition 2.24].

The next step is to consider the case when X is replaced by a Zariski open subset of the form Uz , which contains
a point z εZ. For the following discussion, we will adopt the terminology used in Lemma 4.15. Observe that in
this case, Vz is a Nisnevich neighborhood of z that maps to both Uz and (Uz ∩ Z) × Ac. Moreover, this case we
will presently observe that the three maps

∆1 : ΣT(Uz/(Uz ∩U))→ ΣT(Uz/(Uz ∩U)) ∧ ΣT(Uz )+,

∆2 : ΣT(Vz/(Vz×
Uz

(Uz − (Uz ∩ Z))))→ ΣT(Vz/(Vz×
Uz

(Uz − (Uz ∩ Z)))) ∧ ΣT(Vz )+ and

∆3 : ΣT((Uz ∩Z)×Ac/((Uz ∩Z)× (Ac−{0}))→ ΣT((Uy ∩Y)×Ac/((Uz ∩Z)× (Ac−{0}))∧ΣT((Uz ∩Z)×Ac)+

identify in the motivic stable homotopy category. As in the discussion above, it suffices to show that these maps
identify on running over rigid Nisnevich hypercoverings of Uz , Vz and (Uz ∩ Z) × Ac as well as those of Uz ∩ U,
(Vz×

Uz

(Uz−(Uz∩Z))) and of ((Uz∩Y)×(Ac−{0}). Since Vz×
Uz

Z ∼= Uz∩Z and Vz ×
(Uz∩Z)×Ac

((Uz∩Z)×{0}) ∼= (Uz∩Z),

it follows readily that while doing so, the sources and the targets of the above diagonal maps all identify and so do
the corresponding diagonal maps.

Finally we take a Zariski open cover of the scheme X, take its Cech nerve by taking repeated intersections and
apply the above argument to each such Zariski open set in the place of the Uz above and complete the argument
as in the proof of [MV99, Theorem 2.23 and Proposition 2.24]. We skip the remaining details. �

Lemma 4.15. Let i : Z→ X denote a closed immersion of smooth schemes of finite type over k of pure codimension
c and X is of pure dimension n. Then the following hold.

(i) For every point z εZ, there exists a Zariski neighborhood Uz of y in X and an étale map qz : Uz → An, so
that one has the cartesian square:

Uz ∩ Z
//

q′z
��

Uz

qz

��
An−c

//
An.
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(ii) For every point z εZ, there exists a commutative square

Vz
//

qVz

��

Uz

qz

��
(Uz ∩ Z)× Ac

pz //
An

so that Vz ×
(Uz∩Z)×Ac

((Uz ∩Z)×{0}) ∼= (Uz ∩Z) and Vz×
Uz

(Uz ∩Z) ∼= Uz ∩Z i.e. Vz is a Nisnevich neighborhood

of (Uz ∩ Z)× {0} in (Uz ∩ Z)× Ac and that Vz is a Nisnevich neighborhood of Uz ∩ Z in Uz .

Proof. For each y εZ, one knows by [EGA, IV, 17.12.2] that there exists a Zariski open neighborhood Uz of y in
X and an étale map qz : Uz → An so that one obtains the first cartesian square in the lemma.

Let pz = q′z × id : (Uz ∩Z)×Ac → An−c×Ac = An denote the induced map. Let V′z be defined by the cartesian
square:

V′z
//

q′Uz

��

Uz

qz

��
(Uz ∩ Z)× Ac

pz //
An.

i.e. V′z = Uz×
An

((Uz ∩ Z)× Ac). Now one may observe the commutative diagram

(Uz ∩ Z) ×
An−c

(Uz ∩ Z)
//

��

(Uz ∩ Z)
i //

q′z

��

Uz

qz

��
(Uz ∩ Z)

q′z //
An−c

//
An

where both the squares are cartesian, which provides the isomorphism: (Uz ∩ Z) ×
An−c

(Uz ∩ Z) ∼= Uz×
An

(Uz ∩ Z). We

call this scheme W′z . Then one observes the isomorphism:

V′z ×
(Uz∩Z)×Ac

(U ∩ Z)× {0} ∼= Uz×
An

((Uz ∩ Z)× Ac) ×
(Uz∩Z)×Ac

(Uz ∩ Z)× {0}(4.2.6)

∼= Uz×
An

(Uz ∩ Z)× {0} = (Uz ∩ Z) ×
An−c

(Uz ∩ Z) = W′z .

Next one observes that the map q′z : (Uz ∩ Z) → An−c is étale, which implies the diagonal map ∆ : (Uz ∩ Z) →
(Uz ∩ Z) ×

An−c
(Uz ∩ Z) is an open immersion. Let Zz denote (Uz ∩ Z) ×

An−c
(Uz ∩ Z) −∆(Uz ∩ Z), which is therefore

closed in V′z by (4.2.6). Let Vz = V′z − Zz and Uz ∩ Z = W′z − Zz . Then one may see that, with the above choice
of Vz , one obtains the commutative square in (ii). �

5. Applications of the Additivity (and Multiplicativity) of the trace and transfer

We begin by discussing the following Proposition, which seems to be rather well-known. (See for example, [Th86,
Proposition 4.10] or [BP, (3.6)].)

Proposition 5.1. Let T denote a split torus acting on a smooth scheme X all defined over the given perfect base
field k.

Then the following hold.

X admits a decomposition into a disjoint union of finitely many locally closed, T-stable subschemes Xj so that

(5.0.7) Xj
∼= (T/Γj)×Yj.

Here each Γj is a sub-group-scheme of T, each Yj is a scheme of finite type over k which is also regular and on
which T acts trivially with the isomorphism in (5.0.7) being T-equivariant.

Proof. One may derive this from the generic torus slice theorem proved in [Th86, Proposition 4.10], which says
that if a split torus acts on a reduced separated scheme of finite type over a perfect field, then the following are
satisfied:

(1) there is an open subscheme U which is regular and stable under the T-action
(2) a geometric quotient U/T exists, which is a regular scheme of finite type over k
(3) U is isomorphic as a T-scheme to T/Γ×U/T where Γ is a diagonalizable subgroup scheme of T and T acts

trivially on U/T.
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(See also [BP, (3.6)] for a similar decomposition.) �

Next we consider the following theorem.

Theorem 5.2. We will assume throughout this theorem that the base field k contains a
√
−1. Under the assumption

that the base field k is of characteristic 0, the following hold, where τX denotes the trace associated to the scheme
X:

(i) τGm = 0 in the Grothendieck-Witt ring of the base field k and if T is a split torus, τT = 0 in the Grothendieck-
Witt ring of the base field k.

(ii) Let T denote a split torus acting on a smooth scheme X. Then XT is also smooth, and τX = τXT in the
Grothendieck-Witt ring.

If the base field is of positive characteristic, the corresponding assertions hold with the Grothendieck-Witt ring
replaced by the Grothendieck-Witt ring with the prime p inverted.

Assume M denotes a motivic spectrum that has the rigidity property as in Definition 1.10 and that T = Gm. Then
if RHom( ,M) denotes the derived (external) hom in the category of spectra,

(iii) RHom(j ◦ tr ′Gm
,M) is trivial, where j : Gm → A1 in the open immersion.

(iv) Let T act on a smooth scheme X so that for each T-orbit T/Γj with the orbit T/Γj
∼= Gm, the locally closed

immersion T/Γj × Yj → X as in (5.0.7) factors through a map A1 × Yj → X. Then RHom(tr ′X,M) '
RHom(i ◦ tr ′XT ,M), where i : XT → X is the inclusion.

(v) Moreover, under the assumptions of (iv), if G is a linear algebraic group acting on the scheme X commuting
with the action of a split torus T so that the decomposition of X in (5.0.7) is G-stable, and E → B is a
G-torsor, then tr∗X = RHom(E×

G
tr ′GX ,M) ' tr∗XGm ◦ i∗ = RHom(i ◦ (E×

G
tr ′GXT),M), where i : E×

G
XT → E×

G
X

is the inclusion.

Proof. First observe from Definition 2.5, that the trace τX associated to any smooth scheme X is a map ΣT → ΣT:
as such, we will identify τX with the corresponding class τ∗X(1) in the Grothendieck Witt-ring of the base field. We
will only consider the proofs when the base field is of characteristic 0, since the proofs in the positive characteristic
case are entirely similar. However, it is important to point out that in positive characteristics p, it is important to
invert p: for otherwise, one no longer has a theory of Spanier-Whitehead duality.

(i) and (iii). We observe that the scheme A1 is the disjoint union of the closed point {0} and Gm. If i1 : {0} → A1

and j1 : Gm → A1 are the corresponding immersions, Theorems 1.5(ii) and (iii) and 1.12(ii) and (iii) show that

(5.0.8) τA1 = τ{0} + τGm and RHom(tr ′A1 ,M) = RHom(i1 ◦ tr ′{0},M) + RHom(j1 ◦ tr′Gm
,M)

However, by A1-contractibility, τA1 = τ{0} and tr ′A1 = i1 ◦ tr ′{0}. One may readily see this from the definition of the

pre-transfer as in Definition 2.5, which shows that both the pre-transfer tr ′P = tr ′P(id) and hence the corresponding
trace, τP = p ◦ tr′P depend on P only up to its class in the motivic stable homotopy category. Therefore, τGm = 0
and RHom(j ◦ tr ′Gm

,M) is trivial. Since T is a split torus, we may assume T = Gn
m for some positive integer n.

Then the multiplicative property of the trace and pre-transfer (see Proposition 3.4) prove that τT = 0. These
complete the proof of statements (i) and (iii).

Therefore, we proceed to prove the statement in (ii) and (iv). First, we invoke Proposition 5.1 to conclude that
XT is the disjoint union of the schemes Xj for which Γj = T.

Let ij : Xj
∼= (T/Γj) × Yj → X denote the locally closed immersion. Next observe that the additivity of the

trace proven in Theorem 1.5, the additivity of pre-transfer proven in Theorem 1.12, and the multiplicativity of the
pre-transfer and trace proven in Proposition 3.4 along with the decomposition in (5.0.7) show that

τX = ΣjτXj = Σj(τT/Γj+) ∧ τYj+ and(5.0.9)

RHom(tr ′X,M) ' ΣjRHom(ij ◦ tr′Xj
,M) = ΣjRHom(ij ◦ (tr ′T/Γj+

∧ tr ′Yj+
),M).

Now statements (i) and (iii) in the theorem along with the assumptions in (iv) prove that the j-th summand on
the right-hand-sides are trivial unless Γj = T. But, then XT is the disjoint union of such Xj. Finally the additivity
of the trace and pre-transfer in Theorems 1.5 and 1.12 applied once more to XT proves the sum of the non-trivial
terms on the right-hand-side is τXT for the first equation and is given by RHom(i◦tr ′XT ,M) for the second equation.
These prove the statements in (ii) and (iv).

Finally, we consider the last statement. In view of the assumption that the actions by the linear algebraic group
G and the split torus T on the scheme X commute and that the decomposition of X into the schemes Xj as in (5.0.7)
is stable by the action of G, the weak-equivalence RHom(tr ′X,M) ' RHom(i ◦ tr ′XT ,M) obtained in (iv) implies the
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weak-equivalence RHom(E×
G

tr ′GX ,M) ' RHom(i ◦ (E×
G

tr ′GXT),M) in (v), in view of Theorem 1.12(iii) and (iv). (In

fact, one may adopt an argument as in (4.0.23) using a cover U = {Ui|i} of B on which the torsor p : E → B is
trivial.) �

Remark 5.3. Here we provide an explanation of the condition in Theorem 5.2(iv). The first observation is that
then the origin in A1 corresponds to a fixed point x for the Gm-action on X. The corresponding Gm-orbit is then
contained in a slice at x. The condition in Theorem 5.2(iv) may now be interpreted as saying the fixed point x is
an attractive fixed point for the Gm-action on X, in the sense that all the weights for the induced Gm action on the
Zariski tangent space Tx at x lie in an open half-space. (See [BJ, 2.2, 2.3] for further details.)

Corollary 5.4. Let X denote a smooth scheme provided with the action of a linear algebraic group G. Assume that
X is also provided with an action by Gm commuting with the action by G and that the hypotheses in Theorem 5.2(v)
hold with T = Gm. Let M denote a fibrant motivic spectrum that has the rigidity property. Then, adopting the
terminology as in Theorem 1.3, that for a linear algebraic group G, BG = lim

m→∞
BGgm,m and EG = lim

m→∞
EGgm,m,

one obtains the homotopy commutative diagram

h(EG×
G

X,M)
i∗ //

tr∗X

��

h(EG×
G

XGm ,M)

tr∗
XGmvv

h(BG,M)

where h( ,M) denotes the hypercohomology spectrum with respect to the motivic spectrum M and i : EG×
G

XGm →

EG×
G

X is the map induced by the closed immersion XGm → X.

Proof. We will show that there is a corresponding commutative diagram, when BG and EG are replaced by their
finite dimensional approximations BGgm,m and EGgm,m. Therefore let m denote a fixed non-negative integer and
let BGgm,m denote the approximation of BGgm to degree m and let EGgm,m denote its universal principal G-bundle.

Next we observe that X admits the decomposition X = (X−XGm) tXGm and that this decomposition is stable
under the action of G (as the action of G and Gm are assumed to commute). Moreover, X−XGm ∼= Gm×Y, where
Y in fact denotes the geometric quotient (X−XGm)/Gm. By Theorem 5.2(v), one obtains the identification of the
G-equivariant transfers

tr∗X = RHom(EGgm,m×
G

tr ′
G
X,M) = RHom(EGgm,m×

G
(i ◦ tr ′

G
XGm ),M) = tr∗XGm ◦ i∗.

Finally, taking the homotopy inverse limit as m→∞ provides the homotopy commutative triangle in the corollary.
�

Remarks 5.5. (i) A result analogous to the last corollary and Corollary 1.18 is proven for the classical Becker-
Gottlieb transfer in [Beck74, Lemma 1]. There it is used to show that the transfer maps stabilize for infinite
families of classifying spaces of compact Lie groups, such as {BO(2n) → BN(Tn)|n}. Work in progress in [JP20]
has the goal of producing similar results in the motivic framework.

(ii) One may observe that proofs of the statements analogous to the ones in Theorem 1.12(ii) and (iii) are easier
to obtain in the topological context. In the topological framework, the only suspension that one needs to consider
is the suspension by the simplicial sphere S1, and in this case it is shown in [LMS, Chapter IV, Theorem 2.10] that
this simplicial suspension simply amounts to multiplying the transfer and the trace by a sign. The proof of the
analogous result in [MP, (1.1) Theorem] strongly uses the fact that the boundary of an n-cell (or a disk-bundle)
is a simplicial sphere (sphere bundle) along which the n-cell (the disk bundle) is glued. Clearly these arguments
do not carry over as such into the motivic context. One may also see from [MP, (1.4) Corollary] that for complex
varieties, the additivity theorem they obtain for the transfer agrees with the ones we obtain in Theorem 1.12(iii).
In particular, the additivity theorem we obtain will provide corresponding additivity theorems on taking the étale
or Betti-realization, assuming the compatibility of the transfer with realizations: see [CJ19, section 8]. Therefore,
it does seem the deformation to the normal cone argument we have used along with the use of the motivic tubular
neighborhood is a replacement for the purely topological constructions that occur in the proofs of the corresponding
additivity theorems in the topological contexts.

Proof of Theorem 1.6 and Corollary 1.9. In view of the isomorphism G/NG(T) ∼= Go/NGo(T), we may
assume first of all that G is connected. (To obtain the above isomorphism, one may proceed as follows. One first
obtains the isomorphisms G/NG(T) ∼= {gTg−1|g εG} and Go/NGo(T) ∼= {goTg−1

o |go εGo}. Next observe that
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gTg−1, being a maximal torus and hence a connected subgroup of G, is in fact a maximal torus in Go for each
g εG. These show that {gTg−1|g εG} ∼= {goTg−1

o |go εGo}.)
Moreover, we may take the quotient by the unipotent radical Ru(G), which is a normal subgroup (and is

isomorphic to an affine space), with the quotient Gred = G/Ru(G) reductive. Now G/NG(T) ∼= Gred/NGred
(T)

(since the intersection of a maximal torus in G with the unipotent radical Ru(G) is trivial), so that we may assume
G is a connected split reductive group.

We will first consider the case where the base field is of characteristic 0. Then we observe that since G/N(T) is
the variety of all split maximal tori in G, T has an action on G/N(T) (induced by the left translation action of T
on G) so that there is exactly a single fixed point, namely the coset eN(T). i.e. (G/N(T))T = {eN(T)} = {Spec k}.
(To prove this assertion, one may reduce to the case where the base field is algebraically closed, since the formation
of fixed point schemes respects change of base fields as shown in [Fog, p. 33, Remark (3)]. See also [BP, Lemma
3.5].) Therefore, by Theorem 5.2(ii),

τG/N(T) = τ(G/N(T))T = τSpec k = idΣT
,

which is the identity map of the motivic sphere spectrum. Therefore, τ∗G/N(T)(1) = 1. The motivic stable homotopy

group π0,0(ΣT) identifies with the Grothendieck-Witt ring by [Mo4]. This completes the proof of the statement
on τG/N(T) in Theorem 1.6 in this case. In case the base field is of positive characteristic p, one observes that

ΣTG/N(T)+ will be dualizable only in Sptmot[p
−1]. But once the prime p is inverted the same arguments as

before carry over proving the corresponding statement. Observe that if B denotes a Borel subgroup containing the
split maximal torus T, τ∗G/T(1) = τ∗G/B(1) = τ∗(G/B)T(1) = |W|, which proves the last statement in Theorem 1.6.

Now we consider the proof of Corollary 1.9. (i) and (ii) follow readily from the Theorem 5.2 in view of the stable
splittings in the motivic homotopy theory worked out in [CJ19, Theorem 1.5]. The key point to observe here is
that the composition tr∗(π∗(1)) = τ∗G/N(T)(1) in case (i) and tr∗(q∗(1)) = τ∗G/N(T)(1) in case (ii). One also needs

to observe the isomorphism of G-schemes: G ×N(T) Y ∼= G/N(T) × Y and G ×T Y ∼= G/T × Y, so that [CJ19,
Theorem 1.5] readily applies to the situations considered in (ii) as well as in (iii). Recall from [CJ19, Proposition
8.1] that the traces in étale case are obtained by taking the étale realization of the traces in the motivic context.
Therefore, corresponding results for étale cohomology as in (iv) follow similarly.

�

5.1. Double Coset formulae. In this section, we establish various double coset formulae, the analogues of which
have been known in the setting of group cohomology for finite groups and also for compact Lie groups. We will
explicitly consider only the motivic framework, since the corresponding results in the étale framework may be
established by entirely similar arguments.

Proof of Theorem 1.13 (i) follows readily from the naturality of the transfer map established in [CJ19, Theorem
7.1]. Next we consider (ii). This follows readily from Theorem 1.12(iv). �

Proof of Corollary 1.14. First we will consider (i). In this case we first observe that the homogeneous space G/T
admits a decomposition into the double cosets T\G/T which will identify with affine spaces over each of the Bruhat-
cells. i.e. One begins with the Bruhat decomposition G = tw εWBwB−, where B is a Borel subgroup containing
the given maximal torus T and B− is its opposite Borel subgroup. Then T\G/T = tw εWRu(B)wRu(B−) where
Ru(B) (Ru(B−)) denotes the unipotent radical of B (B−, respectively). Now we invoke Theorem 1.13(ii).

Since both Ru(B) and Ru(B−) are affine spaces, it suffices to consider the double cosets corresponding to each
w εW. Observe that the strata are the affine spaces Ru(B)wRu(B−), and hence the normal bundles to these strata
are trivial. Moreover, each of the strata Ru(B)wRu(B−) has a fixed (k-rational) point for the action of T, which
corresponds to the origin of the affine space Ru(B)wRu(B−). We will denote this k-rational point by 0w. The
corresponding transfer sends ΣTBTgm,m

+ to ΣTBTgm,m
+ ' ΣTETgm,m×

T
0w by the map induced by sending Spec k to

the coset w̃T in G/T, where w̃ εN(T) is the element corresponding to w. This in fact corresponds to the self-map
of ΣTBTgm,m

+ induced by the automorphism of T defined by conjugation by w. (See, for example, the discussion
in [BM, (3.5) Theorem].) This proves (i).

The proof of (ii) is similar. First we consider the case where H is a parabolic subgroup, with Levi-factor L.
Then one knows that there is a set of simple roots I, among the basis of simple roots ∆, so that L = LI =
ZG((∩α ε IKer(α))o) and H = PI, the corresponding parabolic subgroup. The Weyl group WH is then generated by
the simple reflections sα, α ε I. In this case, one obtains a decomposition of G as tw εWG/WH

BwH and therefore,
the double coset decomposition T\G/H = tw εWG/WH

Ru(B)w. In case H is actually a Borel subgroup, WH is
trivial.
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One may observe that the conjugate Hg will be, in general, distinct from H, as the normalizer of a parabolic
subgroup is itself. Nevertheless, since g εWG, conjugation by g sends the given maximal torus K = T to itself,
though it will induce an automorphism of K. Therefore, K = K∩Hg and the restriction homomorphism p(K,Hg) =
p(K ∩ Hg,Hg) : h∗,•(BHg,E) → h∗,•(BK,E). In this case the origin of the affine space that corresponds to the
cell Ru(B)w is the coset w̃H in G/H, with w̃ εN(T) is the element corresponding to w. Then the corresponding
transfer is induced by the map BK → BHw̃ → BH = EH×

H
0w, where the last map is the one induced by the map

on H sending H to itself by conjugation by w̃. This proves (ii) in the case H is a parabolic subgroup.

The case H = L = LI a Levi subgroup reduces to the above case, since we may start with the decomposition of
G as tw εWG/WH

BwPI and hence a double coset decomposition T\G/L = tw εWG/WH
Ru(B)wRu(PI). The general

case, where H is a closed linear algebraic subgroup of G with maximal rank comes intermediate between the case
where H is a Levi-subgroup and a parabolic subgroup and may be handled in a similar manner. We skip the proof
of (iii) which is similar. �

Proof of Corollary 1.15. Let π : ET×
T

X ' EG×
G

G×
T

X→ EG×
G

X denote the map induced by the map G×
T

X→ X,

sending (g, x) 7→ gx and let the corresponding transfer be denoted tr. Then the first step is to observe that the
map

π∗ : h∗,•(EG×
G

X)→ h∗,•(ET×
T

X)

is a split injection since |W| is a unit in the given generalized cohomology theory. Then Corollary 1.14(ii) shows
that the image of the last map identifies with the W-invariant part of h∗,•(ET×

T
X). This is a standard argument,

but for the sake of completeness, we will provide further details.

Then, since χ(G/N(T)) = τ∗G/N(T)(1) = 1 and χ(N(T)/T) = τ∗N(T)/T(1) = |W|, one sees that χ(G/T) =

τ∗G/T(1) = |W|. Therefore, we obtain:

(5.1.1) tr∗ ◦ π∗(α) = |W|α, α ε h∗,•(EG×
G

X).

Therefore, since |W| is assumed to be a unit, the map π∗ is injective. Next let α ε h∗,•(ET×
T

X)W. Then, by

Corollary 1.14(ii), we obtain:

(5.1.2) π∗ ◦ tr∗(α) = Σg εWCg(α) = |W|α.

Then (5.1.1) and (5.1.2) along with the assumption that |W| is a unit show that h∗,•(ET×
T

X)W ⊆ Image(π∗).

Finally, one may observe that Cg ◦ π∗ = π∗, for all g εW, which shows that the image of π∗ is contained in
h∗,•(ET×

T
X)W. �

Proof of Corollary 1.16. First observe, in view of the observation that k is in fact algebraically closed, k contains
a
√
−1.

The statement in (i) is clear from Corollary 1.15. Clearly one obtains a corresponding statement in étale
cohomology as well. Next we will consider the statement in (ii). The statement in (i) along with its counterpart in
étale cohomology, provide the isomorphisms:

H∗,•G,mot(X,Z/`
n) ∼= H∗,•T,mot(X,Z/`

n)Wand

H∗,•G,et(X,Z/`
n) ∼= H∗,•T,et(X,Z/`

n)W.

Therefore, we reduce to the case where G is replaced by a split torus T. At this point, we observe that a choice of
BTgm,m = Πn

i=1Pm, if T = Gn
m.

Observe that ETgm,m → BTgm,m is a Zariski locally trivial torsor for the action T, as T = Gn
m is a split torus,

and hence is special as a linear algebraic group in the sense of Grothendieck: see [Ch]. Taking n = 1, we see that
πm : EGgm,mm → BGgm,m

m = Pm is such a torsor, so that there is a Zariski open cover {Uj|j = 1, · · · ,N} where πm|Uj

is of the form Uj ×Gm, j = 1, · · · ,N.

Let {V0, · · ·Vm} denote the open cover of Pm obtained by letting Vi be the open subscheme where the homoge-
neous coordinate xi, i = 0, · · · ,m on Pm is non-zero. Without loss of generality, we may assume the Uj refine the
open cover {Vi|i = 0, · · ·m}. Finally the observation that the Picard groups of affine spaces are trivial, shows that
one may in fact take N = m and Uj = Vj, j = 0, · · · ,m. Now one may take an open cover of Πn

i=1Pm by taking the
product of the affine spaces that form the open cover of each factor Pm. We will denote this open cover of Πn

i=1Pm
by {Wα|α}.
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Let p : ETgm,m×
T

X → BTgm,m denote the obvious map, and let ε denote the map from the étale site to the

Nisnevich site. Let Z/`n(i) denote the motivic complex of weight i on the Nisnevich site of ETgm,m×
T

X. Then one

obtains the identification (see [Voev11], [HW]):

(5.1.3) Z/`n(i) = τ≤iRε∗ε
∗(Z/`n(i)).

Therefore, on applying Rp∗, we obtain the natural maps:

Rp∗(Z/`n(i))
'→Rp∗(τ≤iRε∗ε∗(Z/`n(i)))→ Rp∗Rε∗ε

∗(Z/`n(i))(5.1.4)

∼= Rp∗Rε∗µ`n(i) ∼= Rε∗Rp∗µ`n(i).

On taking the sections over each Zariski open set Wα in the above cover of BTgm,m, we obtain a quasi-isomorphism,
since affine-spaces are contractible for motivic cohomology, and also for étale cohomology with respect to µ`n(j)
as the base field is separably closed with ` 6= char(k). Now a Mayer-Vietoris argument using the above open cover
of BTgm,m completes the proof. Since the iterated intersections of the affine spaces forming the open cover of
BTgm,m are products of an affine space with a split torus, one may invoke the derived Kunneth formula for motivic
cohomology as in [J01] to reduce to the case where the split torus above is 1-dimensional. Then a localization
sequence for the pair (An × A1,An × {0}) shows that the map in (5.1.4) induces a quasi-isomorphism on taking
sections over iterated intersections of the sets Wα. This completes the proof of (ii).

Next we will prove (iii) by observing the sequence of isomorphisms:

H∗,•mot(G/H,Z/`
n) ∼= H∗,•mot(EH×

H
G,Z/`n) ∼= H∗,•mot(ET×

T
G,Z/`n)WH ∼= H∗,•mot(G/T)WH .

The first and last isomorphisms follow from the fact that EH and ET are both A1-acyclic. The statement in (i)
provides the second isomorphism. This proves (iii) and clearly the same proof carries over to étale cohomology.

The Bruhat decomposition shows that G/B has a stratification into strata that are affine spaces. Moreover G/B is
projective and smooth. Therefore, [J01, Theorem 1.2] shows that the higher cycle map for G/B is an isomorphism.
Since G/T is an affine space bundle over G/B, this isomorphism extends to G/T as well. The Bruhat decomposition
of G/B shows that there is a natural action by the Weyl group WH on G/B and hence on G/T. On viewing the
cycle map as induced by the map Z/`n(i) → Rε∗ε

∗Z/`n(i), it becomes clear that it is compatible with the action
of WH on G/B. This proves (v).

Finally to see the last statement on Brauer groups, we make use of the short-exact sequence

(5.1.3) 0→ H2,1
mot(G/H,Z/`n)→ H2

et(G/H, µ`n(1))→ Br′(G/H)`n → 0 and

where Br′(G/H) = H2
et(G/H,Gm)tor which is the torsion subgroup of H2

et(G/H,Gm). (See, for example, [IJ20-1,

(8)].) Since the map H2,1
mot(G/H,Z/`n) → H2

et(G/H, µ`n(1)) is the cycle map, which has been observed to be an
isomorphism, it follows that Br′(G/H)`n ∼= 0. This completes the proof of Corollary 1.16. �

Proof of Corollary 1.18. In view of the assumption that X is projective, we invoke the Bialynicki-Birula
decomposition of X into finitely many locally closed subschemes X+

α , so that each X+
α is an affine space bundle on

Xα, which is a connected component of the fixed point scheme XGm . (See [dB01, Theorem 2.1], [B-B].) Since the
actions of G and Gm commute, and G is connected, each connected component of the fixed point scheme XGm is
stable by G. Therefore, it follows that each of the X+

α is also stable by G.

In view of the assumed rigidity property for the spectrum M, Theorem 1.12(iv) shows that

tr∗X = RHom(EGgm,m×
G

tr ′
G
X,M) = Σαtr∗

X+
α

= ΣαRHom(EGgm,m×
G

(i+
α ◦ tr ′X+

α
),M).

In view of the observation that each X+
α → Xα is an affine-space bundle, the last sum identifies with

ΣαRHom(EGgm,m×
G

(iα ◦ tr ′Xα),M) = RHom(EGgm,m×
G

(i ◦ tr ′XGm ),M) = tr∗XGm ◦ i∗,

where i+α : X+
α → X, iα : Xα → X and i : XGm → X are the locally closed immersions. Now one takes the colimit

as m→∞, to complete the proof. �

Remark 5.6. An example of the situation considered in the above corollary is the following. Let X = GLn+1/Bn+1,
which is the variety of all Borel subgroups in GLn+1. Let Gm denote the 1-parameter subgroup imbedded in GLn+1

as the diagonal matrices of the form In×Gm, with Gm appearing in the (n+ 1, n+ 1)-position. Then consider the
action of this Gm by conjugation on X. Then let G = GLn acting by conjugation on X: then the actions by G and
Gm commute. (See [JP20] for more on this.)
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Proof of Corollary 1.19: the motivic analogue of the Snaith-Mitchell-Priddy splittings. We will
explicitly consider only the case where char(k) = 0. We will fix a positive integer m and consider the finite degree
approximations of all classifying spaces of degree m. However, as m will be fixed throughout our discussion, we
will omit the superscript m and gm so that BG (EG) will mean BGgm,m (EGgm,m, respectively), for any linear
algebraic group G. The proof begins with the cartesian square:

(5.1.4) E
//

��

BGLi × BGLj

mi,j

��
BGLr × BGLs

mr,s //
BGLi+j=r+s.

In this situation, we let the transfer tri,j : ΣT(BGLi+j,+)→ ΣT(BGLi,+ ∧ BGLj,+). This fits in the framework of
Theorem 1.13(i), by taking G = GLi+j=r+s, H = GLi×GLj, K = GLr×GLs. Then E admits a decomposition into
components each of which is of the form, as a, b vary so that a ≤ r, b ≤ s and a+ b = i:

EGLr ×
GLr

GLr/(GLa ×GLr−a)× EGLs ×
GLs

GLs/(GLb ×GLb−s).

Therefore, the formula in Theorem 1.13(i), which holds for all motivic spectra, applies to provide the identification
in the stable motivic homotopy category:

(5.1.4) tri,j ◦mr,s =
∨

a+b=i,a≤r,b≤s

nwa,bcwa,b ◦ (tra,r−a ∧ trb,s−b)

where cwa,b : BGLa × BGLr−a × BGLb × BGLs−b → BGLa × BGLb × BGLr−a × BGLs−b → BGLi × BGLj is the
obvious map switching the two inner factors. nwa,b is a non-negative integer depending on the multiplicity of the
above components.

Next one defines BGLn = BGLn/BGLn−1 and fi,j : ΣTBGLi+j,+
tri,j→ΣTBGLi,+∧ΣTBGLj,+

πi,j→ΣTBGLj,+, where
πi,j is the obvious projection. Note that fn,0 : ΣTBGLn,+ → ΣTS0 is the augmentation and f0,n : ΣTBGLn,+ →
ΣTBGLn,+ is the projection. By composing the maps on the two sides of (5.1.4) with πi,j , we obtain:

(5.1.5) fi,j ◦mr,s =
∨

a+b=i,a≤r,b≤s

nwa,bmr−a,s−b ◦ (fa,r−a ∧ fb,s−b)

where mr−a,s−b : ΣTBGLr−a,+ ∧ ΣTBGLs−b,+ → ΣTBGLr−a+s−b,+ = ΣTBGLj,+ denotes the induced map.

Now observe that the maps fn−j,j : ΣTBGLn,+ → ΣTBGLj,+ define the map

(5.1.6) Π0≤j≤nfn−j,j : ΣTBGLn,+ → Π0≤j≤nΣTBGLj,+ '
∨

0≤j≤n

ΣTBGLj,+

It suffices to show that this map is a weak-equivalence. For this, we will adopt the argument given in [MP, Proof
of Theorem 4.2]. Let gj : BGLj → BGLn, for n = i + j, denote the map induced by the inclusion of GLj into
the last j × j block in GLn. Now it suffices to show that the composition ḡj,+ = fn−j,j ◦ ΣTgj,+ is the projection

ΣTBGLj,+ → ΣTBGLj,+, since then the map in (5.1.6) would be a filtration preserving map that induces a
weak-equivalence on the associated graded objects.

Therefore, we proceed to show that, the composition ḡj,+ = fn−j,j ◦ ΣTgj,+ is the projection ΣTBGLj,+ →
ΣTBGLj,+. We will take r = i, s = j in (5.1.5) and then pre-compose the map there with the map S0∧ΣTBGLj,+ →
ΣTBGLi,+ ∧ΣTBGLj,+. Then the left-hand-side yields ḡj,+, while the right-hand-side yields a finite sum of terms
of the form:

ΣTS0 ∧ ΣTBGLj,+ → ΣTBGLi,+ ∧ ΣTBGLj,+
tra,i−a∧trb,j−b→(5.1.7)

ΣT(BGLa,+ ∧ BGLi−a,+ ∧ BGLb,+ ∧ BGLj−b,+)
πi−a∧πj−b→ ΣTBGLi−a,+ ∧ ΣTBGLj−b,+

mi−a,j−b→ ΣTBGLj,+.

If i > a, then the above map ΣTS0 → ΣTBGLi−a,+ will factor through ΣTBGLi−a−1,+, so that S0 maps to the

base point in BGLi−a, and therefore the above map will be trivial. Therefore, the only non-trivial summand above
will be a map of the form:

ΣTS0 ∧ ΣTBGLj,+ → ΣTBGLi,+ ∧ ΣTBGLj,+
ε∧π→ΣTS0 ∧ BGLj,+

∼= ΣTBGLj,+.

Therefore, the composition in (5.1.7) will be trivial for all terms except when j = b, in which case it is

ΣTS0 ∧ ΣTBGLj,+ → ΣTBGLi,+ ∧ ΣTBGLj,+
ε∧π→ΣTS0 ∧ ΣTBGLj,+

∼= ΣTBGLj,+.
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This identifies with the projection ΣTBGLj,+ → ΣTBGLj,+ thereby completing the proof of the corollary in the
motivic setting, when all the classifying spaces have been replaced by a fixed finite degree approximation, to order
m. One may simply take the (homotopy) colimit as m→∞ to obtain the corresponding statement for the infinite
classifying spaces. The proof of the corresponding statement in the étale setting is similar, and is therefore skipped.
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E-mail address: pablo.pelaez@im.unam.mx


